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Algorithmic aspects of topological problems

1 A short description of attached papers

This habilitation thesis consists of reprints of seven papers coauthored by
Lukáš Vokř́ınek preceeded by a commentary. The papers fall into what
might be called algorithmic topology, since it studies (usually quite classi-
cal) problems of topology from the point of view of decidability, designing
algorithms and studying their computational complexity. This project orig-
inated in computational geometry, namely in a paper by Matoušek, Tancer
and Wagner about embeddability of simiplicial complexes into the Euclidean
space. For a certain range of dimensions (the so-called meta-stable range),
the embeddability problem is of a completely homotopical nature or, more
precisely, of a stable Z/2-homotopical nature. It is also believed that this
homotopical nature may be extended to a broader range of dimensions at
the cost of involving more complicated symmetry groups, and possibly after
organizing the relevant spaces into diagrams. The author is involved in a
project, currently in the process of writing up and therefore not included in
this thesis, that deals with this setting; it is briefly mentioned in Section 11.

The papers are to be found at the end of this thesis, after a more detailed
commentary contained in the following sections. The paper [1] deals with
computing the abelian group of stable homotopy classes of maps [X, Y ] for
Y simply connected and relies in an essential way on the paper [2] that
constructs algorithmically the Postnikov tower of Y . In addition, [2] also
deals with computational complexity of this construction and of the results
of [1] – the algorithm computing [X, Y ] is polynomial-time if the dimension
of X is bounded by a fixed integer. The paper [3] then goes in the opposite
direction and shows that unstably the above problem (or, more precisely, its
generalization) is unsolvable; [3] also deals with the complexity of computing
[X, Y ] when the dimension of X is not bounded.

The paper [4] then concludes the original project, since it proves decidabil-
ity of the embeddability problem in the meta-stable range. More generally,
it deals with equivariant homotopy theory and shows that the equivariant
(and also fibrewise) version of the main result of [1] is also true. It relies
heavily on a completely algebraic paper [7] by the author. The papers [5]
and [6] then deal with two special cases that are not stable and thus do not
fit into the previous setup, but are also solvable. The result of [5] covers
the case of Y being an odd-dimensional sphere and has applications e.g. to
solvability of systems of (an even number of) equations and the result of [6]
proves decidability of an absolutely basic problem of topology: are two given
maps homotopic?
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The subsequent commentary follows roughly the same line of ideas as the
above short overview and gives more details about each topic. The level of
details varies greatly and there is no logic behind the selection of less and
more detailed parts, only a hope to create an interesting and readable text.

2 Algorithmic computations with spaces

This thesis is concerned with algorithmic questions in algebraic topology. In
order to make such algorithmic questions well posed, we have to explain why
and how it is possible to specify topological spaces and continuous maps as
inputs and outputs of algorithms, i.e. show how to describe such objects by a
finite amount of data. Some of the included papers do concern computational
complexity, in which case one has to be more precise, since the answer may
depend on a specific way of encoding, but discussing complexity issues is not
the intent of this commentary.

In combinatorial geometry, the role of spaces is typically taken by simpli-
cial complexes. However, simplicial complexes are not closed under a number
of important constructions (colimits, in particular) and, for this reason, we
prefer to work with simplicial sets. We assume that the reader is familiar
with this concept, but we believe that, in order to get a rough idea of our
results, simplicial complexes are sufficient enough.

On the other hand, upon replacing simplicial complexes by simplicial sets,
it may not be clear how to represent them by a finite amount of data, since
any non-empty simplicial set has an infinite number of simplices. First of
all, we restrict ourselves to the so-called finite simplicial sets – those that
have only a finite number of non-degenerate simplices. The first part of a
possible representation is then a list of non-degenerate simplices (one chooses
a representing string of bits for each such simplex); then every simplex x is
a degeneracy1 of a non-degenerate simplex in a unique way, x = sJy, and we
use this expression to represent the simplex x by the pair (J, y). The second
part of the description is another list: for each face of each non-degenerate
simplex, we express this face as a degeneracy of a non-degenerate simplex,
i.e. we specify a table listing for each pair (i, x) another pair (J, y) such that
dix = sJy, as above. This determines the simplicial set uniquely (up to
isomorphism).

1By a degeneracy, we mean a composition of degeneracy operators, i.e. sJ = sjk · · · sj1 ;
when we insist on jk > · · · > j1, the sequence J is unique.
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3 Homotopy groups

Since its birth, algebraic topology has revolved around defining and comput-
ing algebraic invariants of spaces. There exists a vast amount of tools for
computing these invariants, some of which miraculously work in some exam-
ples but do not give an answer in general. We are interested in a different
way of computing, namely, in algorithmic computations. In this thesis, we
will use the word computation in this algorithmic sense, i.e. we are interested
in constructing algorithms.

Mainly to set up the notation, we denote by [X, Y ] the set of homotopy
classes of continuous maps X → Y , i.e. homotopy classes of maps |X| → |Y |
between geometric realizations, to be more precise. In the pointed version,
where all spaces, maps and homotopies are required to be pointed, we obtain
[X, Y ]∗ – the set of pointed homotopy classes. The n-th homotopy group of
a pointed space Y is thus

πn(Y ) = [Sn, Y ]∗.

This set has a natural structure of a group, abelian for n ≥ 2, and it has
been one of the big goals of topology, possibly unachievable, to compute the
homotopy groups of spheres or, less ambitiously, the stable homotopy groups
of spheres.

Problem A (homotopy group). Given a space Y and n ≥ 0, compute πn(Y ).

Even though we have already clarified how Y may be presented on the
input, it is not clear how the homotopy group πn(Y ) should be presented
on the output. The most problematic case is the non-abelian fundamental
group π1(Y ). It is very simple to compute a presentation of π1(Y ), but that is
generally not considered to be sufficient, since, for example, it is not possible
to decide algorithmically whether a group, given by a presentation, is trivial
and also whether an element of the presented group, written as a product of
generators and their inverses, is trivial, i.e. the unit of the group.

In the opposite direction, it is easy to turn an arbitrary presentation of
a group into a space whose fundamental group is the presented group and,
therefore, these results give the (well-known) undecidability of the following
two problems in topology:

Problem B (simple connectedness). Decide whether a given space Y is sim-
ply connected.

Problem C (nullhomotopy). Decide whether a given map Sn → Y is null-
homotopic.
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There is a somewhat different problem with the higher homotopy groups.
The group πn(Y ), although abelian, may be infinitely generated, e.g. π2(S2∨
S1) is countably generated, and we do not see a reasonable way of presenting
such groups as outputs of an algorithm. The infinite generation is caused
again by Y not being simply connected. We will therefore restrict ourselves
by the following convention.

Convention. All target spaces are assumed to be simply connected.

To settle down the exact statement of Problem A, we note that, under
the above assumption, πn(Y ) is indeed a finitely generated abelian group
and thus isomorphic to a group of the form Z/q1 ⊕ · · · ⊕ Z/qr for some
q1, . . . , qr ∈ Z+∪{0}, where qi = 0 gives an infinite cyclic summand Z/0 = Z.
Thus, in a precise formulation, Problem A is required to compute and output
such an expression, i.e. essentially the list of the qi’s. Of course, we may
require q1 | · · · | qr and then such a representation is unique; therefore,
we may then say that the algorithm outputs the isomorphism type of the
homotopy group.

With the convention in place, the following theorem says that the above
problems are decidable; this result appeared already in [8], but without the
claim on the running time (and the algorithm therein is almost definitely not
polynomial-time).

Theorem 1 (Theorem 1.1 of [2], Theorem 1.2 of [3]). The homotopy group
problem and the nullhomotopy problem are solvable. When n is fixed, the
running times are polynomial.

When n is part of the input (in unary), the problem is #P-hard.

The algorithm for the nullhomotopy problem, as described above, is quite
simple when using the methods of [2] and [4]. Later, we will explain a more
general problem of deciding homotopy between two maps (with arbitrary
domain).

4 Homotopy classes

Problem D (homotopy classes). Given X and Y , with Y simply connected,
compute [X, Y ].

In contrast with the situation of homotopy groups, [X, Y ] is not a group,
but just a set. A possible interpretation of the above problem is then to
output the number of elements of this set (a finite number or infinity). We
will discuss this version of the problem in some detail later, but, for now, we
concentrate on the stable version described below that ensures that [X, Y ]
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is again an abelian group and the algorithm is again required to output this
abelian group.

We denote by connY the connectivity of Y , i.e. the largest integer d
such that Y is d-connected. By our convention, we assume connY ≥ 1 and
this implies [X, Y ] ∼= [X, Y ]∗. When dimX ≤ 2 connY , the so-called stable
situation, the Freudenthal suspension theorem gives

[X, Y ] ∼= [X, Y ]∗ ∼= [ΣX,ΣY ]∗ ∼= [Σ2X,Σ2Y ]∗

and the right hand side is known to be an abelian group. The interpretation
of Problem D in the stable situation is then similar to Problem A.

Problem E (stable homotopy classes). Given X and Y , with Y simply con-
nected and with dimX ≤ 2 connY , compute the abelian group [X, Y ].

We remark that, in the stable situation, [X, Y ] is isomorphic to the abelian
group {X, Y } of stable homotopy classes. In addition, if X and Y are ar-
bitrary and n sufficiently large, [ΣnX,ΣnY ] falls into the stable situation so
that the above problem applies to it; this means that Problem E is equivalent
to computing {X, Y } for any given spaces X and Y .

Theorem 2 (Theorem 1.1 of [1], Corollary 1.3 of [2]). The stable homotopy
classes problem is solvable. For fixed dimension of X, the algorithm runs in
polynomial time.

For dimX = 2 connY + 1, it is still possible to compute the number of
elements of the set [X, Y ]. We do not know of the exact status of Problem D
in general. We will now present a generalization of this problem that we have
proved to be undecidable (stable version will be decidable, again).

5 Relative homotopy classes and undecidability

Let A be a fixed space. A space under A is a space X equipped with a
map A → X, typically an inclusion of a subspace. An important example
is A = ∗, the one point space, for which spaces under A are exactly pointed
spaces. A map under A is a map ` : X → Y for which the obvious triangle

A //

��

Y

X
`

>>

commutes. Finally, a homotopy under A (more commonly known as homo-
topy relative to A) is one that is constant when restricted to A. If A→ X is
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injective, we define [X, Y ]A to be the set of homotopy classes of continuous
maps X → Y in the category of spaces, maps and homotopies under A. In
the general case, one has to first replace A → X up to homotopy by an
injective map A → Xcof (more precisely, this replacement should fit into a
factorization A → Xcof → X with the first map injective and the second a
homotopy equivalence), and then [X, Y ]A is defined to be [Xcof , Y ]A.

Clearly, we may take Xcof to be the mapping cylinder of the original map
and [X, Y ]A is then interpreted as the set of homotopy classes of extensions up
to homotopy in the above diagram. We get a generalization of the homotopy
classes problem for spaces under A:

Problem F (relative homotopy classes). Let A be a fixed space. Given spaces
X and Y under A, with Y simply connected, compute [X, Y ]A.

The above discussion about stability easily generalizes and, in the stable
situation dimX ≤ 2 connY , we get [X, Y ]A ∼= [Σ2X,Σ2Y ]Σ

2A with the latter
either an empty set or an abelian group (more precisely, it is an abelian heap).
In the unstable situation, [X, Y ]A is merely a set and we may again ask to
compute the number of its elements. An even simpler version is to decide
whether this set is non-empty and this version reads:

Problem G (extension). Let A be a fixed space. Given spaces X and Y
under A, with Y simply connected, decide whether [X, Y ]A is non-empty, i.e.
whether an extension ` : X → Y of the given map A→ Y exists.

We remark that, if the simple connectedness assumption is dropped, the
extension problem is undecidable, since it contains Problem C. But, even in
the simply connected case, we have:

Theorem 3 (Theorem 1.1 of [3]). The extension problem is undecidable.

We will explain the main idea of the proof in Section 8.
There is, however, a significant special case that is decidable, namely the

existence of a homotopy, rewritten as an extension problem in the following
way:

(∂I ×X) ∪ (I × A) //

��

Y

I ×X

77

Problem H (homotopy). Given spaces X and Y with Y simply connected,
a subspace A ⊆ X, two maps f, g : X → Y and a homotopy f |A ∼ g|A
of the restrictions, decide if there exists an extension of this homotopy to a
homotopy f ∼ g.
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Theorem 4 (Theorem A of [6]). The homotopy problem is decidable.

We will give a brief idea of the proof in Section 10. Now we turn to
one final generalization, which originated from our main motivation for the
project, explained in the following section.

6 Embedding problem

Problem I. Given a simplicial complex K of dimension k and n ∈ Z+,
decide whether K embeds in Rn.

This problem was treated in [14] and proved to be NP-hard or undecid-
able for certain pairs of dimensions (n, k). Except for low dimensions, the
only left out pairs of dimensions were those from the so-called metastable
range k ≤ 2

3
n − 1. In the metastable range, by a theorem of Weber, the

embeddability problem is equivalent to the problem of existence of a Z/2-
equivariant map K2

∆ → Sn−1, where K2
∆ is a certain simplicial complex

constructed out of K and homotopy equivalent to K ×K r ∆K . Thus, the
embedding problem in the metastable range is equivalent to deciding if the
set [K2

∆, S
n−1] of equivariant homotopy classes of maps is non-empty and,

since dimK2
∆ = 2k ≤ 2 connSn−1 = 2(n − 2), this falls into the stable sit-

uation of Problem D, or rather its equivariant version. This leads us to a
generalization of Problem D to the equivariant setup.

7 Equivariant maps and lifts

The algorithmic aspects of computing equivariant homotopy classes of maps
has been studied in [4] in the case of free actions, which turned out to be
much simpler than the general case. Throughout this section, we fix a finite
group G. Since the relative setup is not more difficult than the absolute one,
we will treat the relative case. Then the extension problem is exactly

A //

��

Y

��
X //

>>

∗
Since we deal with free actions of G, the one point space ∗ does not fit into
this picture and has to be replaced by a contractible G-space EG with a
free action of G.2 Of course, the exact reason why we had to deal with

2We remark that EG is infinite, but locally finite, which is sufficient for our purposes,
since it only appears as a target. There are also other ways of introducing a base that is
a free G-space, e.g. one may replace Y → ∗ by X × Y → X.
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the fibrewise situation stems from our algorithm – it is based on Postnikov
towers which represent Y as being built gradually from a point and the point
is not allowed; the extension of the Postnikov tower to fibrations, the so-
called Moore-Postnikov tower, starts from the base of the fibration; in our
case, this is the allowed space EG. We will now explain the fibrewise setup
in some detail.

Let A and B be fixed G-spaces and A → B a fixed G-map; we will
assume that B is simply connected. All our spaces X will be G-spaces that
fit into a factorization A → X → B of the fixed map into a composition
of two G-maps. We think of this as a space X under A and over B in a
compatible way. All our maps and homotopies are required to be G-maps
and are required to preserve the given maps from A and to B, i.e. they are
required to be relative to A and fibrewise over B. We may think of the maps
as diagonals ` in the following diagram:

A //

��

Y

��

X //

`
>>

B

for which both triangles commute. The problem to find such a diagonal map
` is called the lifting-extension problem and much of the abstract homotopy
theory is expressed in terms of lifting-extension problems.

When A→ X is injective (a cofibration) and Y → B is a (Kan) fibration,
the set of homotopy classes of such diagonals is denoted [X, Y ]AB; the group
G is supressed from the notation. In the general case, we replace the maps
by a cofibration A→ Xcof and a fibration Y fib → B, both up to G-homotopy
equivalence, and define

[X, Y ]AB = [Xcof , Y fib]AB.

Problem J (lifting-extension problem). Given two G-spaces under A and
over B, compute [X, Y ]AB.

This generalizes all the above problems. As such, it is undecidable when
no dimension-connectivity restrictions are in place. The following is the main
theorem of [4]; the stability is explained after its corollary.

Theorem 5 (Theorem 1.1 of [4]). The stable lifting-extension problem is
solvable.

Since Weber’s theorem gives, in the meta-stable range, a reduction of the
embedding problem to the stable lifting-extension problem, we get:
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Corollary 6 (Theorem 1.3 of [4]). The embedding problem is solvable in the
meta-stable range.

The notion of stability starts to get more complicated in the fibrewise
setup. In order to give the definition, we assume that A→ X is a cofibration
and Y → B a fibration. We denote by dimAX the dimension of the cofibre of
A→ X, i.e. the dimension of X/A or, in other words, the maximal dimension
of a non-degenerate simplex of X not contained in A. We also denote by
connB Y the connectivity of the fibre of Y → B. The stable situation is then
defined by the requirement dimAX ≤ 2 connB Y .

In the stable situation, we get the following Freudenthal suspension the-
orem

[X, Y ]AB
∼= [ΣBX,ΣBY ]ΣBA

B
∼= [I ×X,ΣBY ]

(∂I×X)∪(I×A)
B

(the fibrewise suspension ΣBY is obtained by squashing the two copies of Y
in I×Y separately to B using the canonical map Y → B). The concatenation
of paths equips this set with a group structure (or, more precisely, with a
heap structure) and the second application proves it to be abelian, as usual.

8 Undecidability

As explained, the problem of computing [X, Y ]A is solvable for dimX ≤
2 connY , when the set has a structure of an abelian group, and also for
dimX = 2 connY + 1, when no structure is present but we are only asked
to compute the number of elements. Proceeding one dimension further, we
already arrive at an unsolvable problem, even if we are only asked to decide
whether [X, Y ]AB is non-empty:

Theorem 7 (Theorem 1.1 of [3]). The extension problem

A //

��

Sd+1

X

<<

with X of dimension 2d+ 2 is undecidable, for d+ 1 even.

The idea of the proof. The solvability of a system of polynomial equations
over Z is undecidable, according to [12], and it is easy to prove from this
that solvability of systems of quadratic equations with zero linear terms is
undecidable, too. Thus, it is enough to encode such systems of quadratic
equations into extension problems. This is achieved by extension problems
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of the following form, where we denote d+ 1 = 2n:

S4n−1 ∨ · · · ∨ S4n−1 f
//

g

��

S2n

S2n ∨ · · · ∨ S2n

`

66

(here the vertical map is not injective and thus has to be replaced by the
mapping cylinder of this map that has dimension 4n = 2d+ 2).

The homotopy class of a map ` as indicated in the diagram, but without
any commutativity assumption imposed yet, is an element of

[S2n ∨ · · · ∨ S2n, S2n] ∼= π2n(S2n)⊕ · · · ⊕ π2n(S2n) ∼= Z⊕ · · · ⊕ Z,

i.e. a tuple (xi) of integers. Denoting ι ∈ π2nS
2n the homotopy class of the

identity, its Whitehead product with itself is an element [ι, ι] ∈ [S4n−1, S2n]
of infinite order. The horizontal map f is specified, on the r-th summand
S4n−1, to be a multiple br · [ι, ι]. Similarly, the vertical map g is, on the r-th
summand, the integral combination

∑
i,j ar;ij · [ιi, ιj], where ιi ∈ π2n(S2n ∨

· · · ∨ S2n) denotes the homotopy class of the inclusion of the i-th summand.
It turns out that the map ` is an extension up to homotopy if and only if

br =
∑

i,j

ar;ij · xixj.

This is a general form of a system of quadratic equations as above.

For d+ 1 odd, we have a similar result

Theorem 8 (Theorem 1.1 of [3]). The extension problem

A //

��

Sd+1 ∨ Sd+1

X

99

with X of dimension 2d+ 2 is undecidable, for d+ 1 odd.

The idea of the proof. This is very similar, but [ι, ι] has a finite order in this
case and thus has to be replaced by the Whitehead product [ι1, ι2] of the two
inclusion Sd+1 → Sd+1 ∨ Sd+1. We leave out all details.

It is thus perhaps a bit surprising that the exact analogue of Theorem 7,
concerning maps into an odd-dimensional sphere, is not true, i.e. the exten-
sion problem is decidable. More generaly, the decidability holds when Sd+1

is replaced by any d-connected space Y , whose homotopy groups πn(Y ) are
finite for 2d < n < dimX.
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Theorem 9 (Theorem 1.1 of [5]). The extension problem

A //

��

Sd+1

X

<<

with X of arbitrary dimension is decidable, for d+ 1 odd.

We give a brief idea of the proof in the next section.
We conclude with two applications. The first is concerned with the prob-

lem of robust satisfiability of a system of equations. The system is given as
f(x) = 0 for some simplex-wise linear map f : K → Rn. This system is said
to have an α-robust zero if every α-perturbation of this system, i.e. a system
g(x) = 0 given by a map g with |g − f | ≤ α, has a solution.

Problem K (robust satisfiability). Given f and α as above, decide whether
f has an α-robust zero.

In [11], an equivalence is shown between the existence of robust zeros
and extendability of maps to Sn−1. Thus, the robust satisfiability problem
is decidable for n even and undecidable for n odd.

The second application concerns the Z/2-index of a Z/2-space X, which
is the smallest n, for which a Z/2-map X → Sn exists. The Z/2-index
has many applications in geometry and combinatorics, see [13]. Since the
equivariant version of the above theorem is also true, it provides an algorithm
that narrows the Z/2-index of X down to two possible values.

9 Methods of the computations

We will now explain some of the tools used in the solvability results. The
methods employed by our algorithms involve homologically effective spaces
and effective abelian groups.

We say that a set A is semi-locally effective if elements of this set have
a representation in a computer, say by strings of bits. Generally, we do not
require this representation to be unique – for example, an element of H∗X is
represented by a cycle, but adding a boundary to the cycle does not change
the homology class. Thus, formally, a semi-locally effective representation
of a set A is a surjective map A → A, α 7→ [α] where the elements of A
have an agreed upon representation in a computer. If, in addition, there is
an algorithm that, for given α, β ∈ A decides whether [α] = [β] (i.e. the
equality is decidable), one says that the set (or the representation A → A)
is locally effective.
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As an example, for [X, Y ] to be locally effective (we will not go into details
about representing its elements yet), we have to provide an algorithm testing
homotopy; this is Theorem 4.

We say that a mapping f : A → B is computable if there is given an
algorithm that computes some mapping ϕ : A → B with [ϕ(α)] = f([α]).

A locally effective group is a group for which

• the underlying set is locally effective.

• the group operations 0,−,+ are computable.

This alone does not allow one to produce anything else than a representative
of the zero element and hence no global information about the group. Also,
given α ∈ A, it is not possible to compute the order of [α].

We say that a locally effective abelian group is effective (in the papers:
fully effective) if there are given algorithms computing some isomorphism

A
∼=−−→ Z/q1 ⊕ · · · ⊕ Z/qr

and its inverse (the right hand side has a fairly obvious structure of a locally
effective abelian group). Then, one can translate any problem concerning
elements of A to the direct sum of cyclic groups, solve it there and translate
back. For example, one may compute, for a given a ∈ A, some element b ∈ A
such that a = 2b or conclude that no such b exists.

One may endow the kernel and the cokernel of a homomorphism between
effective abelian groups with an effective abelian group structure in a rather
straightforward way. The same is true for extensions of effective abelian
groups if the homomorphisms in the short exact sequence are computable
(and with the right notion of surjectivity).

Continuing in a similar fashion, one may define locally effective and ef-
fective chain complexes of abelian groups (free abelian groups are sufficient
for our purposes). Now comes a crucial definition, due to Francis Sergeraert.
We say that a locally effective chain complex is homologically effective (in pa-
pers: has effective homology) if there is given a computable chain homotopy
equivalence of the given chain complex with an effective chain complex.

A locally effective space is also defined similarly to other locally effective
structures (i.e. face and degeneracy maps should be computable). A homo-
logically effective space is a locally effective space whose chain complex is
homologically effective; for technical reasons, we consider the so-called nor-
malized chain complex, in which degenerate simplices are considered zero
and which is thus freely generated by the non-degenerate simplices. Conse-
quently, every finite space is homologically effective, but the importance of
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homologically effective spaces lies in the fact that also certain infinite spaces
are homologically effective and that the homologically effective spaces are
closed under many constructions.

To start with, each Eilenberg–MacLane space K(π, n) is homologically
effective, even if the group π is infinite, in which case K(π, n) is also infi-
nite.3 A principal twisted cartesian product of homologically effective spaces
is homologically effective, provided that the twisting operator is computable
and either the base is 1-reduced or the structure group is 0-reduced. This
allows one to construct the Postnikov tower of a finite space, consisting of ho-
mologically effective spaces Pn, by an inductive argument; this is carried out
in detail in [2] and it is proved there that every stage Pn can be constructed
in polynomial time.

Idea of the proof of Theorem 2. One constructs the Postnikov tower Pn as
above. Since [X, Y ] ∼= [X,Pn] for n ≥ dimX, the computation of [X, Y ] is
reduced to the inductive computation of [X,Pn], for n ≤ dimX. The first
non-trivial stage is the Eilenberg–MacLane space Pd+1 = K(πd+1(Y ), d+ 1),
for which

[X,Pd+1] ∼= Hd+1(X; πd+1(Y ),

is a certain cohomology group, and cohomology groups are computable using
the Smith normal form. The inductive step compares [X,Pn] and [X,Pn−1]
– here we use the assumption n ≤ 2 connY to equip these sets with abelian
group structures. They are related via a certain long exact sequence

[ΣX,Pn−1]→ Hn(X; πn(Y ))→ [X,Pn]→ [X,Pn−1]→ Hn1(X; πn(Y ))

with all terms, except for the middle one, effective either directly (the coho-
mology groups) or by induction (the terms involving Pn−1). The middle term
is then effective by a “5-lemma for effective abelian groups” (a combination
of computability of kernels, cokernels and extensions).

Idea of the proof of Theorem 9. The extendability is equivalent to [X,Pn]A

being non-empty, for n = dimX − 1. The proof of Theorem 5 computes
[X,P2d]

A, a finitely generated abelian group. The map [X,Pn]A → [X,P2d]
A,

for n > 2d, happens to be periodic in some sense and, thus, if the image of
this map is non-empty, some image point has to lie in a specific finite subset
of the codomain (it depends only on n and Y ). The algorithm goes through
all elements of this finite subset and decides if they lie in the image.

3We remark here that the classical proof of homological effectiveness of K(π, n), due
to Eilenberg and MacLane, [9], depends on the decomposition of π into a direct sum of
cyclic groups and, for this reason, needs a completely new idea in the equivariant setup,
see [7].
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The nature of this proof makes it rather clear that the resulting algorithm
is not very efficient. The proof of computability of homotopy groups in [8] is
very similar in nature and, thus, probably not very efficient either.

10 Existence of homotopy

Finally, we explain briefly how to deal with the problem of the existence of
a homotopy between two maps. Let Pn be the n-th Postnikov stage of Y .
The projection pn : Pn → Pn−1 is a principal twisted cartesian product with
structure group the Eilenberg-MacLane space Kn = K(πn(Y ), n), i.e. there
is a free right action +: Pn×Kn → Pn and the projection pn is the projection
onto the space of orbits. For points x, y lying in the same fibre (i.e. in the
same orbit), we denote by y − x the unique z ∈ Kn for which y = x+ z.

We are given two maps f, g : X → Y and we want to decide if they are
homotopic. Since the existence of a homotopy is known to be equivalent to
the existence of a homotopy between the projections fn, gn : X → Pn of f
and g onto the n-th Postnikov stage for n ≥ dimX, we attempt to compute
inductively a homotopy hn : fn ∼ gn, for all n ≤ dimX.

Thus, suppose that hn−1 : fn−1 ∼ gn−1 has already been computed. Lift
this homotopy to a homotopy h̃n−1 : f ′n ∼ gn and it thus remains to compute
a homotopy fn ∼ f ′n. Such a homotopy projects to Pn−1 to a homotopy
fn−1 ∼ fn−1 and homotopy classes of such homotopies form a group

[I ×X,Pn−1]∂I×X

with respect to concatenation. The algorithm computes this group; in fact,
the knowledge of a finite generating set would be sufficient.4

Now we consider the homomorphism

d : [I ×X,Pn−1]∂I×X → [X,Kn]

given as follows: take a homotopy h : fn−1 ∼ fn−1, lift it to a homotopy
h̃ : fn ∼ ` and set d[h] = [` − fn]. Since we seek a homotopy fn ∼ f ′n, we
ask whether [f ′n − fn] lies in the image of d. This is decided easily using the
computed generators of [I × X,Pn−1]∂I×X , since [X,Kn] is again a certain
cohomology group, hence effective. If [f ′n − fn] does not lie in the image,
f and g are not homotopic. If it does, the algorithm further computes a
preimage h(n), lifts it to a homotopy h̃(n) : fn ∼ f ′n and finally concatenates

this lift with the already computed h̃n−1 : f ′n ∼ gn to obtain hn : fn ∼ gn.

4This is the most interesting part in my opinion, since this group is generally non-
abelian and, thus, one has to prove a non-stable non-abelian version of Theorem 5. This is
possible essentially because this group, although non-abelian, is still polycyclic and there
exist effective means for computing with such groups.
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11 Equivariant maps and maps of diagrams

We briefly describe a joint work with Marek Filakovský which is currently in
the process of writing up. It is a generalization of the equivariant situation
of Section 7 to actions that are not necessarily free. By a theorem of Elmen-
dorf, the homotopy category of G-spaces and G-maps is equivalent to the
homotopy category of a diagram category [Oop

G , Spaces], leading naturally
to a generalization of the above problems to diagrams of spaces. Our ap-
proach uses yet more concepts from abstract homotopy theory, e.g. cofibrant
replacement is an essential tool in our approach.

Theorem 10 (to appear in [10]). The following problem is solvable: given
two diagrams X, Y ∈ [Iop, Spaces] with dimX ≤ 2 connY , compute the
abelian group [X, Y ] of homotopy classes of maps (i.e. natural transforma-
tions).

We will not attempt to give details about the dimension and the con-
nectivity of a diagram. This theorem leads to the possibility of algorithmic
computations in equivariant stable homotopy theory, an area much more
complicated and much less explored than the non-equivariant stable homo-
topy theory.

12 Contributions to algorithmic topology and abstract
homotopy theory

It may appear that the included papers form a gradual generalization of
a single theorem. While this may be true, to a very limited extent, for
the statements, it is certainly false with regards to the proofs. Although
all proofs are based on Postnikov towers, with the increasing generality of
the statement, more and more tools from abstract homotopy theory were
used, starting from some simple homotopy pushouts and leading to cofibrant
replacements in the projective model structure on the category of diagrams;
we have also made use of bar constructions for modules over a differential
graded algebra to make sense of a homotopy module and to convert it to a
strict module by (an economic version of) the extension of scalars; this is the
content of [7].

We view this as our biggest contribution to the field. Even for the per-
spective future work, it seems plausible that homotopy limits may serve as
a vital tool for solving algorithmically the embedding problem (treated here
in Section 6) outside of the meta-stable range.

In the opposite direction, the algorithmic considerations in the fibrewise
setup led to the following observation in abstract homotopy theory: In the
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classical (pointed) stable homotopy theory, homotopy classes of maps form
an abelian group. The equivariant and/or fibrewise setup is more naturally
unpointed and then the homotopy classes of maps form rather an abelian
heap, i.e. an abelian group without a definitive choice of zero and also possibly
empty. We proved that this is true in model categories when the notion of
stability is expressed appropriately.

13 A note on implementation

We finally note that some parts of this rather huge project have been im-
plemented by the author of this thesis (poorly, so far, to be honest) and the
resulting program was able to compute some homotopy groups of spheres;
these homotopy groups were known and it seems that the unknown homo-
topy groups of spheres are out of reach with the current computational power
and/or our approach, which might perhaps be too general for the very spe-
cial problem of computing homotopy groups of spheres. In addition, as was
mentioned, homotopy groups of spheres are very well studied and much is
known. We believe that the implementation may prove useful elsewhere, in
particular, in the equivariant setting.
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Abstract

Given topological spaces X,Y , a fundamental problem of algebraic topology is under-
standing the structure of all continuous maps X → Y . We consider a computational version,
where X,Y are given as finite simplicial complexes, and the goal is to compute [X,Y ], i.e.,
all homotopy classes of such maps.

We solve this problem in the stable range, where for some d ≥ 2, we have dimX ≤ 2d−2
and Y is (d − 1)-connected ; in particular, Y can be the d-dimensional sphere Sd. The al-
gorithm combines classical tools and ideas from homotopy theory (obstruction theory, Post-
nikov systems, and simplicial sets) with algorithmic tools from effective algebraic topology
(locally effective simplicial sets and objects with effective homology).

In contrast, [X,Y ] is known to be uncomputable for general X,Y , since for X = S1

it includes a well known undecidable problem: testing triviality of the fundamental group
of Y .

In follow-up papers, the algorithm is shown to run in polynomial time for d fixed, and
extended to other problems, such as the extension problem, where we are given a subspace
A ⊂ X and a map A→ Y and ask whether it extends to a map X → Y , or computing the
Z2-index—everything in the stable range. Outside the stable range, the extension problem
is undecidable.

1 Introduction

Among results concerning computations in topology, probably the most famous ones are neg-
ative. For example, there is no algorithm to decide whether the fundamental group π1(Y ) of
a given space Y is trivial, i.e., whether every loop in Y can be continuously contracted to a
point.1

Here we obtain a positive result for a closely related and fairly general problem, homotopy
classification of maps;2 namely, we describe an algorithm that works in the so-called stable
range.

* The research by M. Č. and L. V. was supported by a Czech Ministry of Education grant (MSM 0021622409).
The research by M. K. was supported by project GAUK 49209. The research by J. M. and M. K. was also
supported by project 1M0545 by the Ministry of Education of the Czech Republic and by Center of Excellence
– Inst. for Theor. Comput. Sci., Prague (project P202/12/G061 of GA ČR). The research by J. M. was also
supported by the ERC Advanced Grant No. 267165. The research by U. W. was supported by the Swiss National
Science Foundation (SNF Projects 200021-125309, 200020-138230, and PP00P2-138948).

aDepartment of Mathematics and Statistics, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
bDepartment of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech

Republic
cIST Austria, Am Campus 1, 3400 Klosterneuburg, Austria,
dInstitute of Theoretical Computer Science, ETH Zürich, 8092 Zürich, Switzerland
eInstitut Fourier, BP 74, 38402 St Martin, d’Hères Cedex, France
1This follows by a standard reduction, see, e.g., [54], from a result of Adjan and Rabin on unsolvability of the

triviality problem of a group given in terms of generators and relation; see, e.g., [51].
2The definition of homotopy and other basic topological notions will be recalled later.
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Computational topology. This paper falls into the broader area of computational topology,
which has been a rapidly developing discipline in recent years—see, for instance, the textbooks
[12, 58, 33].

Our focus is somewhat different from the main current trends in the field, where, on the one
hand, computational questions are intensively studied in dimensions 2 and 3 (e.g., concerning
graphs on surfaces, knots or 3-manifolds3), and, on the other hand, for arbitrary dimensions
mainly homology computations are investigated.

Homology has been considered an inherently computational tool since its inception and there
are many software packages that contain practical implementations, e.g., polymake [19]. Thus,
algorithmic solvability of homological questions is usually obvious, and the challenge may be,
e.g., designing very fast algorithms to deal with large inputs. Moreover, lot of research has been
devoted to developing extensions such as persistent homology [11], motivated by applications
like data analysis [9].

In contrast, homotopy-theoretic problems, as those studied here, are generally considered
much less tractable than homological ones and the first question to tackle is usually the existence
of any algorithm at all (indeed, many of them are algorithmically unsolvable, as the example
of triviality of the fundamental group illustrates). Such problems lie at the core of algebraic
topology and have been thoroughly studied from a topological perspective since the 1940s. A
significant effort has also been devoted to computer-assisted concrete calculations, most notably
of higher homotopy groups of spheres; see, e.g., [26].

Effective algebraic topology. In the 1990s, three independent groups of researchers pro-
posed general frameworks to make various more advanced methods of algebraic topology effec-
tive (algorithmic): Schön [45], Smith [50], and Sergeraert, Rubio, Dousson, and Romero (e.g.,
[48, 42, 41, 43]; also see [44] for an exposition). These frameworks yielded general computabil-
ity results for homotopy-theoretic questions (including new algorithms for the computation of
higher homotopy groups [40]), and in the case of Sergeraert and co-workers, a practical imple-
mentation as well.

The problems considered by us were not addressed in those papers, but we rely on the work
of Sergeraert et al., and in particular on their framework of objects with effective homology, for
implementing certain operations in our algorithm (see Sections 2 and 4).

We should also mention that our perspective is somewhat different from the previous work
in effective algebraic topology, closer to the view of theoretical computer science; although in
the present paper we provide only computability results, subsequent work also addresses the
computational complexity of the considered problems. We consider this research area fascinat-
ing, and one of our hopes is that our work may help to bridge the cultural gap between algebraic
topology and theoretical computer science.

The problem: homotopy classification of maps. A central theme in algebraic topology
is to understand, for given topological spaces X and Y , the set [X,Y ] of homotopy classes of
maps4 from X to Y .

Many of the celebrated results throughout the history of topology can be cast as information
about [X,Y ] for particular spaces X and Y . An early example is a famous theorem of Hopf
from the 1930s, asserting that the homotopy class of a map f : Sn → Sn, where Sn is the
n-dimensional sphere, is completely determined by an integer called the degree of f , thus giving
a one-to-one correspondence [Sn, Sn] ∼= Z. Another great discovery of Hopf, with ramifications
in modern physics and elsewhere, was a map S3 → S2, now called by his name, that is not
homotopic to a constant map.

These two early results concern higher homotopy groups: for our purposes, the kth homotopy

3A seminal early result in the latter direction is Haken’s famous algorithm for recognizing the unknot [23].
4In this paper, all maps between topological spaces are assumed to be continuous. Two maps f, g : X → Y are

said to be homotopic, denoted f ∼ g, if there is a map F : X × [0, 1]→ Y such that F (·, 0) = f and F (·, 1) = g.
The equivalence class of f of this relation is denoted [f ] and called the homotopy class of f .
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group πk(Y ), k ≥ 2, of a space Y can be identified with the set [Sk, Y ] equipped with a suitable
group operation.5 In particular, a very important special case are the higher homotopy groups
of spheres πk(S

n), whose computation has been one of the important challenges propelling
research in algebraic topology, with only partial results so far despite an enormous effort (see,
e.g., [39, 27]).

The extension problem. A problem closely related to computing [X,Y ] is the extension
problem: given a subspace A ⊂ X and a map f : A→ Y , can it be extended to a map X → Y ?
For example, the famous Brouwer fixed-point theorem can be re-stated as non-extendability of
the identity map Sn → Sn to the ball Dn+1. A number of topological concepts, which may
seem quite advanced and esoteric to a newcomer in algebraic topology, e.g. Steenrod squares,
have a natural motivation in trying to solve the extension problem step by step.

Early results. Earlier developments around the extension problems are described in Steenrod’s
paper [53] (based on a 1957 lecture series), which we can recommend, for readers with a moderate
topological background, as an exceptionally clear and accessible, albeit somewhat outdated,
introduction to this area. In particular, in that paper, Steenrod asks for an effective procedure
for (some aspects of) the extension problem.

There has been a tremendous amount of work in homotopy theory since the 1950s, with a
wealth of new concepts and results, some of them opening completely new areas. However, as
far as we could find out, the algorithmic part of the program discussed in [53] has not been
explicitly carried out until now.

As far as we know, the only algorithmic paper addressing the general problem of computing
of [X,Y ] is that by Brown [5] from 1957. Brown showed that [X,Y ] is computable under the
assumption that Y is 1-connected6 and all the higher homotopy groups πk(Y ), 2 ≤ k ≤ dimX,
are finite. The latter assumption is rather strong7; in particular, Brown’s algorithm is not
applicable for Y = Sd since πd(S

d) ∼= Z.
In the same paper, Brown also gave an algorithm for computing πk(Y ), k ≥ 2, for every

1-connected Y . To do this, he overcame the restriction on finite homotopy groups mentioned
above, and also discussed in Section 2 below, by a somewhat ad-hoc method, which does not
seem to generalize to the [X,Y ] setting.

On the negative side, it is undecidable whether [S1, Y ] is trivial (since this is equivalent to
the triviality of π1(Y )). By an equally classical result of Boone and of Novikov [2, 3, 4, 38] it
is undecidable whether a given map S1 → Y can be extended to a map D2 → Y , even if Y is a
finite 2-dimensional simplicial complex. Thus, both the computation [X,Y ] and the extension
problem are algorithmically unsolvable without additional assumptions on Y . These are the
only previous undecidability results in this context known to us; more recent results, obtained
as a follow-up of the present paper, will be mentioned later. For a number of more loosely
related undecidability results we refer to [51, 37, 36] and the references therein.

New results. In this paper we prove the computability of [X,Y ] under a fairly general
condition on X and Y . Namely, we assume that, for some integer d ≥ 2, we have dimX ≤ 2d−2,
while Y is (d−1)-connected. A particularly important example of a (d−1)-connected space, often

5Formally, the kth homotopy group πk(Y ) of a space Y , k ≥ 1, is defined as the set of all homotopy classes
of pointed maps f : Sk → Y , i.e., maps f that send a distinguished point s0 ∈ Sk to a distinguished point
y0 ∈ Y (and the homotopies F also satisfy F (s0, t) = y0 for all t ∈ [0, 1]). Strictly speaking, one should write
πk(Y, y0) but for a path-connected Y , the choice of y0 does not matter. Furthermore, πk(Y ) is trivial (has only
one element) iff [Sk, Y ] is trivial, i.e., if every map Sk → Y is homotopic to a constant map. Moreover, if π1(Y )
is trivial, then for k ≥ 2, the pointedness of the maps does not matter and one can identify πk(Y ) with [Sk, Y ].
Each πk(Y ) is a group, which for k ≥ 2 is Abelian, but the definition of the group operation is not important for
us at the moment.

6A space Y is said to be k-connected if every map Si → Y can be extended to Di+1, the ball bounded by the
spheres Si, for i = 0, 1, . . . , k. Equivalently, Y is path-connected and the first k homotopy groups πi(Y ), i ≤ k,
are trivial.

7Steenrod [53] calls this restriction “most severe,” and conjectures that it “should ultimately be unnecessary.”
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encountered in applications, is the sphere Sd. We also assume that X and Y are given as finite
simplicial complexes or, more generally, as finite simplicial sets (a more flexible generalization
of simplicial complexes; see Section 4).

An immediate problem with computing the set [X,Y ] of all homotopy classes of continuous
maps is that it may be infinite. However, it is known that under the just mentioned conditions
on X and Y , [X,Y ] can be endowed with a structure of a finitely generated Abelian group.8

Our algorithm computes the isomorphism type of this Abelian group.

Theorem 1.1. Let d ≥ 2. There is an algorithm that, given finite simplicial complexes (or
finite simplicial sets) X,Y , where dimX ≤ 2d − 2 and Y is (d − 1)-connected, computes the
isomorphism type of the Abelian group [X,Y ], i.e., expresses it as a direct product of cyclic
groups.

Moreover, given a simplicial map f : X → Y , the element of the computed direct product
corresponding to [f ] can also be computed. Consequently, it is possible to test homotopy of
simplicial maps X → Y .

We remark that the algorithm does not need any certificate of the 1-connectedness of Y ,
but if Y is not 1-connected, the result may be wrong.

In the remainder of the introduction, we discuss related results, applications, general moti-
vation for our work, and directions for future research. In Section 2, we will present an outline of
the methods and of the algorithm. In Sections 3–5, we will introduce and discuss the necessary
preliminaries, and then we present the algorithm in detail in Section 6.

Follow-up work. We briefly summarize a number of strengthenings and extensions of
Theorem 1.1, as well as complementary hardness results, obtained since the original submission
of this paper. They will appear in a series of follow-up papers.

Running time. In the papers [6, 29] it is shown that, for every fixed d, the algorithm as in
Theorem 1.1 can be implemented so that its running time is bounded by a polynomial in the
size of X and Y .9 The nontrivial part of this polynomiality result is a subroutine for computing
Postnikov systems, which we use as a black box here—see Section 2. For the rest of the
algorithm, verifying polynomiality is straightforward, see [28]; except for some brief remarks,
we will not consider this issue here, in order to avoid distraction from the main topic.

The extension problem. In [6, Theorem 1.4], it is shown that the methods of the present paper
also yield an algorithm for the extension problem as defined above. The extension problem can
actually be solved even for dimX ≤ 2d−1, as opposed to 2d−2 in Theorem 1.1 (still asumming
that Y is (d− 1)-connected). Again, the running time is polynomial for d fixed.

Hardness outside the stable range. The dimension and connectivity assumptions in Theorem 1.1
turned out to be essential and almost sharp, in the following sense: In [7], it is shown that, for
every d ≥ 2, the extension problem is undecidable for dimX = 2d and (d − 1)-connected Y .
Similar arguments show that for dimX = 2d and (d− 1)-connected Y , deciding whether every
map X → Y is homotopic to a constant map (i.e., |[X,Y ]| = 1) is NP-hard and no algorithm is
known for it [28, Theorem 2.1.2].

Dependence on d. The running-time of the algorithm in Theorem 1.1 can be made polynomial
for every fixed d, as was mentioned above, but it depends on d at least exponentially. We consider
it unlikely that the problem can be solved by an algorithm whose running time also depends
polynomially on d. One heuristic reason supporting this belief is that Theorem 1.1 includes
the computation of the stable homotopy groups πd+k(S

d), k ≤ d − 2. These are considered

8In particular, the groups [X,Sd] are known as the cohomotopy groups of X; see [25].
9Here, for simplicity, we can define the size of a finite simplicial complex X as the number of its simplices; for a

simplicial set, we count only nondegenerate simplices. It is not hard to see that if the dimension of X is bounded
by a constant, then X can be encoded by a string of bits of length polynomial in the number of (nondegenerate)
simplices; also see the discussion in [6].
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mathematically very difficult objects, and a polynomial-time algorithm for computing them
would be quite surprising. Another reason is that the related problem of computing the higher
homotopy groups πk(Y ) of a 1-connected simplicial complex Y was shown to be #P-hard if k,
encoded in unary, is a part of input [1, 7], and it is W[1]-hard w.r.t. the parameter k [32], even
for Y of dimension 4. Still, it would be interesting to have more concrete hardness results for
the setting of Theorem 1.1 with variable d.

Lifting-extension and the equivariant setting. In [8, 56], the ideas and methods of the present
paper are further developed and generalized to more general lifting-extension problems and
to the equivariant setting, where a fixed finite group G acts freely on both X and Y , and
the considered continuous maps are also required to be equivariant, i.e., to commute with the
actions of G. The basic and important special case with G = Z2 will be discussed in more detail
below.

Homotopy testing. By Theorem 1.1, it is possible to test homotopy of two simplicial maps
X → Y in the stable range. It turns out that for this task, unlike for the extension problem, the
restriction to the stable range is unnecessary: it suffices to assume that Y is 1-connected [14].

Applications, motivation, and future work. We consider the fundamental nature of the
algorithmic problem of computing [X,Y ] a sufficient motivation of our research. However, we
also hope that work in this area will bring various connections and applications, also in other
fields, possibly including practically usable software, e.g., for aiding research in topology. Here
we mention two applications that have already been worked out in detail.

Robust roots. A nice concrete application comes from the so-called ROB-SAT problem—
robust satisfiability of systems of equations The problem is given by a rational value α > 0 and
a piecewise linear function f : K → R

d defined by rational values on the vertices of a simplicial
complex K. The question is whether an arbitrary continuous g : K → R

d that is at most α-far
from f (i.e., ‖f − g‖∞ ≤ α) has a root. In a slightly different and more special form, this
problem was investigated by Franek et al. [16], and later Franek and Krčál [15] exhibited a
computational equivalence of ROB-SAT and the extension problem for maps into the sphere
Sd−1. The algorithm for the extrendability problem based on the present paper then yields an
algorithmic solution when dimK ≤ 2d− 3.

Z2-index and embeddability. An important motivation for the research leading to the present
paper was the computation of the Z2-index (or genus) ind(X) of a Z2-space X,10 i.e., the
smallest d such that X can be equivariantly mapped into Sd. For example, the classical Borsuk–
Ulam theorem can be stated in the form ind(Sd) ≥ d. Generalizing the results in the present
paper, [8] provided an algorithm that decides whether ind(X) ≤ d, provided that d ≥ 2 and
dim(X) ≤ 2d− 1; for fixed d the running time is polynomial in the size of X.

The computation of ind(X) arises, among others, in the problem of embeddability of topo-
logical spaces, which is a classical and much studied area; see, e.g., the survey by Skopenkov
[49]. One of the basic questions here is, given a k-dimensional finite simplicial complex K, can
it be (topologically) embedded in Rd? The famous Haefliger–Weber theorem from the 1960s
asserts that, in the metastable range of dimensions, i.e., for k ≤ 2

3d − 1, embeddability of K
in Rd is equivalent to ind(K2

∆) ≤ d − 1, where K2
∆, the deleted product of K, is a certain

Z2-space constructed from K in a simple manner. Thus, in this range, the embedding problem
is, computationally, a special case of Z2-index computation. A systematic study of algorithmic
aspects of the embedding problem was initiated in [31], and the metastable range was left as
one of the main open problems there (now resolved as a consequence of [8]).

The Z2-index also appears as a fundamental quantity in combinatorial applications of topol-

10A Z2-space is a topological space X with an action of the group Z2; the action is described by a homeomor-
phism ν : X → X with ν ◦ ν = idX . A primary example is a sphere Sd with the antipodal action x 7→ −x. An
equivariant map between Z2-spaces is a continuous map that commutes with the Z2 actions.
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ogy. For example, the celebrated result of Lovász on Kneser’s conjecture can be re-stated as
χ(G) ≥ ind(B(G)) + 2, where χ(G) is the chromatic number of a graph G, and B(G) is a
certain simplicial complex constructed from G (see, e.g., [30]). We find it striking that prior to
[8], nothing seems to have been known about the computability of such an interesting quantity
as ind(B(G)).

Explicit maps? Our algorithm for Theorem 1.1 works with certain implicit representations of
the elements of [X,Y ]; it can output a set of generators of the group in this representation, and
it contains a subroutine implementing the group operation.

It would be interesting to know whether these implicit representations can be converted into
actual maps X → Y (given, say, as simplicial maps from a sufficiently fine subdivision of X
into Y ) in an effective way. Given an implicit representation of a homotopy class κ ∈ [X,Y ],
we can compute an explicit map X → Y in κ by a brute force search: go through finer and
finer subdivisions X ′ of X and through all possible simplicial maps X ′ → Y until a simplicial
map in κ is found. Membership in κ can be tested using Theorem 1.1; this may not be entirely
obvious, but we do not give the details here, since this is only a side-remark. However, currently
we have no upper bound on how fine subdivision may be required.

This would also be of interest in certain applications such as the embeddability problem—
whenever we want to construct an embedding explicitly, instead of just deciding embeddability.

Various measures of complexity of embeddings have been studied in the literature, and very
recently, Freedman and Krushkal [17] obtained bounds for the subdivision complexity of an
embedding K → R

d. Here d and k = dimK are considered fixed, and the question is, what is
the smallest f(n) such that every k-dimensional complex K with n simplices that is embeddable
inRd has a subdivision L with at most f(n) simplices that admits a linear embedding inRd (i.e.,
an embedding that is an affine map on each simplex of L)? Freedman and Krushkal essentially
solved the case with d = 2k (here the embeddability can be decided in polynomial time—this
is covered by [8] but this particular case goes back to a classical work of Van Kampen from the
1930s; see [31]). The subdivision complexity for the other cases in the metastable range, i.e.,
for k ≤ 2

3d − 1, is wide open at present, and obtaining explicit maps X → Y in the setting of
Theorem 1.1 might be a key step in its resolution.

2 An outline of the methods and of the algorithm

Here we present an overview of the algorithm and sketch the main ideas and tools. Everything
from this section will be presented again in the rest of the paper. Some topological notions are
left undefined here and will be introduced in later sections.

The geometric intuition: obstruction theory. Conceptually, the basis of the algorithm
is classical obstruction theory [13]. For a first encounter, it is probably easier to consider a
version of obstruction theory which proceeds by constructing maps X → Y inductively on
the i-dimensional skeleta11 of X, extending them one dimension at a time. (For the actual
algorithm, we use a different, “dual” version of obstruction theory, where we lift maps from X
through stages of a so-called Postnikov system of Y .)

In a nutshell, at each stage, the extendability of a map from the (i − 1)-skeleton to the
i-skeleton is characterized by vanishing of a certain obstruction, which can, more or less by
known techniques, be evaluated algorithmically.

Textbook expositions may give the impression that obstruction theory is a general algorith-
mic tool for testing the extendability of maps (this is actually what some of the topologists we
consulted seemed to assume). However, the extension at each step is generally not unique, and
extendability at subsequent steps may depend, in a nontrivial way, on the choices made earlier.
Thus, in principle, one needs to search an infinitely branching tree of extensions. Brown’s result

11The i-skeleton of a simplicial complex X consists of all simplices of X of dimension at most i.
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mentioned earlier, on computing [X,Y ] with the πk(Y )’s finite, is based on a complete search
of this tree, where the assumptions on Y guarantee the branching to be finite.

In our setting, we make essential use of the group structure on the set [X,Y ] (mentioned
in Theorem 1.1), as well as on some related ones, to produce a finite encoding of the set of all
possible extensions at a given stage.

Semi-effective and fully effective Abelian groups. The description of our algorithm has
several levels. On the top level, we work with Abelian groups whose elements are homotopy
classes of maps. On a lower level, the group operations and other primitives are implemented
by computations with concrete representatives of the homotopy classes; interestingly, on the
level of representatives, the operations are generally non-associative.

We need to be careful in distinguishing “how explicitly” the relevant groups are available to
us. Specifically, we distinguish between semi-effective and fully effective Abelian groups: For
the former, we have a suitable way of representing the elements on a computer and we can
compute the various group operations (addition, inverse) on the level of representatives. For
the latter, we additionally have a list of generators and relations and we can express a given
element in terms of the generators (see Section 3 for a detailed discussion). A homomorphism
f between two semi-effective Abelian groups is called locally effective if there is an algorithm
that, given a representative of an element a, computes a representative of f(a).

Simplicial sets and objects with effective homology. All topological spaces in the algo-
rithm are represented as simplicial sets, which will be discussed in more detail in Section 4.1.
Suffice it here to say that a simplicial set is a purely combinatorial description of how to build
a space from simple building blocks (simplices), similar to a simplicial complex, but allowing
more general ways of gluing simplices together along their faces, which makes many construc-
tions much simpler and more conceptual.

For the purposes of our exposition we will occasionally talk about topological spaces specified
in other ways, most notably, as CW-complexes—e.g., in Sections 4.3 and 5.1. However, we stress
that in the algorithm, all spaces are represented as simplicial sets.

A finite simplicial set can be encoded explicitly on a computer by a finite bit string, which
describes a list of all (nondegenerate) simplices and the way of gluing them together. However,
the algorithm also uses a number of infinite simplicial sets in its computation, such as simplicial
Eilenberg–MacLane spaces discussed below. For these, it is not possible to store the list of all
nondegenerate simplices.

Instead, we use a general framework developed by Sergeraert et al. (as surveyed, e.g., in
[44]), in which a possibly infinite simplicial set is represented by a black box or oracle (we
speak of a locally effective simplicial set). This means that we have a specified encoding of the
simplices of the simplical set and a collection of algorithms for performing certain operations,
such as computing a specific face of a given simplex. Similarly, a simplicial map between locally
effective simplicial sets is locally effective if there is an algorithm that evaluates it on any given
simplex of the domain; i.e., given the encoding of an input simplex, it produces the encoding of
the image simplex.

To perform global computations with a given locally effective simplicial set, e.g., compute its
homology and cohomology groups of any given dimension, the black box representation of these
locally effective simplicial sets is augmented with additional data structures and one speaks
about simplicial sets with effective homology. Sergeraert et al. then provide algorithms that
construct basic topological spaces, such as finite simplicial sets or Eilenberg–MacLane spaces,
as simplicial sets with effective homology. More crucially, the auxiliary data structures of a
simplicial set with effective homology are designed so that if we perform various topological
operations, such as the Cartesian product, the bar construction, the total space of a fibration,
etc., the result is again a simplicial set with effective homology.

Postnikov systems. The target space Y in Theorem 1.1 enters the computation in the form
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of a Postnikov system. Roughly speaking, a Postnikov system of a space Y is a way of building
Y from “canonical pieces”, called Eilenberg–MacLane spaces, whose homotopy structure is the
simplest possible, namely, they have a single non-trivial homotopy group. The Eilenberg–
MacLane spaces occurring in the algorithm will be denoted by Ki and Li, and they depend only
on the homotopy groups of Y .

A Postnikov system has stages P0, P1, . . ., where Pi reflects the homotopy properties of Y
up to dimension i; in particular, πj(Pi) ∼= πj(Y ) for all j ≤ i, while πj(Pi) = 0 for j > i. The
isomorphisms of the homotopy groups for j ≤ i are induced by maps ϕi : Y → Pi, which are also
a part of the Postnikov system. Crucially, these maps also induce bijections [X,Y ] → [X,Pi]
whenever dimX ≤ i; in words, homotopy classes of maps X → Y from any space X of dimension
at most i are in bijective correspondence with homotopy classes of maps X → Pi.

The last component of a Postnikov system are mappings k0, k1, . . ., where ki−1 : Pi−1 → Ki+1

is called the (i − 1)st Postnikov class. Together with the group πi(Y ), it describes how Pi is
obtained from Pi−1.

If Y is (d−1)-connected, then for i ≤ 2d−2, the Postnikov stage Pi can be equipped with an
H-group structure, which is, roughly speaking, an Abelian group structure “up to homotopy”
(this is where the connectivity assumption enters the picture). This H-group structure on Pi
induces, in a canonical way, an Abelian group structure on [X,Pi], for every space X, with no
restriction on dimX.

Now assuming dimX ≤ 2d − 2, we have the bijection [X,Y ] → [X,P2d−2] as mentioned
above, and this can serve as the definition of the Abelian group structure on [X,Y ] used in
Theorem 1.1. Therefore, instead of computing [X,Y ] directly, we actually compute [X,P2d−2],
which yields an isomorphic Abelian group. (However, the elements of [X,P2d−2] are not so
easily related to continuous maps X → Y ; this is the cause of the open problem, mentioned in
the introduction, of effectively finding actual maps X → Y as representatives of the generators.)

Thus, to prove Theorem 1.1, we first compute the stages P0, . . . , P2d−2 of a Postnikov system
of Y , and then, by induction on i, we determine [X,Pi], i ≤ 2d− 2. We return the description
of [X,P2d−2] as an Abelian group.

For the inductive computation of [X,Pi] we do not need any dimension restriction on X
anymore, which is important, because the induction will also involve computing, e.g., [SX,Pi−1],
where SX is another simplicial set, the suspension of X, with dimension one larger than that
of X.

The stages Pi of the Postnikov system are built as simplicial sets with a particular property
(they are Kan simplicial sets12), which ensures that every continuous map X → Pi is homotopic
to a simplicial map. In this way, instead of the continuous maps X → Y , which are problematic
to represent, we deal only with simplicial maps X → Pi in the algorithm, which are discrete,
and even finitely representable, objects.

Outline of the algorithm.

1. As a preprocessing step, we compute, using the algorithm from [6], a suitable represen-
tation of the first 2d − 2 stages of a Postnikov system for Y . We refer to Section 4.3 for
the full specification of the output provided by this computation; in particular, we thus
obtain the isomorphism types of the first 2d − 2 homotopy groups πi = πi(Y ) of Y , the
Postnikov stages Pi and the Eilenberg–MacLane spaces Li and Ki+1, i ≤ 2d−2, as locally
effective simplicial sets, and various maps between these spaces, e.g., the Postnikov classes
ki−1 : Pi−1 → Ki+1, as locally effective simplicial maps.

2. Given a finite simplicial set X, the main algorithm computes [X,Pi] as a fully effective
Abelian group by induction on i, i ≤ 2d− 2, and [X,P2d−2] is the desired output.

The principal steps are as follows:

12The term Kan complex is also commonly used in the literature.
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• We construct locally effective simplicial maps �i : Pi × Pi → Pi and �i : Pi → Pi,
i ≤ 2d− 2 (Section 5). These induce a binary operation �i∗ and a unary operation
�i∗ on SMap(X,Pi) that correspond to the the group operations in [X,Pi] on the
level of representatives. This yields, in the terminology of Section 3, a semi-effective
representation for [X,Pi].

• It remains to convert this semi-effective representation into a fully effective one;
this is carried out in detail in Section 6. For this step, we use that [X,Li] and
[X,Ki+1] are straightforward to compute as fully effective Abelian groups since, by
basic properties of Eilenberg–MacLane spaces, they are canonically isomorphic to
certain cohomology groups of X. Moreover, we assume that, inductively, we have
already computed [SX,Pi−1] and [X,Pi−1] as fully effective Abelian groups, where
SX is the suspension of X mentioned above.

These four Abelian groups, together with [X,Pi], fit into an exact sequence of Abelian
groups (see Equation (8) in Section 6.1), and this is then used to compute the de-
sired fully effective representation of [X,Pi]—see Section 6. Roughly speaking, what
happens here is that, among the maps X → Pi−1, we “filter out” those that can
be lifted to maps X → Pi (this corresponds to evaluating an appropriate obstruc-
tion, as was mentioned at the beginning of this section), for each map that can be
lifted we determine all possible liftings, and finally, we test which of the lifted maps
are homotopic. Since there are infinitely many homotopy classes of maps involved
in these operations, we have to work globally, with generators and relations in the
appropriate Abelian groups of homotopy classes.

Remarks.

Evaluating Postnikov classes. For Y fixed, the subroutines for evaluating the Postnikov classes
ki, i ≤ 2d − 2, could be hard-wired once and for all. In some particular cases, they are
given by known explicit formulas. In particular, for Y = Sd, kd corresponds to the famous
Steenrod square [52, 53] (more precisely, to the reduction from integral cohomology to mod 2
cohomology followed by the Steenrod square Sq2), and kd+1 to Adem’s secondary cohomology
operation. However, in the general case, the only way of evaluating the ki we are aware of is
using simplicial sets with effective homology mentioned earlier. In this context, our result can
also be regarded as an algorithmization of certain higher cohomology operations (see, e.g., [35]),
although our development of the required topological underpinning is somewhat different and,
in a way, simpler.13

Avoiding iterated suspensions. In order to compute [X,Pi], our algorithm recursively computes
all suspensions [SX,Pj ], d ≤ j ≤ i−1. In a straightforward implementation of the algorithm, for
computing [SX,Pi−1] we should also recursively compute [SSX,Pi−2] etc., forming essentially
a complete binary tree of recursive calls. We remark that by a slightly more complicated
implementation of the algorithm, this tree of recursive calls can be truncated, since we do not
really need the complete information about [SX,Pi−1] to compute [X,Pi]. Essentially, we need
only a system of generators of [SX,Pi−1] and not the relations; see Remark 3.4. We stress,
however, that this is merely a way to speed up the algorithm, and only by a constant factor if
d is fixed.

13Let us also mention the paper by Gonzáles-Dı́az and Real [21], which provides algorithms for calculating
certain primary and secondary cohomology operations on a finite simplicial complex (including the Steenrod
square Sq2 and Adem’s secondary cohomology operation). But both their goal and approach are different from
ours. The algorithms in [21] are based on explicit combinatorial formulas for these operations on the cochain
level. The goal is to speed up the “obvious” way of computing the image of a given cohomology class under the
considered operation. In our setting, we have no general explicit formulas available, and we can work only with
the cohomology classes “locally,” since they are usually defined on infinite simplicial sets. That is, a cohomology
class is represented by a cocycle, and that cocycle is given as an algorithm that can compute the value of the
cocycle on any given simplex.
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A remark on methods. From a topological point of view, the tools and ideas that we use and
combine to establish Theorem 1.1 have been essentially known.

On the one hand, there is an enormous topological literature with many beautiful ideas;
indeed, in our experience, a problem with algorithmization may sometimes be an abundance of
topological results, and the need to sort them out. On the other hand, the classical computa-
tional tools have been mostly designed for the “paper-and-pencil” model of calculation, where a
calculating mathematician can, e.g., easily switch between different representations of an object
or fill in some missing information by clever ad-hoc reasoning. Adapting the various methods to
machine calculation sometimes needs a different approach; for instance, a recursive formulation
may be preferable to an explicit, but cumbersome, formula (see, for example, [42, 47] for an ex-
planation of algorithmic difficulties with spectral sequences, a basic and powerful computational
tool in topology).

We see our main contribution as that of synthesis: identifying suitable methods, putting
them all together, and organizing the result in a hopefully accessible way, so that it can be built
on in the future.

Some technical steps are apparently new; in this direction, our main technical contribution
is probably a suitable implementation of the group operation on Pi (Section 5) and recursive
testing of nullhomotopy (Section 6.4). The former was generalized and, in a sense, simplified in
[8], and the latter was extended to a more general situation in [14].

3 Operations with Abelian groups

On the top level, our algorithm works with finitely generated Abelian groups. The structure of
such groups is simple (they are direct sums of cyclic groups) and well known, but we will need
to deal with certain subtleties in their algorithmic representations.

In our setting, an Abelian group A is represented by a set A, whose elements are called
representatives; we also assume that the representatives can be stored in a computer. For
α ∈ A, let [α] denote the element of A represented by α. The representation is generally
non-unique; we may have [α] = [β] for α 6= β.

We call A represented in this way semi-effective if algorithms for the following three tasks
are available:

(SE1) Provide an element o ∈ A representing the neutral element 0 ∈ A.

(SE2) Given α, β ∈ A, compute an element α � β ∈ A with [α � β] = [α] + [β] (where + is the
group operation in A).

(SE3) Given α ∈ A, compute an element �α ∈ A with [�α] = −[α].

We stress that as a binary operation on A, � is not necessarily a group operation; e.g., we may
have α� (β � γ) 6= (α� β) � γ, although of course, [α� (β � γ)] = [(α� β) � γ].

For a semi-effective Abelian group, we are generally unable to decide, for α, β ∈ A, whether
[α] = [β] (and, in particular, to certify that some element is nonzero).

Even if such an equality test is available, we still cannot infer much global information about
the structure of A. For example, without additional information we cannot certify that A it is
infinite cyclic—it could always be large but finite cyclic, no matter how many operations and
tests we perform.

We now introduce a much stronger notion, with all the structural information explicitly
available. We call a semi-effective Abelian group A fully effective if it is finitely generated and
we have an explicit expression of A as a direct sum of cyclic groups. More precisely, we assume
that the following are explicitly available:
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(FE1) A list of generators a1, . . . , ak of A (given by representatives α1, . . . , αk ∈ A) and a list
(q1, . . . , qk), qi ∈ {2, 3, 4, . . .}∪ {∞}, such that each ai generates a cyclic subgroup of A of
order qi, i = 1, 2, . . . , k, and A is the direct sum of these subgroups.

(FE2) An algorithm that, given α ∈ A, computes a representation of [α] in terms of the genera-
tors; that is, it returns (z1, . . . , zk) ∈ Zk such that [α] =

∑k
i=1 ziai.

First we observe that, for full effectivity, it is enough to have A given by arbitrary generators
and relations. That is, we consider a semi-effective A together with a list b1, . . . , bn of generators
of A (again explicitly given by representatives) and an m × n integer matrix U specifying a
complete set of relations for the bi; i.e.,

∑n
i=1 zibi = 0 holds iff (z1, . . . , zn) is an integer linear

combination of the rows of U . Moreover, we have an algorithm as in (FE2) that allows us to
express a given element a as a linear combination of b1, . . . , bn (here the expression may not be
unique).

Lemma 3.1. A semi-effective A with a list of generators and relations as above can be converted
to a fully effective Abelian group.

Proof. This amounts to a computation of a Smith normal form, a standard step in computing
integral homology groups, for example (see [55] for an efficient algorithm and references).

Concretely, the Smith normal form algorithm applied on U yields an expression D = SUT
with D diagonal and S, T square and invertible (everything over Z). Letting b = (b1, . . . , bn)
be the (column) vector of the given generators, we define another vector a = (a1, . . . , an) of
generators by a := T−1b. Then Da = 0 gives a complete set of relations for the ai (since
DT−1 = SU and the row spaces of SU and of U are the same). Omitting the generators ai
such that |dii| = 1 yields a list of generators as in (FE1).

In the remainder of this section, the special form of the generators as in (FE1) will bring no
advantage—on the contrary, it would make the notation more cumbersome. We thus assume
that, for the considered fully effective Abelian groups, we have a list of generators and an
arbitrary integer matrix specifying a complete set of relations among the generators.

Locally effective mappings. Let X,Y be sets. We call a mapping ϕ : X → Y locally effective
if there is an algorithm that, given an arbitrary x ∈ X, computes ϕ(x).

Next, for semi-effective Abelian groups A,B, with sets A,B of representatives, respectively,
we call a mapping f : A → B locally effective if there is a locally effective mapping ϕ : A → B
such that [ϕ(α)] = f([α]) for all α ∈ A. In particular, we speak of a locally effective homomor-
phism if f is a group homomorphism.

Lemma 3.2 (Kernel). Let f : A → B be a locally effective homomorphism of fully effective
Abelian groups. Then ker(f) = {a ∈ A : f(a) = 0} can be represented as fully effective.

Proof. This essentially amounts to solving a homogeneous system of linear equations over the
integers.

Let a1, . . . , am be a list of generators of A and U a matrix specifying a complete set of
relations among them, and similarly for B, b1, . . . , bn, and V . For every i = 1, 2, . . . ,m, we
express f(ai) =

∑n
j=1 zijbj ; then the m × n matrix Z = (zji) represents f in the sense that,

for a =
∑m

i=1 xiai, we have f(a) =
∑n

j=1 yjbj with y = xZ, where x = (x1, . . . , xm) and
y = (y1, . . . , yn) are regarded as row vectors.

Since V is the matrix of relations in B,
∑n

j=1 yjbj equals 0 in B iff y = wV for an integer
(row) vector w. So ker f = {∑i xiai : x ∈ Zm,xZ = wV for some w ∈ Zn}.

Given a system of homogeneous linear equations over Z, we can use the Smith normal form
to find a system of generators for the set of all solutions (see, e.g., [46, Chapter 5]). In our
case, dealing with the system xZ = wV , we can thus compute integer vectors x(1), . . . ,x(`)

such that the elements a′k :=
∑m

i=1 x
(k)
i ai, k = 1, 2, . . . , `, generate ker f . By similar (and
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routine) considerations, which we omit, we can then compute a complete set of relations for the
generators a′k, and finally we apply Lemma 3.1.

The next operation is the dual of taking a kernel, namely, factoring a given Abelian group
by the image of a locally effective homomorphism. For technical reasons, when applying this
lemma later on, we will need the resulting factor group to be equipped with an additional
algorithm that returns a “witness” for an element being zero.

Lemma 3.3 (Cokernel). Let A,B be fully effective Abelian groups with sets of representatives
A,B, respectively, and let f : A→ B be a locally effective homomorphism. Then we can obtain
a fully effective representation of the factor group C := coker(f) = B/ im(f), again with the set
B of representatives. Moreover, there is an algorithm that, given a representative β ∈ B, tests
whether β represents 0 in C, and if yes, returns a representative α ∈ A such that [f(α)] = [β]
in B.

Remark 3.4. As will become apparent from the proof, the assumption that A is fully effective
is not really necessary. Indeed, all that is needed is that A be semi-effective and that we have
an explicit list of (representatives of) generators for A. In order to avoid burdening the reader
with yet another piece of of terminology, however, we refrain from defining a special name for
such representations.

Proof of Lemma 3.3. As a semi-effective representation for C, we we simply reuse the one we
already have for B. That is, we reuse B (and the same algorithms for (SE1–3)) to represent the
elements of C as well. To distinguish clearly between elements in B and in C, for β ∈ B, we
use the notation b = [β] in B and b = [β] for the corresponding element b+ im(f) in C.

For a fully effective representation of C, we need the following, by Lemma 3.1: first, a
complete set of generators for C (given by representatives); second, an algorithm as in (FE2)
that expresses an arbitrary element of C (given as β ∈ B) as a linear combination of the
generators; and, third, a complete set of relations among the generators.

For the first two tasks, we again reuse the solutions provided by the representation for
B. Suppose b1, . . . , bn (represented by β1, . . . , βn) generate B. Then b1, . . . , bn (with the same
representatives) generate C. Moreover, by assumption, we have an algorithm that, given β ∈ B,
computes integers zi such that [β] = z1b1 + . . . znbn in B; then [β] = z1b1 + . . .+ znbn in C.

A complete set of relations among the the generators of C is obtained as follows. Let the
matrix V specify a complete set of relations among the generators bj of B, let a1, . . . , am be a
complete list of generators for A, and let Z be an integer matrix representing the homomorphism
f with respect to the generators a1, . . . , am and b1, . . . , bn as in the proof of Lemma 3.2. Then

U :=

(
Z
V

)

specifies a complete set of relations among the bj in C. To see that this is the case, consider an
integer (row) vector y = (y1, . . . , yn) and b :=

∑n
j=1 yjbj . Then b = 0 in C iff b :=

∑n
j=1 yjbj ∈

im(f), i.e., iff there exists an element a =
∑m

i=1 xiai ∈ A such that b − f(a) = 0 in B. By
definition of Z and by assumption on V , this is the case iff there are integer vectors x and x′

such that y = xZ + x′V , an integer combination of rows of U .
It remains to prove the second part of Lemma 3.3, i.e., to provide an algorithm that, given

β ∈ B, tests whether [β] = 0 in C, or equivalently, whether [β] ∈ im(f), and if so, computes a
preimage. For this, we express [β] =

∑n
j=1 yjbj as an integer linear combination of generators

of B and then solve the system y = xZ + x′V of integer linear equations as above (where we
rely again on Smith normal form computations).

The last operation is conveniently described using a short exact sequence of Abelian groups:

0 // A
f // B

g // C // 0 (1)
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(in other words, we assume that f : A → B is an injective homomorphism, g : B → C is a
surjective homomorphism, and im f = ker g). It is well known that the middle group B is
determined, up to isomorphism, by A,C, f , and g. For computational purposes, though, we
also need to assume that the injectivity of f is “effective”, i.e., witnessed by a locally effective
inverse mapping r, and similarly for the surjectivity of g. This is formalized in the next lemma.

Lemma 3.5 (Short exact sequence). Let (1) be a short exact sequence of Abelian groups, where
A and C are fully effective, B is semi-effective, f : A → B and g : B → C are locally effective
homomorphisms, and suppose that, moreover, the following locally effective maps (typically not
homomorphisms) are given:

(i) r : im f = ker g → A such that f(r(b)) = b for every b ∈ B with g(b) = 0.14

(ii) A map of representatives15 ξ : C → B (where B, C are the sets of representatives for B,C,
respectively) that behaves as a section for g, i.e., such that g([ξ(γ)]) = [γ] for all γ ∈ C.

Then we can obtain a fully effective representation of B.

Proof. Let a1, . . . , am be generators of A and c1, . . . , cn be generators of C, with fixed represen-
tative γj ∈ C for each cj . We define bj := [ξ(γj)] for 1 ≤ j ≤ n.

Given an arbitrary element b ∈ B, we set c := g(b), express c =
∑n

j=1 zjcj , and let b∗ :=
b−∑n

j=1 zjbj. Since g(b∗) = g(b)−∑n
j=1 zjg(bj) = 0, we have b∗ ∈ ker g, and so a := r(b∗) is well

defined. Then we can express a =
∑m

i=1 yiai, and we finally get b =
∑m

i=1 yif(ai) +
∑n

j=1 zjbj .
Therefore, (f(a1), . . . , f(am), b1, . . . , bn) is a list of generators of B, computable in terms

of representatives, and the above way of expressing b in terms of generators is algorithmic.
Moreover, we have b = 0 iff g(b) = 0 and r(b) = 0, which yields equality test in B.

It remains to determine a complete set of relations for the described generators (and then
apply Lemma 3.1). Let U be a matrix specifying a complete set of relations among the generators
a1, . . . , am in A, and V is an appropriate matrix for c1, . . . , cn.

Let (vk1, . . . , vkn) be the kth row of V . Since
∑n

j=1 vkjcj = 0, we have b∗k :=
∑n

j=1 vkjbj ∈
ker g, and so, as above, we can express b∗k =

∑m
i=1 yikf(ai). Thus, we have the relation

−∑m
i=1 yikf(ai) +

∑n
j=1 vkjbj = 0 for our generators of B.

Let Y = (yik) be the matrix of the coefficients yik constructed above. We claim that the
matrix (

−Y V
U 0

)

specifies a complete set of relations among the generators f(a1), . . ., f(am), b1, . . ., bn of B.
Indeed, we have just seen that the rows in the upper part of this matrix correspond to valid
relations, and the relations given by the rows in the bottom part are valid because U specifies
relations among the ai in A and f is a homomorphism.

Finally, let
x1f(a1) + · · ·+ xmf(am) + z1b1 + · · ·+ znbn = 0 (2)

be an arbitrary valid relation among the generators. Applying g and using g ◦ f = 0, we get
that

∑n
j=1 zjcj = 0 is a relation in C, and so (z1, . . . , zn) is a linear combination of the rows

of V .
Let (w1, . . . , wm) be the corresponding linear combination of the rows of −Y . Then we

have
∑m

i=1wif(ai) +
∑n

j=1 zjbj = 0, and subtracting this from (2), we arrive at
∑m

i=1(xi −
wi)f(ai) = 0. Since f is an injective homomorphism, we have

∑m
i=1(xi−wi)ai = 0 in A, and so

(x1 −w1, . . . , xm −wm) is a linear combination of the rows of U . This concludes the proof.

14The equality f(r(b)) = b is required on the level of group elements, and not necessarily on the level of
representatives; that is, it may happen that ϕ(ρ(β)) 6= β, although necessarily [ϕ(ρ(β))] = [β], where ϕ represents
f and ρ represents r.

15For technical reasons, in the setting where we apply this lemma later, we do not get a well-defined map
s : C → B on the level of group elements, that is, we cannot guarantee that [γ1] = [γ2] implies [ξ(γ1)] = [ξ(γ2)].
Because of the injectivity of f , this problem does not occur for the map r.
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4 Topological preliminaries

In this part we summarize notions and results from the literature. They are mostly standard in
homotopy theory and can be found in textbooks—see, e.g., Hatcher [24] for topological notions
and May [34] for simplicial notions (we also refer to Steenrod [53] as an excellent background
text, although its terminology differs somewhat from the more modern usage). However, they
are perhaps not widely known to non-topologists, and they are somewhat scattered in the
literature. We also aim at conveying some simple intuition behind the various notions and
concepts, which is not always easy to get from the literature.

On the other hand, in order to follow the arguments in this paper, for some of the notions
it is sufficient to know some properties, and the actual definition is never used directly. Such
definitions are usually omitted; instead, we illustrate the notions with simple examples or with
an informal explanation.

Even readers with a strong topological background may want to skim this part because of
the notation. Moreover, in Section 4.3 we discuss an algorithmic result on the construction of
Postnikov systems, which may not be well known.

CW-complexes. Below we will state various topological results. Usually they hold for fairly
general topological spaces, but not for all topological spaces. The appropriate level of generality
for such results is the class of CW-complexes (or sometimes spaces homotopy equivalent to CW-
complexes).

A reader not familiar with CW-complexes may either look up the definition (e.g., in [24]),
or take this just to mean “topological spaces of a fairly general kind, including all simplicial
complexes and simplicial sets”. It is also good to know that, similar to simplicial complexes,
CW-complexes are made of pieces (cells) of various dimensions, where the 0-dimensional cells
are also called vertices. There is only one place, in Section 5.1, where a difference between
CW-complexes and simplicial sets becomes somewhat important, and there we will stress this.

4.1 Simplicial sets

Simplicial sets are our basic device for representing topological spaces and their maps in our
algorithm. Here we introduce them briefly, with emphasis on the ideas and intuition, referring
to Friedman [18] for a very friendly thorough introduction, to [10, 34] for older compact sources,
and to [20] for a more modern and comprehensive treatment.

A simplicial set can be thought of as a generalization of simplicial complexes. Similar to
a simplicial complex, a simplicial set is a space built of vertices, edges, triangles, and higher-
dimensional simplices, but simplices are allowed to be glued to each other and to themselves in
more general ways. For example, one may have several 1-dimensional simplices connecting the
same pair of vertices, a 1-simplex forming a loop, two edges of a 2-simplex identified to create
a cone, or the boundary of a 2-simplex all contracted to a single vertex, forming an S2.

However, unlike for the still more general CW-complexes, a simplicial set can be described
purely combinatorially.

Another new feature of a simplicial set, in comparison with a simplicial complex, is the pres-
ence of degenerate simplices. For example, the edges of the triangle with a contracted boundary
(in the last example above) do not disappear—formally, each of them keeps a phantom-like
existence of a degenerate 1-simplex.
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Simplices, face and degeneracy operators. A simplicial set X is represented as a sequence
(X0, X1, X2, . . .) of mutually disjoint sets, where the elements of Xm are called the m-simplices
of X. For every m ≥ 1, there are m+1 mappings ∂0, . . . , ∂m : Xm → Xm−1 called face operators;
the meaning is that for a simplex σ ∈ Xm, ∂iσ is the face of σ obtained by deleting the ith
vertex. Moreover, there are m + 1 mappings s0, . . . , sm : Xm → Xm+1 (opposite direction)
called the degeneracy operators; the meaning of siσ is the degenerate simplex obtained from σ
by duplicating the ith vertex. A simplex is called degenerate if it lies in the image of some si;
otherwise, it is nondegenerate. There are natural axioms that the ∂i and the si have to satisfy,
but we will not list them here, since we won’t really use them (and the usual definition of a
simplicial set is formally different anyway, expressed in the language of category theory).

We call X finite if it has finitely many nondegenerate simplices (every nonempty simplicial
set has infinitely many degenerate simplices).

Examples. Here we sketch some basic examples of simplicial sets; again, we won’t provide
all details, referring to [18]. Let ∆n denote the standard n-dimensional simplex regarded as
a simplicial set. For n = 0, (∆0)m consists of a single simplex, denoted by 0m, for every
m = 0, 1, . . .; 00 is the only nondegenerate simplex. The face and degeneracy operators are
defined in the only possible way.

For n = 1, ∆1 has two 0-simplices (vertices), say 0 and 1, and in general there are m + 2
simplices in (∆1)m; we can think of the ith one as containing i copies of the vertex 0 and
m + 1 − i copies of the vertex 1, i = 0, 1, . . . ,m + 1. For n arbitrary, the m-simplices of ∆n

can be thought of as all nondecreasing (m+ 1)-term sequences with entries in {0, 1, . . . , n}; the
ones with all terms distinct are nondegenerate.

In a similar fashion, every simplicial complex K can be converted into a simplicial set
X in a canonical way; however, first we need to fix a linear ordering of the vertices. The
nondegenerate m-simplices of X are in one-to-one correspondence with the m-simplices of K,
but many degenerate simplices show up as well.

Finally we mention a “very infinite” but extremely instructive example, the singular set,
which contributed significantly to the invention of simplicial sets—as Steenrod [53] puts it,
the definition of a simplicial set is obtained by writing down fairly obvious properties of the
singular set. For a topological space Y , the singular set S(Y ) is the simplicial set whose m-
simplices are all continuous maps of the standard m-simplex into Y . The ith face operator
∂i : S(Y )m → S(Y )m−1 is given by the composition with a canonical mapping that sends the
standard (m−1)-simplex to the ith face of the standardm-simplex. Similarly, the ith degeneracy
operator is induced by the canonical mapping that collapses the standard (m + 1)-simplex to
its ith m-dimensional face and then identifies this face with the standard m-simplex, preserving
the order of the vertices.

Geometric realization. Similar to a simplicial complex, each simplicial set X defines a
topological space |X| (the geometric realization of X), uniquely up to homeomorphism. Intu-
itively, one takes disjoint geometric simplices corresponding to the nondegenerate simplices of
X, and glues them together according to the identifications implied by the face and degeneracy
operators (we again refer to the literature, especially to [18], for a formal definition).

k-reduced simplicial sets. A simplicial set X is called k-reduced if it has a single vertex and
no nondegenerate simplices in dimensions 1 through k. Such an X is necessarily k-connected.

A similar terminology can also be used for CW-complexes; k-reduced means a single vertex
(0-cell) and no cells in dimensions 1 through k.

Products. The product X × Y of two simplicial sets is formally defined in an incredibly
simple way: we have (X×Y )m := Xm×Ym for every m, and the face and degeneracy operators
work componentwise; e.g., ∂i(σ, τ) := (∂iσ, ∂iτ). As expected, the product of simplicial sets
corresponds to the Cartesian product of the geometric realizations, i.e., |X × Y | ∼= |X| × |Y |.16

16To be precise, the product of topological spaces on the right-hand side should be taken in the category of
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The simple definition hides some intricacies, though, as one can guess after observing that,
for example, the product of two 1-simplices is not a simplex—so the above definition has to
imply some canonical way of triangulating the product. It indeed does, and here the degenerate
simplices deserve their bread.

Cone and suspension. Given a simplicial set X, the cone CX is a simplicial set obtained
by adding a new vertex ∗ to X, taking all simplices of X, and, for every m-simplex σ ∈ Xm

and every i ≥ 1, adding to CX the (m+ i)-simplex obtained from σ by adding i copies of ∗. In
particular, the nondegenerate simplices of CX are the nondegenerate simplices of X plus the
cones over these (obtained by adding a single copy of ∗). We skip the definition of face and
degeneracy operators for CX as usual. The definitions are discussed, e.g., in [20, Chapter III.5],
although there they are given in a more abstract language, and later (in Section 6.3 below) we
will state the concrete properties of CX that we will need.

We will also need the suspension SX; this is the simplicial set CX/X obtained from CX
by contracting all simplices of X into a single vertex. The following picture illustrates both of
the constructions for a 1-dimensional X:

X CX SX

Topologically, SX is the usual (unreduced) suspension of X, which is often presented as erecting
a double cone over X (or a join with an S0). This would also be the “natural” way of defining the
suspension for a simplicial complex, but the above definition for simplicial sets is combinatorially
different, although topologically equivalent. Even if X is a simplicial complex, SX is not. For
us, the main advantage is that the simplicial structure of SX is particularly simple; namely,
for m > 0, the m-simplices of SX are in one-to-one correspondence with the (m− 1)-simplices
of X.17

Simplicial maps and homotopies. Simplicial sets serve as a combinatorial way of describing
a topological space; in a similar way, simplicial maps provide a combinatorial description of
continuous maps.

A simplicial map f : X → Y of simplicial sets X,Y consists of maps fm : Xm → Ym,
m = 0, 1, . . ., that commute with the face and degeneracy operators. We denote the set of all
simplicial maps X → Y by SMap(X,Y ).18

k-spaces; but for the spaces we encounter, it is the same as the usual product of topological spaces.
17Let us also remark that in homotopy-theoretic literature, one often works with reduced cone and suspension,

which are appropriate for the category of pointed spaces and maps. For example, the reduced suspension ΣX
is obtained from SX by collapsing the segment that connects the apex of CX to the basepoint of X. For
CW-complexes, ΣX and SX are homotopy equivalent, so the difference is insignificant for our purposes.

18There is a technical issue to be clarified here, concerning pointed maps. We recall that a pointed space (X,x0)
is a topological space X with a choice of a distinguished point x0 ∈ X (the basepoint). In a CW-complex or
simplicial set, we will always assume the basepoint to be a vertex. A pointed map (X,x0) → (Y, y0) of pointed
spaces is a continuous map sending x0 to y0. Homotopies of pointed maps are also meant to be pointed; i.e.,
they must keep the image of the basepoint fixed. The reader may recall that, for example, the homotopy groups
πk(Y ) are really defined as homotopy classes of pointed maps.

If X,Y are simplicial sets, X is arbitrary, and Y is a 1-reduced (thus, it has a single vertex, which is the
basepoint), as will be the case for the targets of simplicial maps in our algorithm, then every simplicial map is
automatically pointed. Thus, in this case, we need not worry about pointedness.

A topological counterpart of this is that, if Y is a 1-connected CW-complex, then every map X → Y is
(canonically) homotopic to a map sending x0 to y0, and thus [X,Y ] is canonically isomorphic to the set of all
homotopy classes of pointed maps X → Y .
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It is useful to observe that it suffices to specify a simplicial map f : X → Y on the nonde-
generate simplices of X; the values on the degenerate simplices are then determined uniquely.
In particular, if X is finite, then such an f can be specified as a finite object.

A simplicial map f : X → Y induces a continuous map |f | : |X| → |Y | of the geometric
realizations in a natural way (we again omit the precise definition). Often we will take the
usual liberty of omitting | · | and not distinguishing between simplicial sets and maps and their
geometric realizations.

Of course, not all continuous maps are induced by simplicial maps. But the usefulness of
simplicial sets for our algorithm (and many other applications) stems mainly from the fact that,
if the target Y has the Kan extension property, then every continuous map ϕ : |X| → |Y | is
homotopic to a simplicial map f : X → Y .19

The Kan extension property is a certain property of a simplicial set (and the simplicial
sets having it are called Kan simplicial sets), which need not be spelled out here—it will
suffice to refer to standard results to check the property where needed. In particular, every
simplicial group is a Kan simplicial set, where a simplicial group G is a simplicial set for which
every Gm is endowed with a group structure, and the face and degeneracy operators are group
homomorphisms (we will see examples in Section 4.2 below).

Homotopies of simplicial maps into a Kan simplicial set can also be represented simplicially.
Concretely, a simplicial homotopy between two simplicial maps f, g : X → Y is a simplicial map
F : X ×∆1 → Y such that F |X×{0} = f and F |X×{1} = g; here, as we recall, ∆1 represents the
geometric 1-simplex (segment) as a simplicial set, and, with some abuse of notation, {0} and
{1} are the simplicial subsets of ∆1 representing the two vertices. Again, if Y is a Kan simplicial
set, then two simplicial maps f, g into Y are simplicially homotopic iff they are homotopic in
the usual sense as continuous maps.

Locally effective simplicial sets and simplicial maps. Unsurprisingly, there is a price
to pay for the convenience of representing all continuous maps and homotopies simplicially: a
Kan simplicial set necessarily has infinitely many simplices in every dimension (except for some
trivial cases); thus we need nontrivial techniques for representing it in a computer. Fortunately,
the Kan simplicial sets relevant in our case have a sufficiently regular structure and can be
handled; suitable techniques were developed and presented in [48, 42, 41, 43, 44].

For algorithmic purposes, a simplicial set X is represented in a black box or oracle manner,
by a collection of various algorithms that allow us to access certain information about X.
Specifically, let X be a simplicial set, and suppose that some encoding for the simplices of X
by strings (finite sequences over some fixed alphabet, say {0, 1}) has been fixed.

We say that X is locally effective if we have algorithms for evaluating the face and degeneracy
maps, i.e., i.e., given (the encoding of) a d-simplex σ of X and i ∈ {0, 1, . . . , d}, we can compute
the simplex ∂iσ, and similarly for the degeneracy operators si.

A simplicial map f : X → Y is called locally effective if there is an algorithm that, given (an
encoding of) a simplex σ of X, computes (the encoding of) the simplex f(σ).

4.2 Eilenberg–MacLane spaces and cohomology

Cohomology. We will need some terminology from (simplicial) cohomology, such as cochains,
cocycles, and cohomology groups. However, these will be mostly a convenient bookkeeping
device for us, and we won’t need almost any properties of cohomology.

For a simplicial complex X, an integer n ≥ 0, and an Abelian group π, an n-dimensional
cochain with values in π is an arbitrary mapping cn : Xn → π, i.e., a labeling of the n-dimensional

19The reader may be familiar with the simplicial approximation theorem, which states that for every continuous
map ϕ : |K| → |L| between the polyhedra of simplicial complexes, there is a simplicial map of a sufficiently fine
subdivision of K into L that is homotopic to ϕ. The crucial difference is that in the case of simplicial sets, if Y
has the Kan extension property, we need not subdivide X at all!
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simplices of X with elements of π. The set of all n-dimensional cochains is (traditionally)
denoted by Cn(X;π); with componentwise addition, it forms an Abelian group.

For a simplicial set X, we define Cn(X;π) to consist only of cochains in which all degenerate
simplices receive value 0 (these are sometimes called normalized cochains).

Given an n-cochain cn, the coboundary of cn is the (n+ 1)-cochain dn+1 = δcn whose value
on a τ ∈ Xn+1 is the sum of the values of cn over the n-faces of τ (taking orientations into
account); formally,

dn+1(τ) =
n+1∑

i=0

(−1)icn(∂iτ).

A cochain cn is a cocycle if δcn = 0; Zn(X;π) ⊆ Cn(X;π) is the subgroup of all cocycles (Z
for koZyklus), i.e., the kernel of δ. The subgroup Bn(X;π) ⊆ Cn(X;π) of all coboundaries is
the image of δ; that is, cn is a coboundary if cn = δbn−1 for some (n− 1)-cochain bn−1.

The nth (simplicial) cohomology group of X is the factor group

Hn(X;π) := Zn(X;π)/Bn(X;π)

(for this to make sense, of course, one needs the basic fact δ ◦ δ = 0).

Eilenberg–MacLane spaces as “simple ranges”. The homotopy groups πk(Y ) are among
the most important invariants of a topological space Y . The group πk(Y ) collects information
about the “k-dimensional structure” of Y by probing Y with all possible maps from Sk. Here
the sphere Sk plays a role of the “simplest nontrivial” k-dimensional space; indeed, in some
respects, for example concerning homology groups, it is as simple as one can possibly get.

However, as was first revealed by the famous Hopf map S3 → S2, the spheres are not at all
simple concerning maps going into them. In particular, the groups πk(S

n) are complicated and
far from understood, in spite of a huge body of research devoted to them. So if one wants to
probe a space X with maps going into some “simple nontrivial” space, then spaces other than
spheres are needed—and the Eilenberg–MacLane spaces can play this role successfully.

Given an Abelian group π and an integer n ≥ 1, an Eilenberg–MacLane space K(π, n) is
defined as any topological space T with πn(T ) ∼= π and πk(T ) = 0 for all k 6= n. It is not difficult
to show that a K(π, n) exists (by taking a wedge of n-spheres and inductively attaching balls of
dimensions n+ 1, n+ 2, . . . to kill elements of the various homotopy groups), and it also turns
out that K(π, n) is unique up to homotopy equivalence.20

The circle S1 is (one of the incarnations of) a K(Z, 1), and K(Z2, 1) can be represented as
the infinite-dimensional real projective space, but generally speaking, the spaces K(π, n) do not
look exactly like very simple objects.

Maps into K(π, n). Yet the following elegant fact shows that the K(π, n) indeed constitute
“simple” targets of maps.

Lemma 4.1. For every n ≥ 1 and every Abelian group π, we have

[X,K(π, n)] ∼= Hn(X;π),

where X is a simplicial complex (or a CW-complex).

This is a basic and standard result (e.g., [34, Lemma 24.4] in a simplicial setting), but
nevertheless we will sketch an intuitive geometric proof, since it explains why maps into K(π, n)
can be represented discretely, by cocycles, and this is a key step towards representing maps in
our algorithm.

20Provided that we restrict to spaces that are homotopy equivalent to CW-complexes.
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Sketch of proof. For simplicity, let X be a finite simplicial complex (the argument works for a
CW-complex in more or less the same way), and let us consider an arbitrary continuous map
f : |X| → K(π, n), n ≥ 2.

First, let us consider the restriction of f to the (n − 1)-skeleton X(n−1) of X. Since by
definition, K(π, n) is (n − 1)-connected, f |X(n−1) is homotopic to the constant map sending
X(n−1) to a single point y0 (we can imagine pulling the images of the simplices to y0 one by
one, starting with vertices, continuing with 1-simplices, etc., up to (n−1)-simplices). Next, the
homotopy of f |X(n−1) with this constant map can be extended to a homotopy of f with a map
f̃ defined on all of X (this is a standard fact known as the homotopy extension property of X,
valid for all CW-complexes, among others). Thus, f̃ ∼ f sends X(n−1) to y0.

Next, we consider an n-simplex σ of X. All of its boundary now goes to y0, and so the
restriction of f̃ to σ can be regarded as a map Sn → K(π, n) (since collapsing the boundary of
an n-simplex to a point yields an Sn). Thus, up to homotopy, f̃ |σ is described by an element
of πn(K(π, n)) = π. In this way, f̃ defines a cochain cn = cn

f̃
∈ Cn(X;π). The following picture

captures this schematically:

σ2

σ0σ1
f

f(σ2) f(σ0)

f(σ1)

K(π, n)

cn(σ2) cn(σ0)

cn(σ1)

f̃

y0

The target space K(π, n) is illustrated as having a hole “responsible” for the nontriviality of πn.
We note that f̃ is not determined uniquely by f , and cn

f̃
may also depend on the choice of f̃ .

Next, we observe that every cochain of the form cn
f̃

is actually a cocycle. To this end, we

consider an (n+ 1)-simplex τ ∈ Xn+1. Since f̃ is defined on all of τ , the restriction f̃ |∂τ to the
boundary is nullhomotopic. At the same time, f̃ |∂τ can be regarded as the sum of the elements
of πn(K(π, n)) represented by the restrictions of f̃ to the n-dimensional faces of τ .

Indeed, for any space Y the sum [f ] of two elements [f1], [f2] ∈ πn(Y ) can be represented by
contracting an (n− 1)-dimensional “equator” of Sn to the basepoint, thus obtaining a wedge of
two Sn’s, and then defining f to be f1 on one of these and f2 on the other, as indicated in the
picture below on the left (this time for n = 2). Similarly, in our case, the sum of the maps on
the facets of τ can be represented by contracting the (n− 1)-skeleton of τ to a point, and thus
obtaining a wedge of n+ 2 n-spheres.

f1

f2
Sn

Therefore, we have (δcn)(τ) = 0, and cn = cn
f̃
∈ Zn(X;π) as claimed.

Conversely, given any zn ∈ Zn(X;π), one can exhibit a map f̃ : X → K(π, n) with cn
f̃

= zn.

Such an f̃ is build one simplex of X at a time. First, all simplices of dimension at most n−1 are
sent to y0. For every σ ∈ Xn, we choose a representative of the element zn(σ) ∈ πn(K(π, n)),
which is a (pointed) map Sn → K(π, n), and use it to map σ. Then for τ ∈ Xn+1, f̃ can be
extended to τ , since f̃ |∂τ is nullhomotopic by the cocycle condition for zn. Finally, for a simplex
ω of dimension larger than n + 1, the f̃ constructed so far is necessarily nullhomotopic on ∂ω
because πk(K(π, n)) = 0 for all k > n, and thus an extension to ω is always possible.
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We hope that this may convey some idea where the cocycle representation of maps into
K(π, n) comes from. By similar, but a little more complicated considerations, which we omit
here, one can convince oneself that two maps f, g : X → K(π, n) are homotopic exactly when
the corresponding cocycles cn

f̃
and cng̃ differ by a coboundary. In particular, for a given f , the

cocycle cn
f̃

may depend on the choice of f̃ , but the cohomology class cn
f̃

+ Bn(X;π) does not.

This finishes the proof sketch.

A Kan simplicial model of K(π, n). The Eilenberg–MacLane spaces K(π, n) can be
represented as Kan simplicial sets, and actually as simplicial groups, in an essentially unique
way; we will keep the notation K(π, n) for this simplicial set as well.

Namely, the set of m-simplices of K(π, n) is given by the amazing formula

K(π, n)m := Zn(∆m;π).

More explicitly, an m-simplex σ can be regarded as a labeling of the n-dimensional faces of the
standard m-simplex by elements of the group π; moreover, the labels must add up to 0 on every
(n+ 1)-face. There are

(
m+1
n+1

)
nondegenerate n-faces of ∆m, and so an m-simplex σ ∈ K(π, n)m

is determined by an ordered
(
m+1
n+1

)
-tuple of elements of π.

It is not hard to define the face and degeneracy operators for K(π, n), but we omit this since
we won’t use them explicitly (see, e.g., [34, 44]). It suffices to say that the degenerate σ are
precisely those labelings with two facets of ∆m labeled identically and zero everywhere else.

In particular, for every m ≥ 0, we have an m-simplex in K(π, n) formed by the zero n-
cochain, which is nondegenerate for m = 0 and degenerate for m > 0, and which we write
simply as 0 (with the dimension understood from context). It is remarkable that the zero
n-cochain on ∆0 is the only vertex of the simplicial set K(π, n) for n > 0.

We won’t prove that this is indeed a simplicial model of K(π, n). Let us just note that
K(π, n) is (n− 1)-reduced, and its n-simplices correspond to elements of π (since an n-cocycle
on ∆n is a labeling of the single nondegenerate n-simplex of ∆n by an element of π). Thus,
each n-simplex of K(π, n) “embodies” one of the possible ways of mapping the interior of ∆n

into K(π, n), given that the boundary goes to the basepoint. The (n+1)-simplices then “serve”
to get the appropriate addition relations among the just mentioned maps, so that this addition
works as that in π, and the higher-dimensional simplices kill all the higher homotopy groups.

The (elementwise) addition of cochains makes K(π, n) into a simplicial group, and conse-
quently, K(π, n) is a Kan simplicial set.

The simplicial sets E(π, n). The m-simplices in the simplicial Eilenberg–MacLane spaces
as above are all n-cocycles on ∆m. If we take all n-cochains, we obtain another simplicial set
called E(π, n). Thus, explicitly,

E(π, n)m := Cn(∆m;π).

As a topological space, E(π, n) is contractible, and thus not particularly interesting topologically
in itself, but it makes a useful companion to K(π, n). Obviously, K(π, n) ⊆ E(π, n), but there
are also other, less obvious relationships.

Since an m-simplex σ ∈ E(π, n) is formally an n-cochain, we can take its coboundary δσ.
This is an (n+ 1)-coboundary (and thus also cocycle), which we can interpret as an m-simplex
of K(π, n+ 1). It turns out that this induces a simplicial map E(π, n)→ K(π, n+ 1), which is
(with the usual abuse of notation) also denoted by δ. This map is actually surjective, since the
relevant cohomology groups of ∆m are all zero and thus all cocycles are also coboundaries.

Simplicial maps into K(π, n) and E(π, n). We have the following “simplicial” counterpart
of Lemma 4.1:

20



Lemma 4.2. For every simplicial complex (or simplicial set) X, we have

SMap(X,K(π, n)) ∼= Zn(X;π) and SMap(X,E(π, n)) ∼= Cn(X;π).

We refer to [34, Lemma 24.3] for a proof; here we just describe how the isomorphism21

works, i.e., how one passes between cochains and simplicial maps. This is not hard to guess
from the formal definition—there is just one way to make things match formally.

Namely, given a cn ∈ Cn(X;π), we want to construct the corresponding simplicial map
s = s(cn) : X → E(π, n). We consider an m-simplex σ ∈ Xm. There is exactly one way of
inserting the standard m-simplex ∆m to the “place of σ” into X; more formally, there is a
unique simplicial map iσ : ∆m → X that sends the m-simplex of ∆m to σ (indeed, a simplicial
map has to respect the ordering of vertices, implicit in the face and degeneracy operators).
Thus, for every such σ, the cochain cn defines a cochain i∗σ(cn) on ∆m (the labels of the n-faces
of σ are pulled back to ∆m), and that cochain is taken as the image s(σ).

For the reverse direction, i.e., from a simplicial map s to a cochain, it suffices to look at the
images of the n-simplices under s: these are n-simplices of E(π, n) which, as we have seen, can
be regarded as elements of π—thus, they define the values of the desired n-cochain.

Simplicial homotopy in SMap(X,K(π, n)). Now that we have a description of simplicial
maps X → K(π, n), we will also describe homotopies (or equivalently, simplicial homotopies)
among them. It turns out that the additive structure (cocycle addition) on SMap(X,K(π, n)) ∼=
Zn(X;π) reduces the question of whether two maps represented by cocycles c1 and c2 are
homotopic to the question whether their difference c1 − c2 is nullhomotopic (homotopic to a
constant map).

Lemma 4.3. Let cn1 , c
n
2 ∈ Zn(X;π) be two cocycles. Then the simplicial maps s1, s2 ∈ SMap(X,K(π;n))

represented by cn1 , c
n
2 , respectively, are simplicially homotopic iff c1 and c2 are cohomologous,

i.e., c1 − c2 ∈ Bn(X;π).

We refer to [34, Theorem 24.4] for a proof. We also remark that a simplicial version of
Lemma 4.1 is actually proved using Lemmas 4.2 and 4.3.

4.3 Postnikov systems

Now that we have a combinatorial representation of maps from X into an Eilenberg–MacLane
space, and of their homotopies, it would be nice to have similar descriptions for other target
spaces Y . Expressing Y through its simplicial Postnikov system comes as close to fulfilling this
plan as seems reasonably possible.

Postnikov systems are somewhat complicated objects, and so we will not discuss them in
detail, referring to standard textbooks ([24] in general and [34] for the simplicial case) instead.
First we will explain some features of a Postnikov system in the setting of topological spaces
and continuous maps; this part, strictly speaking, is not necessary for the algorithm. Then
we introduce a simplicial version of a Postnikov system, and summarize the properties we will
actually use. Finally, we will present the subroutine used to compute Postnikov systems.

Postnikov systems on the level of spaces and continuous maps. Let Y be a CW-
complex. A Postnikov system (also called a Postnikov tower) for Y is a sequence of spaces
P0, P1, P2, . . ., where P0 is a single point, together with maps ϕi : Y → Pi and pi : Pi → Pi−1

such that pi ◦ ϕi = ϕi−1, i.e., the following diagram commutes:

21Both sets carry an Abelian group structure, and the bijection between them preserves these. For the set
Zn(X;π) of cocycles, the group structure is given by the usual addition of cocycles. For the set SMap(X,K(π, n))
of simplicial maps, the group structure is given by the fact that K(π, n) is a simplicial Abelian group, so simplicial
maps into it can be added componentwise (simplexwise).
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...

P2

P1

P0Y

p2

p1

ϕ2

ϕ1

ϕ0

Informally, the Pi, called the stages of the Postnikov system, can be thought of as successive
stages in a process of building Y (or rather, a space homotopy equivalent to Y ) “layer by layer”
from the Eilenberg–Mac Lane spaces K(πi(Y ), i).

More formally, it is required that for each i, the mapping ϕi induces an isomorphism πj(Y ) ∼=
πj(Pi) of homotopy groups for every j ≤ i, while πj(Pi) = 0 for all j > i. These properties
suffice to define a Postnikov system uniquely up to homotopy equivalence, provided that Y is
0-connected and the Pi are assumed to be CW-complexes; see, e.g., Hatcher [24, Section 4.3].

For the rest of this paper, we will abbreviate πi(Y ) to πi.
One usually works with Postnikov systems with additional favorable properties, sometimes

called standard Postnikov systems, and for these to exist, more assumptions on Y are needed—
in particular, they do exist if Y is 1-connected. In this case, the first two stages, P0 and P1, are
trivial, i.e., just one-point spaces.

Standard Postnikov systems on the level of topological spaces are defined using the notion
of principal fibration, which we do not need/want to define here. Let us just sketch informally
how Pi is built from Pi−1 and K(πi, i). Locally, Pi “looks like” the product Pi−1 ×K(πi, i), in
the sense that the fiber p−1

i (x) of every point x ∈ Pi−1 is (homotopy equivalent to) K(πi, i).
However, globally Pi is usually not the product as above; rather, it is “twisted” (technically, it

is the total space of the fibration K(πi, i)→ Pi
pi→ Pi−1). A somewhat simple-minded analogue

is the way the Möbius band is made by putting a segment “over” every point of S1, looking
locally like the product S1 × [−1, 1] but globally, of course, very different from that product.

The way of “twisting” the K(πi, i) over Pi−1 to form Pi is specified, for reasons that would
need a somewhat lengthy explanation, by a mapping ki−1 : Pi−1 → K(πi, i + 1). As we know,
each such map ki−1 can be represented by a cocycle in Zi+1(Pi−1;πi), and since it really suffices
to know ki−1 only up to homotopy, it is enough to specify it by an element of the cohomology
group H i+1(Pi−1;πi). This element is also commonly denoted by ki−1 and called the (i − 1)st
Postnikov class22 of Y .

The beauty of the thing is that Pi, which conveys, in a sense, complete information about
the homotopy of Y up to dimension i, can be reconstructed from the discrete data given by
π2, k2, π3, k3, . . . , ki−1, πi.

For our purposes, a key fact, already mentioned in the outline section, is the following:

Proposition 4.4. If X is a CW-complex of dimension at most i, and Y is a 1-connected CW-
complex, then there is a bijection between [X,Y ] and [X,Pi] (which is induced by composition
with the map ϕi).

Simplicial Postnikov systems. To use Postnikov systems algorithmically, we represent the
objects by simplicial sets and maps (this was actually the setting in which Postnikov originally
defined them). Concretely, we will use the so-called pullback representation (as opposed to some
other sources, where a twisted product representation can be found—but these representations
can be converted into one another without much difficulty).

We let K(π, n) and E(π, n) stand for the particular simplicial sets as in Section 4.2. The
i-th stage Pi of the Postnikov system for Y is represented as a simplicial subset of the product

22In the literature, Postnikov factor or Postnikov invariant are also used with the same meaning.
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Pi−1 ×Ei ⊆ E0 ×E1 × · · · ×Ei, where Ej := E(πj , j). An m-simplex of Pi can thus be written
as (σ0, . . . , σi−1, σi), where σj ∈ Cj(∆m, πj) is a simplex of Ej . It will also be convenient to
write (σ0, . . . , σi−1) ∈ Pi−1 as σ and thus write a simplex of Pi in the form (σ, σi).

We will introduce the following convenient abbreviations for the Eilenberg–MacLane spaces
appearing in the Postnikov system (the first of them is quite standard):

Ki+1 := K(πi, i+ 1),

Li := K(πi, i).

The simplicial version of (a representative of) the Postnikov class ki−1 is a simplicial map

ki−1 ∈ SMap(Pi−1,Ki+1).

Since Ki+1 is an Eilenberg–MacLane space, we can, and will, also represent ki−1 as a cocycle
in Zi+1(Pi−1, πi).

In this version, instead of “twisting”, ki−1 is used to “cut out” Pi from the product Pi−1×Ei,
as follows:

Pi := {(σ, σi) ∈ Pi−1 × Ei : ki−1(σ) = δσi}, (3)

where δ : Ei → Ki+1 is given by the coboundary operator, as was described above after the
definition of E(π, n). The map pi : Pi → Pi−1 in this setting is simply the projection forgetting
the last coordinate, and so it need not be specified explicitly.

We remark that this describes what the simplicial Postnikov system looks like, but it does
not say when it really is a Postnikov system for Y . We won’t discuss the appropriate conditions
here; we will just accept a guarantee of the algorithm in Theorem 4.5 below, that it computes
a valid Postnikov system for Y , and in particular, such that it fulfills Proposition 4.4.

We also state another important property of the stages Pi of the simplicial Postnikov system
of a simply connected Y : they are Kan simplicial sets (see, e.g. [5]). Thus, for any simplicial set
X, there is a bijection between the set of simplicial maps X → Pi modulo simplicial homotopy
and the set of homotopy classes of continuous maps between the geometric realizations. Slightly
abusing notation, we will denote both sets by [X,Pi].

Computing Postnikov systems. Let Y be a 1-connected locally effective simplicial set.
For our purposes, we shall say that Y has a locally effective (truncated) Postnikov system with
n stages if the following are available:

• The homotopy groups πi = πi(Y ), 2 ≤ i ≤ n (provided with a fully effective representa-
tion).23

• The stages Pi and the Eilenberg–MacLane spaces Ki+1 and Li, i ≤ n, as locally effective
simplicial sets.

• The maps ϕi : Y → Pi, pi : Pi → Pi−1, and ki−1 : Pi−1 → Ki+1, i ≤ n, as locally effective
simplicial maps.24

As a preprocessing step for our main algorithm, we need the following result:

23For our algorithm, it suffices to have the πi represented as abstract Abelian groups, with no meaning attached
to the elements. However, if we ever wanted to translate the elements of [X,Pi] to actual maps X → Y , we
would need the generators of each πi represented as actual mappings, say simplicial, Si → Y .

24As explained above, the map ki−1 is represented by an (i+ 1)-dimensional cocycle on Pi−1; thus, we assume
that we have an algorithm that, given an (i + 1)-simplex σ ∈ Pi−1, returns the value ki−1(σ) ∈ πi. Let us also
remark that, by unwrapping the definition, we get that the input σ ∈ Pi−1 for ki−1 means a labeling of the
faces of ∆i+1 of all dimensions up to i − 1, where j-faces are labeled by elements of πj . Readers familiar with
obstruction theory may see some formal similarity here: the (i − 1)st obstruction determines extendability of a
map defined on the i-skeleton to the (i + 1)-skeleton, after possibly modifying the map on the interiors of the
i-simplices.
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Theorem 4.5 ([6, Theorem 1.2]). There is an algorithm that, given a 1-connected simplicial set
Y with finitely many nondegenerate simplices (e.g., as obtained from a finite simplicial complex)
and an integer n, computes a locally effective Postnikov system with n stages for Y .

Remarks 4.6. 1. In the case with π2 through πn all finite, each Pi, i ≤ n, has finitely
many simplices in the relevant dimensions, and so a locally effective Postnikov system can
be represented simply by a lookup table. Brown [5] gave an algorithm for computing a
simplicial Postnikov system in this restricted setting.

2. The algorithm for proving Theorem 4.5 combines the basic construction of Brown with
the framework of objects with effective homology (as explained, e.g., in [44]). We remark
that the algorithm works under the weaker assumption that Y is a simplicial set with
effective homology, possibly with infinitely many nondegenerate simplices.25

3. In [6], it is shown that for fixed n, the construction of the first n stages of a Postnikov
system for Y can actually carried out in time polynomial in the size (number of nonde-
generate simplices) of Y . The (lengthy) analysis, and even the precise formulation of this
result, involve some technical subtleties and depend on the notions locally polynomial-time
simplicial sets and objects with polynomial-time homology, which refine the framework of
locally effective simplicial sets and of objects with effective homology and were developed
in [29, 6]. We refer to [6] for a detailed treatment.

An example: the Steenrod square Sq2. The Postnikov classes ki are not at all simple
to describe explicitly, even for very simple spaces. As an illustration, we present an example,
essentially following [52], where an explicit description is available: this is for Y = Sd, d ≥ 3,
and it concerns the first ki of interest, namely, kd. It corresponds to the Steenrod square Sq2

in cohomology, which Steenrod [52] invented for the purpose of classifying all maps from a
(d+ 1)-dimensional complex K into Sd—a special case of the problem treated in our paper.

For concreteness, let us take d = 3. Then k3 receives as the input a labeling of the 3-faces
of ∆5 by elements of π3(S3), i.e., integers (the lower-dimensional faces are labeled with 0s since
πj(S

3) = 0 for j ≤ 2), and it should return an element of π4(S3) ∼= Z2. Combinatorially, we

can thus think of the input as a function c :
({0,1,...,5}

4

)
→ Z, and the value of k3 turns out to be

∑

σ,τ

c(σ)c(τ) (mod 2),

where the sum is over three pairs of 4-tuples σ, τ as indicated in the following picture (σ consists
of the circled points and τ of the points marked by squares—there is always a two-point overlap):

0 1 5. . . 0 1 5. . . 0 1 5. . .

This illustrates the nonlinearity of the Postnikov classes.

5 Defining and implementing the group operation on [X,Pi]

We recall that the device that allows us to handle the generally infinite set [X,Y ] of homotopy
classes of maps, under the dimension/connectedness assumption of Theorem 1.1, is an Abelian
group structure. We will actually use the group structure on the sets [X,Pi], d ≤ i ≤ 2d − 2.
These will be computed inductively, starting with i = d (this is the first nontrivial one).

25We also note that, for Y with only finitely many nondegenerate simplices, the maps ϕi : Y → Pi can be
represented by finite lookup tables, so we do not need to require specifically that they be locally effective.
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Such a group structure with good properties exists, and is determined uniquely, because Pi
may have nonzero homotopy groups only in dimensions d through 2d − 2; these are standard
topological considerations, which we will review in Section 5.1 below.

However, we will need to work with the underlying binary operation �i∗ on the level of
representatives, i.e., simplicial maps in SMap(X,Pi). This operation lacks some of the pleasant
properties of a group—e.g., it may fail to be associative. Here considerable care and attention
to detail seem to be needed, and for an algorithmic implementation, we also need to use the
Eilenberg–Zilber reduction, a tool related to the methods of effective homology.

5.1 An H-group structure on a space

H-groups. Let P be a CW-complex. We will consider a binary operation on P as a continuous
map µ : P × P → P . For now, we will stick to writing µ(p, q) for the result of applying µ to
p and q; later on, we will call the operation � (with a subscript, actually) and write it in the
more usual way as p� q.

The idea of H-groups is that the binary operation µ satisfies the usual group axioms but
only up to homotopy. To formulate the existence of an inverse in this setting, we will also need
an explicit mapping ν : P → P , continuous of course, representing inverse up to homotopy.

We thus say that

(HA) µ is homotopy associative if the two maps P ×P ×P → P given by (p, q, r) 7→ µ(p, µ(q, r))
and by (p, q, r) 7→ µ(µ(p, q), r) are homotopic;

(HN) a distinguished element o ∈ P (basepoint, assumed to be a vertex in the simplicial set
representation) is a homotopy neutral element if the maps P → P given by p 7→ µ(o, p)
and p 7→ µ(p, o) are both homotopic to the identity idP ;

(HI) ν is a homotopy inverse if the maps p 7→ µ(ν(p), p) and p 7→ µ(p, ν(p)) are both homotopic
to the constant map p 7→ o;

(HC) µ is homotopy commutative if µ is homotopic to µ′ given by µ′(p, q) := µ(q, p).

An Abelian H-group thus consists of P , o, µ, ν as above satisfying (HA), (HN), (HI), and
(HC).

Of course, every Abelian topological group is also an Abelian H-group. A basic example of
an H-group that is typically not a group is the loop space ΩY of a topological space Y (see, e.g.
[24, Section 4.3]). For readers familiar with the definition of the fundamental group π1(Y ), it
suffices to say that ΩY is like the fundamental group but without factoring the loops according
to homotopy.

We also define an H-homomorphism of an H-group (P1, o1, µ1, ν1) into an H-group
(P2, o2, µ2, ν2) in a natural way, as a continuous map h : P1 → P2 with h(o1) = o2 and such that
the two maps (x, y) 7→ h(µ1(x, y)) and (x, y) 7→ µ2(h(x), h(y)) are homotopic.

A group structure on homotopy classes of maps. For us, an H-group structure on P
is a device for obtaining a group structure on the set [X,P ] of homotopy classes of maps. In a
similar vein, an H-homomorphism P1 → P2 yields a group homomorphism [X,P1] → [X,P2].
Here is a more explicit statement:

Fact 5.1. Let (P, o, µ, ν) be an Abelian H-group, and let X be a space. Let µ∗, ν∗ be the
operations defined on continuous maps X → P by pointwise composition with µ, ν, respectively
(i.e., µ∗(f, g)(x) := µ(f(x), g(x)), ν∗(f)(x) := ν(f(x))). Then µ∗, ν∗ define an Abelian group
structure on the set of homotopy classes [X,P ] by [f ] + [g] := [µ∗(f, g)] and −[f ] := [ν∗(f)]
(with the zero element given by the homotopy class of the map sending all of X to o).
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If h : P1 → P2 is an H-homomorphism of Abelian H-groups (P1, o1, µ1, ν1) and (P2, o2, µ2, ν2),
then the corresponding map h∗, sending a continuous map f : X → P1 to h∗(f) : X → P2 given
by h∗(f)(x) := h(f(x)), induces a homomorphism [h∗] : [X,P1]→ [X,P2] of Abelian groups.

This fact is standard, and also entirely routine to prove. We will actually work mostly with
a simplicial counterpart (which is proved in exactly the same way, replacing topological notions
with simplicial ones everywhere). Namely, if X is a simplicial set, P is a Kan simplicial set, and
µ, ν are simplicial maps, then by a composition as above, we obtain maps µ∗ : SMap(X,P ) ×
SMap(X,P ) → SMap(X,P ) and ν∗ : SMap(X,P ) → SMap(X,P ), which induce an Abelian
group structure on the set [X,P ] of simplicial homotopy classes. Similarly, if h : P1 → P2 is a
simplicial H-homomorphism (with everything else in sight simplicial), then h∗ : SMap(X,P1)→
SMap(X,P2) defines a homomorphism [h∗] : [X,P1]→ [X,P2].

Moreover, if µ, ν are locally effective (i.e., given σ, τ ∈ P , we can evaluate µ(σ, τ) and
ν(σ)) and X has finitely many nondegenerate simplices, then µ∗, ν∗ are locally effective as well.
Indeed, as we have remarked, simplicial maps X → P are finitely representable objects, and we
will have them represented by vectors of cochains.

Thus, under the above conditions, we have the Abelian group [X,Pi] semi-effectively repre-
sented, where the set of representatives is SMap(X,P ). Similarly, if h : P1 → P2 is locally effec-
tive and X is has finitely many nondegenerate simplices, then h∗ : SMap(X,P1)→ SMap(X,P2)
is locally effective, too.

A canonical H-group structure from connectivity. In our algorithm, the existence of
a suitable H-group structure on Pi follows from the fact that Pi has nonzero homotopy groups
only in the range from d to i, i ≤ 2d− 2.

Lemma 5.2. Let d ≥ 2 and let P be a (d − 1)-reduced CW complex with distinguished vertex
(basepoint) o, and with nonzero πi(P ) possibly occurring only for i = d, d+ 1, . . . , 2d− 2. Then
there are µ and ν such that (P, o, µ, ν) is an Abelian H-group, and moreover, o is a strictly
neutral element, in the sense that µ(o, p) = µ(p, o) = p (equalities, not only homotopy).

Moreover, if µ′ is any continuous binary operation on P with o as a strictly neutral element,
then µ′ ∼ µ by a homotopy stationary on the subspace P ∨P := (P × {o})∪ ({o} ×P ) (and, in
particular, every such µ′ automatically satisfies (HA), (HC), and (HI) with a suitable ν ′).

This lemma is essentially well-known, and the necessary arguments appear, e.g., in White-
head [57]. We nonetheless sketch a proof, because we are not aware of a specific reference for
the lemma as stated, and also because it sheds some light on how the assumption of (d − 1)-
connectedness of Y in Theorem 1.1 is used.

The proof is based on the repeated application of the following basic fact (which is a baby
version of obstruction theory and can be proved by induction of the dimension of the cells on
which the maps or homotopies have to be extended).

Fact 5.3. Suppose that X and Y are CW complexes, A ⊆ X is a subcomplex, and assume that
there is some integer k such that all cells in X \A have dimension at least k and that πi(Y ) = 0
for all i ≥ k − 1. Then the following hold:

(i) If f : A → Y is a continuous map, then there exists an extension f ′ : X → Y of f (i.e.,
f ′|A = f).

(ii) If f ∼ g : A→ Y are homotopic maps, and if f ′, g′ : X → Y are arbitrary extensions of f
and of g, respectively, then f ′ ∼ g′ (by a homotopy extending the given one on A).

Proof of Lemma 5.2. This proof is the only place where it is important that we work with
CW-complexes, as opposed to simplicial sets. This is because the product of CW-complexes
is defined differently from the product of simplicial sets. In the product of CW-complexes, an
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i-cell times a j-cell yields an (i+ j)-cell (and nothing else), while in products of simplicial sets,
simplices of problematic intermediate dimensions appear.

Let ϕ : P ∨ P → P be the folding map given by ϕ(o, p) := p, ϕ(p, o) := p, p ∈ P . Thus, the
strict neutrality of o just means that µ extends ϕ, and we can employ Fact 5.3.

Namely, all cells in (P×P )\(P ∨P ) have dimension at least 2d, and πi(P ) = 0 for i ≥ 2d−1.
Thus, ϕ can be extended to some µ : P ×P → P , uniquely up to homotopy stationary on P ∨P .

From the homotopy uniqueness we get the homotopy commutativity (HC) immediately
(for free). Indeed, if we define µ′(p, q) := µ(q, p), then the homotopy uniqueness applies and
yields µ′ ∼ µ. The homotopy associativity (HA) is also simple. Let ψ1, ψ2 : P 3 → P be
given by ψ1(p, q, r) := µ(µ(p, q), r) and ψ2(p, q, r) := µ(p, µ(q, r)). Then ψ1 = ψ2 on the
subspace P ∨ P ∨ P := (P × {o} × {o}) ∪ ({o} × P × {o}) ∪ ({o} × {o} × P ). Since all cells in
(P × P × P ) \ (P ∨ P ∨ P ) are of dimension at least 2d, Fact 5.3 gives ψ1 ∼ ψ2.

The existence of a homotopy inverse is not that simple, and actually, we won’t need it (since
we will construct an inverse explicitly). For a proof, we thus refer to the literature: every
0-connected CW-complex with an operation satisfying (HA) and (HN) also satisfies (HI); see,
e.g., [57, Theorem X.2.2, p. 461].

5.2 A locally effective H-group structure on the Postnikov stages

Now we are in the setting of Theorem 1.1; in particular, Y is a (d− 1)-connected simplicial set.
Let Pi, i ≥ 0, denote the ith stage of a locally effective simplicial Postnikov system for Y , as in
Section 4; we will consider only the first 2d−2 stages. Since Y is (d−1)-connected, P0 through
Pd−1 are trivial (one-point), and each Pi is (d − 1)-reduced. We will occasionally refer to the
Pd, Pd+1, . . . , P2d−2 as the stable stages of the Postnikov system.

By Lemma 5.2, we know that the stable stages possess a (canonical) H-group structure. But
we need to define the underlying operations on Pi concretely as simplicial maps and, mainly,
make them effective. Since Pi is typically an infinite object, we will have just local effectivity,
i.e., the operations can be evaluated algorithmically on any given pair of simplices.

From now on, we will denote the “addition” operation on Pi by �i, and use the infix notation
σ�i τ . Similarly we write �iσ for the “inverse” of σ. For a more convenient notation, we also
introduce a binary version of �i by setting σ �i τ := σ �i (�iτ ).

Preliminary considerations. We recall that an m-simplex of Pi is written as (σ0, σ1, . . . , σi),
with σi ∈ Ci(∆m;πi(Y )). Thus, its components are cochains. One potential source of confusion
is that we already have a natural addition of such cochains defined; they can simply be added
componentwise, as effectively as one might ever wish.

However, this cannot be used as the desired addition �i. The reason is that the Postnikov
classes ki−1 are generally nonlinear, and thus ki−1 is typically not a homomorphism with respect
to cochain addition. In particular, we recall that Pi was defined as the subset of Pi−1×Ei “cut
out” by ki−1, i.e., via ki−1(σ) = δσi, where σ = (σ0, . . . , σi−1). Therefore, Pi is usually not
even closed under the cochain addition.

Our approach to define a suitable operation �i is inductive. Suppose that we have already
defined �i−1 on Pi−1. Then we will first define �i on special elements of Pi of the form (σ, 0),
by just adding the σ’s according to �i−1 and leaving 0 in the last component.

Another important special case of �i is on elements of the form (σ, σi) �i (0, τ i). In this
case, in spite of the general warning above against the cochain addition, the last components are
added as cochains: (σ, σi)�i (0, τ i) = (σ, σi + τ i). The main result of this section constructs a
locally effective �i that extends the two special cases just discussed.

Let us remark that by definition, �i and �i, as simplicial maps, operate on simplices of every
dimension m. However, in the algorithm, we will be using them only up to m ≤ 2d− 2, and so
in the sequel we always implicitly assume that the considered simplices satisfy this dimensional
restriction.
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The main result on �i,�i. The following proposition summarizes everything about �i,�i

we will need.

Proposition 5.4. Let Y be a (d−1)-connected simplicial set, d ≥ 2, and let Pd, Pd+1, . . . , P2d−2

be the stable stages of a locally effective Postnikov system with 2d− 2 stages for Y . Then each
Pi has an Abelian H-group structure, given by locally effective simplicial maps �i : Pi×Pi → Pi
and �i : Pi → Piwith the following additional properties:

(a) (σ, σi)�i(0, τ
i) = (σ, σi+τ i) for all (σ, σi) ∈ Pi and τ i ∈ Li (we recall that Li = K(πi, i).)

(b) �i(0, σ
i) = (0,−σi) for all σi ∈ Li.

(c) The projection pi : Pi → Pi−1 is a strict homomorphism, i.e., pi(σ�iτ ) = pi(σ)�i−1pi(τ )
and pi(�iσ) = �i−1pi(σ) for all σ, τ ∈ Pi.

(d) If, moreover, i < 2d− 2, then the Postnikov class ki : Pi → Ki+2 is an H-homomorphism
(with respect to �i on Pi and the simplicial group operation +, addition of cocycles, on
Ki+2).

As was announced above, the proof of this proposition proceeds by induction on i. The
heart is an explicit and effective version of (d), which we state and prove as a separate lemma.

Lemma 5.5. Let Pi be a (d − 1)-connected simplicial set, and let 0,�i,�i be an Abelian H-
group structure on Pi, with �i,�i locally effective. Let ki : Pi → Ki+2 be a simplicial map,
where i < 2d− 2. Then there is a locally effective simplicial map Ai : Pi → Ei+1 such that, for
all simplices σ, τ of equal dimension, Ai(σ,0) = Ai(0, τ ) = 0, and

ki(σ �i τ ) = ki(σ) + ki(τ ) + δAi(σ, τ ).

We recall that δ : Ei+1 → Ki+2 is the simplicial map induced by the coboundary opera-
tor, and that a simplicial map f : Pi → Ki+2 is nullhomotopic iff it is of the form δ ◦ F for
some F : Pi → Ei+1 (see Lemma 4.3). Therefore, the map Ai is an “effective witness” for the
nullhomotopy of the map (σ, τ ) 7→ ki(σ �i τ ) − ki(σ) − ki(τ ), and so it shows that ki is an
H-homomorphism.

We postpone the proof of the lemma, and prove the proposition first.

Proof of Proposition 5.4. As was announced above, we proceed by induction on i. As an
inductive hypothesis, we assume that, for some i < 2d−2, locally effective simplicial maps �i,�i

providing an H-group structure on Pi have been defined satisfying (a)–(c) in the proposition.
This inductive hypothesis is satisfied in the base case i = d: in this case we have Pd = Ld,

and �d and �d are the addition and additive inverse of cocycles (under which Ld is even a
simplicial Abelian group). Then (a),(b) obviously hold and (c) is void.

In order to carry out the inductive step from i to i + 1, we first apply Lemma 5.5 for Pi,
�i, and ki, which yields a locally effective simplicial map Ai : Pi × Pi → Ei+1 with Ai(σ,0) =
Ai(0, τ ) = 0 and ki(σ �i τ ) = ki(σ) + ki(τ ) + δAi(σ, τ ), for all σ, τ . As was remarked after
the lemma, this implies that ki is an H-homomorphism with respect to �i.

Next, using Ai, we define the operations �i+1,�i+1 on Pi+1. We set

(σ, σi+1) �i+1 (τ , τ i+1) := (σ �i τ , ω
i+1), where ωi+1 := σi+1 + τ i+1 +Ai(σ, τ ). (4)

Why is �i+1 simplicial? Since �i is simplicial, it suffices to consider the last component, and
this is a composition of simplicial maps, namely, of projections, Ai, and the operation + in the
simplicial group Ei+1. Clearly, �i+1 is also locally effective.

We also need to check that Pi+1 is closed under this �i+1. We recall that, for σ ∈ Pi, the
condition for (σ, σi+1) ∈ Pi+1 is ki(σ) = δσi+1. Using this condition for (σ, σi+1), (τ , τ i+1) ∈
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Pi+1, together with σ �i τ ∈ Pi (inductive assumption), and the property of ki above, we
calculate ki(σ�i τ ) = ki(σ) +ki(τ ) + δAi(σ, τ ) = δσi+1 + δτ i+1 + δAi(σ, τ ) = δωi+1, and thus
(σ, σi+1) �i+1 (τ , τ i+1) ∈ Pi+1 as needed.

Part (a) of the proposition for �i+1 follows from (4) and the property Ai(0, τ ) = 0 =
Ai(σ,0). In particular, (0, 0) is a strictly neutral element for �i+1.

Moreover, as a continuous map, �i+1 fulfills the assumptions on µ′ in Lemma 5.2, and thus
it satisfies the axioms of an Abelian H-group operation.

Next, we define the inverse operation �i+1 by

�i+1(σ, σi+1) := (�iσ,−σi+1 −Ai(σ,�iσ)).

It is simplicial for the same reason as that for �i+1, and by a computation similar to the one
for �i+1 above, we verify that Pi+1 is closed under �i+1.

To verify that this �i+1 indeed defines a homotopy inverse to �i+1, we check that it actually
is a strict inverse. Inductively, we assume σ�iσ = 0 for all σ ∈ Pi, and from the formulas defin-
ing �i+1 and �i+1, we check that (σ, σi+1) �i+1 (σ, σi+1) = (0, 0). Another simple calculation
yields (b) for �i+1.

Part (c) for �i+1 and �i+1 follows from the definitions and from Ai(0,0) = 0. This finishes
the induction step and proves the proposition.

Proof of Lemma 5.5. Here we will use (“locally”) some terminology concerning chain com-
plexes (e.g., chain homotopy, homomorphism of chain complexes), for which we refer to the
literature (standard textbooks, say [24]).

First we define the nonadditivity map ai : Pi × Pi → Ki+2 by

ai(σ, τ ) := ki(σ �i τ )− ki(σ)− ki(τ ).

(Thus, the map ai measures the failure of ki to be strictly additive with respect to �i.) We
want to show that ai = δAi for a locally effective Ai.

Let us remark that the existence of Ai can be proved by an argument similar to the one in
Lemma 5.2. That argument works for CW-complexes, and as was remarked in the proof of that
lemma, it is essential that the product of an i-cell and a j-cell is an (i+ j)-cell and nothing else.
For simplicial sets the product is defined differently, and if we consider Pi × Pi as a simplicial
set, we do get simplices of “unpleasant” intermediate dimensions there.

We will get around this using the Eilenberg–Zilber reduction (which is also one of the basic
tools in effective homology—but we won’t need effective homology directly); here, we follow
the exposition in [22] (see also [44, Sections 7.8 and 8.2]). Loosely speaking, it will allow us
to convert the setting of the simplicial set Pi × Pi to a setting of a tensor product of chain
complexes, where only terms of the “right” dimensions appear.

We note that Ai is defined on an infinite object, so we cannot compute it globally—we need
a local algorithm for evaluating it, yet its answers have to be globally consistent over the whole
computation.

First we present the Eilenberg–Zilber reduction for an arbitrary simplicial set P with base-
point (and single vertex) o. The reduction consists of three locally effective maps26 AW, EML
and SHI that fit into the following diagram:

C∗(P )⊗ C∗(P ) C∗(P × P ) SHI

EML

AW

26The acronyms stand for the mathematicians Alexander and Whitney, Eilenberg and Mac Lane, and Shih,
respectively.
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Here C∗(·) denotes the (normalized) chain complex of a simplicial set, with integer coeffi-
cients (so we omit the coefficient group in the notation). For brevity, chains of all dimensions are
collected into a single structure (whence the star subscript), and ⊗ is the tensor product. Thus,
(C∗(P )⊗C∗(P ))n =

⊕
i+j=nCi(P )⊗Cj(P ). The operators AW and EML are homomorphisms

of chain complexes, while SHI is a chain homotopy operator raising the degree by +1. Thus, for
each n, we have AWn : Cn(P×P )→ (C∗(P )⊗C∗(P ))n, EMLn : (C∗(P )⊗C∗(P ))n → Cn(P×P ),
and SHIn : Cn(P × P )→ Cn+1(P × P ).

We refer to [22, pp. 1212–1213] for explicit formulas for AW and EML in terms of the face
and degeneracy operators. We give only the formula for SHI, since Ai will be defined using
SHIi+1, and we summarize the properties of AW,EML, SHI relevant for our purposes.

The operator SHIn operates on n-chains on P × P . The formula given below specifies its
values on the “basic” chains of the form (σn, τn); here σn, τn are n-simplices of P , but (σn, τn)
is interpreted as the chain with coefficient 1 on (σn, τn) and 0 elsewhere. The definition then
extends to arbitrary chains by linearity.

Let p and q be non-negative integers. A (p, q)-shuffle (α, β) is a partition

{α1 < · · · < αp} ∪ {β1 < · · · < βq}

of the set {0, 1, . . . , p+ q − 1}. Put

sig(α, β) =

p∑

i=1

(αi − i+ 1).

Let γ = {γi, . . . , γr} be a set of integers. Then sγ denotes the compositions of the degeneracy
operators sγ1 . . . sγr (the sm are the degeneracy operators of P , and ∂m are its face operators).
The operator SHI is defined by

SHI(σ0, τ0) = 0,

SHI(σm, τm) =
∑

T (m)

(−1)ε(α,β)(sβ̄+m̄∂m−q+1 · · · ∂mσm, sα+m̄∂m̄ · · · ∂m−q−1τ
m),

where T (m) is the set of all (p+ 1, q)-shuffles such that 0 ≤ p+ q ≤ m− 1,

m̄ = m− p− q, ε(α, β) = m̄− 1 + sig(α, β),

α+ m̄ = {α1 + m̄, . . . , αp+1 + m̄}, β̄ + m̄ = {m̄− 1, β1 + m̄, . . . , βq + m̄}.

The above formula shows that SHIn is locally effective, in the sense that, if a chain cn ∈
Cn(P × P ) is given in a locally effective way, by an algorithm that can evaluate the coefficient
for each given n-simplex of P × P , then a similar algorithm is available for the (n + 1)-chain
SHIn(cn) as well.

The first fact we will need is that for every n, the maps satisfy the following identity (where
∂ denotes the boundary operator in C∗(P × P )):

idCn(P×P )−EMLn ◦AWn = SHIn−1 ◦ ∂ + ∂ ◦ SHIn. (5)

This identity says that SHIn is a chain homotopy between EMLn ◦ AWn and the identity on
Cn(P × P ).

The second fact, which follows directly from the formulas in [22], is that the operators EML
and SHI behave well with respect to the basepoint o and its degeneracies, in the following sense:
For every n and for every (nondegenerate) n-dimensional simplex τn of P (regarded as a chain),

EMLn(o⊗ τn) = ±(on, τn), EMLn(τn ⊗ o) = ±(τn, on), (6)

where on is the (unique) n-dimensional degenerate simplex obtained from o. The images in (6)
lie in the subgroup Cn(P ∨P ) ⊆ Cn(P ×P ). Moreover, the operator SHIn maps Cn(P ∨P ) into
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Cn+1(P ∨ P ), i.e., the chains SHI(on, τn) and SHI(τn, on) are linear combinations of simplices
of the form (on+1, σn+1) and (σn+1, on+1), respectively, where σn+1 ranges over certain (n+ 1)-
dimensional simplices of P .

We now apply this to P = Pi (with basepoint 0). We consider the nonadditivity map ai as an
(i+ 2)-cocycle on Pi×Pi, which can be regarded as a homomorphism ai : Ci+2(Pi×Pi)→ πi+1.
If we compose this homomorphism ai on the left with both sides of the identity (5), for n = i+2,
we get

ai ◦ idCi+2(P×P )−ai ◦ EMLi+2 ◦AWi+2 = ai ◦ SHIi+1 ◦ ∂ + ai ◦ ∂ ◦ SHIi+2. (7)

Now ai ◦ ∂ = 0 since ai is a cocycle. Moreover, every basis element of C∗(Pi) ⊗ C∗(Pi) in
degree i+ 2 < 2d is of the form 0⊗ τ i+2 or τ i+2 ⊗ 0 (since Pi has no nondegenerate simplices
in dimensions 1, . . . , d − 1). Such elements are taken by EML into Ci+1(P ∨ P ), on which ai
vanishes because 0 is a strictly neutral element for �i. Thus, ai ◦ EMLi+2 = 0 for i+ 2 < 2d.

Therefore, (7) simplifies to ai = ai ◦ SHIi+1 ◦ ∂. Thus, if we set Ai := ai ◦ SHIi+1, then
ai = δAi, as desired (since applying δ to a cochain α corresponds to the composition α ◦ ∂ on
the level of homomorphisms from chains into πi+1). Finally, the property Ai(0, ·) = Ai(·,0) = 0
follows because the corresponding property holds for ai and SHIi+1 maps Ci+1(Pi ∨ Pi) to
Ci+2(Pi ∨ Pi).

5.3 A semi-effective representation of [X,Pi]

Now let X be a finite simplicial complex or, more generally, a simplicial set with finitely many
nondegenerate simplices (as we will see, the greater flexibility offered by simplicial sets will be
useful in our algorithm, even if we want to prove Theorem 1.1 only for simplicial complexes X).

Having the locally effective H-group structure on the stable Postnikov stages Pi, we obtain
the desired locally effective Abelian group structure on [X,Pi] immediately.

Indeed, according to the remarks following Fact 5.1, a simplicial map s : P → Q of ar-
bitrary simplicial sets induces a map s∗ : SMap(X,P ) → SMap(X,Q) by composition, i.e.,
by s∗(f)(σ) = (s ◦ f)(σ) for each simplex σ ∈ P . If P and Q are Kan, we also get a well-
defined map [s∗] : [X,P ] → [X,Q]. Moreover, if s is locally effective, then so is s∗ (since X
has only finitely many nondegenerate simplices). In particular, the group operations on [X,Pi]
are represented by locally effective maps �i∗ : SMap(X,Pi)×SMap(X,Pi)→ SMap(X,Pi) and
�i∗ : SMap(X,Pi)→ SMap(X,Pi).

The cochain representation. However, we can make the algorithm considerably more
efficient if we use the special structure of Pi and work with cochain representatives of the
simplicial maps in SMap(X,Pi).

We recall from Section 4 that simplicial maps into K(π, n) and E(π, n) are canonically
represented by cocycles and cochains, respectively. Simplicial maps X → Pi are, in particular,
maps into the product E0×· · ·×Ei, and so they can be represented by (i+1)-tuples of cochains
c = (c0, . . . , ci), with cj ∈ Cj := Cj(X;πj).

The “simplicial” definition of �i∗,�i∗ can easily be translated to a “cochain” definition,
using the correspondence explained after Lemma 4.2. For simplicity, we describe the result
concretely for the unary operation �i∗; the case of �i∗ is entirely analogous, it just would
require more notation.

Thus, to evaluate (d0, . . . , di) := �i∗c, we need to compute the value of dj on each j-simplex
ω of X, j = 0, 1, . . . , i. To this end, we first identify ω with the standard j-simplex ∆j via
the unique order-preserving map of vertices. Then the restriction of (c0, . . . , ci) to ω (i.e., a
labeling of the faces of ω by the elements of the appropriate Abelian groups) can be regarded
as a j-simplex σ of Pi. We compute τ := �jσ, again a j-simplex of Pi. The component τ j of
τ is a j-cochain on ∆j , i.e., a single element of πj , and this value, finally, is the desired value of
dj(ω). For �i∗ everything works similarly.

31



We also get that 0 ∈ SMap(X,Pi), the simplicial map represented by the zero cochains, is
a strictly neutral element under �i∗.

We have made [X,Pi] into a semi-effectively represented Abelian group in the sense of Sec-
tion 3. The representatives are the (i + 1)-tuples (c0, . . . , ci) of cochains as above. However,
our state of knowledge of [X,Pi] is rather poor at this point; for example, we have as yet no
equality test.

A substantial amount of work still lies ahead to make [X,Pi] fully effective.

6 The main algorithm

In order to prove our main result, Theorem 1.1, on computing [X,Y ], we will prove the following
statement by induction on i.

Theorem 6.1. Let X be a simplicial set with finitely many nondegenerate simplices, and let Y
be a (d− 1)-connected simplicial set, d ≥ 2, for which a locally effective Postnikov system with
2d− 2 stages P0, . . . , P2d−2 is available. Then, for every i = d, d+ 1, . . . , 2d− 2, a fully effective
representation of [X,Pi] can be computed, with the cochain representations of simplicial maps
X → Pi as representatives.

Two comments on this theorem are in order. First, unlike in Theorem 1.1, there is no
restriction on dimX (the assumption dimX ≤ 2d − 2 in Theorem 1.1 is needed only for the
isomorphism [X,Y ] ∼= [X,P2d−2]). Second, as was already mentioned in Section 5.3, even if we
want Theorem 1.1 only for a simplicial complex X, we need Theorem 6.1 with simplicial sets
X, because of recursion.

First we will (easily) derive Theorem 1.1 from Theorem 6.1.

Proof of Theorem 1.1. Given a Y as in Theorem 1.1, we first obtain a fully effective Postnikov
system for it with 2d−2 stages using Theorem 4.5. Then we compute a fully effective represen-
tation of [X,P2d−2] by Theorem 6.1. Since Y is (d− 1)-connected and dimX ≤ 2d− 2, there is
a bijection between [X,Y ] and [X,P2d−2] by Proposition 4.4.

It remains to implement the homotopy testing. Given two simplicial maps f, g : X → Y ,
we use the locally effective simplicial map ϕ2d−2 : Y → P2d−2 (which is a part of a locally
effective simplicial Postnikov system), and we compute the cochain representations c,d of the
corresponding simplicial maps ϕ2d−2 ◦ f, ϕ2d−2 ◦ g : X → P2d−2. Then we can check, using the
fully effective representation of [X,P2d−2], whether [c] − [d] = 0 in [X,P2d−2]. This yields the
promised homotopy testing algorithm for [X,Y ] and concludes the proof of Theorem 1.1.

6.1 The inductive step: An exact sequence for [X,Pi]

Theorem 6.1 is proved by induction on i. The base case is i = d (since P0, . . . , Pd−1 are trivial
for a (d− 1)-connected Y ), which presents no problem: we have Pd = Ld = K(πd, d), and so

[X,Pd] ∼= Hd(X;πd).

This group is fully effective, since it is the cohomology group of a simplicial set with finitely
many nondegenerate simplices, with coefficients in a fully effective group. (Alternatively, we
could start the algorithm at i = 0; then it would obtain [X,Pd] at stage d as well.)

So now we consider i > d, and we assume that a fully effective representation of [X,Pi−1]
is available, where the representatives of the homotopy classes [f ] ∈ [X,Pi−1] are (cochain
representations of) simplicial maps f : X → Pi−1. We want to obtain a similar representation
for [X,Pi].

Let us first describe on an intuitive level what this task means and how we are going to
approach it.
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As we know, every map g ∈ SMap(X,Pi) yields a map f = pi∗(g) = pi ◦ g ∈ SMap(X,Pi−1)
by projection (forgetting the last coordinate in Pi). We first ask the question of which maps
f ∈ SMap(X,Pi−1) are obtained as such projections; this is traditionally called the lifting
problem (and g is called a lift of f). Here the answer follows easily from the properties of the
Postnikov system: liftability of a map f depends only on its homotopy class [f ] ∈ [X,Pi−1],
and the liftable maps in [X,Pi−1] are obtained as the kernel of the homomorphism [k(i−1)∗]
induced by the Postnikov class. This is very similar to the one-step extension in the setting
of obstruction theory, as was mentioned in the introduction. This step will be discussed in
Section 6.2.

Next, a single map f ∈ SMap(X,Pi−1) may in general have many lifts g, and we need to
describe their structure. This is reasonably straightforward to do on the level of simplicial
maps. Namely, if c = (c0, . . . , ci−1) is the cochain representation of f and g0 is a fixed lift of
f , with cochain representation (c, ci0), then it turns out that all possible lifts g of f are of the
form (again in the cochain representation) (c, ci0 + zi), zi ∈ Zi(X,πi) ∼= SMap(X,Li). Thus, all
of these lifts have a simple “coset structure”.

This allows us to compute a list of generators of [X,Pi]. We also need to find all relations of
these generators, and for this, we need to be able to test whether two maps g1, g2 ∈ SMap(X,Pi)
are homotopic. This is somewhat more complicated, and we will develop a recursive algorithm
for homotopy testing in Section 6.4.

Using the group structure, it suffices to test whether a given g ∈ SMap(X,Pi) is nullhomo-
topic. An obvious necessary condition for this is nullhomotopy of the projection f = pi ◦ g,
which we test recursively. Then, if f ∼ 0, we �i∗-add a suitable nullhomotopic map to g, and
this reduces the nullhomotopy test to the case where g has a cochain representation of the form
(0, zi), zi ∈ Zi(X,πi) ∼= SMap(X,Li).

Now (0, zi) can be nullhomotopic, as a map X → Pi, by an “obvious” nullhomotopy,
namely, one “moving” only the last coordinate, or in other words, induced by a nullhomo-
topy in SMap(X,Li). But there may also be “less obvious” nullhomotopies, and it turns out
that these correspond to maps SX → Pi−1, where SX is the suspension of X defined in Sec-
tion 4.1. Thus, in order to be able to test homotopy of maps X → Pi, we also need to compute
[SX,Pi−1] recursively, using the inductive assumption, i.e., Theorem 6.1 for i− 1.

The exact sequence. We will organize the computation of [X,Pi] using an exact sequence, a
basic tool in algebraic topology and many other branches of mathematics. First we write the se-
quence down, including some as yet undefined symbols, and then we provide some explanations.
It goes as follows:

[SX,Pi−1]
[µi] // [X,Li]

[λi∗] // [X,Pi]

[pi∗]
��

[X,Pi−1]
[k(i−1)∗]

// [X,Ki+1]

(8)

This is a sequence of Abelian groups and homomorphisms of these groups, and exactness means
that the image of each of the homomorphisms equals the kernel of the successive one.

We have already met most of the objects in this exact sequence, but for convenience, let us
summarize them all.

• [SX,Pi−1] is the group of homotopy classes of maps from the suspension into the one
lower stage Pi−1; inductively, we may assume it to be fully effective.

• [µi] is a homomorphism appearing here for the first time, which will be discussed later.

• [X,Li] ∼= H i(X;πi) consists of the homotopy classes of maps into the Eilenberg–MacLane
space Li = K(πi, i), and it is fully effective.
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• [λi∗] is the homomorphism induced by the mapping λi : Li → Pi, the “insertion to the
last component”; i.e., λi(σ

i) = (0, σi). In terms of cochain representatives, λi∗ sends zi

to (0, zi).

• [X,Pi] is what we want to compute, [pi∗] is the projection (on the level of homotopy), and
[X,Pi−1] has already been computed, as a fully effective Abelian group.

• [k(i−1)∗] is the homomorphism induced by the composition with the Postnikov class ki−1 : Pi−1 →
Ki+1 = K(πi, i+ 1).

• [X,Ki+1] ∼= H i+1(X,πi) are again maps into an Eilenberg–MacLane space.

Let us remark that the exact sequence (8), with some [µi], can be obtained by standard
topological considerations from the so-called fibration sequence for the fibration Li → Pi → Pi−1;
see, e.g., [35, Chap. 14].27 However, in order to have all the homomorphisms locally effective
and also to provide the locally effective “inverses” (as required in Lemma 3.5), we will need
to analyze the sequence in some detail; then we will obtain a complete “pedestrian” proof of
the exactness with only a small extra effort. Thus, the fibration sequence serves just as a
background.

The algorithm for computing [X,Pi] goes as follows.

1. Compute [X,Pi−1] fully effective, recursively.

2. Compute Ni−1 := ker [k(i−1)∗] ⊆ [X,Pi−1] (so Ni−1 consists of all homotopy classes of
liftable maps), fully effective, using Lemma 3.2 and Theorem 4.5.

3. Compute [SX,Pi−1] fully effective, recursively.

4. Compute the factor group Mi := coker [µi] = [X,Li]/ im [µi] using Lemma 3.3, fully
effective and including the possibility of computing “witnesses for 0” as in the lemma.

5. The exact sequence (8) can now be transformed to the short exact sequence

0→Mi
`i−→ [X,Pi]

[pi∗]−−→ Ni−1 → 0

(where `i is induced by exactly the same mapping λi∗ of representatives as [λi∗] in the
original exact sequence (8)). Let Ni−1 := {f ∈ SMap(X,Pi−1) : [k(i−1)∗(f)] = 0} be
the set of representatives of elements in Ni−1. Implement a locally effective “section”

27Let us consider topological spaces E and B with basepoints and a pointed map p : E → B. If p has the
so-called homotopy lifting property (which is the case for our pi) it is called a fibration and the preimage F of the

base point in B is called the fibre of p. The sequence of maps F
i
↪→ E

p−→ B can be prolonged into the fibration
sequence

· · · → ΩF
Ωi−→ ΩE

Ωp−−→ ΩB
µ−→ F

i−→ E
p−→ B

of pointed maps, where, for a pointed space Y , ΩY is the space of loops starting at the base point. For spaces
X and Y with base points, let Map(X,Y )∗ denote the set of all continuous pointed maps, and let [X,Y ]∗ be the
set of (pointed) homotopy classes of these maps. Then the fibration sequence yields the sequence

· · · → Map(X,ΩF )∗ → Map(X,ΩE)∗ → Map(X,ΩB)∗ → Map(X,F )∗ → Map(X,E)∗ → Map(X,B)∗.

As it turns out, on the level of homotopy classes we get even the long exact sequence

· · · → [X,ΩF ]∗ → [X,ΩE]∗ → [X,ΩB]∗ → [X,F ]∗ → [X,E]∗ → [X,B]∗.

There is a natural bijection between [ΣX,E]∗ and [X,ΩE]∗, where ΣX is the reduced suspension of X, and so
we get the long exact sequence

· · · → [ΣX,F ]∗ → [ΣX,E]∗ → [ΣX,B]∗ → [X,F ]∗ → [X,E]∗ → [X,B]∗.

For CW-complexes, the difference between SX and ΣX does not matter, and for the sequence Pi → Pi−1 → Ki+1,
which can be considered as a fibration, we arrive at (8).
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ξi : Ni−1 → SMap(X,Pi) with [pi∗ ◦ξi] = id and a locally effective “inverse” ri : im [λi∗]→
Mi with `i◦ri = id, as in Lemma 3.5, and compute [X,Pi] fully effective using that lemma.

We will now examine steps 2,4,5 in detail, and simultaneously establish the exactness of (8).

Convention. It will be notationally convenient to let maps such as pi∗, k(i−1)∗, λi∗, which
send simplicial maps to simplicial maps, operate directly on the cochain representations (and
in such case, the result is also assumed to be a cochain representation). Thus, for example, we
can write pi∗(c, c) = c, λi∗(zi) = (0, zi), etc. We also write [c] for the homotopy class of the
map represented by c.

6.2 Computing the liftable maps

Here we will deal with the last part of the exact sequence (8), namely,

[X,Pi]
[pi∗]−−→ [X,Pi−1]

[k(i−1)∗]−−−−−→ [X,Ki+1].

First we note that, since the projection map pi is an H-homomorphism by Proposition 5.4(c),
the (locally effective) map pi∗ : SMap(X,Pi) → SMap(X,Pi−1) indeed induces a well-defined
group homomorphism [X,Pi] → [X,Pi−1] (Fact 5.1). Similarly, the H-homomorphism ki−1

(Proposition 5.4(d)) induces a group homomorphism [k(i−1)∗] : [X,Pi−1]→ [X,Ki+1] ∼= H i+1(X;πi).

Lemma 6.2 (Lifting lemma). We have im [pi∗] = ker [k(i−1)∗]. Moreover, if we set Ni−1 :=
{f ∈ SMap(X,Pi−1) : [k(i−1)∗(f)] = 0}, then there is a locally effective mapping ξi : Ni−1 →
SMap(X,Pi) such that pi∗ ◦ ξi is the identity map (on the level of simplicial maps).

Proof. Let us consider a map f ∈ SMap(X,Pi−1) with cochain representation c. Every cochain
(c, ci) with ci ∈ Ci(X;πi) represents a simplicial map X → Pi−1 × Ei, and this map goes into
Pi iff the condition

k(i−1)∗(c) = δci (9)

holds. Thus, f has a lift iff k(i−1)∗(c) is a coboundary, or in other words, iff [k(i−1)∗(c)] = 0 in
[X,Ki+1]. Hence im [pi∗] = ker [k(i−1)∗] indeed.

Moreover, if k(i−1)∗(c) is a coboundary, we can compute some ci satisfying (9) and set
ξi(f) := (c, ci). This involves some arbitrary choice, but if we fix some (arbitrary) rule for
choosing ci, we obtain a locally effective ξi as needed. The lemma is proved.

Remark 6.3. In the previous proof as well as in a few more situations below, we will need
to make some arbitrary choice of a particular solution to a system of linear equations over the
integers. We refrain from specifying any particular such rule, but typically, such a rule will be
built into any particular Smith normal form algorithm that we use as a subroutine to solve the
system of integer linear equations (9).

We have thus proved exactness of the sequence (8) at [X,Pi−1]. Step 2 of the algorithm can
be implemented using Lemma 3.2. We have also prepared the section ξi for Step 5.

6.3 Factoring by maps from SX

We now focus on the initial part

[SX,Pi−1]
[µi]−−→ [X,Li]

[λi∗]−−−→ [X,Pi]

of the exact sequence (8), and explain how the suspension comes into the picture. We remark
that [λi∗] is a well-defined homomorphism, for the same reason as [pi∗] and [k(i−1)∗]; namely, λi
is an H-homomorphism by Proposition 5.4(a).
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The kernel of [λi∗] describes all homotopy classes of maps X → Li that are nullhomotopic
as maps X → Pi. To understand how they arise as images of maps SX → Pi−1, we first need
to discuss a representation of nullhomotopies as maps from the cone.

Maps from the cone. A map X → Y between two topological spaces is nullhomotopic iff it
can be extended to a map CX → Y on the cone over X; this is more or less a reformulation of
the definition of nullhomotopy. The same is true in the simplicial setting if the target is a Kan
simplicial set, such as Pi.

We recall that the n-dimensional nondegenerate simplices of CX are of two kinds: the n-
simplices of X and the cones over the (n− 1)-simplices of X. In the language of cochains, this
means that, for any coefficient group π, we have

Cn(CX;π) ∼= Cn−1(X;π)⊕ Cn(X;π),

and thus a cochain b ∈ Cn(CX;π) can be written as (e, c), with e ∈ Cn−1(X;π) and c ∈
Cn(X;π). We also write c = b|X for the restriction of b to X. The coboundary operator
Cn(CX;π)→ Cn+1(CX, ;π) then acts as follows:

δ(e, c) = (−δe+ c, δc).

Rephrasing Lemma 4.3 in the language of extensions to CX, we get the following:

Corollary 6.4. A map f ∈ SMap(X,Li), represented by a cocycle ci ∈ Zi(X;πi), is nullhomo-
topic iff there is a cocycle b ∈ Zi(CX;π) ∼= SMap(CX,Li) such that b|X = c.

This describes the homotopies in SMap(X,Li), which induce the “obvious” homotopies in
imλi∗. Let us now consider an element in the image of λi∗, i.e., a map g : X → Pi with
a cochain representation (0, ci). By the above, a nullhomotopy of g can be regarded as a
simplicial map G : CX → Pi whose cochain representation (b, bi) satisfies (b|X , bi|X) = (0, ci)
(here b|X = (b0|X , . . . , bi−1|X) is the componentwise restriction to X). Thus, the projection
F := pi∗ ◦G ∈ SMap(CX,Pi−1) is represented by b with b|X = 0, and hence it maps all of the
“base” X in CX to 0.

Recalling that SX is obtained from CX by identifying X to a single vertex, we can see that
such F exactly correspond to simplicial maps SX → Pi−1 (here we use that Pi−1 has a single
vertex 0). Thus, maps in SMap(SX,Pi−1) give rise to nullhomotopies of maps in imλi∗.

After this introduction, we develop the definition of µi and prove the exactness of our
sequence (8) at [X,Li].

The homomorphism µi. Since the nondegenerate (i + 1)-simplices of SX are in one-to-
one correspondence with the nondegenerate i-simplices of X, we have the isomorphism of the
cochain groups

Di : C
i+1(SX;πi)→ Ci(X;πi).

Moreover, this is compatible with the coboundary operator (up to sign):

δDi(c) = −Di(δc).

Alternatively, if we identify the (i+ 1)-cochains on SX with those (i+ 1)-cochains b = (e, c) ∈
Ci+1(CX;πi) for which b|X = c = 0, then the isomorphism is given by Di(e, 0) = e. The
coboundary formula δ(e, c) = (−δe + c, δc) for CX indeed gives Di(δ(e, 0)) = Di(−δe, 0) =
−δe = −δDi(e, 0).

Because of the compatibility with δ, Di restricts to an isomorphism Zi+1(SX;πi)→ Zi(X;πi)
(which we also denote by Di). This induces an isomorphism [Di] : H

i+1(SX;πi)→ H i(X;πi).
Translating from cochains to simplicial maps, we can also regard Di as an isomorphism

SMap(SX,Ki+1)→ SMap(X,Li), (where, as we recall, Ki+1 = K(πi, i+ 1) and Li = K(πi, i)),
and [Di] as an isomorphism [SX,Ki+1]→ [X,Li].
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Now we define µi : SMap(SX,Pi−1)→ SMap(X,Li) by

µi := Di ◦ k(i−1)∗.

That is, given F ∈ SMap(SX,Pi−1), we first compose it with ki−1, which yields a map in
SMap(SX,Ki+1) represented by a cocycle in Zi+1(SX;πi). Applying Di means re-interpreting
this as a cocycle in Zi(X;πi) representing a map in SMap(X,Li), which we declare to be µi(F ).
This, clearly, is locally effective, and [µi] is a well-defined homomorphism [SX,Pi−1]→ [X,Li]
(since [Di] and [k(i−1)∗] are well-defined homomorphisms).

The connection of this definition of µi to the previous considerations on nullhomotopies may
not be obvious at this point, but the lemma below shows that µi works.

Lemma 6.5. The sequence (8) is exact at [X,Li], i.e., im [µi] = ker [λi∗].

Proof. First we want to prove the inclusion im [µi] ⊆ ker [λi∗]. To this end, we consider F ∈
SMap(SX,Pi−1) arbitrary and want to show that [λi∗(µi(F ))] = 0 in [X,Pi].

As was discussed above, we can view F as a map F : CX → Pi−1 that is zero on X. Let b
be the cochain representation of F ; thus, b|X = 0.

Let zi ∈ Zi(X;πi) be the cocycle representing µi(F ). Then (0, zi) ∈ Ci−1(X;πi)⊕Ci(X;πi)
represents a map CX → Ei, and (b, (0, zi)) represents a map G : CX → Pi−1 × Ei.

We claim that G actually goes into Pi, i.e., is a lift of F . For this, we just need to verify the
lifting condition (9), which reads k(i−1)∗(b) = δ(0, zi).

By the coboundary formula for the cone, we have δ(0, zi) = (zi, 0), while k(i−1)∗(b) = (zi, 0)

by the definition of µi(F ). So G ∈ SMap(CX,Pi) is indeed a lift of F . At the same time,
(b, (0, zi))|X = (0, zi), and so G is a nullhomotopy for the map represented by (0, zi), which is
just λi∗(µi(F )).

To prove the reverse inclusion im [µi] ⊇ ker [λi∗], we proceed similarly. Suppose that zi ∈
Zi(X;πi) represents a map f ∈ SMap(X,Li) with [λi∗(f)] = 0 in [X,Pi]. Then λi∗(f) has the
cochain representation (0, zi), and there is a nullhomotopy G ∈ SMap(CX,Pi) for it, with a
cochain representation (b, (ai−1, zi)), where b|X = 0.

Since b|X = 0, b represents a map F ∈ SMap(CX,Pi−1) zero on X, which can also be
regarded as F ∈ SMap(SX,Pi−1). Let z̃i represent µi(F ). Since G is a lift of F , the lifting
condition k(i−1)∗(b) = δ(ai−1, zi) holds. We have k(i−1)∗(b) = (z̃i, 0), again by the definition
of µi, and δ(ai−1, zi) = (−δai−1 + zi, δzi) by the coboundary formula for the cone. Hence
z̃i − zi = δai−1, which means that [zi] = [z̃i]. Thus [f ] = [µi(F )] ∈ im [µi], and the lemma is
proved.

Having [µi] defined as a locally effective homomorphism, we can employ Lemma 3.3 and
implement Step 4 of the algorithm.

6.4 Computing nullhomotopies

The next step is to prove the exactness of the sequence (8) at [X,Pi].

Lemma 6.6. We have im [λi∗] = ker [pi∗].

Proof. The inclusion im [λi∗] ⊆ ker [pi∗] holds even on the level of simplicial maps, i.e., imλi∗ ⊆
ker pi∗. Indeed, pi∗(λi∗(zi)) = pi∗(0, zi) = 0.

For the reverse inclusion, consider (c, ci) ∈ SMap(X,Pi) and suppose that [pi∗(c, ci)] = [c] =
0 ∈ [X,Pi−1]. We need to find some zi ∈ Zi(X;πi) with [(0, zi)] = [(c, ci)] in [X,Pi].

A suitable zi can be constructed by taking a nullhomotopy CX → Pi−1 for c and lifting
it. Namely, let b represent a nullhomotopy for c, i.e., b|X = c, and let (b, bi) be a lift of b (it
exists because CX is contractible and thus every map on it can be lifted). We set

zi := ci − (bi|X).
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We need to verify that zi is a cocycle. This follows from the lifting conditions k(i−1)∗(c) = δci

and k(i−1)∗(b) = δbi, and from the fact that k(i−1)∗(b)|X = k(i−1)∗(b|X) = k(i−1)∗(c) (this
is because applying k(i−1)∗ really means a composition of maps, and thus it commutes with
restriction). Indeed, we have δzi = δci − δ(bi|X) = k(i−1)∗(c)− k(i−1)∗(c) = 0.

It remains to to check that [(c, ci)] = [(0, zi)]. We calculate [(c, ci)] − [(0, zi)] = [(c, ci) �i∗
(0, zi)] = [(c, ci − zi)] = [(c, bi|X)] = [(b|X , bi|X)] = 0, since (b, bi) is a nullhomotopy for
(b|X , bi|X).

Defining the inverse for λi∗. Now we consider the cokernel Mi = [X,Li]/ im [µi] as in
Step 4 of the algorithm, and the (injective) homomorphism `i : Mi → [X,Pi] induced by [λi∗].

The last thing we need for applying Lemma 3.5 in Step 5 is a locally effective map ri : im `i →
Mi with `i ◦ ri = id.

Let Ri be the set of representatives of the elements in im `i = im [λi∗]; by the above, we can
write Ri = {(c, ci) ∈ SMap(X,Pi) : [c] = 0}.

For every (c, ci) ∈ Ri we set
ρi(c, c

i) := zi,

where zi is as in the above proof of Lemma 6.6 (i.e., zi = ci − (bi|X), where (b, bi) is a lifting
of some nullhomotopy b for c). This definition involves a choice of a particular b and bi, which
we make arbitrarily (see above) for each (c, ci).

Lemma 6.7. The map ρi induces a map ri : im [λi∗]→ [X,Li] such that `i ◦ ri = id.

Proof. In the proof of Lemma 6.6 we have verified that [λi∗(ρi(c, ci))] = [(c, ci)], so λi∗ ◦ ρi acts
as the identity on the level of homotopy classes. It follows that ri is well-defined, since `i is
injective and thus the condition `i ◦ ri = id determines ri uniquely.

We note that, since we assume [X,Pi−1] fully effective, we can algorithmically test whether
[c] = 0, i.e., whether c represents a nullhomotopic map—the problem is in computing a concrete
nullhomotopy b for c.

We describe a recursive algorithm for doing that. For more convenient notation, we will
formulate it for computing nullhomotopies for maps in SMap(X,Pi), but we note that, when
evaluating ρi, we actually use this algorithm with i − 1 instead of i. Some of the ideas in the
algorithm are very similar to those in the proof of the exactness at [X,Pi] (Lemma 6.6 above),
so we could have started with a presentation of the algorithm instead of Lemma 6.6, but we
hope that a more gradual development may be easier to follow.

The nullhomotopy algorithm. So now we formulate a recursive algorithm NullHom(c, ci),
which takes as input a cochain representation of a nullhomotopic map in SMap(X,Pi) (i.e., such
that [(c, ci)] = 0), and outputs a nullhomotopy (b, bi) for (c, ci).

The required nullhomotopy (b, bi) will be �i∗-added together from several nullhomotopies;
this decomposition is guided by the left part of our exact sequence (8). Namely, we recursively
find a nullhomotopy for c and lift it, which reduces the original problem to finding a nullho-
motopy for a map in imλi∗, of the form (0, zi), as in the proof of Lemma 6.6. Then, using the
fact that `i is an isomorphism, we find nullhomotopies witnessing that [zi] = 0 in Mi. Here we
need the assumption that the representation of Mi allows for computing “witnesses of zero” as
in Lemma 3.3.

For this to work, we need the fact that if b1 is a nullhomotopy for c1 and b2 is a nullhomotopy
for c2, then b1�i∗b2 is a nullhomotopy for c1�i∗c2. This is because �i∗ operates on mappings by
composition, and thus it commutes with restrictions—we have already used the same observation
for ki∗.

The base case of the algorithm is i = d. Here, as we recall, Pd = Ld = K(πd, d), and a
nullhomotopic cd means that cd ∈ Zd(X;πd) is a coboundary. We thus compute e ∈ Zd−1(X;πd)
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with cd = δe, and the desired nullhomotopy is (e, δe) (indeed, (e, δe) specifies a valid map
CX → Ld since, by the coboundary formula for the cone, it is a cocycle).

Now we can state the algorithm formally.

Algorithm NullHom(c, ci).

A. (Base case) If i = d, return (b, bd) = (0, (e, δe)) as above and stop.

B. (Recursion) Now i > d. Set b0 := NullHom(c), and let (b0, b
i
0) be an arbitrary lift of b0.

C. (Nullhomotopy coming from SX) Set zi := ci−(bi0|X), and use the representation of Mi to
find a “witness for [zi] = 0 in Mi”. That is, compute F ∈ [SX,Pi−1] such that [zi] = [z̃i]
in [X,Li], where z̃i is the cocycle representing µi(F ). Let a be the cochain representation
of the map F ∈ SMap(CX,Pi−1) corresponding to F .

D. (Nullhomotopy in [X,Li]) Compute e ∈ Zi−1(X;πi) with z̃i − zi = δe. (Then, as in
the base case i = d above, (e, δe) is a nullhomotopy for z̃i − zi, and thus (0, (e, δe)) is a
nullhomotopy for (0, z̃i − zi).)

E. Return
(b, bi) := (b0, b

i
0) �i∗

(
(a, (0, z̃i)) �i∗ (0, (e, δe))

)
.

Proof of correctness. First we need to check that zi in Step C indeed represents 0 in Mi. This
is because, as in the proof of Lemma 6.6, [(0, zi)] = [λi∗(zi)] = 0, and since `i is injective, we
have [zi] = 0 in Mi as claimed. So the algorithm succeeds in computing some (b, bi), and we
just need to check that it is a nullhomotopy for (c, ci).

All three terms in the formula in Step E are valid representatives of maps CX → Pi (for
(b0, b

i
0) this follows from the inductive hypothesis, for (a, (0, z̃i)) we have checked this in the

first part of the proof of Lemma 6.5, and for (0, (e, δe)) we have already discussed this). So
(b, bi) also represents such a map, and all we need to do is to check that (b|X , bi|X) = (c, ci):

(b|X , bi|X) = (b0|X , bi0|X) �i∗
(

(a|X , z̃i) �i∗ (0, δe)
)

= (c, bi0|X) �i∗
(

(0, z̃i) �i∗ (0, zi − z̃i)
)

= (c, bi0|X + z̃i + zi − z̃i) = (c, bi0|X + (ci − (bi0|X))) = (c, ci).

Thus, the algorithm correctly computes the desired nullhomotopy.

As we have already explained, the algorithm makes ρi locally effective, and so Step 5 of the
main algorithm can be implemented. This completes the proof of Theorem 6.1.
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computation of homotopy groups and Postnikov systems in fixed dimension. Preprint,
arXiv:1211.3093, 2012.
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Abstract

For several computational problems in homotopy theory, we obtain algorithms with
running time polynomial in the input size. In particular, for every fixed k ≥ 2, there is a
polynomial-time algorithm that, for a 1-connected topological space X given as a finite
simplicial complex, or more generally, as a simplicial set with polynomial-time homology,
computes the kth homotopy group πk(X), as well as the first k stages of a Postnikov
system of X. Combined with results of an earlier paper, this yields a polynomial-time
computation of [X,Y ], i.e., all homotopy classes of continuous mappings X → Y , un-
der the assumption that Y is (k−1)-connected and dimX ≤ 2k − 2. We also obtain a
polynomial-time solution of the extension problem, where the input consists of finite sim-
plicial complexes X,Y , where Y is (k−1)-connected and dimX ≤ 2k− 1, plus a subspace
A ⊆ X and a (simplicial) map f : A → Y , and the question is the extendability of f to
all of X.

The algorithms are based on the notion of a simplicial set with polynomial-time ho-
mology, which is an enhancement of the notion of a simplicial set with effective homology
developed earlier by Sergeraert and his co-workers. Our polynomial-time algorithms are
obtained by showing that simplicial sets with polynomial-time homology are closed under
various operations, most notably, Cartesian products, twisted Cartesian products, and
classifying space. One of the key components is also polynomial-time homology for the
Eilenberg–MacLane space K(Z, 1), provided in another recent paper by Krčál, Matoušek,
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1 Introduction

One of the central themes in algebraic topology is understanding the structure of all continuous
maps X → Y , for given topological spaces X and Y (all maps between topological spaces in
this paper are assumed to be continuous). Here two maps f, g : X → Y are usually considered
equivalent if they are homotopic1; thus, the object of interest is [X,Y ], the set of all homotopy
classes of maps X → Y .

Computing higher homotopy groups. Many of the celebrated results throughout the
history of topology can be cast as information about [X,Y ] for certain spaces X and Y . In
particular, one of the important challenges propelling the research in algebraic topology has
been the computation of the homotopy groups of spheres2 πk(S

n), where only partial results
have been obtained in spite of an enormous effort (see, e.g., [34, 22]).

Our concern here is the (theoretical) complexity of computing homotopy groups πk(Y )
for an arbitrary Y . It is well known that the fundamental group π1(Y ) is uncomputable, as
follows from undecidability of the word problem in groups [33].3 On the other hand, given
a 1-connected space Y (i.e., one with π1(Y ) trivial), say represented as a finite simplicial
complex, there are algorithms that compute the higher homotopy group πk(Y ), for every
given k ≥ 2. The first such algorithm is due to Brown [5], and newer ones have been obtained
as a part of general computational frameworks in algebraic topology due to Schön [47], Smith
[52], and Sergeraert and his co-workers (e.g., [48, 43, 39, 44]). In particular, an algorithm
based on the methods of Sergeraert et al. can be found in Real [36]. We also refer to Romero
and Sergeraert [40] for a new approach to homotopy computations.

The computation of the higher homotopy groups is generally considered very hard. The
running time for the algorithms mentioned above has apparently never been analyzed. It is
clear, however, that Brown’s algorithm, which for a long time had been the only explicitly
published algorithm for computing πk(Y ), is heavily superexponential and totally unsuitable
for actual computations.

Moreover, Anick [2] proved that computing πk(Y ) is #P-hard,4 where Y can even be
assumed to be a 4-dimensional space, but, crucially, k is regarded as a part of the input.
Actually, the hardness already applies to the potentially easier problem of computing the
rational homotopy groups πk(Y ) ⊗ Q; practically speaking, one asks only for the rank of
πk(Y ), i.e., the number of direct summands isomorphic to Z.

1Homotopy means a continuous deformation of one map into another. More precisely, f and g are defined
to be homotopic, in symbols f ∼ g, if there is a continuous F : X × [0, 1] → Y such that F (·, 0) = f and
F (·, 1) = g. With this notation, [X,Y ] = {[f ] : f : X → Y }, where [f ] = {g : g ∼ f} is the homotopy class
of f .

2The kth homotopy group πk(Y ) of a space Y is defined as the set of all homotopy classes of pointed maps
f : Sk → Y , i.e., maps f that send a distinguished point s0 ∈ Sk to a distinguished point y0 ∈ Y (and the
homotopies F also satisfy F (s0, t) = y0 for all t ∈ [0, 1]). Strictly speaking, one should really write πk(Y, y0)
but for a path-connected Y , the choice of y0 does not matter. Moreover, for 1-connected Y the pointedness of
the maps does not matter either and one can identify πk(Y ) with [Sk, Y ]. Each πk(Y ) is a group, which for
k ≥ 2 is Abelian, but the definition of the group operation is not important for us at the moment.

3The undecidability of the word problem holds even for the fundamental groups of 2-complexes or 4-
manifolds. On the other hand, the problem is decidable for certain classes of manifolds [26, 10].

4Somewhat informally, the class of #P-hard problems consists of computational problems that should
return a natural number (as opposed to YES/NO problems) and are at least as hard as counting the number
of all Hamiltonian cycles in a given graph, or counting the number of subsets with zero sum for a given set of
integers, etc. These problems are clearly at least as hard as NP-complete problems, and most likely even less
tractable.
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Anick’s #P-hardness result has a caveat: it assumes Y to be given as a cell complex
with a certain very compact representation. However, recently it was shown by the present
authors [7] that the computation of πk(Y ) remains #P-hard even for a 4-dimensional simplicial
complex Y , still with k a part of the input.

Recently the computation of πk(Y ), with k as the parameter, has been shown W[1]-hard
[29]. This means that this computational problem is very unlikely to admit an algorithm with
time complexity bounded by f(k)nC , where n is the input size, C is a constant independent
of k, and f is an arbitrary function.

Since, as was mentioned above, higher homotopy groups have the reputation of being very
difficult to compute, we consider the following result surprising.

Theorem 1.1. For every fixed k ≥ 2, there is a polynomial-time algorithm that, given a 1-
connected space Y represented as a finite simplicial complex, or more generally, as a simplicial
set with polynomial-time homology (this notion will be defined in Section 2), computes (the
isomorphism type of) the kth homotopy group πk(Y ).

Here and in the sequel, the size of a simplicial complex is the number of simplices.
Since, under the conditions of the theorem, πk(Y ) is a finitely generated Abelian group, it

can be represented as a direct sum of finitely many cyclic groups, and the algorithm returns
such a representation.

Let us remark that the algorithm does not need any certificate of the 1-connectedness of
Y , but if Y is not 1-connected, the result may be wrong.

We should also mention that, although the theorem asserts the existence of an algorithm
for every k ≥ 2, we will actually present a single algorithm that accepts Y and k as input and
outputs πk(Y ), and for every k the running time is bounded by a polynomial in the size of Y ,
where the polynomial generally depends on k. However, for this setting, a single algorithm
accepting Y and k, some of the formulations in the sequel would become more cumbersome,
and so in the interest of simpler presentation, we stick to the setting as in Theorem 1.1. A
similar remark applies to all of the other results below.

Remark: simple spaces. It can be checked that Theorem 1.1, as well as Theorem 1.2
below, hold, without any significant change in the proofs, under the assumtion that Y is
a simple space (instead of 1-connected). This, somewhat technical, notion means that the
fundamental group π1(Y ) is possibly nontrivial but Abelian, and its action on each πk(Y ),
k ≥ 2, is trivial. Here the action basically means “pulling the basepoint in Y along a loop”—
see [20, pp. 341–342] for discussion. A natural example of simple spaces are H-spaces, which
are a generalization of topological groups. In the interest of easier presentation we stick to
the 1-connectedness assumption, though.

Computing Postnikov systems. The algorithm for computing πk(Y ) in Theorem 1.1 is
a by-product of a polynomial-time algorithm for computing the first k stages of a (standard)
Postnikov system for a given space Y . In this respect it is similar to the algorithm of Brown
[5] and some others, while, e.g., the algorithm in Real [36] is, in a sense, dual, building a
Whitehead tower of Y . We note that with the tools used in the present paper, the Whitehead
tower algorithm, too, could serve to prove Theorem 1.1.

A Postnikov system of a space Y is, roughly speaking, a way of building Y from “canonical
pieces”, called Eilenberg–MacLane spaces, whose homotopy structure is the simplest possible.
A Postnikov system has countably many stages P0, P1, . . ., where Pk reflects the homotopy
properties of Y up to dimension k, and in particular, πi(Pk) ∼= πi(Y ) for all i ≤ k, while
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πi(Pk) = 0 for i > k. The isomorphisms of the homotopy groups for i ≤ k are induced
by maps ϕi : Y → Pk, which are also a part of the Postnikov system. Moreover, there is a
mapping ki defined on Pi, called the ith Postnikov class; together with the group πi+1(Y ) it
describes how Pi+1 is obtained from Pi, and it is of fundamental importance for dealing with
maps from a space X into Y . We will say more about Postnikov systems later on; now we
state the result somewhat informally.

Theorem 1.2 (informal). For every fixed k ≥ 2, given a 1-connected space Y represented
as a finite simplicial complex, or more generally, as a simplicial set with polynomial-time
homology, a suitable representation of the first k stages of a Postnikov system for Y can be
constructed, in such a way that each of the mappings ϕi and ki, i ≤ k, can be evaluated in
polynomial time.

A precise statement will be given as Theorem 4.1.

Computing the structure of all maps. In the earlier paper [6] we provided an algorithm
that, given finite simplicial complexes X and Y , computes the structure of [X,Y ] under the
assumption that, for some k ≥ 2, we have dimX ≤ 2k− 2 and Y is (k− 1)-connected.5 More
precisely, under these assumptions, [X,Y ] has a canonical structure of a finitely generated
Abelian group, and the algorithm determines its isomorphism type.

In the algorithm, the stage P2k−2 of the Postnikov system of Y is used as an approximation
to Y , since for every 1-connected Y and every X of dimension at most 2k − 2, there is an
isomorphism [X,Y ] ∼= [X,P2k−2], induced by the composition with the mapping ϕ2k−2 : Y →
P2k−2. At the same time, the continuous maps X → P2k−2 are easier to handle than the maps
X → Y : each of them is homotopic to a simplicial, and thus combinatorially described, map,
and it is possible to define (and implement) a binary operation on P2k−2 which induces the
group structure on [X,P2k−2]. This, in a nutshell, explains the usefulness of the Postnikov
system for dealing with maps into Y .

It is easy to check that the algorithm in [6] works in polynomial time in the size (number
of simplices) of X and Y for every fixed k, provided that the first 2k−2 stages of a Postnikov
system for Y can be computed in polynomial time, as in Theorem 1.2 (the precise requirements
on what should be computed can be found in [6]). We thus obtain the following result,
anticipated in [6].

Corollary 1.3 (based on [6]). For every fixed k ≥ 2, there is a polynomial-time algorithm
that, given finite simplicial complexes X, Y , where dim(X) ≤ 2k − 2 and Y is (k − 1)-
connected, computes the isomorphism type of [X,Y ] as an Abelian group. More generally, X
can be a finite simplicial set and Y a simplicial set with polynomial-time homology.

We will not dwell on the proof here, since it follows immediately by plugging the Postnikov
system algorithm of Theorem 1.2 into the algorithm of [6] as a subroutine. We only remark
that while the result of [6] is formulated for Y a finite simplicial complex, Y actually enters
the computation solely through its Postnikov system, and so any Y can be handled for which
the appropriate stages of the Postnikov system are available.

Computing extensions of maps. Related to the problem of determining [X,Y ] is the
extension problem: given spaces A, X, Y , where A ⊆ X, and a map f : A → Y , can f be
extended to a map X → Y ? This is one of the most basic questions in algebraic topology, and

5This means that πi(Y ) = 0 for all i = 0, 1, . . . , k − 1; a basic example is Y = Sk.
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a number of topological concepts, which may look quite advanced and esoteric to a newcomer,
such as Steenrod squares, have a natural motivation in an attempt at a stepwise solution of
the extension problem; see, e.g., Steenrod [54].

For A ⊆ X and f : A → Y as above, let [X,Y ]f ⊆ [X,Y ] denote the set of all homotopy
classes of maps X → Y that contain a map extending f .

One may also want to study the set of all extensions f̄ of f with a finer equivalence relation
than the ordinary homotopy of maps X → Y , namely, homotopy fixing the map on A (i.e.,
f̄1, f̄2 : X → Y are equivalent if they are connected by a homotopy F : X × [0, 1] → Y with
F (x, t) = f(x) for all x ∈ A and t ∈ [0, 1]). In order to distinguish these two notions, we refer
to determining the structure of all extensions modulo homotopy fixing f on A as the fine
classification of the extensions of f , and to determining [X,Y ]f as the coarse classification of
the extensions of f .

As a simple consequence of Theorem 1.2 and the methods of [6], we obtain the following.

Theorem 1.4 (Extendability of maps). Let k ≥ 2 be fixed. Then there is a polynomial-time
algorithm that, given finite simplicial complexes X, Y , a subcomplex A ⊆ X, and a simplicial
map f : A→ Y , where dim(X) ≤ 2k−1 and Y is (k−1)-connected, decides whether f admits
an extension to a (not neccessarily simplicial) map X → Y .

Moreover, if the extension exists and dimX ≤ 2k−2, the algorithm computes the structure
of [X,Y ]f as a coset in the Abelian group [X,Y ].

More generally, X can be a finite simplicial set and Y a simplicial set with polynomial-time
homology.

The proof, assuming some of the material from [6], is presented in Section 5 below. We
stress that, while f is given as a simplicial map (so that it can be specified by finite means),
the extensions are considered as arbitrary continuous maps, and in particular, they are not
assumed to be simplicial maps X → Y .

Theorem 1.4 provides a coarse classification of all extension assuming dimX ≤ 2k − 2.
There is also an algorithm that, under the same conditions, provides a fine classification of all
extensions. It appears as a part of a more general result in Čadek, Krčál, and Vokř́ınek [8].

For the next higher dimension dimX = 2k − 1, although the existence of an extension
can be decided, we can no longer produce the coarse classification of all extensions, and we
suspect that this problem should be intractable in a suitable sense.

Hardness results. The assumption on X and Y in Corollary 1.3 may perhaps look artificial
at first sight. However, it is needed for [X,Y ] to have a canonical structure of an Abelian
group. Moreover, the similar assumption in Theorem 1.4 (with dimX one higher) turns
out to be sharp, in the following sense: In [7] we show that the extendability problem is
algorithmically undecidable for finite simplicial complexes A ⊆ X and Y and a simplicial map
f : A → Y with dimX = 2k and (k−1)-connected Y . Moreover, for every k ≥ 2, there is
a fixed (k − 1)-connected Y = Yk such that the extension problem for maps into Yk, with
A,X, f as the input, dimX ≤ 2k, is undecidable. In a similar sense, X = Xk and A = Ak
can be fixed, so that the input consists only of Y and f , and undecidability still holds. See
[7] for more details. The undecidability is obtained by reduction from quadratic Diophantine
equations. A very similar argument shows that deciding the existence of a nontrivial map
X → Y is as hard as deciding the existence of a nontrivial solution of quadratic homogeneous
Diophantine equations [24].

We have already mentioned known hardness results for computing the homotopy group
πk(Y ): the #P-hardness if k is a part of input and W[1]-hardness if k is regarded as a
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parameter. The latter shows that, modulo a widely believed complexity assumption, for
every polynomial-time algorithm that computes πk(Y ), the degree of the polynomial in the
running time bound has to grow with k (and of course, the same applies to algorithms form
computing the Postnikov stages of Y ). Still, it may be interesting to analyze the running
time in more detail.

On the other hand, this kind of finer theoretical analysis may not be very relevant for
the practical performance of the algorithm on manageable instances. For example, one of the
main ingredients of our polynomial-time algorithm, is an algorithm of [25] dealing with the
Eilenberg–MacLane space K(Z, 1) (discussed later). That algorithm is not quite simple and
its analysis is demanding; however, as for practical performance, it seems to be inferior to
a simple, classical, but worst-case exponential algorithm due to Eilenberg and Mac Lane, at
least in simple tests (as we were informed by Francis Sergeraert).

Methods. The results of this paper rely on a number of known methods and techniques.
We see the main contributions in selecting suitable methods among various available alterna-
tives and adapting them for our purposes, assembling everything together, and setting up a
framework for dealing with polynomial-time algorithms of a somewhat unusual kind.

This framework, with somewhat modified terminology, has been used in several subse-
quent papers [8, 57, 15, 56], which provide polynomial-time algorithms for a number of other
homotopy-theoretic problems.

We have also made a significant effort to present the results in an accessible manner.
The required techniques involve a large amount of material, and methods from two tradition-
ally separated areas, algebraic topology and algorithm design, need to be brought together.
We expect the number of potential readers moving with ease in both of these areas to be
rather small, and thus we try to make the exposition as self-contained as reasonably possible,
sometimes covering things which may be considered well known in one of the areas.

The Postnikov system algorithm, on the top level, essentially follows the approach of
Brown [5] (we have examined proofs of existence of a Postnikov system in standard textbooks,
such as [20, 53], and none seemed quite suitable for our purposes). But Brown’s algorithm
in the original form uses a straightforward representation of simplicial Eilenberg–MacLane
spaces, and thus it works only for input spaces with all the relevant homotopy groups finite.
In the case of infinite homotopy groups, the corresponding Eilenberg–MacLane spaces are
simplicial sets with infinitely many nondegenerate simplices in the relevant dimensions. For
dealing with these, and with other infinitary objects derived from them in the course of the
algorithm, we follow the paradigm of objects with effective homology developed by Sergeraert,
Rubio, Real, Dousson, and Romero (see, e.g., [48, 43, 39, 44]; the lecture notes [45] provide
the most detailed exposition available so far). Some of their results have never appeared in
peer-reviewed journals; for example, for some of the operations needed in the present paper,
we use methods described in some detail, as far as we know, only in Real’s PhD. thesis [35]
written in Spanish.

For the purpose of polynomial-time computations, we replace effective homology with po-
lynomial-time homology, as introduced in [25]. Thus, we need polynomial-time versions of all
the required operations in effective homology.

There is one case, namely, polynomial-time homology for the simplicial Eilenberg–MacLane
space K(Z, 1), where we had to develop a new algorithm, since the classical one is not poly-
nomial in general. This part is not provided here, but rather in the companion paper [25];
the methods used in that paper have flavor somewhat distinct from those employed here, and
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we feel that a combined paper would be too extensive and cumbersome.
In all other cases, we could rely on known algorithms. Verifying their polynomiality

sometimes still requires nontrivial analysis and assumptions. Moreover, since the intermediate
objects used in the algorithms are of somewhat unusual kind from the computer science
point of view, we need to set up a suitable formal framework in order to make claims about
polynomial running time.

Applications. We consider the fundamental nature of the algorithmic problem considered
here a sufficient motivation of our research (e.g., because [X,Y ] is indeed one of the most
basic objects of study in algebraic topology). However, we also believe that work in this
area will bring various connections and applications, also in other fields, possibly including
practically usable software, e.g., for aiding research in topology.

A nice concrete application comes from the so-called ROB-SAT problem—robust satisfi-
ability of systems of equations. The problem is given by a rational value α > 0 and a PL
function f : K → Rn defined by rational values on the vertices of a simplicial complex K.
The question is whether an arbitrary continuous g : K → Rn that is at most α-far from f
(i.e., ‖f − g‖∞ ≤ α) has a root. Krčál and Franek [16] exhibit a computational equivalence of
ROB-SAT and the extension problem for maps into the sphere Sn−1. Our Theorem 1.4 then
yields an algorithmic solution when dimK ≤ 2n− 3.

One important motivation for starting this project was the computation of the Z2-index
(or genus) ind(X) of a Z2-space X,6 i.e., the smallest d such that X can be equivariantly
mapped into Sd. For example, the classical Borsuk–Ulam theorem asserts that there is no
equivariant map Sd → Sd−1, i.e., that ind(Sd) = d.

Generalizing the results in the present paper, it is shown in [8] that there is an algorithm
that decides whether ind(X) ≤ d, provided that d ≥ 2 and dim(X) ≤ 2d− 1; for fixed d the
running time is polynomial in the size of X.

The problem of computing ind(X) arises, among others, in the problem of embeddability
of topological spaces, which is a classical and much studied area (see, e.g., the survey by
Skopenkov [51]). One of the basic questions here is, given a k-dimensional finite simplicial
complex K, can it be (topologically) embedded in Rd? The celebrated Haefliger–Weber
theorem from the 1960s asserts that, in the metastable range of dimensions, i.e., for k ≤ 2

3d−1,
embeddability is equivalent to ind(K2

∆) ≤ d− 1, where K2
∆ is a certain Z2-space constructed

from K (the deleted product). Thus, in this range, the embedding problem is, computationally,
a special case of Z2-index computation; see [28] for a study of algorithmic aspects of the
embedding problem, where the metastable range was left as one of the main open problems.

The Z2-index also appears as a fundamental quantity in combinatorial applications of
topology. For example, the celebrated result of Lovász on Kneser’s conjecture can nowadays
be re-stated as χ(G) ≥ ind(B(G)) + 2, where χ(G) is the chromatic number of a graph G,
and B(G) is a certain simplicial complex constructed from G (see, e.g., [27]). We find it
striking that prior to [8], nothing seems to have been known about the computability of such
an interesting quantity as ind(B(G)). Indeed, some authors (e.g., Kozlov [23]) worked with a
weaker, cohomologically defined index, in part because of suspicions that the Z2-index might
be intractable.

Implementation. As indicated above, another appealing research direction is the devel-

6A Z2-space is a topological space X with an action of the group Z2; the action is described by a homeo-
morphism ν : X → X with ν ◦ ν = idX . A primary example is a sphere Sd with the antipodal action x 7→ −x.
An equivariant map between Z2-spaces is a continuous map that commutes with the Z2 actions.
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opment of a practical software for the problems considered in this paper. A particular
solution, the Kenzo program written in Common Lisp by Francis Sergeraert and Xavier
Dousson, maintained and extended with other collaborators, is freely available at http:

//www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/.
The program implements the concepts of effective homology, and currently it enables the

construction of the Postnikov stages as long as the homotopy groups involved are isomorphic
to direct summands of copies of Z and Z2. For instance, for spheres Sd, d ≥ 2, the Postnikov
stages P0, P1, . . . , Pd+2 can be constructed (as well as homotopy groups π0(Sd), . . . , πd+2(Sd)
can be computed). The program Kenzo cannot compete with the current state-of-the-art
computations of homotopy groups of spheres, where many special properties of the spheres
are employed. Rather in an orthogonal fashion, it provides a general solution for essentially
arbitrary spaces in low dimensions.

A different piece of software is a package called HAP written by Graham Ellis extend-
ing the computer algebraic system GAP, see [13]. Among others, it provides homological
computations related to Eilenberg–MacLane spaces.

2 Simplicial sets and chain complexes with polynomial-time
homology

2.1 Preliminaries on simplicial sets and chain complexes

Simplicial sets. A simplicial set is a way of specifying a topological space in purely com-
binatorial terms; we can think of it as an instruction manual telling us how the considered
space should be assembled from simple building blocks. All topological spaces in the con-
sidered algorithms are going to be represented in this way. Simplicial sets can be regarded
as a generalization of simplicial complexes; they are formally more complicated, but more
powerful and flexible. We refer to [17, 49] for an introduction, to [9, 30] as compact more
comprehensive sources, and to [18] for a more modern treatment.

Similar to a simplicial complex, a simplicial set is a space built of vertices, edges, triangles,
and higher-dimensional simplices, but simplices are allowed to be glued to each other and to
themselves in more general ways. For example, one may have several 1-dimensional simplices
connecting the same pair of vertices, a 1-simplex forming a loop, two edges of a 2-simplex
identified to create a cone, or the boundary of a 2-simplex all contracted to a single vertex,
forming an S2.

Another new feature of a simplicial set, in comparison with a simplicial complex, is the
presence of degenerate simplices. For example, the edges of the triangle with a contracted
boundary (in the last example above) do not disappear, but each of them becomes a degenerate
1-simplex.

A simplicial set X is represented as a sequence (X0, X1, X2, . . .) of mutually disjoint sets,
where the elements of Xk are called the k-simplices of X (we note that, unlike for simplicial
complexes, a simplex in a simplicial set need not be determined by the set of its vertices;
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indeed, there can be many simplices with the same vertex set). For every k ≥ 1, there are
k + 1 mappings ∂0, . . . , ∂k : Xk → Xk−1 called face operators; the intuitive meaning is that
for a simplex σ ∈ Xk, ∂iσ is the face of σ opposite to the ith vertex. Moreover, there are
k + 1 mappings s0, . . . , sk : Xk → Xk+1 (opposite direction) called the degeneracy operators;
the approximate meaning of siσ is the degenerate simplex which is geometrically identical to
σ, but with the ith vertex duplicated.

A simplex is called degenerate if it lies in the image of some si; otherwise, it is nondegen-
erate. We write Xndg for the set of all nondegenerate simplices of X. We call X finite if Xndg

is finite (every nonempty simplicial set has infinitely many degenerate simplices).
There are natural axioms that the ∂i and the si have to satisfy, but we will not list them

here, since we will not really use them. Moreover, the usual definition of simplicial sets uses
the language of category theory and is very elegant and concise; see, e.g., [18, Section I.1].

Every simplicial set X specifies a topological space |X|, the geometric realization of X. It
is obtained by assigning a geometric k-dimensional simplex to each nondegenerate k-simplex
of X, and then gluing these simplices together according to the face operators; we refer to
the literature for the precise definition.

Simplicial maps. For simplicial sets X,Y , a simplicial map f : X → Y is a sequence (fk)
∞
k=0

of maps fk : Xk → Yk (every k-simplex is mapped to a k-simplex) that commute with the face
and degeneracy operators, i.e., ∂ifk = fk−1∂i and sifk = fk+1si. We let SMap(X,Y ) stand
for the set of all simplicial maps X → Y .

It is useful to observe that it suffices to specify a simplicial map f : X → Y on the
nondegenerate simplices of X; the values on the degenerate simplices are then determined
uniquely. In particular, if X is finite, then such an f can be specified as a finite object.

Every simplicial map f : X → Y defines a continuous map ϕ : |X| → |Y | of the geometric
realizations. There is a very important class of simplicial sets, called Kan simplicial sets,
with the following crucial property: if Y is a Kan simplicial set and X is any simplicial set,
then every continuous map ϕ : |X| → |Y | is homotopic to (the geometric realization of) some
simplicial map f : X → Y . This is essential in the algorithmic treatment of continuous maps.
Here we omit the definition of a Kan simplicial set, since we will not directly use it.

Chain complexes. Together with a simplicial set X, we will consider its associated
normalized chain complex C∗(X), but sometimes the algorithms will also need other types of
chain complexes.

For our purposes, it is sufficient to use the kind of chain complexes usually considered
in introductory textbooks when defining homology and cohomology groups. Thus, in the
sequel, a chain complex C∗ is a sequence (Ck)k∈Z of free Abelian groups (in other words, free
Z-modules), together with a sequence (dk : Ck → Ck−1)∞k∈Z of group homomorphisms that
satisfy the condition dk−1dk = 0.7 The Ck are the chain groups, their elements are called
k-chains, and the dk the differentials. If c is a k-chain, we sometimes say that the degree of
c equals k. We will work only with chain complexes C∗ with Ck = 0 for all k < 0.

We also recall that Zk = Zk(C∗) := ker dk ⊆ Ck is the group of cycles, Bk = Bk(C∗) :=
im dk+1 ⊆ Zk is the group of boundaries, and the quotient group Hk(C∗) := Zk/Bk is the kth

7More generally, instead of Z-modules, one might consider modules over a commutative ring R, and they
need not be free. Moreover, in the literature, the operations considered in Section 3 below are sometimes
presented in a still more general algebraic setting, with differential modules replacing chain complexes. Here
we prefer the more concrete setting of chain complexes, mainly in order to avoid burdening the presentation
with additional notions.
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homology group of the chain complex C∗.
For the normalized chain complex C∗(X) of a simplicial set X mentioned above, the

kth chain group Ck(X) is the free Abelian group over Xndg
k , the set of all k-dimensional

nondegenerate simplices (in particular, Ck(X) = 0 for k < 0).8 This means that a k-chain is
a formal sum

c =
∑

σ∈Xndg
k

ασ · σ,

where the ασ are integers, only finitely many of them nonzero. The differentials are defined
in a standard way using the face operators: for k-chains of the form 1 · σ, which constitute
a basis of Ck(X), we set dk(1 · σ) :=

∑k
i=0(−1)i · ∂iσ (some of the ∂iσ may be degenerate

simplices; then they are ignored in the sum), and this extends to a homomorphism in a unique
way (“linearly”).

Let C∗ and C̃∗ be two chain complexes. We recall that a chain map f : C∗ → C̃∗ is
a sequence (fk)k∈Z of homomorphisms, fk : Ck → C̃k, compatible with the differentials,
i.e., fk−1dk = d̃kfk. A simplicial map f : X → Y of simplicial sets induces a chain map
f∗ : C∗(X)→ C∗(Y ) in the obvious way.

Mapping cylinder and mapping cone. We recall two standard constructions for topo-
logical spaces, and then we mention their algebraic counterparts. Let f : X → Y be a map
of topological spaces. Then the mapping cylinder Cyl(f) is obtained by gluing the product
(“cylinder”) X × [0, 1] to Y via the identification of (x, 0) with f(x) ∈ Y , for all x ∈ X, as
the next picture indicates.

X

Y

f(X)

f

Cyl(f)

The mapping cone Cone(f) is obtained from the mapping cylinder Cyl(f) by contracting
the “top copy” of X, i.e., the subspace X × {1}, to a single point.

We will not use these geometric constructions directly. In one of the proofs, we will need
a simplicial version of the mapping cylinder, in a setting where X,Y are simplicial sets and
f is a simplicial map, and we will introduce it at the appropriate moment. Otherwise, we
will work exclusively with algebraic analogs of these constructions. Conceptually, they are
obtained by considering how the chain complexes of Cyl(f) and Cone(f) are related to the
chain complexes of X and Y and to the chain map f∗ induced by f , and then generalizing to
arbitrary chain complexes and chain map.

The resulting definitions are as follows. Let C∗, C̃∗ be chain complexes and let ϕ : C∗ → C̃∗
be a chain map. Then the (algebraic) mapping cylinder Cyl∗(ϕ) has chain groups Cylk :=

8In the literature, the notation C∗(X) is sometimes used for another chain complex associated with X,
where the degenerate simplices also appear as generators (it yields the same homology as the normalized
chain complex). But since we will work exclusively with the normalized chain complex, we reserve the simple
notation C∗(X) for these.
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Ck−1 ⊕ C̃k ⊕ Ck (a direct sum), and the differential given by

d
Cyl∗(ϕ)
k (a, c̃, b) := (−dk−1(a), ϕk(a) + d̃k(c̃),−a+ dk(b)),

where d is the differential of C∗ and d̃ is the differential of C̃∗.
In a similar spirit, the (algebraic) mapping cone Cone∗(ϕ) of ϕ is the chain complex whose

kth chain group is the direct sum Ck−1 ⊕ C̃k, and with the differential given by

d
Cone∗(ϕ)
k (a, b̃) := (−dk−1(a), ϕk(a) + d̃k(b̃)), (a, b̃) ∈ Ck−1 ⊕ C̃k. (1)

For later use, we note that the canonical inclusion i : C̃∗ → Cone∗(ϕ), given by i(b̃) = (0, b̃),
is a chain map, as can be seen from (1); on the other hand, the other canonical inclusion
j : C∗ → Cone∗(ϕ) is not a chain map (it does not respect degrees, and it does not commute
with the face operators, unless ϕ = 0).

2.2 The meaning of “computing π17(Y ) in polynomial time”

In computational complexity theory, which is a branch of computer science that focuses
on classifying computational problems according to their inherent difficulty, algorithms are
usually represented as Turing machines, or some other models of a general computing machine.
Such an algorithm accepts an input u ∈ Σ∗, where Σ is some fixed finite alphabet (for our
purposes, we may assume w.l.o.g. that Σ = {0, 1} is the binary alphabet), and where Σ∗

denotes the set of all strings (finite sequences) of symbols of Σ. Given u ∈ Σ∗, the algorithm
computes some output v ∈ Σ∗.

We say that a mapping f : Σ∗ → Σ∗ is a polynomial-time mapping if there is an algorithm
A and a polynomial p(x) such that, for every input u ∈ Σ∗, the algorithm A outputs f(u)
after at most p(|u|) steps, where |u| denotes the length (number of symbols) of u.

It is easy to see that the composition of two polynomial-time mappings is again a polynomial-
time mapping. (Here we use that if the computation of f(u) takes at most p(|u|) steps, then
|f(u)| ≤ p(|u|), for otherwise, the algorithm for evaluating f would not have enough time to
write f(u) down.) We will frequently use this fact, often without mentioning it explicitly.

Encoding size. Thus, the notion of polynomial time is very straightforward, although
not easy to study, for mappings assigning strings to strings. However, if we consider “real-
life” computational tasks, such as testing whether a given natural number n is a prime, or
computing π17(Y ) for a simplicial complex Y , then neither the input nor the output are
a priori strings. In order to talk about the computational complexity of such tasks, we first
need to specify some encoding of the input and output objects by strings.

For testing primality, we thus need to specify an (injective) function enc : N → Σ∗ as-
signing a string to every natural number (here we consider the encoding of the two possible
outputs, YES and NO, as too trivial to discuss). The most usual choice is representing n by
the standard binary notation; e.g., enc(17) = 10001. In this paper we assume binary encoding
of all integers (unless stated otherwise). With this encoding, the possibility of primality test-
ing in polynomial time is a celebrated recent result. However, if we chose a different, unary
encoding enc′, which represents n by a string of n ones, e.g., enc′(17) = 1111111111111111,
then testing primality in polynomial time becomes very easy—we can afford to test all possi-
ble divisors from 2 to n− 1. This example illustrates that sometimes the choice of encoding
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may be very significant.9

For discussing polynomial-time algorithms, we often do not need to specify the encoding
function enc completely. Usually we suffice with the encoding size, where the size of an
object a is size(a) = | enc(a)|, the number of bits in its encoding. In the above example with
primality, we had size(n) = b1+log2 nc for the binary encoding and size′(n) = n for the unary
encoding.

We note that changes in the encoding that transform the size by at most a fixed poly-
nomial, e.g., replacing size(a) with size′(a) = (37 size(a) + 100)26, leave the notion of a
polynomial-time mapping unchanged. Thus, for the purpose of developing polynomial-time
algorithms, we usually need not describe the encoding in much detail.

The encoding size of simplicial complexes and of Abelian groups. We recall that a
finite simplicial complex Y can be regarded as a hereditary system of subsets of a finite vertex
set V (hereditary meaning that if σ ∈ Y and σ′ ⊆ σ, then σ′ ∈ Y as well). For encoding
such an Y , we can identify V with the set {1, 2, . . . , n}, and then represent Y as a list of
all simplices, where each simplex is given by the list of vertices. Thus, if the dimension of
Y is bounded by a constant (as we may assume in all of our results), size(Y ) is bounded by
a polynomial function of the number of simplices of Y , and so for the purpose of discussing
polynomial-time algorithms, we may assume that size(Y ) equals the number of simplices.

The elements of the homotopy group π17(Y ) are, by definition, equivalence classes of
pointed maps S17 → Y , and it is far from obvious how even a single such element could be
represented by a string. However, our algorithm computes only the isomorphism type of the
homotopy groups. (Computing a reasonable representation for the mappings corresponding
to the generators of the homotopy group is currently an interesting open problem.)

It is known that, for a finite simplicial complex Y and k ≥ 2, πk(Y ) is a finitely generated
Abelian group; this actually also follows from the analysis of our algorithm. A well-known
structure theorem asserts that each finitely generated Abelian group π can be represented as
a direct sum Zr⊕ (Z/m1)⊕ (Z/m2)⊕· · ·⊕ (Z/ms) of cyclic groups.10 We are going to encode
it by the (r+ s)-tuple m = (0, 0, . . . , 0︸ ︷︷ ︸

r zeros

,m1, . . . ,ms), where m1, . . . ,ms are encoded in binary.

Thus, we may take

size(π) = r +
s∑

i=1

size(mi).

The reader may wonder why r is not encoded in binary as well. The reason is pragmatic; we
will also be using finitely generated Abelian groups as inputs to certain auxiliary algorithms,
and we would not be able to make these auxiliary algorithms polynomial with r encoded in
binary. A heuristic explanation for this is that an element of Zr is an r-tuple of integers, and
thus an encoding of such an element has size at lest proportional to r. If the encoding size
of Zr were of order log2 r, then a polynomial-time algorithm working with Zr would not be
able even to read or write any single group element.

9Here is another example, closer to our topics, of how the encoding may matter: If a simplicial complex K
is given by a list of all of its simplices, as we are going to assume here, then computing the Euler characteristic
χ(K) is a trivial matter and can obviously be done in polynomial time. However, if K is specified by listing
only the maximal simplices, and if we do not assume dimK fixed, then computing χ(K) is #P-hard [41], and
thus extremely unlikely to be polynomial-time solvable!

10Moreover, we may assume that the mi satisfy the divisibility condition m1|m2| · · · |ms, in which case these
orders are determined uniquely from π and thus describe its isomorphism type.
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This specification of encoding sizes gives a precise meaning to the polynomiality claim in
Theorem 1.1. We note that the polynomiality of the algorithm also implies the (non-obvious)
claim that, for k fixed, size(πk(Y )) is bounded by a polynomial function of size(Y ).

2.3 Locally polynomial-time simplicial sets and chain complexes

In what sense do we construct a Postnikov system? As was mentioned after Theo-
rem 1.2, the stages Pk = Pk(Y ) of a Postnikov system of Y can be regarded as approximations
of Y , which are in some sense easier to work with than Y itself. The price to pay is that even
if Y is a finite simplicial complex, the Pk are simplicial sets that usually have infinitely many
nondegenerate simplices in each dimension.

In many areas where computer scientists seek efficient algorithms, the algorithms work
with finite objects, such as finite graphs or matrices, and there is no problem with explicitly
representing such objects in the computer memory. This contrasts with the situation for the
Pk, where we cannot produce the infinite list of all simplices of a given dimension explicitly.
Thus, the question arises, in what sense we construct Pk and how we can work with it.

A complete answer is that we want to equip Pk with polynomial-time homology, which is
a notion defined later. For now, we give at least a partial answer: We certainly want to be
able to inspect locally every given piece of Pk. For example, for every fixed k and `, given any
`-dimensional simplex σ of Pk, and an integer i ∈ {0, 1, . . . `}, we should be able to compute
the ith face ∂iσ, the ith degeneracy siσ, and also the value kk(σ) of the Postnikov class at σ.
Because of the infinite domains, the mappings ∂i, si, and kk cannot be given by a finite table
(somewhat exceptionally, the mapping ϕk : Y → Pk could be represented by a table if Y is
finite). Instead, each of them is going to be given as an algorithm.

Thus, we are going to represent stage of the Postnikov system by a collection of algorithms,
and similarly for various other infinite simplicial sets, chain complexes, and some other kinds
of objects. In computer science, this is sometimes called a black box or oracle representation.11

Polynomiality. Since we want to use the stages of the Postnikov system in polynomial-time
algorithms, such as the one in Corollary 1.3 (the computation of [X,Y ]), we obviously want
that the black boxes representing Pk = Pk(Y ) work in polynomial time. But some care is
needed in formulating such a requirement.

For example, let us consider the Postnikov class k17, which is a simplicial map from P17

into another simplicial set, namely, the Eilenberg–MacLane space K(π18(Y ), 19), to be intro-
duced in Section 3.7. The simplices of P17, as well as those of K(π18(Y ), 19), are canonically
represented by certain ordered collections of integers (or sometimes elements of some Z/m),
and it might happen that while size(σ) is a constant, size(k17(σ)) also depends on the input
simplicial complex Y and becomes arbitrarily large for some choices of Y .12 Then k17(σ)
cannot be evaluated in time polynomial in size(σ).

11Professor Sergeraert has suggested an alternative framework, inspired by functional programming, for
dealing with computational complexity of algorithms similar to those considered in the present paper. It
should be presented in [46].

12Here is an example of a similar phenomenon in a simpler and perhaps more familiar setting. Suppose
that we want to represent the elements of the cyclic group Z/m by the integers 0, 1, . . . ,m − 1, and we want
an algorithm for computing the inverse element −i for a given i. Then we cannot require the algorithm to
run in time polynomial in size(i), because for i = 1 the output must be m− 1, and its encoding size depends
on m—at least if we use the standard binary encoding of the integers. A reasonable requirement is to bound
the running time polynomially in size(m).
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Even if, for every input Y , we could compute k17(σ) in time polynomial in size(σ), it might
happen that the polynomial depended on Y . For example, we might encounter a sequence
Y (1), Y (2), . . . of inputs such that size(Y (j)) ≤ j, say, and the time for evaluating k17(σ) is
size(σ)j . Then we would not be able to use such a Postnikov stage an algorithm such as the
one for computing [X,Y ] (Corollary 1.3), where the running time should depend polynomially
on size(Y ).

Thus, we cannot simply require k17(σ) to be computed in time polynomial in size(σ).
Instead, we are going to require the running time to be bounded by a polynomial in size(Y )+
size(σ) (where the polynomial depends on dimσ and on k, the index of the Postnikov stage).

To get Y in the picture, we introduce parameterized simplicial sets; these are families
of simplicial sets, typically with infinitely many members, where each member of the family
is described by some value of a parameter. We assume some agreed-upon encoding of the
parameters by strings, and the length of the encoding strings is taken as the size of the
corresponding simplicial set in the family. Then we assume that the black boxes, such as the
one for evaluating k17, take both the parameter value and σ as input, and that they run in
time polynomial in the size of this combined input.

Locally polynomial-time simplicial sets. At this moment we postpone further discussion
of the Postnikov stages Pk and the Postnikov classes kk until Section 4, and we introduce a
general notion of a simplicial set represented “locally” by polynomial-time black boxes.

Definition 2.1 (Locally polynomial-time simplicial set). Let I be a set, on which an injective
mapping enc : I → Σ∗ is defined, specifying an encoding of each element of I by a string; we
will refer to I as a parameter set. We define a parameterized simplicial set as a mapping
X that, for some parameter set I, assigns to each I ∈ I a simplicial set X(I). Sometimes
we will write such a parameterized simplicial set as (X(I) : I ∈ I). We also assume that an
encoding of simplices by strings has been fixed for each of the simplicial sets X(I).

We say that such an X is a locally polynomial-time simplicial set if, for each k, there is
an algorithm that, given I ∈ I, a k-dimensional simplex σ ∈ X(I)k, and i ∈ {0, 1, . . . , k},
computes ∂iσ in time polynomial in size(I) + size(σ) (where the polynomial may depend on
k), and there is a similar algorithm for evaluating the degeneracy operators siσ.

Let (X(I) : I ∈ I) and (Y (I) : I ∈ I) be parameterized simplicial sets with the same
parameter set, and for each I ∈ I, let fI be a simplicial map X(I) → Y (I). We say that
f = (fI : I ∈ I) is a polynomial-time simplicial map X → Y if for each k ≥ 0, there
is an algorithm that, given I ∈ I and σ ∈ X(I)k, computes fI(σ) in time polynomial in
size(I) + size(σ).13

As was explained above, the main purpose of the parameterized setting is to make the
polynomial bounds on the running time of the black boxes uniform in the input of the con-
sidered algorithms. Let us remark that for effective homology in the setting of Sergeraert et
al. [45], where one only wants the existence of algorithms and does not analyze their running
time, no uniformity and no parameterization is needed, and one can work with individual
simplicial sets, each equipped with its own black boxes.

We will see numerous examples of locally polynomial-time simplicial sets later on. Of
course, the Postnikov stage Pk = Pk(Y ), parameterized by the set of all finite 1-connected

13More generally, we might want to consider a simplicial map fI that goes from X(F (I)) to Y (G(I)),
for some polynomial-time computable maps F,G. By composing algorithms we may think of X(F (I)) and
Y (G(I)) as simplicial sets parameterized by I and thus this seemingly more general notion can be interpreted
as a polynomial-time simplicial map in our sense.
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simplicial complexes, is going to be one such example. (However, Pk also has an additional
structure besides being a locally polynomial-time simplicial set.)

Another, rather simple, example is made of all finite simplicial sets, as will be discussed
at the end of the present section. Others can be built from this one by applying various
operations, such as products or twisted products, which will be considered later.

Locally polynomial-time chain complexes. First, let (X(I) : I ∈ I) be a locally
polynomial-time simplicial set, and let C∗(X(I)) be the normalized chain complex of X(I).
This gives us a chain complex parameterized by I. The k-chains of C∗(X(I)) are finite sums
of the form c =

∑
σ:ασ 6=0 ασ ·σ, where the σ are nondegenerate simplices of X(I)k, and we can

represent such a c by a list of simplices and of the corresponding nonzero coefficients. Thus
we naturally put size(c) :=

∑
σ:ασ 6=0(size(σ) + size(ασ)).

For this representation, it is easy to check that the addition and subtraction of k-chains,
as well as the differentials, can be computed in time polynomial in size(I) plus the size of the
chains involved. (For this, we need to observe that, given a simplex σ ∈ X(I), we can test
whether it is degenerate, since every degenerate σ satisfies σ = si∂iσ for some i.)

We will also need to work with chain complexes that are not necessarily normalized chain
complexes of simplicial sets. We will need that the chain groups are “effectively free,” meaning
that the chains are represented by coefficients w.r.t. some fixed basis. The following definition
is a direct analog of the definition of a locally polynomial-time simplicial set, and it includes
the normalized chain complex of a locally polynomial-time simplicial set as a special case.

Definition 2.2 (Locally polynomial-time chain complex). Let I be a parameter set as in
Definition 2.1, and let (C(I)∗ : I ∈ I) be a parameterized chain complex, i.e., a mapping
assigning a chain complex to each I ∈ I. We say that such a parameterized chain complex is
a locally polynomial-time chain complex if the following hold.

(i) For each C(I)∗ and each k, there is a basis Bask = Bas(I)k of C(I)k (possibly infinite),
which we call the distinguished basis14 of C(I)k, and whose elements have some agreed-
upon encoding by strings. An arbitrary k-chain c ∈ C(I)k is (uniquely) represented as
an integer linear combination of elements of Bas(I)k, i.e., by a finite list of elements of
Bas(I)k and the corresponding nonzero coefficients. (This also defines the encoding size
for chains.)

(ii) For every fixed k, there is an algorithm for evaluating the differential dk of C(I)∗, which
computes dk(c) in time polynomial in size(I) + size(c).

We note that in the representation of k-chains as in (i), the chains c + c′ and c − c′ can
be computed in time polynomial in size(c) + size(c′), even without including size(I).

If (C(I)∗ : I ∈ I) and (C̃(I)∗ : I ∈ I) are parameterized chain complexes, then, in com-
plete analogy with polynomial-time simplicial maps in Definition 2.1, we define a polynomial-
time chain map ϕ = (ϕI)I∈I : C∗ → C̃∗, where each ϕI is a chain map C(I)∗ → C̃(I)∗, such
that for each fixed k, (ϕI)k(c) can be computed in time polynomial in size(I) + size(c).

Changing the parameter or: preprocessing. Let (X(J) : J ∈ J ) be a parameterized
simplicial set, and let F : I → J be a polynomial-time mapping of another parameter set I
into J . Then we can define a new parameterized simplicial set (X̃(I) : I ∈ I) by X̃(I) :=
X(F (I)); if X is locally polynomial-time, then so is X̃.

14Chain complexes with a distinguished basis for each chain group are sometimes called cellular.
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In our algorithms, X can often be regarded as a version of X̃ “with preprocessing”. For
this, the parameter J will typically be of the form (I,G(I)), where I is the original parameter
and G is some polynomial-time map. Here G(I) represents some auxiliary data computed
from I.

For example, if we regard the Postnikov stage Pk(Y ) as parameterized by the finite simpli-
cial complex Y , then by Definition 2.1, the algorithm for evaluating ∂iσ receives Y and σ as
input. Thus, each time we want to know the ith face of some simplex, all of the computations
are done from scratch.

In the algorithm from Theorem 1.2 for constructing a Postnikov system, we will proceed
differently: given Y , we first compute, once and for all, some data based on Y , such as the first
k homotopy groups of Y . Then we will represent Pk using these data (concretely, as a twisted
product of suitable Eilenberg–MacLane spaces), instead of the “raw” representation by Y ,
so that these computations can be reused in all subsequent computations of face operators
in Pk. This will make the computation of the face operators and other operations with
the Postnikov system much more efficient, although if we care only about the distinction
polynomial/non-polynomial, both ways are equivalent.

Keeping the parameters implicit. Although a locally polynomial-time simplicial set
(X(I) : I ∈ I) is defined as a mapping assigning a simplicial set X(I) to every value of I, in
most cases we can think of it as a single simplicial set X. The exact nature of the parameter
I usually does not matter; it may be useful to keep in mind that X is actually parameterized,
but in most of the subsequent discussion, we will suppress the parameter.

This is in agreement with the common practice in the literature on polynomial-time al-
gorithms, where phrases like “the resulting graph has a polynomial size” are used, which are
also formally imprecise but easily understood.

Converting finite simplicial complexes into simplicial sets. Here we make a slight
digression and describe how a finite simplicial complex, which is one of the possible kinds of
inputs for our algorithms, is (canonically) converted into a simplicial set.

Given a finite simplicial complex K, the corresponding simplicial set SSet(K), which in
particular has the same geometric realization as K and thus specifies the same topological
space, is defined as follows. The k-dimensional nondegenerate simplices of SSet(K) are just
the k-simplices of K, with the face operators defined in the obvious way. It remains to specify
the degenerate simplices and the face and degeneracy operators on them. For this, we can
use a standard fact about simplicial sets: every degenerate simplex τ can be expressed as
sitsit−1 · · · si1σ, where σ is a uniquely determined nondegenerate simplex of X and i1 < i2 <
· · · < it is a uniquely determined sequence of integers. Thus, we can represent τ by σ and
i1, . . . , it. With this representation, the face and degeneracy operators can be evaluated by
simple rules; see, e.g., [17, 30]. (Also see [17, Section 3] for another, simpler way of adding
degenerate simplices to a simplicial complex.)

Then (SSet(K) : K ∈ FSC) forms a locally polynomial-time simplicial set, whose param-
eter set FSC consists of all finite simplicial complexes.

More generally, we can consider the family of all finite simplicial sets, which are given by
lists of nondegenerate simplices for each of the relevant dimensions and tables specifying the
face operators, and where the degenerate simplices and degeneracy operators are represented
as above. Then the identity map on FSS forms a locally polynomial-time simplicial set.
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2.4 Reductions, strong equivalences, and polynomial-time homology

It turns out that the notion of locally polynomial-time simplicial set is too weak for most
computational purposes. We can inspect such a simplicial set locally, but it is in general im-
possible to compute useful global information about it, such as homology groups or homotopy
groups.

Here we introduce a stronger notion of simplicial set with polynomial-time homology,
modeled after simplicial sets with effective homology due to Sergeraert et al. This is a
(parameterized) locally polynomial-time simplicial set X whose normalized chain complex
C∗(X) is, moreover, associated with another, typically much smaller chain complex EC ∗,
which we can think of as a finitary approximation of C∗(X). (The notation EC ∗ follows [45],
and it should suggest that EC ∗ is an “effective version” of C∗.) The chain groups EC k have
polynomially many generators for every fixed k, and thus we can compute each homology
group Hk(EC ∗) in polynomial time. The association of EC ∗ with C∗(X) is such that these
homology computations in EC ∗ can be “pulled back” to C∗(X). We will now define the
properties of EC ∗ and the way it is associated with C∗(X) in detail.

Definition 2.3 (Globally polynomial-time chain complexes). A globally polynomial-time
chain complex is a locally polynomial-time chain complex (EC (I)∗ : I ∈ I) such that, for
each fixed k, the chain group EC (I)k is finitely generated, and there is an algorithm that,
given I ∈ I, outputs the list of elements of the distinguished basis Bas(I)k of EC (I)k, in time
bounded by a polynomial in size(I) (and in particular, the rank of EC (I)k is bounded by a
polynomial in size(I)).

We note that, for a globally polynomial-time EC ∗ and each fixed k, we can compute
the matrix of the differential dk : EC k → EC k−1 w.r.t. the distinguished bases in polynomial
time—we just evaluate dk on each element of the distinguished basis Bask. Then the homology
groups Hk(EC ∗) is computed using a Smith normal form algorithm applied to the matrices of
dk and dk+1, as is explained in standard textbooks (such as [32]). Polynomial-time algorithms
for the Smith normal form are nontrivial but known [21]; also see [55] for apparently the
asymptotically fastest deterministic algorithm.

Globally polynomial-time Abelian groups. By the above, we can compute Hk(EC ∗)
in polynomial time. We represent its isomorphism type15 in the usual way, as a direct sum
Zr ⊕ (Z/m1)⊕ (Z/m2)⊕ · · · ⊕ (Z/ms). But in our algorithms, we are not interested just in
knowing this description of the homology group; we will also need to work with its elements,
with homomorphisms into it, etc. Moreover, since the chain complex EC ∗ is parameterized,
the homology group Hk(EC ∗) should be regarded as parameterized as well (and similarly for
homotopy groups of parameterized simplicial sets). We thus define a globally polynomial-time
Abelian group in analogy with a globally polynomial-time chain complex.

First, let M be the set of all (r + s)-tuples m = (0, 0, . . . , 0,m1, . . . ,ms) specifying iso-
morphism types of finitely generated Abelian groups in the way introduced in Section 2.2.
For m ∈M, let Ab(m) be the group Zr ⊕ (Z/m1)⊕ · · ·⊕ (Z/ms), with elements represented
by (r + s)-tuples (α1, . . . , αr+s), α1, . . . , αr ∈ Z, αr+i ∈ Z/mi. Here Ab(m) can be regarded
as a canonical representation of an Abelian group with the isomorphism type m.

Now we define a parameterized Abelian group and locally polynomial-time Abelian group
in an obvious analogy with the corresponding notions for simplicial sets and chain complexes.

15To get a bijective correspondence with isomorphism types, we should ask for divisibility m1| · · · |ms. We
do not care about uniqueness, however, and thus we will not require this.
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A globally polynomial-time Abelian group (π(I) : I ∈ I) is a locally polynomial-time Abelian
group equipped with a polynomial-time algorithm that, given I ∈ I, returns an m ∈ M
specifying the isomorphism type of π(I), and with a polynomial-time isomorphism of π(I) with
Ab(m). In more detail, in time polynomial in size(I) we can compute a basis (b1, b2, . . . , br+s)
of π(I) such that bi generates the ith cyclic summand isomorphic to Z (for i ≤ r) or Z/mi−r
(for i > r) in an expression of π(I) as a direct sum. Moreover, given an arbitrary element
a ∈ π(I), in time polynomial in size(I) + size(a) we can compute the coefficients α1, . . . , αr+s
such that a =

∑r+s
i=1 αibi. This provides the isomorphism π(I) → Ab(m), and the inverse

mapping is also obviously polynomial-time computable.
We now consider the globally polynomial-time chain complex EC ∗ parameterized by I.

We want to regard Hk(EC ∗) as a globally polynomial-time Abelian group parameterized by
I. To this end, we need that the computation of Hk(EC (I)∗) returns its isomorphism type m,
and also fixes an isomorphism of Hk(EC (I)∗) with Ab(m). Such an isomorphism is naturally
obtained from the Smith normal form algorithm.16 In this way, Hk(EC ∗) becomes a globally
polynomial-time Abelian group parameterized by I.

Moreover, given a chain z ∈ Zk(EC (I)∗), we can compute in polynomial time the cor-
responding homology class [z] ∈ Hk(EC (I)∗). This defines a polynomial-time homomor-
phism Zk(EC ∗)→ Hk(EC ∗), also parameterized by I. Slightly more generally, given a chain
c ∈ EC k, we can decide whether c is a cycle, and if yes, compute [c]. Moreover, if [c] is
zero, that is, if c is a boundary, we can also compute a “witness,” i.e., a (k + 1)-chain b
with c = dk+1b. Conversely, given h ∈ Hk(EC ∗), we can compute a representing cycle, i.e.,
z ∈ Zk(EC ∗) with [z] = h. All of these calculations are easily done in polynomial time using
the Smith normal form of the matrices of the differentials.

Reductions. Now we start discussing the way of associating a “small” chain complex EC ∗
with a “big” chain complex C∗. First we deal with the usual setting of homological algebra,
where we consider individual chain complexes, rather than parameterized ones, and then we
add some remarks on transferring the notions to the setting of parameterized chain complexes
and maps.

The most common way in algebraic topology of making two chain complexes C∗ and C̃∗
“equivalent” is chain homotopy equivalence, but for effective homology and polynomial-time
homology, it is more convenient to use two special cases of chain homotopy equivalences,
namely, reduction and strong equivalence.

If f, g : C∗ → C̃∗ are two chain maps, then a chain homotopy of f and g is a sequence
(hk)k∈Z of homomorphisms, where hk : Ck → C̃k+1 (raising the dimension by one), such that
gk − fk = d̃k+1hk + hk−1dk. Chain maps and chain homotopies can be regarded as algebraic
counterparts of continuous maps of spaces and their homotopies, respectively. In particular,
two chain-homotopic chain maps induce the same map in homology.

Definition 2.4 (Reduction17). Let C∗ and C̃∗ be chain complexes. A reduction ρ from C∗ to
C̃∗ consists of three maps f = (fk)k∈Z, g = (gk)k∈Z, h = (hk)k∈Z, such that

16Formally, for this we need the Smith normal form algorithm to be deterministic, so that it always returns
the same isomorphism for a given I (which need not be true for a randomized algorithm, for example). However,
in an actual implementation, this issue does not arise, since anyway we want to store in memory the Smith
normal form once computed for a given I, in order to avoid repeated computations.

17In a part of the literature, other notions such as chain contraction or strong deformation retraction are used
instead of the word reduction. For instance Eilenberg and Mac Lane [11, Section 12] use the word contraction,
while reduction has a different meaning there.
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(i) f : C∗ → C̃∗ and g : C̃∗ → C∗ are chain maps;

(ii) the composition fg : C̃∗ → C̃∗ is equal to the identity idC̃∗, while the composition
gf : C∗ → C∗ is chain-homotopic to idC∗, with h : C∗ → C∗ providing the chain ho-
motopy, i.e. idC∗ −gf = dh+ hd; and

(iii) fh = 0, hg = 0, and hh = 0.

We write
C∗ ⇒⇒ C̃∗

if there is a reduction from C∗ to C̃∗.

A reduction C∗ ⇒⇒ C̃∗ can be depicted by the following diagram:

C∗h 99

f
++
C̃∗

g
kk

Intuitively, such a reduction is a tool that allows us to reduce questions about homology of
a “big” chain complex C∗ to questions about homology of a “smaller” chain complex C̃∗. In
particular, the existence of a reduction C∗ ⇒⇒ C̃∗ implies that Hk(C∗) ∼= Hk(C̃∗) for all k.

It is easily checked that (f, g, h) is a reduction C∗ ⇒⇒ C̃∗ and (f ′, g′, h′) is a reduction
C̃∗ ⇒⇒ ˜̃C∗, then there is a reduction C∗ ⇒⇒ ˜̃C∗, namely, (f ′f, gg′, h + gh′f) (see, e.g., [45,
Proposition 59]). We will also need a (straightforward) extension to composing a larger
number of reductions (the proof is omitted).

Lemma 2.5. Let C
(1)
∗ , . . . , C

(n)
∗ be chain complexes, and let ρ(i) = (f (i), g(i), h(i)) be a reduc-

tion C
(i)
∗ ⇒⇒ C

(i+1)
∗ , i = 1, 2, . . . , n−1. Then the reduction (f, g, h) : C

(1)
∗ ⇒⇒ C

(n)
∗ obtained by

composing these reductions is given by f = f (n−1)f (n−2) · · · f (1), g = g(1)g(2) · · · g(n−1), and

h = h(1) + g(1)h(2)f (1) + · · ·+ g(1)g(2) · · · g(n−2)h(n−1)f (n−2) · · · f (1).

Strong equivalences. While reductions C∗ ⇒⇒ C̃∗ ⇒⇒ ˜̃C∗ compose to a reduction C∗ ⇒⇒
˜̃C∗, in some constructions one naturally arrives at a different kind of situation:

C∗ ⇐⇐ ˜̃C∗ ⇒⇒ C̃∗. (2)

Here we have no natural way of composing the reductions to obtain a reduction between C∗
and C̃∗. For algorithmic purposes, we regard the situation (2) as a primitive notion, called
strong chain homotopy equivalence or just strong equivalence.

Definition 2.6 (Strong equivalence). A strong equivalence of chain complexes C∗ and C̃∗,
in symbols C∗ ⇐⇐⇒⇒ C̃∗, means that there exists another chain complex ˜̃C∗ and reductions
C∗ ⇐⇐ ˜̃C∗ ⇒⇒ C̃∗.

Lemma 2.7. Strong equivalence is transitive: if C∗ ⇐⇐⇒⇒ C̃∗ and C̃∗ ⇐⇐⇒⇒ ˜̃C∗, then C∗ ⇐⇐⇒⇒
˜̃C∗.

Proof. There are several proofs available. One of them follows [45, Proposition 124] (using
the algebraic mapping cylinder). Another possibility is to regard reductions as special cases
of chain homotopy equivalences, which are closed under composition, and then show that a
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chain homotopy equivalence can be converted into a strong equivalence, also using a suitable
mapping cylinder—see, e.g., [3], [38, Sec. 3].

Here we offer yet another short proof. Let us consider strong equivalences C∗ ⇐⇐ A∗ ⇒⇒ C̃∗
and C̃∗ ⇐⇐ A′∗ ⇒⇒ ˜̃C∗. In view of Lemma 2.5 it is suffices to exhibit a strong equivalence
A∗ ⇐⇐⇒⇒ A′∗.

Let the reduction A∗ ⇒⇒ C̃∗ be (f, g, h) and let the reduction A′∗ ⇒⇒ C̃ be (f ′, g′, h′).
We construct a new chain complex D∗, the double mapping cylinder of the pair of maps

A∗
g←− C̃∗

g′−→ A′∗ (this construction is analogous to the mapping cylinder introduced earlier).
Its chain groups are

Dk := Ak ⊕ C̃k−1 ⊕A′k
and the differential is given by dD(a, c, a′) := (d(a)− g(c),−d̃(c), d′(a′) + g′(c)) (where d, d̃, d′

are differentials in A∗, C̃∗, and A′∗, respectively). It is easily checked that D∗ indeed forms a
chain complex.

We now describe a reduction (F,G,H) : D∗ ⇒⇒ A∗; we set

F (a, c, a′) := a+ gf ′(a′), G(a) = (a, 0, 0), H(a, c, a′) = (0, f ′(a′), h′(a′)).

The reduction (F ′, G′, H ′) : D∗ ⇒⇒ A′∗ is obtained almost symmetrically as

F ′(a, c, a′) := a′ + g′f(a), G′(a′) = (0, 0, a′), H ′(a, c, a′) = (h(a),−f(a), 0).

Checking that both (F,G,H) and (F ′, G′, H ′) are indeed reductions is routine and we omit
it.

Polynomial-time reductions and strong equivalences. Let (C(I)∗ : I ∈ I) and
(C̃(I)∗ : I ∈ I) be two locally polynomial-time chain complexes with the same parameter set.
A polynomial-time reduction of C∗ to C̃∗, in symbols

C∗
P⇒⇒ C̃∗,

is a triple ρ = (f, g, h). Here f = (fI)I∈I is a polynomial-time chain map C∗ → C̃∗, g =
(gI)I∈I is a polynomial-time chain map C̃∗ → C∗, and h = (hI)I∈I is a polynomial-time chain
homotopy C∗ → C∗, defined in obvious analogy with a polynomial-time chain map. For each
I, (fI , gI , hI) form a reduction C(I)∗ ⇒⇒ C̃(I)∗ according to Definition 2.4.

Similarly, we define a polynomial-time strong equivalence of two locally polynomial-time
chain complexes, C∗

P⇐⇐⇒⇒ C̃∗, with the middle chain complex also locally polynomial-time
and with the same parameterization as C∗ and C̃∗.

By the fact that a composition of any constant number of polynomial-time maps is
polynomial-time, it is easy to check that the proof of Lemma 2.7 yields the following.

Corollary 2.8. Polynomial-time strong equivalence of locally polynomial-time chain com-
plexes is transitive: C∗

P⇐⇐⇒⇒ C̃∗ and C̃∗
P⇐⇐⇒⇒ ˜̃C∗ implies C∗ ⇐⇐⇒⇒ ˜̃C∗.

Polynomial-time homology. With the notions of polynomial-time strong equivalence and
globally polynomial-time chain complex, the definition of polynomial-time homology is now
straightforward.
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Definition 2.9 (Chain complexes and simplicial sets with polynomial-time homology). We
say that a parameterized chain complex C∗ is equipped with polynomial-time homology if C∗
is locally polynomial-time and there are a globally polynomial-time chain complex EC ∗ and a
polynomial-time strong equivalence C∗

P⇐⇐⇒⇒ EC ∗.
A parameterized simplicial set X is equipped with polynomial-time homology if X is locally

polynomial-time and its normalized chain complex C∗(X) is equipped with polynomial-time
homology.

We should perhaps stress that equipping a parameterized simplicial setX with polynomial-
time homology does not mean only the ability of computing the homology groups of X(I)
in time polynomial in size(I) (for every fixed dimension); this ability is a consequence of
polynomial-time homology, but in itself it would not be sufficient.

For one thing, if X is equipped with polynomial-time homology, then for C∗(X) we can
do all of the computations mentioned after Definition 2.3: finding a representative of a given
homology class, the homology class of a given chain, and a witness for being a boundary.

Moreover, the definition of polynomial-time homology, following the earlier notion of ef-
fective homology by Sergeraert et al., is designed so that it has the following meta-property:
if X(1), . . . , X(t) are simplicial sets equipped with polynomial-time homology and Φ is a “rea-
sonable” way of constructing a new simplicial set from t old ones, then the simplicial set
Φ(X(1), . . . , X(t)) can also be equipped with polynomial-time homology (some of the con-
structions also involve polynomial-time simplicial maps, polynomial-time chain maps, etc.).
Of course, this is only a guiding principle, and for every specific construction Φ used in our
algorithm, we need a corresponding result about preserving polynomial-time homology by Φ.
The next section is devoted to such results.

The reader may also wonder what are homology computations good for in algorithms
for computing homotopy groups and Postnikov systems. The connection is via the Hurewicz
isomorphism, which in its simplest form asserts that, for a 1-connected space Y , the first
nonzero homotopy group of Y occurs in the same dimension as the first nonzero homology
group, and these two groups are isomorphic. Thus, roughly speaking, to find πk(Y ), the
Postnikov system algorithm “kills” the first k− 1 homotopy groups of Y by constructing the
mapping cone of ϕk−1 : Y → Pk−1 with polynomial-time homology, and then it computes the
appropriate homology group of this cone.

Let us remark that in [25], polynomial-time homology was defined using only reductions,
rather than strong equivalences (since strong equivalences were not needed there). Of course,
a reduction is a special case of strong equivalence, so the definition here is more permissive.

3 A toolbox of operations for polynomial-time homology

In this longish section we will build a repertoire of algorithmic operations on simplicial sets
and chain complexes, in such a way that if the input objects come with polynomial-time
homology, the output object is also equipped with polynomial-time homology.

As was mentioned in the introduction, we mostly review known methods, developed for
effective homology and based on much older work by algebraic topologists. We try to make
the presentation streamlined and mostly self-contained, and in particular, we describe the al-
gorithms in full, sometimes referring to the literature for details of proofs. Moreover, there are
places where polynomiality requires extra analysis or assumptions; most notably, Section 3.1
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(products of many factors) and Section 3.8 (polynomial-time homology for K(Z/m, 1)) con-
tain some new material.

For the rest of the paper, we will use only three specific results of this section: Propo-
sition 3.8 (mapping cone), Corollary 3.18 (a certain pullback operation), and Theorem 3.16
(polynomial-time homology for Eilenberg–MacLane spaces). But we will also need some of
the notions and simple facts introduced here.

Let us remark that some of the operations can be implemented in several different ways.
For example, polynomial-time homology forK(Z/m, 1) can most likely be obtained directly by
modifying the method of [25] used for K(Z, 1), and for the passage from K(π, k) to K(π, k+1),
one could also use the method in [35, Chap. 4] (also see [1]). Our main criterion for selecting
among the various possibilities was simplicity of presentation and general applicability of the
tools.

Moreover, the chain complexes that appear naturally during our construction of Postnikov
systems can often be equipped with an additional algebraic structure. For instance the chain
complex C∗(K(π, k)) has a structure of the so-called Hopf-algebra; that is, C∗(K(π, k)) is
endowed with an algebra and a coalgebra structures that are compatible in some strong
sense. The structure is often “transferred” through the chain equivalences to the globally
polynomial-time counterparts.

As was suggested by a referee, it is possible that using this additional structure might lead
to an algorithm more efficient in practice. The polynomial running-time bounds might also
improve, and so investigating the algorithmic use of these additional structures is a worthwhile
research direction. On the other hand, in view of the W[1]-hardness result [29] mentioned
above, such improvements cannot remove the dependence of the degree of the polynomial on
k. Thus, since our goal at this stage is to get polynomial-time algorithms, and in order to
keep the presentation simple, we do not discuss these additional algebraic structures in this
paper.

3.1 Products

We recall that the product X × Y of simplicial sets X and Y is the simplicial set whose
k-simplices are ordered pairs (σ, τ), where σ ∈ Xk and τ ∈ Yk. The face and degeneracy
operators are applied to such pairs componentwise. We have |X×Y | ∼= |X|×|Y | for geometric
realizations.18 The definition of the product is deceptively simple, but actually it hides
a sophisticated way of triangulating the product (and degenerate simplices play a crucial
role)—see [45] or [17] for an explanation.

As shown by Sergeraert et al. as one of the first steps in the theory of effective homology,
if effective homology is available for X and Y , then it can also be obtained for X × Y .
The core of this result is the Eilenberg–Zilber theorem (see, e.g., [45, Theorem 123]), which
provides a reduction of C∗(X × Y ) to the tensor product C∗(X) ⊗ C∗(Y ), and which goes
back to Eilenberg and Mac Lane [11, 12]. The proof immediately shows that polynomial-time
homology for X,Y yields polynomial-time homology for X × Y .

However, this works directly only for products of two, or constantly many, factors, while
we need to deal with products X(1)×· · ·×X(n) of arbitrarily many factors. There the situation
with polynomiality is somewhat more subtle, and we will actually need an additional condition

18To be precise, the product of topological spaces on the right-hand side should be taken in the category of
k-spaces; but for the spaces we encounter, it is the same as the usual product of topological spaces.
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on the X(i)’s in order to obtain polynomial-time homology. We begin with defining the notion
needed for the extra condition.

Definition 3.1 (k-reduced). A simplicial set X is k-reduced, where k ≥ 0 is an integer, if
X has a single 0-simplex (vertex) and no nondegenerate simplices of dimensions 1 through k.
We call a chain complex C∗ k-reduced if C0

∼= Z and Ci = 0 for 1 ≤ i ≤ k.

We remark that k-reducedness is a very useful property of simplicial sets, which has no
analog for simplicial complexes. For example, being k-reduced is an easily checkable certificate
for k-connectedness.

Proposition 3.2 (Product with many factors). Let (X(I) : I ∈ I) be a simplicial set with
polynomial-time homology. Let us form a new parameter set J =

⋃∞
n=1 In, where In is

the n-fold Cartesian product, and let (W (J) : J ∈ J ) be the parameterized simplicial set of
products, with W (I1, I2, . . . , In) := X(I1)×· · ·×X(In). For J = (I1, . . . , In) ∈ J , let size(J) =∑n

i=1 size(Ii), and for a simplex σ = (σ1, . . . , σn) ∈ W (J), let size(σ) =
∑n

i=1 size(σi). Let
us also assume that all the X(I) and all the chain complexes witnessing polynomial-time
homology for X are 0-reduced. Then W can be equipped with polynomial-time homology.

For reasons of “uniform polynomiality”, we needed to assume that the factors in the
considered products are all instances of a single parameterized simplicial set. However, as we
remarked above, the product of a constant number of arbitrary, possibly different, simplicial
sets with polynomial-time homology can be equipped with polynomial-time homology. This
allows us to obtain polynomial-time homology for products where all but a constant number
of factors are 0-reduced and come from the same parameterized simplicial set, while the
remaining factors are arbitrary.

In the forthcoming proof, for brevity, we are going to write X(i) instead of X(Ii), and use
similar abbreviations for chain complexes.

Tensor products. Before discussing the proof, we need some preparations concerning

tensor products. Let C
(1)
∗ and C

(2)
∗ be chain complexes, and suppose, as we do for locally

polynomial-time chain complexes, that each chain group C
(i)
k has a distinguished basis Bas

(i)
k .

Then the tensor product T∗ := C
(1)
∗ ⊗ C(2)

∗ can be defined as the chain complex in which Tk
is the free Abelian group over the distinguished basis

Bask := {b1 ⊗ b2 : b1 ∈ Bas
(1)
k1
, b2 ∈ Bas

(2)
k1
, k1 + k2 = k}.

Here we may regard b1 ⊗ b2 just as a formal symbol. For arbitrary chains c1 ∈ C
(1)
k1

,

c2 ∈ C
(2)
k2

, k1 + k2 = k, the k-chain c1 ⊗ c2 is then defined using linearity of ⊗ in both
operands, as the appropriate linear combination of the elements of Bask.

The differential in T∗ is given on the elements of Bask by

dk(b1 ⊗ b2) := d
(1)
k1

(b1)⊗ b2 + (−1)k1b1 ⊗ d(2)
k2

(b2), (3)

where as above, ki = deg(bi).

Next, let us consider the tensor product T∗ := C
(1)
∗ ⊗ · · · ⊗ C(n)

∗ of many factors. The
distinguished basis Bask now consists of elements b1 ⊗ · · · ⊗ bn, with each bi an element of a

distinguished basis in C
(i)
∗ ,

∑n
i=1 deg(bi) = k. Hence the rank of Tk equals

rank(Tk) =
∑

k1+···+kn=k

n∏

i=1

rank(C
(i)
ki

). (4)
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Thus, if many of the C(i) are not 0-reduced, already rank(T0) is exponentially large; for

example, if each C
(i)
0 is Z⊕Z, then rank(T0) = 2n. This is the basic reason why we need the

0-reducedness conditions in Proposition 3.2. If, on the other hand, all the C
(i)
∗ ’s are 0-reduced,

then so is T∗.
The key to the polynomial-time bounds we need is the following lemma.

Lemma 3.3. Let (C(I)∗ : I ∈ I) be a locally polynomial-time chain complex, with all the
C(I)∗ 0-reduced, let J be the parameter set as in Proposition 3.2, and let (T (J)∗ : J ∈ J ) be

the parameterized set of tensor products, with T (I1, . . . , In)∗ = C
(1)
∗ ⊗· · ·⊗C(n)

∗ (where C
(i)
∗ ab-

breviates C(Ii)∗), and with the same definitions of encoding sizes as in Proposition 3.2. Then

T∗ is also 0-reduced and locally polynomial-time, and given chains ci ∈ C(i)
ki

with
∑n

i=1 ki = k,
the k-chain c1 ⊗ · · · ⊗ cn can be computed (i.e., expressed in the distinguished basis of Tk(J))
in time polynomial in size(J) +

∑n
i=1 size(ci), assuming k fixed.

Proof. To show that the differential dk of T∗ is a polynomial-time map, it is enough to consider
computing it on elements b1 ⊗ · · · ⊗ bn of the standard basis. By iterating the differential
formula (3), we can express dk(b1 ⊗ · · · ⊗ bn) as a sum of n terms of the form ±c1 ⊗ · · · ⊗ cn,
where each ci is either bi or dki(bi). For evaluating this sum it is thus sufficient to be able to
evaluate c1 ⊗ · · · ⊗ cn in polynomial time, as in the second claim of the lemma.

As for this second claim, we use the observation that if deg(c1⊗· · ·⊗ cn) = k, then all but
at most k of the ci’s have degree 0. Suppose that only c1, . . . , ck have nonzero degrees. Then
we can compute c1 ⊗ · · · ⊗ ck in a straightforward way (at most

∏k
i=1 size(ci) basis elements

are involved, which is polynomially bounded for fixed k). Then the tensor product of the
result with ck+1 ⊗ · · · ⊗ cn amounts just to multiplying all coefficients by a number (since

C
(k+1)
0

∼= · · · ∼= C
(n)
0
∼= Z by the 0-reducedness assumption) and renaming the basis elements

appropriately.

Proof of Proposition 3.2. We basically follow a proof for the case of effective homology
(where it is enough to deal with two factors). There are two main steps, encapsulated in
the following two lemmas, which together imply the proposition via Corollary 2.8 (composing
strong equivalences).

Lemma 3.4 (Tensor product of strong equivalences). Let (C(I)∗ : I ∈ I) and (Ĉ(I)∗ :
I ∈ I) be a locally polynomial-time chain complexes, let (EC (I)∗ : I ∈ I) be a globally

polynomial-time chain complex, and suppose that a strong equivalence C∗
P⇐⇐ Ĉ∗

P⇒⇒ EC ∗
is given, with all the chain complexes involved 0-reduced. As in Lemma 3.3, let T∗, T̂∗,
ET ∗ be the parameterized chain complexes of tensor products with factors from C∗, Ĉ∗, and
EC ∗, respectively. Then ET ∗ is globally polynomial-time and there is a strong equivalence
T∗

P⇐⇐ T̂∗
P⇒⇒ ET ∗.

Lemma 3.5 (Eilenberg–Zilber for many factors). Let (X(I) : I ∈ I) be a 0-reduced locally
polynomial-time simplicial set, let (W (J) : J ∈ J ) be the parameterized set of products as in
Proposition 3.2, and let (T (J)∗ : J ∈ J ) be the parameterized chain complex of the tensor
products C∗(X(1))⊗· · ·⊗C∗(X(n)) as in Lemma 3.3. Then there is a polynomial-time reduction

C∗(W )
P⇒⇒ T∗.

Proof of Lemma 3.4. We know from Lemma 3.3 that T∗, T̂∗, and ET ∗ are locally polynomial-
time. To check that ET ∗ is globally polynomial-time, let us consider the chain group ET (J)k,
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J = (I1, . . . , In). Since EC ∗ is globally polynomial-time, there is a polynomial p such that
rank(EC (Ii)j) ≤ p(size(Ii)) ≤ p(size(J)) for all J and all j ≤ k. Setting N := p(size(J)), by

the 0-reducedness assumption and the rank formula (4) we get rank(ET (J)k) ≤
(
n+k−1

k

)
Nk,

which is bounded by a polynomial in size(J) ≥ n. Generating the distinguished basis of
ET (J)k in polynomial time is done by a straightforward combinatorial enumeration algorithm.
We conclude that ET ∗ is globally polynomial-time.

It remains to provide a polynomial-time reduction T̂∗
P⇒⇒ T∗ (then T̂∗

P⇒⇒ ET ∗ is obtained

in the same way). We consider T̂∗(J) = Ĉ(1) ⊗ · · · ⊗ Ĉ(n), J = (I1, . . . , In), Ĉ
(i)
∗ = Ĉ∗(Ii),

and let ρ(i) = (F (i), G(i), H(i)) be the reduction Ĉ
(i)
∗ ⇒⇒ C

(i)
∗ obtained from the assumption

Ĉ∗
P⇒⇒ C∗ (we use capital letters to avoid conflict with the notation of Lemma 2.5). The

desired reduction T̂∗(J)⇒⇒ T∗(J) goes through the intermediate chain complexes

Ĉ
(1)
∗ ⊗ · · · ⊗ Ĉ(i−1) ⊗ C(i)

∗ ⊗ · · · ⊗ C(n)
∗ , i = 1, . . . , n,

and the ith of these chain complexes is reduced to the (i + 1)st one with the reduction that
is the tensor product with ρi as the ith factor and the identities in all the other factors.

Specializing the formulas from Lemma 2.5 for composing reductions, we obtain the reduc-
tion (FJ , GJ , HJ) : Ĉ∗(J) ⇒⇒ C∗(J) with FJ = F (1) ⊗ · · · ⊗ F (n), GJ = G(1) ⊗ · · · ⊗ G(n),
and

HJ = H(1) ⊗ id⊗ · · · ⊗ id +G(1)F (1) ⊗H(2) ⊗ id⊗ · · · ⊗ id + · · ·
+G(1)F (1) ⊗ · · · ⊗G(n−1)F (n−1) ⊗H(n).

(Tensor products of chain maps are defined as expected, via (f ⊗ g)(a⊗ b) = f(a)⊗ g(b); for
chain homotopies there is a sign convention involved, with the signs obviously polynomial-time
computable—see, e.g., [45, Definition 57].)

These formulas define the desired reduction (FJ , GJ , HJ)J∈J : T̂∗
P⇒⇒ T∗; polynomial-time

computability of these maps follows from Lemma 3.3.

Proof of Lemma 3.5. For the binary case, with simplicial sets Y and Z, there is the classical
Eilenberg–Zilber reduction C∗(Y×Z)⇒⇒ C∗(Y )⊗C∗(Z), which is denoted by (AW,EML, SHI)
(these are acronyms for Alexander–Whitney, Eilenberg–MacLane, and Shih19). Explicit for-
mulas for these maps are available; see [19, pp. 1212–1213] (for AW and EML we also provide
the formulas below). In particular, it is clear from these formulas that the maps AW, EML,
SHI are polynomial-time for locally polynomial-time Y and Z.

To build the reduction C∗(W (J)) ⇒⇒ T∗(J), where as usual J = (I1, . . . , In), W (J) =
X(1) × · · · × X(n), and T∗(J) = C∗(X(1)) ⊗ · · · ⊗ C∗(X(n)), we go through the intermediate
chain complexes

D
(i)
∗ := C∗(X(1))⊗ · · · ⊗ C∗(X(i−1))⊗ C∗(X(i) × · · · ×X(n)).

Let (f (i), g(i), h(i)) be the reduction D
(i)
∗ ⇒⇒ D

(i+1)
∗ . We have f (i) = id⊗ · · · ⊗ id⊗AW(i),

g(i) = id⊗ · · · ⊗ id⊗EML(i), and h(i) = id⊗ · · · ⊗ id⊗SHI(i), where (AW(i),EML(i),SHI(i)) is
the Eilenberg–Zilber reduction C∗(X(i)×Z(i))⇒⇒ C∗(X(i))⊗C∗(Z(i)), with Z(i) := X(i+1)×
· · · ×X(n).

19The explicit formula for the operator SHI was found by Rubio [42] and proved by Morace—see the appendix
in [37].
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Now f (i), g(i), h(i) are polynomial-time by Lemma 3.3, and so in order to verify the poly-
nomiality of the composed reduction, using the formula in Lemma 2.5, it suffices to check
polynomiality of the compositions f (i)f (i−1) · · · f (1) and g(1)g(2) · · · g(i), i = 1, 2, . . . , n−1. For
simpler notation, we will discuss only the case i = n − 1, but the case of arbitrary i is the
same.

Let (σi, τi) be a k-dimensional simplex of X(i)×Z(i), which we also consider as a generator
of C∗(X(i) × Z(i)). According to [19], we have

AW(i)(σi, τi) =
k∑

j=0

∂j+1 · · · ∂kσi ⊗ ∂0 · · · ∂j−1τi.

Composing f (2) and f (1) thus yields

f (2)f (1)(σ1, σ2, τ3) =
∑

0≤j1+j2≤k

(
∂j1+1 · · · ∂kσ1 ⊗ ∂0 · · · ∂j1−1∂j2+1 · · · ∂k−j1σ2

⊗ ∂0 · · · ∂j1−1∂0 · · · ∂j2−1τ3

)
.

Continuing in a similar manner, we obtain f (n−1) · · · f (1)(σ1, . . . , σn) as the sum

∑

0≤j1+···+jn−1≤k
σ′1 ⊗ · · · ⊗ σ′n,

where each σ′i is the result of applying some number (at most k) of face operators to σi. The
number of terms in this sum is

(
n+k−1

k

)
, which is polynomially bounded for k fixed, and each

term is polynomial-time computable. Thus, the compositions f (i) · · · f (1) are polynomial-time
computable.

Concerning the g(i)’s, for the mapping EML(i) we have, again following [19], for a p-simplex
σ and a q-simplex τ , p+ q = k,

EML(i)(σ ⊗ τ) =
∑

α,β:α∪β={0,1,...,k−1}
|α|=q,|β|=p,α∩β=∅

±(sασ, sβτ),

where, writing α = {j1, j2, . . . , jq}, j1 < j2 < · · · < jq, sα denotes the composition sjqsjq−1 · · · sj1
of degeneracy operators, and similarly for sβ. The sign ± depends on α and β in a simple
way, and we do not want to bother the reader with specifying it (see [19]).

By iterating this formula, we find that, for a k-simplex σ1 ⊗ · · · ⊗ σn, where dimσi = ki,
k1 + · · ·+ kn = k,

g(1)g(2) · · · g(n−1)(σ1 ⊗ · · · ⊗ σn) =
∑

α1,...,αn

±(sα1σ1, sα2σ2, . . . , sαnσn),

where the sum is over certain choices of index sets α1, . . . , αn ⊆ {0, 1, . . . , k − 1}. We need
not specify these choices precisely here (it suffices to know that there is a polynomial-time
algorithm for generating them); we just note that |αi| = k − ki, since each of the simplices
sαiσi must have dimension k. Therefore, the number of terms in the sum is bounded above
by

n∏

i=1

(
k

k − ki

)
=

n∏

i=1

(
k

ki

)
< 2k

2
,
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since there are at most k nonzero ki’s, and
(
k
ki

)
< 2k always. (A more refined estimate gives

a better bound, but still exponential in k.) So the number of terms depends only on k, and
thus it is a constant in our setting.

This concludes the proof.

3.2 The basic perturbation lemma

The following situation often occurs in the theory of effective homology. Suppose that we
have already managed to obtain a reduction C∗ ⇒⇒ C̃∗ for some chain complexes C∗ and C̃∗.
Now we want a reduction from C ′∗ to some C̃ ′∗, where C ′∗ is a chain complex that is “similar”
to C∗, in the following way: the chain groups of C∗ and of C ′∗ are the same, i.e., Ck = C ′k
for all k, and the differential d′ of C ′∗ is of the form d′ = d + δ, where d is the differential in
C∗, and δ is a map that is “small” in a sense to be specified in Theorem 3.6 below. Thus, we
regard d′ as a perturbation of d.

In this setting, we would like to modify the differential d̃ in C̃∗ to a suitable d̃′, obtaining a
new chain complex C̃ ′∗ and a reduction C ′∗ ⇒⇒ C̃ ′∗. If, for example, C̃∗ was globally polynomial-
time, and the original reduction C∗ ⇒⇒ C̃∗ provided polynomial-time homology for C∗, we
would like the new reduction C ′∗ ⇒⇒ C̃ ′∗ to give polynomial-time homology for C ′∗.

A tool for that is the basic perturbation lemma, originally discovered by Shih.20 For our
purposes, we formulate a version of the basic perturbation lemma which yields polynomial-
time reductions.

To state it, we need a definition. Let f : C∗ → C∗ be a chain map of a chain complex
into itself. We say that f is nilpotent if for every c ∈ Ck, k ∈ Z, there is some n such
that (fk)

n(c) = 0, where (fk)
n is the n-fold composition of fk with itself. Now if C∗ is a

parameterized chain complex, we say that f has constant nilpotency bounds if for every k
there exists N = Nk, depending on k but not on the value of the parameter, such that (fk)

N

is the zero map.

Theorem 3.6 (Basic perturbation lemma). Let (f, g, h) be a reduction C∗ ⇒⇒ C̃∗, let C ′∗ be
a chain complex with C ′k = Ck for all k and with differential d′, and let us set δ := d′ − d.
If the composed map hδ is nilpotent, then there is a chain complex C̃ ′∗ with the same chain
groups as C̃∗ and with a modified differential d̃′, and a reduction C ′∗ ⇒⇒ C̃ ′∗.

If C∗ and C̃∗ are locally polynomial-time chain complexes, (f, g, h) is a polynomial-time
reduction, δ is a polynomial-time map, and the composition hδ has constant nilpotency bounds,
then d̃′ is polynomial-time and C ′∗

P⇒⇒ C̃ ′∗.

Proof. The proof of the existence statement, presented, e.g., in [45, Theorem 50], provides
explicit formulas for d̃′ and for the desired reduction (f ′, g′, h′) : C ′∗ ⇒⇒ C̃ ′∗. Namely, using
auxiliary chain maps ϕ and ψ defined by

ϕ :=
∞∑

i=0

(−1)i(hδ)i, ψ :=
∞∑

i=0

(−1)i(δh)i,

we have d̃′ := d̃ + fψδg, f ′ := fψ, g′ = ϕg, and h′ := ϕh. If hδ has constant nilpotency
bounds, then so has δh, and for each fixed k, the number of nonzero term in the sums defining
ϕ(c) and ψ(c), with c ∈ Ck, is bounded by a constant depending only on k but not on c. The
claim about polynomiality follows.

20Let us remark that there are many variants, extensions, and generalizations of the basic perturbation
lemma in the literature, whose usefulness is by far not restricted to an algorithmic context.
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The basic perturbation lemma propagates the perturbation of the differential in the di-
rection of the reduction arrow. If we have a strong equivalence C∗ ⇐⇐ ˜̃C∗ ⇒⇒ C̃∗ and we
want to perturb the differential of C∗, we first need to propagate the perturbation to ˜̃C∗, i.e.,
against the direction of the reduction. The next lemma tells us that this can always be done;
actually, only the differential in ˜̃C∗ needs to be modified, the reduction stays the same. We
omit the easy proof—see [45, Proposition 49].

Lemma 3.7. Let (f, g, h) : C∗ ⇒⇒ C̃∗ be a reduction, and let C̃ ′∗ be obtained from C̃∗ by
perturbing the original differential d̃ to d̃′ = d̃ + δ̃. Then (f, g, h) is a reduction C ′∗ ⇒⇒ C̃ ′∗,
where C ′∗ is obtained from C∗ by perturbing the original differential d to d′ := d+ gδ̃f .

Thus, under favorable circumstances, if a parameterized chain complex C∗ is equipped with
polynomial-time homology, the combination of the basic perturbation lemma and Lemma 3.7
allows us to obtain polynomial-time homology for the perturbed chain complex C ′∗.

3.3 Mapping cone

Here we consider the mapping cone operation for chain complexes, as introduced in Sec-
tion 2.1.

Proposition 3.8 (Algebraic mapping cone). If C∗, C̃∗ are (parameterized) chain complexes
with polynomial-time homology and ϕ : C∗ → C̃∗ is a polynomial-time chain map, then the
cone Cone∗(ϕ) can be equipped with polynomial-time homology.

Proof (sketch). This is essentially [45, Theorem 79]. We sketch the proof since it is a simple
and instructive use of the perturbation lemma.

Given strong equivalences C∗
P⇐⇐⇒⇒ EC ∗ and C̃∗

P⇐⇐⇒⇒ ẼC ∗, we want to construct a
polynomial-time strong equivalence of Cone∗(ϕ) with a suitable globally polynomial-time
chain complex EM ∗.

We observe that, by definition, the chain groups of Cone∗(ϕ) depend only on C∗, C̃∗ but
not on ϕ (only the differential depends on ϕ). We thus first consider Cone∗(0C∗→C̃∗), where
0C∗→C̃∗ is the zero chain map of the indicated chain complexes. Given the strong equivalences

for C∗ and C̃∗ as above, it is straightforward to construct a strong equivalence

Cone∗(0C∗→C̃∗)
P⇐⇐⇒⇒ Cone∗(0EC∗→ẼC∗

);

this is just a direct sum construction.
Next, we regard Cone∗(ϕ) as a perturbation of Cone∗(0C∗→C̃∗). Then we propagate the

perturbation through the strong equivalence; in the application of the basic perturbation
lemma, it turns out that the nilpotency of the relevant maps is bounded by 2 (independent
of k). We refer to [45, Theorems 61,79] for details.

We remark that the strong equivalence Cone∗(ϕ)
P⇐⇐⇒⇒ EM ∗ produced in the proposition

restricts to the original strong equivalence C̃∗
P⇐⇐⇒⇒ ẼC ∗. This follows at once from the

explicit formulas in the basic perturbation lemma and Lemma 3.7 and the fact that the
involved perturbation is zero on C̃∗.
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3.4 Twisted product

On fiber bundles. Our main goal is the computation of a Postnikov system for a given
space Y . As we have mentioned, the kth stage of a Postnikov system can be thought of as
an approximation of Y , in a homotopy-theoretic sense, made of simple building blocks, which
are called Eilenberg–MacLane spaces. These building blocks will be discussed in Section 3.7
below, but here we will consider the operation used to paste the building blocks together.

To convey some intuition, we begin with the topological notion of fiber bundle21 (a vector
bundle is a special case of a fiber bundle). Let B, the base space, and F , the fiber space, be
two spaces. The Cartesian product F ×B can be thought of as a copy of F sitting above each
point of B; for B the unit circle S1 and F a segment this is indicated in the left picture:

EF

p
B

b

F

p

B

b

F ×B

The product F × B is a trivial fiber bundle, while the right picture shows a nontrivial fiber
bundle (a Möbius band in this case). Above every point b ∈ B, we still have a copy of F , and
moreover, each such b has a small neighborhood U such that the union of all fibers sitting
above U is homeomorphic to the product F ×U , a rectangle in the picture. However, globally,
the union of the fibers above all of B forms a space E, the total space of the fiber bundle,
that is in general different from F ×B.

More precisely, a fiber bundle is given as p : E → B, where E,B are spaces and p is a
surjective map, such that for every b ∈ B there are a neighborhood U of b and a homeomor-
phism h : p−1(U) → F × U fixing the second component, i.e., with h(x)2 = p(x) for every
x ∈ E. (Other famous examples of nontrivial fiber bundles involve the the Klein bottle with
B = F = S1 or the Hopf fibration S3 → S2.)

For our purposes, we will deal with fiber bundles where the fiber F has “enough symme-
tries,” meaning that there is a group G acting on the fiber F , and this helps in specifying the
total space E in terms of B, F , and some additional data which, informally speaking, tell us
how E is “twisted” compared to the product F ×B.

Simplicial groups. In order to define the appropriate simplicial notions, we first need to
recall that a simplicial group is a simplicial set G such that, for each k ≥ 0, the set Gk of
k-dimensional simplices forms a group, and moreover, the face and degeneracy operators are
group homomorphisms.

A parameterized simplicial group and a locally polynomial-time simplicial group are defined
in an obvious analogy with the corresponding notions for simplicial sets and chain complexes.

21In the literature on simplicial sets, effective homology and such, one usually speaks about a fibration, which
is a notion more general than a fiber bundle; roughly speaking, a fibration can be regarded as a “fiber bundle
up to homotopy.”
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A basic example of a simplicial group is the standard simplicial model of an Eilenberg–
MacLane space; see Section 3.7 below. Actually, it is known that every Abelian simplicial
group is homotopy equivalent to a product of Eilenberg–MacLane spaces (see [30, Chap. V]),
and we will be interested only in the Abelian case. Every simplicial group G is a Kan simplicial
set [30, Theorem 17.1], and so continuous maps into |G| have a simplicial representation up
to homotopy.

A simplicial setting: twisted products. For our purposes, we will deal with fiber bundles
where F , B, and E are simplicial sets, and a simplicial group G acts (simplicially) on F . The
corresponding simplicial notion is called a twisted Cartesian product (a more general simplicial
notion, a counterpart of a fibration, is a Kan fibration; see, e.g., [30, Chap. I,II]).

Definition 3.9 (Twisted Cartesian product). Let B and F be simplicial sets, and let an
action of a simplicial group G on F be given, i.e., a simplicial map F × G → F satisfying
the usual conditions for a (right) action of a group on a set; that is, φ(γγ′) = (φγ)γ′ and
φek = φ (φ ∈ Fk, γ, γ′ ∈ Gk, ek the unit element of Gk). Moreover, let τ = (τk)

∞
k=1 be a

twisting operator, where τk : Bk → Gk−1 are mappings satisfying the following conditions (we
omit the dimension indices for simplicity):

(i) ∂0τ(β) = τ(∂1β)τ(∂0β)−1;

(ii) ∂iτ(β) = τ(∂i+1β) for i ≥ 1;

(iii) siτ(β) = τ(si+1β) for all i; and

(iv) τ(s0β) = ek for all β ∈ Bk, where ek is the unit element of Gk.

Then the twisted Cartesian product F ×τ B is a simplicial set E with Ek = Fk×Bk, i.e.,
the k-simplices are as in the Cartesian product F ×B, and the face and degeneracy operators
are also as in the Cartesian product (see Section 3.1), with the sole exception of ∂0, which is
given by

∂0(φ, β) := (∂0(φ)τ(β), ∂0β), (φ, β) ∈ Fk ×Bk.
A twisted Cartesian product F ×τ B is called principal if F = G and the considered right

action of G on itself is by (right) multiplication.

Thus, the only way in which F ×τ B differs from the ordinary Cartesian product F × B
is in the 0th face operator. It is definitely not easy to see why this should be the right way of
representing fiber bundles simplicially, but for us, it is only important that it works, and we
will have explicit formulas available for the twisting operator for all the specific applications.
Actually, we will use solely principal twisted Cartesian products.

Let F,B be locally polynomial-time simplicial sets, let G be a locally polynomial-time
simplicial group, and let the action of G on F and the twisting operator τ be polynomial-
time maps (again in a sense precisely analogous to polynomial-time simplicial maps or chain
maps); we assume that all of these objects are parameterized by the same parameter set I.
It is easy to see that then the simplicial set F ×τ B, again parameterized by I, is locally
polynomial-time.

We will need that under certain reducedness assumptions, twisted products preserve
polynomial-time homology.

Proposition 3.10 (Twisted product). Let F and B be simplicial sets with polynomial-time
homology, let G be a locally polynomial-time simplicial group with a polynomial-time simplicial

30



action on F , and let τ be a polynomial-time twisting operator. Moreover, suppose that G is 0-
reduced (a single vertex) or that B is 1-reduced (a single vertex, no edges). Then E := F×τB
can be equipped with polynomial-time homology.

The effective-homology analogs of this result are due to Rubio and Sergeraert [45, Theo-
rem 132] when B is 1-reduced and due to Filakovský [14, Corollary 12] when G is 0-reduced.

Proof (sketch). Let the polynomial-time homology of F and B be given by strong equivalences

C∗(F )
P⇐⇐⇒⇒ EF ∗ and C∗(B)

P⇐⇐⇒⇒ EB∗, respectively.
We begin with the ordinary Cartesian product F × B. By the Eilenberg–Zilber theorem

(Lemma 3.5 for two factors, where we do not need to assume 0-reducedness), there is a

reduction (AW,EML,SHI) : C∗(F×B)
P⇒⇒ T∗, where T∗ is the tensor product C∗(F )⊗C∗(B).

Further, by Lemma 3.4 for two factors, we have T∗
P⇐⇐⇒⇒ ET ∗ := EF ∗ ⊗ EB∗. So altogether

C∗(F ×B)
P⇒⇒ T∗

P⇐⇐⇒⇒ ET ∗. (5)

Next, by the definition of the twisted product, the chain complex C∗(F ×τ B) has the
same chain groups as C∗(F ×B), but the differential is modified. Writing δ for the difference
of the two differentials, on elements (φ, β) the standard basis of Ck(F ×B) we get δ(φ, β) =
(∂0(φ)τ(β), ∂0β)− (∂0φ, ∂0β).

We recall that in any simplicial set X, every simplex σ can be obtained from a unique
nondegenerate simplex τ by an application of degeneracy operators. Let us refer to the
dimension of τ as the geometric dimension of σ. Given a simplex (φ, β) of F ×B, its filtration
degree is defined as the geometric dimension of β.

In the present proof, the filtration degree serves as a potential function for controlling
nilpotency of the appropriate maps. First, it can be checked that the chain homotopy SHI
does not increase the filtration degree, and a simple argument shows that δ decreases it at
least by 1 (see, e.g., [45, Theorem 130], for details). It follows that the composition SHI◦δ has
constant nilpotency bounds, namely, Nk = k + 1. Therefore, the basic perturbation lemma
(Theorem 3.6) shows that C∗(F×τB)

P⇒⇒ T ′∗, where T ′∗ is a perturbation of the tensor product
complex T∗.

Next, we would like to propagate the perturbation from T∗ through the next strong equiv-
alence in (5), which we write more explicitly as

T∗
P⇐⇐ T̂∗

P⇒⇒ ET ∗.

Let δT be the difference of the differential in T ′∗ and in T∗. By Lemma 3.7, we get a perturbed
version T̂ ′∗ of the middle complex T̂∗, and the difference of its differential minus the differential

of T̂∗ is δ̂T = gδT f , for some chain maps f, g from the reduction T∗
P⇐⇐ T̂∗.

We now recall from the proof of Lemma 3.4 that the chain complex T̂∗ is constructed as
a tensor product of two chain complexes, and that the chain homotopy h in the reduction
T̂∗

P⇒⇒ ET ∗ has the form
h = h(1) ⊗ id +g(1)f (1) ⊗ h(2), (6)

for some chain maps f (1), g(1) and chain homotopies h(1), h(2).
In order to apply the basic perturbation lemma to the just mentioned reduction T̂∗

P⇒⇒
ET ∗, we need to show that hδ̂T has constant nilpotency bounds for every chain homotopy h
of the form (6). This follows from the obvious fact that such a chain homotopy never increases
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the filtration degree22 by more than 1, plus a result showing that if G is 0-reduced or B is
1-reduced, then δ̂T decreases the filtration degree at least by 2. We refer to [14, Corollary 9
and 11] for a proof of the latter result (also see the proof of Lemma 3.14 below, where a very
similar situation is discussed). Then a constant nilpotency bound with Nk ≤ k + 1 follows,
and the proposition is proved.

3.5 The bar construction

The bar construction, originating in Eilenberg and Mac Lane [11], is an algebraic construction
with many uses and generalizations. For us, it provides a way of constructing auxiliary chain
complexes for certain reductions and strong equivalences; we will thus introduce it only in
the setting of chain complexes. The definition below is somewhat complicated, but most of
the details will be irrelevant in the sequel—the important properties will be encapsulated in
a couple of lemmas below. We essentially follow [35, Chap. 3], with some minor technical
differences.

A differential graded algebra is a chain complex A∗ together with an associative multipli-
cation A∗ ⊗ A∗ → A∗ with a unit 1A∗ . We denote the image of a ⊗ b simply by a · b. This
multiplication is assumed to be a chain map; in particular, for a ∈ Ak and b ∈ A` we have
a · b ∈ Ak+`. The chain map condition on the multiplication reads

d(a · b) = d(a) · b+ (−1)deg aa · d(b)

(the Leibniz rule). The unit 1A∗ is necessarily of degree 0.
We say that A∗ is 0-reduced if A0 = Z, generated by 1A∗ . Regarding Z as a chain complex

whose all chain groups are zero except for the one in dimension 0, which is Z, there is a unique
homomorphism ε : A∗ → Z of differential graded algebras (i.e., a chain map preserving the
unit and the multiplication).23 We call ε the augmentation. Its kernel, the augmentation
ideal, is denoted by A∗.

Further, we denote by A
↑
∗ the shift of A∗ upwards by one, so that we have

A
↑
0 = A

↑
1 = 0, and A

↑
k = Ak−1, k ≥ 2.

The shifted chain complex comes with the shifted differential dA
↑
∗(a) = −dA∗(a) = −dA∗(a).

A right differential graded A∗-module is a chain complex M∗ equipped with a chain map

M∗ ⊗A∗ →M∗

that satisfies the usual axioms for a module structure. Again the action being a chain map
translates into a Leibniz-type rule for the compatibility of the multiplication and the differ-
ential. Similarly, a left A∗-module N∗ is equipped with an action A∗ ⊗N∗ → N∗.

Given A∗,M∗, N∗ as above, the bar construction produces a chain complex BarA∗(M∗, N∗).
In order to define it, we first form an auxiliary chain complex given by

T∗ :=
∞⊕

n=0

M∗ ⊗ (A
↑
∗)
⊗n ⊗N∗.

22For a basis element â⊗ b̂ of the tensor product T̂ , the filtration degree is defined simply as the degree of b̂.
23In detail ε(n · 1A∗) = n and, for a of positive dimension, ε(a) = 0.
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We denote the differential in T∗ by dT and call it the tensorial differential. The actual bar
construction will be given by a perturbation of this differential.

Assuming that each of the chain groups in A∗,M∗, N∗ has a distinguished basis, the
distinguished bases in T∗ are made of elements of the form

z := x⊗ a1 ⊗ · · · ⊗ an ⊗ y,
where x comes from a distinguished basis in M∗, y from one in N∗, and a1, . . . , an 6= 1A from
those in A∗. (Here we can also explain the origin of the name “bar construction”; in the
Eilenberg–Mac Lane founding paper, the tensor product signs ⊗ in the above notation for z
were abbreviated to vertical bars.) The tensorial differential dT (z) is given by the (iterated)
formula (3) from Section 3.1.

The degree of such a z equals deg(z) = degtens(z) + degres(z), where degtens(z), the
tensorial degree of z, equals deg(x) + deg(y) +

∑n
i=1 deg(ai) (with deg(ai) being the degree of

ai in A∗), and the residual degree degres(z) = n.
Now the chain complex BarA∗(M∗, N∗) has the same chain groups as T∗, but the differential

is modified to dT + δext, where δext, the external differential, is given by

δext(x⊗ a1 ⊗ · · · ⊗ an ⊗ y) := (−1)m0x · a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ y

+
n−1∑

i=1

(−1)mix⊗ a1 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ an ⊗ y

+ (−1)mnx⊗ a1 ⊗ · · · ⊗ an−1 ⊗ an · y,
where mi = deg(x) + deg(a1) + · · ·+ deg(ai) + i. We note that the external differential is the
only part of the definition of BarA∗(M∗, N∗) where the algebra and module structures play a
role. This finishes the definition of the bar construction.

In our applications, the bar construction will be used with M∗ equal to Z. Here we endow
Z with the right A∗-module structure obtained from the augmentation—the unit 1A∗ acts by
identity as it must and the elements from the augmentation ideal act trivially, i.e., a · x = 0.
We also note that Z acts as a unit element for tensor product, in the sense that C∗ ⊗ Z and
Z⊗C∗ can be canonically identified with C∗ (this is obvious by considering the distinguished
bases, for example).

Lemma 3.11 (Polynomial-time homology for the bar construction). Let A∗,M∗, N∗ be lo-
cally polynomial-time versions of the objects above, with all the multiplications involved being
polynomial-time maps, and let us suppose that A∗,M∗, N∗ are equipped with polynomial-time
homology. Then BarA∗(M∗, N∗) can be equipped with polynomial-time homology.

Proof. First we equip T∗ with polynomial-time homology; this is essentially Lemma 3.4 about
tensor products of strong equivalences. The factors M∗ and N∗ are not 0-reduced but this
can be accommodated, in a way similar to Cartesian products—see the remark following
Proposition 3.2. We also note that although T∗ is an infinite direct sum, the kth chain group
involves only elements with n ≤ k from this direct sum, and so Lemma 3.4 is applicable.

Next, we apply the basic perturbation lemma and Lemma 3.7, in a way very similar to the
proof of Proposition 3.10 on twisted products, to propagate the perturbation of the differential
in T∗ by the external differential δext through the strong equivalence. The only issue is to
show constant nilpotency bounds. Here one uses that the chain homotopy involved, which is
of the form (6) but with an arbitrary number of factors, does not increase the residual degree
degres, while δext, obviously, decreases it by 1.
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The next lemma is a key property of the bar construction, showing that it provides, in a
sense, an “inverse” to the operation of tensor product with A∗. Indeed, the bar construction
BarA∗(Z, A∗) can be regarded as a formal analog of the power series expression 1 = a

a =
a+ (1− a)a+ (1− a)2a+ · · · for a real number a ∈ (0, 2).

Lemma 3.12. Given a locally polynomial-time 0-reduced differential graded algebra A∗, there
is a reduction

BarA∗(Z, A∗)
P⇒⇒ Z

(where A∗ is taken as a differential graded A∗-module in the obvious way). More generally, if
we consider, in addition, a locally polynomial-time chain complex M∗ and turn A∗ ⊗M∗ into
a left A∗-module by defining a · (b⊗x) := (a · b)⊗x, then we obtain a reduction BarA∗(Z, A∗⊗
M∗)

P⇒⇒M∗.

We note that we assume no A∗-module structure on M∗; the left A∗-module structure on
A∗ ⊗M∗ comes from the multiplication in A∗.

Proof. In the reduction (f, g, h) : BarA∗(Z, A∗)
P⇒⇒ Z, f and g are given by the assumed

identification of A0 with Z (note that the 0th chain group of BarA∗(Z, A∗) can be canonically
identified with A0); in particular, we have f(a1 ⊗ · · · ⊗ an ⊗ a) = 0 unless n = 0.

In residual degree 0 we have f(a) = ε(a). Denote by a = a − ε(a) · 1A the projection
of a onto the augmentation ideal A∗. Then, for a basis element z = a1 ⊗ · · · ⊗ an ⊗ a of
BarA∗(Z, A∗), we put

h(z) := (−1)deg(a1)+···+deg(an)+deg(a)+n+1a1 ⊗ · · · ⊗ an ⊗ a⊗ 1A∗ .

It is simple to check that we indeed get a reduction (see [31]), and polynomiality is obvious.

The more general reduction BarA∗(Z, A∗⊗M∗) P⇒⇒M∗ is then immediately obtained from
the previous one by tensoring all the maps with the identity on M∗.

3.6 The base space (a “twisted division”)

Here, as in Section 3.4, G is an Abelian simplicial group, and we consider a twisted product,
this time a principal one: G×τ B. However, while previously we took G,B, τ as known, and
wanted to compute G×τ B (so we did “twisted multiplication”), here we assume that G and
G×τ B are known, and we want B—so one can think of this as “twisted division”. The bar
construction is the main tool.

Proposition 3.13. Let G be a 0-reduced locally polynomial-time Abelian simplicial group, let
B be a locally polynomial-time simplicial set, and let τ be a polynomial-time twisting operator.
If both G and G×τB are equipped with polynomial-time homology, then B can also be equipped
with polynomial-time homology.

Proof. We follow the treatment in Real [35]. We let A∗ := C∗(G) be the normalized chain
complex ofG. The Eilenberg–MacLane product on A∗ is defined using the operator EML: A∗⊗
A∗ → C∗(G × G) as in the proof of Lemma 3.5. Writing EML(a ⊗ b) =

∑n
i=1 αi(γi, γ

′
i),

γ1, . . . , γ
′
n ∈ G, we set

a · b :=
n∑

i=1

αiγiγ
′
i,
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where γiγ
′
i is computed using the group operation in G. This multiplication is polynomial-

time, and with some work it can be checked that it makes A∗ into a differential graded
algebra.

The untwisted case. First we assume that the ordinary Cartesian product G×B is given
with polynomial-time homology. Then polynomial-time homology for B is obtained in the
following steps:

1. C∗(G×B) has polynomial-time homology by the assumption.

2. The Eilenberg–Zilber reduction C∗(G×B)
P⇒⇒ A∗ ⊗ C∗(B) (Lemma 3.5) and the com-

position of strong equivalences yield polynomial-time homology for A∗ ⊗ C∗(B).

3. Since A∗ has polynomial-time homology as well by assumption, Lemma 3.11 yields
polynomial-time homology for BarA∗(Z, A∗ ⊗ C∗(B)).

4. Finally, the reduction BarA∗(Z, A∗ ⊗ C∗(B))
P⇒⇒ C∗(B) from Lemma 3.12 and compo-

sition of strong equivalences provide polynomial-time homology for C∗(B).

The twisting. Now we present “twisted analogs” of steps 1–4 above.

1τ . We assume that polynomial-time homology is available for the twisted Cartesian product
G×τ B.

2τ . As in the proof of Proposition 3.10 (twisted product), applying the basic perturbation

lemma to the Eilenberg–Zilber reduction C∗(G × B)
P⇒⇒ Q∗ := A∗ ⊗ C∗(B) provides a

reduction C∗(G×τ B)
P⇒⇒ Q′∗, where Q′∗ is obtained by perturbing the differential dQ of

the tensor product complex Q∗ to another differential dQ
′
. Let δQ := dQ

′ − dQ be the
difference. On Q′∗ the multiplication by A∗ from the left is defined in the same way as
on Q∗. Using formula (7) below, one can prove that the perturbation δQ is A∗-linear.
It means that dQ

′
satisfies the Leibniz rule and hence Q′∗ is a left A∗-module.

3τ . We have dQ
′

polynomial-time computable (since the basic perturbation lemma provides
an explicit formula), and hence we obtain polynomial-time homology for BarA∗(Z, Q′∗)
by Lemma 3.11.

4τ . It remains to exhibit a reduction BarA∗(Z, Q′∗)
P⇒⇒ C∗(B); then we obtain polynomial-

time homology for B as in the untwisted case above. We begin with the reduction
BarA∗(Z, Q∗)

P⇒⇒ C∗(B) from Lemma 3.12 and apply the basic perturbation lemma to
it.

We note that, by the definition of the bar construction, BarA∗(Z, Q∗) and BarA∗(Z, Q′∗)
have the same chain groups, and only the differential is modified. Let δBar be the
differential of BarA∗(Z, Q′∗) minus the one of BarA∗(Z, Q∗). We observe that the external
differentials in these bar constructions coincide, and the tensorial differentials differ only
in one term. Thus, writing a basis element of BarA∗(Z, Q∗) as z = a1⊗· · ·⊗an⊗(a⊗b),
we have

δBarz = (−1)deg(a1)+···+deg(an)+deg(a)−na1 ⊗ · · · ⊗ an ⊗ δQ(a⊗ b).

The rest of the proof is delegated to the next lemma, which is essentially Prop. 3.2.3
in [35].
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Lemma 3.14. If G is a 0-reduced simplicial group, A∗ = C∗(G) and Q∗ = A∗⊗C∗(B) are as
above, (f, g, h) : BarA∗(Z, Q∗) ⇒⇒ C∗(B) is the reduction from Lemma 3.12, and δBar is the
perturbation of the differential of BarA∗(Z, Q∗) as above, then hδBar has constant nilpotency
bounds, and the perturbed differential in C∗(B) obtained from the application of the basic
perturbation lemma to the reduction (f, g, h) actually equals the original differential in C∗(B),
i.e., the resulting perturbation is zero.

Proof. There is an explicit expression known for the perturbation δQ, going back to Brown [4]
and Shih [50]. We do not need the full explicit formula, just some of its properties.

Namely, given G, B, and the twisting operator τ , there is a sequence of homomorphisms
tk : Ck(B)→ Ck−1(G), such that for a ∈ C`(G), b ∈ Ck(B), we have

δQ(a⊗ b) =
k∑

i=0

(−1)`a · tk−i(bk−i)⊗ b̃i, (7)

for some chains b0, . . . , bk, b̃0, . . . , b̃k, with bi, b̃i ∈ Ci(B), the multiplication in a · tk−i(bk−i)
being the Eilenberg–MacLane product introduced above.24

Now t0 = 0 since C−1(G) = 0. Moreover, one can compute (see the proof of [14, Corollary
11]) that t(b1) = τ(b1) − e0 for all 1-simplices b1 ∈ B1. Since G is 0-reduced, it follows that
t1 = 0.

Hence the sum in (7) goes only up to i = k − 2, and so δQ decreases the filtration degree
(given by the degree in C∗(B)) at least by 2. The same applies to δBar when we take the
filtration on BarA∗(Z, Q∗) given again by the degree in C∗(B). Similar to the conclusion of
the proof of Proposition 3.10, we obtain constant nilpotency bound of hδBar.

It remains to show that the perturbation of the differential in C∗(B) obtained by using
the basic perturbation lemma to the reduction (f, g, h) : BarA∗(Z, Q∗) ⇒⇒ C∗(B) with the
perturbation δBar is zero. As was mentioned in connection with the basic perturbation lemma,
the considered perturbation equals fδBarϕg, where ϕ =

∑∞
i=0(−1)i(hδBar)i.

We will check that fδBar = 0. Indeed, the mapping f in the reduction from Lemma 3.12
is obtained from the augmentation ε : A∗ → Z by tensoring with idC∗(B). Thus, if z =
a1⊗· · ·⊗an⊗(a⊗b) is a basis element, we have f(z) = 0 unless deg(a) = 0. But the Eilenberg–
MacLane product a·tk−i(bk−i) in the formula (7) has degree at least deg(tk−i(bk−i)) = k−i−1.
Thus, the degree can be 0 only for k−i−1 = 0, but in this case tk−i = t1 = 0, and so fδBar = 0
as claimed.

3.7 Eilenberg–MacLane spaces

Preliminaries on cochains. Before entering the realm of Eilenberg–MacLane spaces, we
recall a few notions related to cohomology. Throughout this section, let π be an Abelian
group.

For us, it will often be convenient to regard cochains as homomorphisms from chain groups
into π. That is, given a chain complex C∗ (whose chain groups are, as always in this paper,

24In the literature, t is called a twisting cochain, and δQ(a⊗b) is written as a cap product t∩(a⊗b). Moreover,
t is in general not determined uniquely by G,B, τ , since the operator AW in the reduction C∗(G × B) ⇒⇒
C∗(G)⊗ C∗(B) is not unique. However, the relevant sources use the same particular AW as we do.
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free Abelian groups), we define its kth cochain group with coefficients in π as Ck(C∗;π) :=
Hom(Ck, π), with pointwise addition. The coboundary operator δk : Ck(C∗;π)→ Ck+1(C∗;π)
is then given by (δkc

k)(ck+1) := ck(dk+1ck+1) for every k-cochain ck and every (k + 1)-chain
ck+1.25 (The notation δ was earlier used for a perturbation of a differential, but from now on,
we will encounter it only in the role of a coboundary operator.)

In particular, ifX is a simplicial set, the normalized cochain complex C∗(X;π) is C∗(C∗(X);π);
thus, a k-cochain can be specified by its values on the standard basis, i.e., as a labeling of
the nondegenerate k-simplices by elements of π—this agrees with the usual definition in in-
troductory textbooks.

For us, it will be important that if X has infinitely many nondegenerate k-simplices, then a
k-cochain in Ck(X) is an infinite object (unlike a k-chain!). Thus, in algorithms, we will need
to use a black-box representation of individual cochains—the black box supplies the value of
the cochain on a given simplex (or on a given chain, which is computationally equivalent).

To finish our remark on cochains, we recall that if C∗ is a cochain complex, with cobound-
ary operator δ = (δk)k∈Z, then Bk := im δk−1 is the group of k-coboundaries, Zk := ker δk
the group of k-cocycles, and Hk = Hk(C∗;π) := Zk/Bk is the kth cohomology group.

Eilenberg–MacLane spaces topologically. For an Abelian group π and an integer k ≥ 1,
the Eilenberg–MacLane space K(π, k) is defined as any topological space T with πk(Z) ∼= π
and πi(T ) = 0 for all i 6= k (actually, K(π, 1) is also defined for an arbitrary group π, but we
will consider solely the Abelian case).

It is known, and not too hard to prove, that a K(π, k) exists for all k ≥ 1 and all π, and
it is also known to be unique up to homotopy equivalence.26

The definition postulates that the homotopy groups of an Eilenberg–MacLane space are,
in a sense, the simplest possible, and this makes it relatively easy to understand the structure
of all maps from a given space X into K(π, k). Indeed, a basic topological result says that

[X,K(π, k)] ∼= Hk(X;π), (8)

assuming that X is a “reasonable” space (say a CW-complex). In words, homotopy classes
of maps X → K(π, k) correspond to the elements of the kth cohomology group of X with
coefficients in π (see, e.g., [30, Lemma 24.4] for this fact in a simplicial setting, and [6] for a
geometric explanation).

The standard simplicial model. There is a standard way of representing K(π, k) as a Kan
simplicial set, which actually is even a simplicial group. We will work with this simplicial
representation, and from now on, the notation K(π, k) will be reserved for this particular
simplicial representation, to be defined next.

Let ∆` denote the `-dimensional standard simplex, regarded as a simplicial complex (or
a simplicial set; the difference is purely formal in this case). That is, the vertex set is
{0, 1, . . . , `} and the k-dimensional (nondegenerate) simplices are all (k + 1)-element subsets
of {0, 1, . . . , `}.

The set of `-simplices of K(π, k) is given by

K(π, k)` := Zk(∆`;π);

25Sometimes other conventions are used for the coboundary operator in the literature; e.g. (δkc
k)(ck+1) =

(−1)k+1ck(dk+1ck+1). But our main sources [30] and [20] use the version without signs.
26Provided that we restrict to spaces that are homotopy equivalent to CW-complexes.
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that is, each `-simplex is (represented by) a k-dimensional cocycle on ∆`. Thus, it can be
regarded as a labeling of the k-dimensional faces of ∆` by elements of the group π; moreover,
the labels must add up to 0 on the boundary of every (k + 1)-face.

It is also easy to define the face and degeneracy operators in K(π, k). Given an `-simplex
σ of K(π, k), represented as a labeling of the k-faces of ∆`, ∂iσ is defined as the restriction
of σ on the ith (`− 1)-face of ∆`. (The ith (`− 1)-face of ∆` is identified with ∆`−1 via the
unique order-preserving bijection of the vertex sets.) As for the degeneracy operators, siσ is
the labeling of k-faces of ∆`+1 induced by the mapping ηi : {0, 1, . . . , ` + 1} → {0, 1, . . . , `}
given by

ηi(j) =

{
j for j ≤ i,
j − 1 for j > i.

In particular, if a k-face contains both i and i+ 1, then it is labeled by 0, since its ηi-image
is a degenerate simplex.

The simplicial group operation in K(π, k) is the addition of cocycles in Zk(∆`;π).
In the simplicial setting we have

SMap(X,K(π, k)) ∼= Zk(X;π) (9)

for every simplicial set X. That is, simplicial maps X → K(π, k) are in a bijective cor-
respondence with π-valued k-cocycles on X (see below for an explicit description of this
correspondence). Moreover, two such simplicial maps, represented by cocycles z and z′, are
homotopic iff z− z′ is a coboundary (see, e.g., [30, Theorem 24.4]). This immediately implies
[X,K(π, k)] ∼= Hk(X;π), which was mentioned above in (8).

The set E(π, k). In addition to the simplicial Eilenberg–MacLane space K(π, k) we also
need another simplicial set, denoted by E(π, k). While the `-simplices of K(π, k) are all
k-cocycles on ∆`, the `-simplices of E(π, k) are all k-cochains:

E(π, k)` := Ck(∆`;π).

The face and degeneracy operators are defined in exactly the same way as those of K(π, k).

Converting between simplicial maps and cochains. We have mentioned that simplicial
maps X → K(π, k) are in one-to-one correspondence with cocycles in Zk(X;π). Similarly,
simplicial maps X → E(π, k) correspond to cochains in Ck(X;π):

SMap(X,E(π, k)) ∼= Ck(X;π).

Let us describe this correspondence explicitly, since we will need it in the algorithm. First we
note that a k-simplex τ of E(π, k) is a k-cochain on ∆k, i.e., a labeling of the single k-face of
∆k by an element of π. Let us denote this element by ev(τ) (here ev stands for “evaluation”).

Given a simplicial map f : X → E(π, k), the corresponding cochain κ ∈ Ck(X;π) is
simply given by κ(σ) = ev(f(σ)) for every σ ∈ Xk (where on the left-hand side, σ is taken as
a generator of the chain group Ck(X)).

Conversely, given κ ∈ Ck(X;π), we describe the corresponding simplicial map f . The
value f(σ) on an `-simplex σ ∈ Xk should be a k-chain on ∆`. There is a unique simplicial
map iσ : ∆` → X that sends the nondegenerate `-simplex of ∆` to σ (indeed, a simplicial map
has to respect the ordering of vertices, implicit in the face and degeneracy operators). Then
f(σ) is the cochain i∗σ(κ), i.e., the labels of the k-faces of σ given by κ are pulled back to ∆`.
Moreover, if κ is a cocycle, then f goes into K(π, k).
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A useful fibration. Since an `-simplex σ ∈ E(π, k) is formally a k-cochain, we can take
its coboundary δσ. This is a (k + 1)-coboundary (and thus also cocycle), which we can
interpret as an `-simplex of K(π, k + 1). It turns out that this induces a simplicial map
E(π, k) → K(π, k + 1), which is (with the usual abuse of notation) also denoted by δ. This
map is actually surjective, since the relevant cohomology groups of ∆` are all zero and thus
all cocycles are also coboundaries.

As is well known, δ : E(π, k)→ K(π, k + 1) is a fiber bundle with fiber K(π, k).
There is another simplicial description of E(π, k) as a twisted product

K(π, k)×τ K(π, k + 1),

where τ has the following explicit form (see [30, §23] or [45, Sec. 7.10.2]):
Let z ∈ Zk+1(∆`;π) be an `-simplex of K(π, k + 1), i.e., a labeling of the (k + 1)-faces of

∆` by elements of π (satisfying the cocycle condition). Then we want τ(z) to be an (`− 1)-
simplex of K(π, k), i.e., a labeling of k-faces of ∆`−1. If we write a k-face of ∆`−1 as an
increasing (k + 1)-tuple (i0, . . . , ik), 0 ≤ i0 < · · · < ik ≤ `− 1, we set

(τ(z))(i0, . . . , ik) := z(0, i0 + 1, i1 + 1, . . . , ik + 1)− z(1, i0 + 1, i1 + 1, . . . , ik + 1). (10)

The twisted product K(π, k) ×τ K(π, k + 1) is simplicially isomorphic to E(π, k) as defined
earlier. The isomorphism will be described, in a slightly more general setting, in the proof of
Corollary 3.18 below.

3.8 Polynomial-time homology for K(π, k)

A crucial ingredient in our algorithm for computing Postnikov systems is obtaining polynomial-
time homology for K(π, k). Here, as usual, we assume k fixed, and π is a globally polynomial-
time Abelian group (as introduced after Definition 2.3); then K(π, k) has the same parameter
set as π. It is easily checked that K(π, k) is a locally polynomial-time simplicial group.

The W construction. Polynomial-time homology for K(π, k) will be constructed by
induction on k. The inductive step is based on a construction W (see [30, pages 87–88])
that, given an Abelian simplicial group G, produces another Abelian simplicial group WG.
The k-simplices have the form ω = (γk−1, γk−2, . . . , γ0), where γi is an i-simplex of G, i =
0, 1, . . . , k − 1, and the group operation in WG is obtained by using the operation of G
componentwise. The face operators are

∂0ω := (γk−2, γk−3, . . . , γ0),

∂i+1ω := (∂iγk−1, . . . , ∂1γk−i, ∂0γk−i−1 + γk−i−2︸ ︷︷ ︸
operation in G

, γk−i−3, . . . , γ0), i = 0, 1, . . . , k − 1,

and the degeneracy operators are given by

s0ω := (ek, γk−1, . . . , γ0),

si+1ω := (siγk−1, . . . , s0γk−i−1, ek−i−1, γk−i−2, . . . , γ0), i = 0, 1, . . . , k − 1,

where ek is the unit element of Gk.
Topologically, WG is the classifying space of G, usually denoted by BG, but we won’t use

this fact directly. What we need is the following simplicial isomorphism.
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Lemma 3.15. For every Abelian group π and every k ≥ 1, there is a simplicial isomorphism

f : K(π, k + 1)→WK(π, k);

if k is fixed and π is globally polynomial-time, then both f and f−1 are polynomial-time maps.
Consequently, polynomial-time homology for WK(π, k) yields polynomial-time homology for
K(π, k + 1).

Proof. We define an auxiliary simplicial set WK(π, k) as the twisted Cartesian product
K(π, k) ×τ WK(π, k), where τ : K(π, k + 1) → K(π, k) is the twisting operator of δ intro-
duced at the end of Section 3.7. Then, according to [30, Theorem 23.10], there are simplicial
isomorphisms f : K(π, k + 1)→ WK(π, k) and F : E(π, k)→ WK(π, k) that are compatible
with respect to the projection maps δ : E(π, k) → K(π, k + 1) and WK(π, k) → WK(π, k).
By [30, Lemma 21.9] and the formula (1) there, the isomorphism f maps z ∈ K(π, k+ 1)` to

f(z) :=
(
τ(z), τ(∂0z), τ(∂2

0z), . . . , τ(∂`−1
0 z)

)
∈WK(π, k)`

where τ is the twisting operator as above. Combining these statements together it follows that
f is an isomorphism, and to finish the proof, we need to compute its inverse in polynomial
time.

We describe an inductive algorithm for this. First we note that

f(z) = (τ(z), f(∂0z)).

There is only one simplex in dimension at most k in both of the considered simplicial sets,
so the isomorphism is given uniquely there. A (k + 1)-simplex of WK(π, k) has the form
ω = (wk, 0, 0, . . . , 0), where wk ∈ Zk(∆k;π). Defining zk+1 ∈ K(π, k+1)k+1 = Zk+1(∆k+1;π)
by zk+1(0, 1, 2, . . . , k + 1) := wk(0, 1, . . . , k), we get f(zk+1) = (τ(zk+1), 0, . . . , 0) = ω, so we
have found f−1(ω).

Next, we suppose that we can compute f−1 for simplices up to dimension ` ≥ k + 1, and
let ω = (w`, w`−1, . . . , w0) ∈WK(π, n)`+1. In order to obtain z = f−1(ω), we first inductively
compute z′ = f−1(w`−1, . . . , w0); then z′ = ∂0z, and by the definition of ∂0 in K(π, k + 1),
we get that for 1 ≤ i0 < i1 < · · · < ik+1 ≤ `+ 1 we have

z(i0, i1, . . . , ik+1) = z′(i0 − 1, i1 − 1, . . . , ik+1 − 1). (11)

On the other hand, for 0 = i0 < i1 < · · · < ik+1 ≤ `+ 1, from the formula (10) defining τ we
obtain

τ(z)(i1 − 1, . . . , ik+1 − 1) = z(0, i1, . . . , ik+1)− z(1, i1, . . . , ik+1)

= z(0, i1, . . . , ik+1)− z′(0, i1 − 1, . . . , ik+1 − 1). (12)

From this we can express z(0, i1, . . . , ik) in terms of τ(z) = w` and z′, which are both known.
This finishes the construction of the inverse.

Now we can state the main result of this section.

Theorem 3.16. Let k ≥ 1 be a fixed integer. The standard simplicial model of the Eilenberg–
MacLane space K(π, k), where π is a globally polynomial-time Abelian group, can be equipped
with polynomial-time homology.
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Proof. The proof proceeds by induction on k. The base case is K(π, 1), and it goes as follows.

1. Polynomial-time homology for K(Z, 1) is the main result of [25].

2. Polynomial-time homology forK(Z/m, 1) is derived from that forK(Z, 1) in Lemma 3.17
below.

3. For π arbitrary, we use the specified polynomial-time isomorphism π ∼= Ab(m) to write
K(π, 1) ∼= K(Ab(m), 1). Since Ab(m) decomposes into a direct sum of cyclic groups,
we can obtain polynomial-time homology for K(π, 1) using

K(π1 ⊕ · · · ⊕ πs, 1) ∼= K(π1, 1)× · · · ×K(πs, 1),

which is easy to see from the definition of K(π, 1), plus Proposition 3.2 (product with
many factors).

The inductive step from K(π, k) to K(π, k + 1) is as in [35], and it goes as follows.

1. To get polynomial-time homology for K(π, k + 1), according to Lemma 3.15 it suffices
to obtain polynomial-time homology for WK(π, k).

2. With G = K(π, k), let us consider the twisted product G ×τ WG, where the twisting
operator is given by τ`(γ`−1, . . . , γ0) := γ`−1 (this twisted product was denoted by WG
in the proof of Lemma 3.15). Then there is a reduction

(f, g, h) : C∗(G×τ WG)
P⇒⇒ Z,

with f, g defined in the obvious way (note that both G and WG are 0-reduced), and
with h given by h`(γ`, (γ`−1, . . . , γ0)) := (e`+1, (γ`, γ`−1, . . . , γ0)), where e`+1 is the unit
element of G`+1 (see [30, page 88]). Thus, using Proposition 3.13 (twisted division)
with B = WG, we obtain polynomial-time homology for WG from that of G.

The proof of Theorem 3.16 is finished, except for the proof of the next lemma.

Lemma 3.17. Given a polynomial-time homology for K(Z, 1), one can equip K(Z/m, 1)
(parameterized by the natural number m encoded in binary) with polynomial-time homology.

We note that the simplicial set K(Z/m, 1) has finitely many simplices in each dimension
(the number is even bounded by a polynomial in m for every fixed dimension). Nevertheless,
we cannot treat it as a finite simplicial set, since it is parameterized by the group Z/m,
whose encoding size is only logm, and so the number of simplices is exponential in this size.
Somewhat paradoxically, we will use the infinite simplicial set K(Z, 1) to get a handle on the
finite (in every dimension) K(Z/m, 1).

Proof. By the assumption, the simplicial group K(Z, 1) is equipped with polynomial-time
homology.

We will exhibit a twisting operator τ such that the principal twisted Cartesian product
P := K(Z, 1) ×τ K(Z/m, 1) is simplicially isomorphic to K(Z, 1). Let ϕ : P → K(Z, 1)
be the isomorphism; assuming that both ϕ and ϕ−1 are polynomial-time maps, we can thus
equip P with polynomial-time homology as well. Then we obtain the desired polynomial-time
homology for K(Z/m, 1) from Proposition 3.13 (twisted division).
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Conceptually, the isomorphism ϕ is obtained from the short exact sequence of Abelian
groups

0 // Z
×m

// Z
mod m // Z/m // 0

by passing to classifying spaces. But our presentation below does not refer to this approach
and is completely elementary.

In order to define ϕ and τ , it will be convenient to use a particular representation of
simplices in K(Z, 1) and in K(Z/m, 1), described next.

We recall that the `-simplices of K(Z, 1) are 1-dimensional integral cocycles on ∆`, in
other words, labelings c of the edges of the complete graph on {0, 1, . . . , `} with integers such
that, for every triple i < j < k, c(i, j)− c(i, k) + c(j, k) = 0. It is easy to see that every such
labeling is determined by a “potential function” a on the vertex set, i.e., c(i, j) = a(j)− a(i)
(from the topological point of view, every cocycle c is a coboundary since ∆` is contractible,
and a is a 0-cochain with c = δa). Moreover, w.l.o.g. we can assume that a(0) = 0, and then
a is determined uniquely.

Then we represent the `-simplex c by the `-tuple α = (a1, a2, . . . , a`), where we write ai
instead of a(i) for typographic reasons. The boundary operators then work as follows:

∂0α = (a2 − a1, a3 − a1, . . . , a` − a1),

∂iα = (a1, a2, . . . , ai−1, ai+1, . . . , a`), i = 1, 2, . . . , `.

The degeneracy operator s0 prepends 0 to the beginning of the sequence, and for i ≥ 1, si
duplicates the ith term. An analogous representation is used for the simplices of K(Z/m, 1).

Now if α = (a1, . . . , a`) ∈ K(Z, 1)` and β = (b1, . . . , b`) ∈ K(Z/m, 1)` are simplices
represented in this way, the desired simplicial isomorphism ϕ : K(Z, 1) ×τ K(Z/m, 1) →
K(Z, 1) is defined by

ϕ`(α, β) := (ma1 + ι(b1), . . . ,ma` + ι(b`)),

where ι : Z/m → Z is the identification of Z/m with {0, 1, . . . ,m} ⊆ Z. It is clear that ϕ`
is a bijection between the sets of `-simplices, and that both ϕ and ϕ−1 are polynomial-time
computable.

We recall that in the twisted product K(Z, 1)×τ K(Z/m, 1) we have si(α, β) = (siα, siβ)
for all i, and ∂i(α, β) = (∂iα, ∂iβ) for all i ≥ 1. It is then straightforward to check that the
mapping ϕ commutes with s0, . . . , s` and with ∂1, . . . , ∂`.

The face operator ∂0 is twisted, i.e., ∂0(α, β) = (τ(β)+∂0α, ∂0β) (here we write the group
operation additively, unlike in the general discussion of twisted products earlier). From the
requirement that ϕ commute with ∂0, we can compute the appropriate twisting operator τ .

Namely, we have

∂0ϕ`(α, β) =
(
m(a2 − a1) + ι(b2)− ι(b1), . . . ,m(a` − a1) + ι(b`)− ι(b1)

)
,

while
ϕ`−1(∂0α, ∂0β) =

(
m(a2 − a1) + ι(b2 − b1), . . . ,m(a` − a1) + ι(b` − b1)

)

(where the subtraction in the argument of ι is in Z/m, i.e., modulo m). It follows that τ has
to be given by

τ`(β) =
(
ι(b2)− ι(b1)− ι(b2 − b1), . . . , ι(b`)− ι(b1)− ι(b` − b1)

)
.

This is obviously a polynomial-time map, and a routine check of properties (i)–(iv) of a
twisting operator in Definition 3.9 concludes the proof.
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3.9 A pullback from a fibration of Eilenberg–MacLane spaces

For our construction of Postnikov systems, we will need an operation that is essentially a
twisted Cartesian product, but in a somewhat different representation. We will have the
following situation. We are given a simplicial set P , plus a simplicial mapping f : P →
K(π, k + 1), for some Abelian group π and a fixed k ≥ 1.

Now we define a simplicial set Q as the pullback according to the following commutative
diagram:

Q //

��

E(π, k)

δ
��

P
f

// K(π, k + 1)

This means that Q is the simplicial subset of the Cartesian product P ×E(π, k) consisting of
the pairs (α, β) of simplices α ∈ P`, β ∈ E(π, k)` with f(α) = δ(β).

As a simple consequence of Proposition 3.10 (twisted product) and of an explicit isomor-
phism of the pullback with a suitable twisted product, we obtain the following.

Corollary 3.18. Given π, k, P, f as above, where π is a globally polynomial-time Abelian
group, P is equipped with polynomial-time homology, and f is polynomial-time, all param-
eterized by the same parameter set I, the pullback Q can be equipped with polynomial-time
homology.

Proof. Let τ be the twisting operator in the twisted product K(π, k) ×τ K(π, k + 1) at the
end of Section 3.7, and let τ∗ be the pullback of τ by f ; that is, τ∗(α) := τ(f(α)). Then
Proposition 3.10 yields polynomial-time homology for the twisted product K(π, k) ×τ∗ P .
According to [30, Prop. 18.7] (which is formulated in a more general setting), there is a
simplicial isomorphism ϕ : K(π, k)×τ∗ P → Q, given by

ϕ(α, β) := (ψ(f(α)) + β, α),

where ψ : K(π, k + 1)→ E(π, k) is the pseudo-section given by

ψ(z)(i0, . . . , ik) := z(0, i0 + 1, . . . , ik + 1),

with the same notation as in the definition of τ . Since both ϕ and its inverse are polynomial-
time maps, we obtain polynomial-time homology for Q as needed.

In addition, setting P = K(π, k+1), we have Q = E(π, k) and we obtain the isomorphism
E(π, k) ∼= K(π, k)×τ K(π, k + 1) mentioned at the end of Section 3.7.

4 Postnikov systems

Let Y be a topological space, which we will assume to be given as a simplicial set equipped
with polynomial-time homology. Moreover, we assume that Y is 1-connected. This is needed
for the proof of correctness of the algorithm; the algorithm itself does not make use of any
certificate of 1-connectedness, and in particular, we do not assume Y 1-reduced.
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For our purposes, we define a (simplicial) Postnikov system of Y as the collection of
simplicial sets and simplicial maps organized into the following commutative diagram,

...

p3

��

P2

p2
��

P1

p1
��

Y

ϕ2

AA������������������

ϕ1

88qqqqqqqqqqqqq ϕ0
// P0 = ∗

where P0 is a single point, and the following conditions hold:

(i) For each k ≥ 0, the map ϕk : Y → Pk induces isomorphisms ϕk∗ : πi(Y ) → πi(Pk) of
homotopy groups for 0 ≤ i ≤ k, while πi(Pk) = 0 for i ≥ k + 1.

(ii) Each Pk, k ≥ 1, is the pullback according to the following diagram (as in Section 3.9)
for some map kk−1 : Pk−1 → K(πk(Y ), k + 1):

Pk //

pk

��

E(πk(Y ), k)

δ
��

Pk−1
kk−1

// K(πk(Y ), k + 1)

The simplicial sets P0, P1, . . . are called the stages of the Postnikov system, and the map-
pings ki are called Postnikov classes (the terms Postnikov factors or Postnikov invariants are
also used in the literature).

In the simplicial Postnikov system as introduced above, each Pk is a simplicial subset of
the Cartesian product Pk−1 × E(πk(Y ), k), and the map pk : Pk → Pk−1 is the projection to
the first component.

In the rest of this section, we will prove Theorem 1.2. First we should make the statement
precise.

Theorem 4.1 (Restatement of Theorem 1.2). Let k ≥ 2 be fixed and let (Y (I) : I ∈ I)
be a simplicial set with polynomial-time homology, the main example being a finite simpli-
cial complex, and let us suppose that Y is 1-connected (or simple; see the remark following
Theorem 1.1). Then there is a polynomial-time algorithm that, given I ∈ I, computes, for
each i ≤ k, the isomorphism type mi = mi(I) of the homotopy group πi(Y (I)). Furthermore,
we can construct the following objects (i.e., write down the algorithms for the black boxes
representing them, which use the black boxes defining Y as subroutines).

• Simplicial sets P0, P1, . . . , Pk with polynomial-time homology.

• Polynomial-time simplicial maps ϕi : Y → Pi, i ≤ k.

• Polynomial-time simplicial maps ki−1 : Pi−1 → K(πi, i + 1), i ≤ k, where we use the
notation πi := Ab(mi) for the canonical representation of the Abelian group described
by mi (see the text following Definition 2.3).
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All of these objects are parameterized by I. The Pi(I), the (ϕi)I , and the (ki−1)I form a
Postnikov system of Y (I).

4.1 The algorithm

Representing a simplicial map by an effective cocycle. In the Postnikov system
algorithm, we will encounter the following situation. We consider a simplicial set (U(I) : I ∈
I) with polynomial-time homology; let us write ECU

∗ for the globally polynomial-time chain

complex used in the polynomial-time homology, i.e., the one for which C∗(U)
P⇐⇐⇒⇒ ECU

∗ .
Let us also consider a (k + 1)-cocycle ψef ∈ Zk+1(ECU

∗ ;π) for some globally polynomial-
time Abelian group π, also parameterized by I; here the superscript “ef” should suggest that
the cocycle belongs to the “effective” chain complex ECU

∗ associated to U . Then ψef can be
represented by a finite matrix, since it is a homomorphism from the chain group ECU

k+1 of
finite rank into π.

Now the strong equivalence C∗(U)
P⇐⇐⇒⇒ ECU

∗ defines, in particular, a chain map f : C∗(U)→
ECU
∗ . We define a cocycle ψ ∈ Zk+1(C∗(U)) as ψ = fψef . As was discussed in Section 3.7,

such a ψ canonically defines a simplicial map ψ̂ : U → K(π, k + 1).
The point we want to make here is that ψ̂ can be regarded as a polynomial-time simplicial

map parameterized by pairs (I, ψef).

Re-parameterizing the Postnikov system. In Theorem 4.1, we have the Postnikov
system parameterized by the same parameter set I as the input simplicial set Y . This
simplifies the formulation, but as we have already remarked earlier, it is not very efficient for
an implementation, since it stipulates re-computing everything from scratch every time we
call one of the black boxes representing the Postnikov system.

We are going to organize the algorithm somewhat differently. We are going to define a new
parameter set Jk, whose elements have the form (I, Fk(I)), where Fk is a polynomial-time
mapping described below. The computation of Fk(I) corresponds to a preprocessing, or “con-
struction” of the Postnikov system. Then we will have the Postnikov system parameterized
by Jk instead of I, and this will allow for much more effective black boxes. This point of
view is also very natural for presentation of the Postnikov system algorithm.

What kind of data should be included in Jk to describe the Postnikov system? First,
given I ∈ I, we need the homotopy groups πi(Y (I)), i ≤ k. As in Theorem 4.1, we are going
to represent each πi(Y (I)) by its isomorphism type mi, and we use the notation πi = Ab(mi).
Thus m1, . . . ,mk are included in Fk(I).

Next, the Postnikov stage Pk is a simplicial subset of the product

Pk ⊆ E(π1, 1)× · · · × E(πk, k),

and for describing it, we need the Postnikov classes ki−1, i ≤ k. We are going to have

ki−1 represented by a cocycle κef
i−1 ∈ Zi+1(EC

Pi−1
∗ ;πi), in the way described above, and

κef
1 , . . . , κ

ef
k−1 are also a part of Fk(I).

This, of course, assumes that Pi−1 has already been equipped with polynomial-time ho-
mology; indeed, the algorithm will proceed inductively, constructing Pi−1 first, then κef

i−1 (and
thus ki−1), and then Pi. Here Pi with polynomial-time homology is obtained as the pullback
as in the definition of a Postnikov system, using Corollary 3.18.

Finally, to describe the maps ϕ1, . . . , ϕk, we need even more data. Namely, ϕk is, in
particular, a simplicial map into E(π1, 1)×· · ·×E(πk, k), and so we can write it as (`1, . . . , `k),
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where `i goes into E(πi, i). Each `i is going to be specified using a cochain λef
i ∈ Zi(EC Y

∗ ;πi).
The construction of `i from λef

i is described in the algorithm below; it is roughly similar to
the construction of ki from κef

i , but there is a subtlety involved.
Hence the parameter J ∈ Jk describing the first k stages of the Postnikov system has the

form
J = (I,m1, λ

ef
1 , κ

ef
1 ,m2, . . . , κ

ef
k−1,mk, λ

ef
k ).

Of course, the κef
i and λef

i have to satisfy certain consistency requirements, so that they
describe a valid Postnikov system (up to stage k). These will be formulated and proved later.

The Postnikov system algorithm. Now we describe the way of computing Fk(I), i.e.,
obtaining the values of m1, λ

ef
1 , κ

ef
1 , . . . , κ

ef
k−1,mk, λ

ef
k from I (using the black boxes specifying

Y , of course).
As was mentioned above, we proceed by induction. By definition, there is nothing to

compute for k = 0 and, in order to make the induction start, we define P0 to be a single point
and ϕ0 to be the constant map. Next, we assume that the algorithm for Fk−1, computing the
parameters, is given and we are required to compute the components κef

k−1, mk, and λef
k .

1. Construct the algebraic mapping cone M∗ := Cone∗((ϕk−1)∗), where (ϕk−1)∗ : C∗(Y )→
C∗(Pk−1) is the chain map induced by ϕk−1, as a chain complex with polynomial-time
homology, by Proposition 3.8. By the proof of that proposition, the corresponding

globally polynomial-time chain complex ECM
∗ has ECM

k+1 = EC Y
k ⊕ EC

Pk−1

k+1 .

2. Compute the homology groupHk+1(ECM
∗ ) as a globally polynomial-time Abelian group.

We let mk be its isomorphism type, and let πk = Ab(mk). We also have an ex-
plicit, polynomial-time isomorphism Hk+1(ECM

∗ ) ∼= πk, as in the definition of a globally
polynomial-time Abelian group.

3. Choose a decomposition of the chain group ECM
k+1 of the form ECM

k+1 = EZM
k+1⊕ẼC

M

k+1,

where EZM
k+1 is the subgroup of all cycles, and ẼC

M

k+1 is an arbitrary direct complement.

Let ρ : ECM
k+1 → πk be given as the projection

ρ : ECM
k+1 = EZM

k+1 ⊕ ẼC
M

k+1 → EZM
k+1 → Hk+1(ECM

∗ )
∼=−→ πk.

In other words, every chain c ∈ ECM
k+1 has a unique expression as c = z+ c̃, z ∈ EZM

k+1,

c̃ ∈ ẼC
M

k , and ρ(c) is the element of πk corresponding to the homology class [z] ∈
Hk+1(ECM

∗ ) ∼= πk.

4. Using the decomposition of ECM
k+1 as in Step 1, we denote the restriction of ρ to EC Y

k

by λef
k and the restriction to EC

Pk−1

k+1 by κef
k−1. In effect, to give ρ is the same as to give

its two components λef
k and κef

k−1.

5. In the strong equivalence M∗
P⇐⇐⇒⇒ ECM

∗ , let f denote the composite chain map M∗ →
ECM
∗ . Then we obtain a cochain ρf : Mk+1 → πk. Again we have a direct sum decom-

position Mk+1 = Ck(Y )⊕ Ck+1(Pk−1). We define λk : Ck(Y )→ πk as the restriction of
ρf to the summand Ck(Y ) and `k : Y → E(πk, k) as the corresponding simplicial map;
it is clearly polynomial-time.
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It is easy to see that all the computations can be implemented in polynomial time. Perhaps
only the decomposition in Step 3 may need some comment. The computation of EZM

k+1 is a

part of computing the homology group Hk+1(ECM
∗ ). Then, given a basis of EZM

k+1, it suffices

to extend it to a basis of the free Abelian group ECM
k+1, which is also straightforward using

the Smith normal form.
To prove correctness, we will need to verify that πk ∼= πk(Y ), that κef

k−1 is a cocycle, that
the image of the induced map ϕk = (ϕk−1, `k) lies in Pk, and that it satisfies the conditions
in the definition of a Postnikov system. The proofs of all these claims are postponed to
Section 4.3.

Remark: non-uniqueness. A Postnikov system of a space Y is typically not unique. The
algorithm above involves some arbitrary choices, namely, the choice of the direct complement
of EZM

k+1 in Step 3, as well as the choice of the isomorphism of Hk+1(ECM
∗ ) with Ab(mi).

Performing these choices differently may result in a different Postnikov system.
At the same time, in an algorithm that uses a Postnikov system, such as the one in

Corollary 1.3, we make many calls to the black boxes representing the Postnikov system,
and we thus need that each time they refer to the same Postnikov system, for otherwise,
the algorithm may not work correctly. This requirement is reflected in the definition of a
parameterized simplicial set (X(I) : I ∈ I), where I determines X(I) uniquely.

One way of satisfying this requirement is to use only deterministic algorithms (no ran-
domization). Then, although the algorithm makes some “arbitrary” choices, these choices are
always made in the same way for a given input.

Another, more conceptual and practical way, is the re-parameterization as above: the
results of all of the arbitrary choices are encoded in Fk(I), and then the Postnikov stages Pi(J)
are defined uniquely, and similarly for the (ki)J and (ϕi)J . In this case the computation of
Fk(I) may use randomized algorithms as well, which may be useful, e.g., for a fast computation
of the Smith normal form.

4.2 Further properties of Eilenberg–MacLane spaces

Here we prepare several lemmas needed in the proof of correctness of our algorithm for
computing Postnikov systems. The proofs are routine, but we have no good reference for
these facts. Here, π will stand for an Abelian group.

We recall that ev : K(π, k)k = E(π, k)k → π is the mapping assigning to each π-valued
cocycle z ∈ Zk(∆k;π) its value on the unique k-face of ∆k. We can extend ev linearly to a
homomorphism ev : Ck(K(π, k))→ π.

The first lemma is essentially just re-phrasing of the considerations in Section 3.7 con-
cerning the correspondence of simplicial maps into E(π, k) with cochains.

Lemma 4.2 (Lemma 24.2 in [30]). Let f : X → E(π, k) be a simplicial map. Then the
cochain κ : Ck(X)→ π corresponding to it can be expressed as κ = ev f∗, where f∗ : C∗(X)→
C∗(E(π, k)) is the chain map induced by f .

Also see [30, Lemma 24.3] for the corresponding statement for K(π, k).
The next two lemmas deal with maps induced by ev in homology.

Lemma 4.3. The homomorphism ev : Ck(K(π, k))→ π induces an isomorphism Hk(K(π, k))→
π.
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Proof. First we note that Ck(K(π, k)) = Zk(K(π, k)), since K(π, k)k−1 = {0}. Then ev is
easily seen to be surjective, and so it remains to prove that ker(ev) = Bk(K(π, k)).

Let us consider z ∈ K(π, k)k+1 = Zk(∆k+1;π); thus, z is given by the (k + 2)-tuple
(g0, . . . , gk+1), where gi is the value of z on ∂i∆

k+1, and the cocycle condition reads
∑k+1

i=0 (−1)igi =
0 (in π). On the other hand, considering z as a chain in Ck+1(K(π, k)), we have dz =∑k+1

i=0 (−1)i∂iz, and ∂iz is the k-cochain on ∆k with value gi (if gi = 0, the term ∂iz is ignored

in dz). Thus ev(dz) =
∑k+1

i=0 (−1)igi = 0, and so Bk(K(π, k)) ⊆ ker(ev).
For the reverse inclusion, we recall that there is a one-to-one correspondence, given by

the mapping ev, between the nondegenerate k-simplices of K(π, k) and the nonzero elements
of π. Let us write σg for the unique k-simplex of K(π, k) with ev σg = g. Then a k-chain
c ∈ Ck(K(π, k)) can be written as c =

∑
g∈π\{0} αg ·σg, with finitely many nonzero coefficients

αg. We have ev(c) = 0 iff
∑

g∈π\{0} αgg = 0 in π.
By the above description of generators of Bk(K(π, k)), and since k ≥ 1, we get that for

every g1, g2 ∈ π, the chain 1 · σg1 + 1 · σg2 is homologous to 1 · σg1+g2 (where terms involving
σ0 are to be ignored). Then by induction we get that a general chain c =

∑
g∈π\{0} αg · σg is

homologous to 1 ·σs, where s =
∑

g∈π\{0} αgg. In particular, if ev c = 0, then c is homologous
to the zero chain, and so c ∈ Bk(K(π, k)) as claimed.

Lemma 4.4. The homomorphism

h := ev + ev : Conek+1(δ∗) = Ck(E(π, k))⊕ Ck+1(K(π, k + 1))→ π

sending (σ, τ) to ev σ + ev τ induces an isomorphism Hk+1(Cone∗(δ∗))→ π.

Proof. For brevity, we write E = E(π, k) and K = K(π, k + 1) since there are no other
Eilenberg–MacLane spaces in this proof.

In order to claim that h induces a map in homology, we verify that it vanishes on all
boundaries. Thus, let (σ′, τ ′) ∈ Conek+2(δ∗) be a generator, σ′ ∈ Ek+1, τ ′ ∈ Kk+2. According
to the formula (1) in Section 3.3 we have dCone∗(σ′, τ ′) = (−dEσ′, δ∗(σ′) + dKτ ′). Since τ ′

is a cocycle, we have ev(dKτ ′) = 0, as we saw in the proof of Lemma 4.3. Moreover, it is
easily checked that ev(dEσ′) = ev(δ∗(σ′)). It follows that h indeed vanishes on boundaries
and induces a homomorphism h∗ : Hk+1(Cone∗(δ∗))→ π.

Now we consider the canonical inclusion C∗(K)→ Cone∗(δ∗), which is a chain map, and
thus it induces a map in homology, as in the following diagram (here we use that Ck+1(K) =
Zk+1(K) and Ck(E) = Zk(E)):

Ck+1(K)
i //

��

Ck(E)⊕ Ck+1(K)= Conek+1(δ∗)

��

π Hk+1(K)∼=
ev∗oo ∼=

i∗ // Hk+1(Cone∗(δ∗))

Here ev∗ on the left in the bottom row is the isomorphism induced by ev as in Lemma 4.3.
The map i∗ is an isomorphism by the long exact homology sequence of the pair (Cone(δ∗), C∗(K)),

because the quotient Cone(δ∗)/C∗(K) ∼= C∗(E)↑ is the shift of the chain complex of a con-
tractible simplicial set E (see e.g. [30, Proposition 21.5, Theorem 23.10]), and thus all homol-
ogy groups of this quotient vanish except for the one in dimension 1.

Finally, it suffices to verify that h∗i∗ = ev∗, but this is clear, since the composition on the

left maps [τ ]
i∗7−−→ [(0, τ)]

h∗7−−−→ ev τ .
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4.3 Correctness of the algorithm

Here we provide a proof of correctness for the algorithm above. It uses more or less standard
methods, but we do not know of an accessible presentation in the literature. In this part,
we are going to use somewhat more advanced topological notions without defining them; we
refer to standard textbooks, such as [20].

We assume the correctness of the algorithm for k − 1. For brevity we write ϕ = ϕk−1,
P = Pk−1, K = K(πk, k + 1), and E = E(πk, k).

Checking πk
∼= πk(Y ). We recall that the algorithm sets up an isomorphismHk+1(ECM

∗ ) ∼=
πk; thus we need to verify that Hk+1(ECM

∗ ) ∼= πk(Y ). Let Cylϕ be the mapping cylinder of
ϕ : Y → P , i.e., the simplicial set (Y × ∆1 ∪ P )/ ∼, where ∼ is the equivalence identifying
(y, 0) with f(y), y ∈ Y . Let us also identify Y with Y × {1}, the “top copy” of Y in Cylϕ.

Using the Eilenberg–Zilber reduction, it is easy to check that the chain complex of the
pair (Cylϕ, Y ) has a reduction to M∗ = Cone∗(ϕ∗). Hence

Hk+1(Cylϕ, Y ) ∼= Hk+1(M∗) ∼= Hk+1(ECM
∗ ).

Using the fact that Cylϕ is homotopy equivalent to P , and the assumption πi(P ) = 0 for
i ≥ k, the long exact sequence of homotopy groups for the pair (Cylϕ, Y ) yields that this
pair is k-connected and πk(Y ) ∼= πk+1(Cylϕ, Y ). Due to the k-connectedness of (Cylϕ, Y ),
the Hurewicz isomorphism yields πk+1(Cylϕ, Y ) ∼= Hk+1(Cylϕ, Y ). Putting all these isomor-
phisms together we obtain πk(Y ) ∼= πk, as desired.

The cochain κef
k−1 is a cocycle. We recall that κef

k−1 is the composition

κef
k−1 : EC

Pk−1

k+1 ↪→ EC Y
k ⊕ EC

Pk−1

k+1 = ECM
k+1

ρ−−→ πk

The inclusion, being a chain map, preserves boundaries, and ρ, by definition, vanishes on
them. Thus the composite κef

k−1 also vanishes on boundaries and is indeed a cocycle.

The map ϕk takes values in Pk. First we will need a description of the cocycle κk−1

similar to that of λk. Namely, the remark following the proof of Proposition 3.8 says that
κk−1 can be also obtained as a restriction of ρf from Step 5 to Ck+1(Pk−1).27 Thus, denoting
the inclusions of the two summands by i : Ck+1(Pk−1) → Mk+1 and j : Ck(Y ) → Mk+1, we
can write κk−1 = ρfi and λk = ρfj.

Now, we will verify that the map ϕk = (ϕ, `k) : Y → P ×E has image in the pullback Pk,
which amounts to showing that kk−1ϕ = δ`k. This will follow easily from the following
equality of cochains in Ck+1(Y ;πk):

κk−1ϕ∗ = λkd
Y , (13)

where ϕ∗ : Ck+1(Y ) → Ck+1(P ) is the chain map induced by ϕ and dY is the differential
in C∗(Y ). We have κk−1ϕ∗ − λkd

Y = ρf(iϕ∗ − jdY ). As above, ρf maps boundaries in
M∗ to 0, so it suffices to show that the images of iϕ∗ − jdY are boundaries—but by the
formula for the differential in the algebraic mapping cone, we have that for every σ ∈ Yk+1,
(iϕ∗ − jdY )(σ) = dM∗(σ, 0) is indeed a boundary.

27On the other hand, λk in general cannot be computed solely from λef
k and the effective homology of Y . A

notable exception to this is when C∗(Y ) = ECY
∗ , as happens e.g. for finite simplicial complexes. In this case

we have λk = λef
k .
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Using Lemma 4.2, we find that κk−1ϕ∗ = (ev(kk−1)∗)ϕ∗ = ev(kk−1ϕ)∗. It is also easy to
verify from the definitions that ev(δ`k)∗ = λkd

Y , and so the equality (13) of cochains yields
the desired equality kk−1ϕ = δ`k of simplicial maps.

The maps induced by ϕk in homotopy. Considering the long exact sequence of
homotopy groups of the fibration K(πk, k) → Pk → P and using the assumption πi(P ) = 0
for i ≥ k, it is straightforward to check that πi(Pk) = 0 for i ≥ k + 1, and that the maps
πi(Y )→ πi(Pk) induced by ϕk are isomorphisms for i ≤ k − 1. For establishing condition (i)
in the definition of a Postnikov system, it remains to verify that (ϕk)∗ : πk(Y ) → πk(Pk) is
an isomorphism as well.

To this end, we begin with the diagram

Y

ϕ

��

ϕk // Pk //

pk

��

E

δ
��

P P // K,

where the right square is the pullback diagram defining Pk. Next, we replace each of the
spaces in the bottom row with the mapping cylinder of the respective vertical map, so that
the vertical maps become inclusions (of the domain in the cylinder); the horizontal maps of
the cylinders are then induced in a canonical way.

Y

��

ϕk // Pk //

��

E

��

Cylϕ // Cyl pk // Cyl δ

(14)

Lemma 4.5. The map πk+1(Cylϕ, Y ) → πk+1(Cyl pk, Pk) induced by the left square of the
last diagram is an isomorphism.

We first finish the proof of correctness of the algorithm assuming the lemma. We consider
the long exact sequences coming from the pairs (Cylϕ, Y ) and (Cyl pk, Pk):

0 = πk+1(Cylϕ) //

∼=
��

πk+1(Cylϕ, Y )

∼=
��

// πk(Y )

ϕk∗
��

// πk(Cylϕ) = 0

∼=
��

0 = πk+1(Cyl pk) // πk+1(Cyl pk, Pk) // πk(Pk) // πk(Cyl pk) = 0

The second vertical isomorphism is proved in the lemma and the other two follow from
πi(P ) = 0 for i ≥ k, since both of the cylinders deform onto the base P . Then the five-lemma
implies that ϕk∗ is an isomorphism on πk, which completes the proof of condition (i) from
the definition of a Postnikov system. All that remains is to prove the lemma.

Proof of Lemma 4.5. We will show that both the right square and the composite square
induce an isomorphism in the relative homotopy groups of the vertical pairs in dimension
k + 1. We start with the composite square.

Since both (Cylϕ, Y ) and (Cyl δ, E) are k-connected, it suffices to prove that the square
induces an isomorphism on the (k + 1)-st homology group. We use that the chain complexes
of these pairs are isomorphic to the respective (reduced) algebraic mapping cones. We find
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that the chain map C∗(Cylϕ, Y ) → C∗(Cyl δ, E) is actually `k∗ ⊕ k(k−1)∗; this can be seen
using the diagram

Y
`k //

ϕ

��

E

δ
��

P
kk−1

// K.

Then we consider the diagram

Ck(Y )⊕ Ck+1(P )
`k∗⊕k(k−1)∗

//

λk+κk−1 ''OOOOOOOOOOOO
Ck(E)⊕ Ck+1(K),

ev + ev
wwnnnnnnnnnnnn

πk

which commutes in view of Lemma 4.2. The left map λk + κk−1 equals ρf , and since both
ρ and f induce isomorphisms in homology, so does λk + κk−1. The map ev + ev induces an
isomorphism in homology by Lemma 4.4. Therefore the same is true for the horizontal map,
and hence the composite square in the diagram (14) induces an isomorphism in the (k+ 1)st
homotopy groups of the vertical pairs, as claimed.

It remains to study the right square. Before we passed to mapping cylinders, the original
square was a pullback. The original vertical maps are fibrations, and consequently, the induced
map on fibers (which are both K(πk, k)) is an isomorphism. Next, there is an isomorphism
πk+1(Cyl pk, Pk) ∼= πk(fib pk), and a similar one for δ. From their description below it will be
apparent that this isomorphism is natural so that the square

πk+1(Cyl pk, Pk) //

∼=
��

πk+1(Cyl δ, E)

∼=
��

πk(fib pk) ∼=
// πk(fib δ).

commutes. We will thus be able to conclude that πk+1(Cyl pk, Pk)→ πk+1(Cyl δ, E) is indeed
an isomorphism as required.

The required map πk+1(Cyl pk, Pk) → πk(fib pk) is defined via representatives. To this
end, we represent an element of πk+1(Cyl pk, Pk) by a map f : Ik+1 → Cyl pk that sends the
face Ik (where the last coordinate is zero) to Pk and the union of the remaining faces, which
we denote by Jk, to the basepoint (here Ik+1 denotes the unit cube). Now composing f with
the projection pr : Cyl pk → P we obtain g = pr ◦f : Ik+1 → P , which we lift along pk to
g̃ : Ik+1 → Pk. One may prescribe the values on all the faces except for one. Here we decide
that g̃ agrees with f on the only interesting face Ik and that it is constant onto the basepoint
on the neighboring faces. Finally, the restriction to the remaining face (opposite to Ik) gives
us a map g̃1 : Ik → fib pk, and this is the representative of the image of [f ] under the desired
map πk+1(Cyl pk, Pk)→ πk(fib pk).

It remains to show that this map is indeed an isomorphism. For this, we consider the
following diagram, whose top row is the long exact sequence of the pair (Cyl pk, Pk), and
whose bottom row is associated with the fibration pk.

· · · // πk+1Pk //

id
��

πk+1 Cyl pk //

∼=
��

(A)

πk+1(Cyl pk, Pk) //

��

(B)

πkPk //

id
��

πk Cyl pk //

∼=
��

· · ·

· · · // πk+1Pk // πk+1P // πk fib pk // πkPk // πkP // · · ·
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The isomorphism will follow from the five-lemma once we show that the squares (A) and (B)
commute up to a sign. The square (A) anticommutes because the path through the bottom
left corner consists of lifting g as above but with the restriction to Jk being constant onto the
basepoint. One can obtain this by first flipping Ik+1 along the last coordinate and then lifting
as above. The flipping amounts to multiplication by −1 on πk+1(P ). The square denoted by
(B) commutes by an easy inspection: the map g̃1 is homotopic inside Pk with f |Ik (the image
in the top right corner of that square), the required homotopy being g̃.

5 The extension problem

Proof of Theorem 1.4. Here we prove the result about testing extendability of a map using
tools from [6]. We are given simplicial sets A ⊆ X and Y and a simplicial map f : A → Y ,
where X is finite, dimX ≤ 2k − 1, and Y is (k − 1)-connected.

First, by [53, Theorem 7.6.22], a continuous extension of f to X exists, under these as-
sumptions, if and only if the composition ϕ2k−2f : A→ P2k−2 admits a continuous extension
to X, where ϕ2k−2 : Y → P2k−2 is the map in the Postnikov system of Y . By the homotopy
extension property, this happens precisely when there exists a map X → P2k−2, whose re-
striction to A is homotopic to ϕ2k−2f . In terms of homotopy classes of maps, this is if and
only [ϕ2k−2f ] lies in the image of the restriction map ρ : [X,P2k−2]→ [A,P2k−2].

The algorithm in Corollary 1.3 for computing [X,Y ] actually computes [X,P2k−2]. The
isomorphism [X,Y ] ∼= [X,P2k−2] holds only for dimX ≤ 2k − 2, but the computation of
[X,P2k−2] works correctly for X of arbitrary dimension. Thus, in the setting of Theorem 1.4,
we can compute the Abelian group [X,P2k−2] represented by generators, which are specified
as simplicial maps28 X → P2k−2, and relations (it is fully effective in the terminology of [6]).

For the simplicial subset A ⊆ X, we similarly compute [A,P2k−2]. As we recall from [6],
the group operation in [X,P2k−2] is induced by an operation � on SMap(X,P2k−2), which is
defined simplexwise (i.e., (f � g)(σ) = f(σ) � g(σ)). This easily implies that the restriction
map ρ is a group homomorphism.

Given an element (homotopy class) [g] ∈ [X,P2k−2], represented by a simplicial map g,
we consider the restriction g|A as a representative of an element of [A,P2k−2], and we can
express it using the generators of [A,P2k−2]. Thus, ρ is polynomial-time computable, and
we can compute the image im ρ as a subgroup of [A,P2k−2] (by computing the images of the
generators of [X,P2k−2] and the subgroup generated by them).

Then, given a simplicial map f : A→ Y , we compute the corresponding element [ϕ2k−2f ] ∈
[A,P2k−2] and test (in polynomial time) whether it lies in the image of ρ. This is the desired
algorithm for testing the extendability of f .

In case dimX ≤ 2k − 2 we have [X,Y ] ∼= [X,P2k−2] and [A, Y ] ∼= [A,P2k−2]. Thus, if
x ∈ im ρ, we can compute the preimage ρ−1(x) as a coset in [X,P2k−2] (since we have ρ
represented by a matrix), and this coset is isomorphic to [X,Y ]f as needed. This concludes
the proof.

28Actually, a more compact cochain representation is used in [6], but for our purposes, we can think of
explicit simplicial maps.
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PhD. Thesis, Facultad de Mathemáticas, Univ. de Sevilla, 1993. Available online at
http://fondosdigitales.us.es/media/thesis/1426/C_043-139.pdf.

[36] P. Real. An algorithm computing homotopy groups. Mathematics and Computers in
Simulation, 42:461—465, 1996.

[37] P. Real. Homological perturbation theory and associativity. Homology Homotopy Appl.,
2:51–88, 2000.

[38] A. Romero, G. Ellis, and J. Rubio. Interoperating between computer algebra systems:
computing homology of groups with Kenzo and GAP. In Proc. ISAAC, ACM, New York,
pages 303–310, 2009. Available on-line at http://hamilton.nuigalway.ie/preprints/
sigproc-sp.rev1.pdf.

[39] A. Romero, J. Rubio, and F. Sergeraert. Computing spectral sequences. J. Symb.
Comput., 41(10):1059–1079, 2006.

[40] A. Romero and F. Sergeraert. Effective homotopy of fibrations. Applicable Algebra in
Engineering, Communication and Computing, 23(1-2):85–100, 2012.
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Abstract

We consider two basic problems of algebraic topology, the extension problem and the
computation of higher homotopy groups, from the point of view of computability and
computational complexity.

The extension problem is the following: Given topological spaces X and Y , a subspace
A ⊆ X, and a (continuous) map f : A → Y , decide whether f can be extended to a
continuous map f̄ : X → Y . All spaces are given as �nite simplicial complexes and the
map f is simplicial.

Recent positive algorithmic results, proved in a series of companion papers, show that
for (k − 1)-connected Y , k ≥ 2, the extension problem is algorithmically solvable if the
dimension of X is at most 2k − 1, and even in polynomial time when k is �xed.

Here we show that the condition dimX ≤ 2k − 1 cannot be relaxed: for dimX = 2k,
the extension problem with (k − 1)-connected Y becomes undecidable. Moreover, either
the target space Y or the pair (X,A) can be �xed in such a way that the problem remains
undecidable.

Our second result, a strengthening of a result of Anick, says that the computation of
πk(Y ) of a 1-connected simplicial complex Y is #P-hard when k is considered as a part
of the input.

1. Introduction

One of the central themes in algebraic topology is to understand the structure of all continuous
maps X → Y , for given topological spaces X and Y (all maps between topological spaces
in this paper are assumed to be continuous). For topological purposes, two maps f, g : X →
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Y are usually considered equivalent if they are homotopic, i.e., if one can be continuously
deformed into the other1; thus, the object of interest is [X,Y ], the set of all homotopy classes
of maps X → Y .

Many of the celebrated results throughout the history of topology can be cast as infor-
mation about [X,Y ] for particular spaces X and Y . In particular, one of the important
challenges propelling the research in algebraic topology has been the computation of the ho-
motopy groups of spheres2 πk(S

n), for which only partial results have been obtained in spite
of an enormous e�ort (see, e.g., [Rav04, Koc90]).

A closely related question is the extension problem: given A ⊂ X and a map f : A → Y ,
can it be extended to a map X → Y ? For example, the famous Brouwer Fixed-Point Theorem
can be re-stated as non-extendability of the identity map Sn → Sn to the ball Dn+1 bounded
by the sphere Sn. See [Ste72] for a very clear and accessible introduction to the extension
problem, including further examples and applications and covering the earlier developments
until the late 1950s.

Computational homotopy theory. In this paper, we consider the (theoretical) com-

putational complexity of homotopy-theoretic questions such as the extension problem, the
homotopy classi�cation of maps, and the computation of homotopy groups. More precisely,
we prove hardness and undecidability results that complement recent positive algorithmic
results obtained in a series of companion papers [ÈKM+11, KMS11, ÈKM+12]. To put our
results into context, we �rst give more background.

By classical uncomputability results in topology (see, e.g., the survey [Soa04]), most of
these problems are algorithmically unsolvable if we place no restriction on the space Y Indeed,
by a result of Adjan and of Rabin, it is undecidable whether the fundamental group π1(Y )
of a given �nite simplicial complex Y is trivial, even if Y is assumed to be 2-dimensional.
The triviality of π1(Y ) is equivalent to [S1, Y ] having only one element, represented by the
constant map, and so [S1, Y ] is uncomputable in general. Moreover, by the Boone{Novikov
theorem, it is undecidable whether a given pointed map f : S1 → Y is homotopic to a constant
map, and this homotopic triviality is equivalent to the extendability of f to the 2-dimensional
ball D2. Therefore, the extension problem is undecidable as well.3

In these results, the di�culty stems from the intractability of the fundamental group of
Y . Thus, a reasonable restriction is to assume that π1(Y ) is trivial (which in general cannot
be tested, but in many cases of interest it is known), or more generally, that Y is k-connected,
meaning that πi(Y ) is trivial for all i ≤ k (equivalently, every map Si → Y , i ≤ k, can
be extended to Di+1). A basic and important example of a (k − 1)-connected space is the
sphere Sk.

For a long time, the only positive result concerning the computation of [X,Y ] was that

1More precisely, f and g are homotopic, in symbols f ∼ g, if there is a map F : X × [0, 1] → Y such that
F (·, 0) = f and F (·, 1) = g. With this notation, [X,Y ] = {[f ] : f : X → Y }, where [f ] = {g : g ∼ f} is the
homotopy class of f .

2 We recall that the kth homotopy group πk(Y ) of a space Y is de�ned as the set of all homotopy classes of
pointed maps f : Sk → Y , i.e., maps f that send a distinguished basepoint s0 ∈ Sk to a distinguished basepoint
y0 ∈ Y (and the homotopies F also satisfy F (s0, t) = y0 for all t ∈ [0, 1]). Strictly speaking, one should write
πk(Y, y0) but for a path-connected Y , the choice of y0 does not matter. Moreover, if Y is simply connected, i.e.,
if π1(Y ) is trivial, then the pointedness of the maps does not matter either and one can identify πk(Y ) with
[Sk, Y ]. For k ≥ 1, each πk(Y ) is a group, which for k ≥ 2 is Abelian; the de�nition of the group operation
will be reviewed in Section 4.

3For undecidability results concerning numerous more loosely related topological problems we refer to
[Soa04, NW99, NW96] and references therein.
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of Brown [Bro57], who showed that [X,Y ] is computable under the assumption that Y is
1-connected and that all the higher homotopy groups πk(Y ), 2 ≤ k ≤ dimX, are �nite (the
second assumption is rather strong and not satis�ed if Y is a sphere, for example). Brown also
gave an algorithm that, given k ≥ 2 and a �nite 1-connected simplicial complex Y , computes
πk(Y ).

In the 1990s, three independent collections of works appeared with the goal of making vari-
ous more advanced methods of algebraic topology e�ective (algorithmic): by Schön [Sch91], by
Smith [Smi98], and by Sergeraert, Rubio, Dousson, and Romero (e.g., [Ser94, RS02, RRS06,
RS05]; also see [RS12] for an exposition). New algorithms for computing higher homotopy
groups follow from these methods; see Real [Rea96] for an algorithm based on Sergeraert et al.

An algorithm that computes πk(Y ) for a given 1-connected simplicial complex Y in polyno-
mial time for every �xed k ≥ 2 was recently presented in [ÈKM+12], also relying on [KMS11]
and on the methods of e�ective homology developed earlier by Sergeraert et al.

The problem of computing [X,Y ] was addressed in [ÈKM+11], where it was shown that
its structure is computable assuming that Y is (k − 1)-connected and dim(X) ≤ 2k − 2, for
some integer k ≥ 2. These assumptions are sometimes summarized by saying that X and Y
are in the stable range.

As observed in [ÈKM+12], the methods of [ÈKM+11] can also be used to obtain an
algorithmic solution of the extension problem. Here dimX can even be 1 beyond the stable
range4; thus, given �nite simplicial complexes A ⊆ X and Y and a simplicial map f : A→ Y ,
where Y is (k − 1)-connected and dimX ≤ 2k − 1, k ≥ 2, it can be decided algorithmically
whether f can be extended to a continuous map X → Y . The algorithm again runs in
polynomial time for k �xed, and the same holds for the algorithm mentioned above for
computing [X,Y ] in the stable range.

New undecidability results. For the algorithms for homotopy classi�cation and extend-
ability, we have two types of assumptions: The �rst is that the dimension of X is suitably
bounded in terms of the connectivity of Y (in the stable range or at most one more). This
is essential for the algorithms to work at all.5 The second assumption is that the relevant
dimensional parameter k is �xed, which guarantees that the algorithm runs in polynomial
time.

Our main result is that for the extension problem, the �rst assumption is necessary and
sharp.

Theorem 1.1. Let k ≥ 2 be �xed.

(a) (Fixed target) There is a �xed (k − 1)-connected �nite simplicial complex Y = Yk
such that the following problem is algorithmically unsolvable: Given �nite simplicial

complexes A ⊆ X with dimX = 2k and a simplicial map f : A → Y , decide whether

there exists a continuous map X → Y extending f . For k even, we can take Yk to be

the sphere Sk.

4In the border case dimX = 2k − 1, the algorithm just decides the existence of an extension, while for
dimX ≤ 2k − 2 it also yields a classi�cation of all possible extensions up to homotopy.

5We remark that the stable range assumption guarantees that [X,Y ] has a canonical Abelian group struc-
ture, which we exploit heavily (for instance, it means that [X,Y ] has a �nite description even when it is an
in�nite set). In the special case πk(Y ) ∼= [Sk, Y ], by contrast, the group structure has a di�erent origin and is
available for all dimensions k.
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(b) (Fixed source) There exist �xed �nite simplicial complexes A = Ak and X = Xk with

A ⊆ X and dimX = 2k such that the following problem is algorithmically unsolvable:

Given a (k− 1)-connected �nite simplicial complex Y and a simplicial map f : A→ Y ,
decide whether there exists a continuous map X → Y extending f .

The theorem is stated in terms of simplicial complexes since these are a standard input
model for topological spaces in computational topology that we assume may be most familiar
to most readers. For the purposes of our reductions, we actually work with simplicial sets (see
Section 3.2), which o�er a more 
exible, but still purely combinatorial, way of representing
topological spaces. The simplicial sets are then converted into simplicial complexes by a
suitable subdivision.

When constructing A, X and Y as simplicial sets, we can furthermore ensure that Y has
a certain additional property, namely that it is (k− 1)-reduced, which provides an immediate
certi�cate that Y is (k − 1)-connected; this is proved in B. Thus, in particular, the di�culty
of the extension problem does not lie in verifying the (k − 1)-connectedness of Y .

While most of the previous undecidability results in topology rely on the word problem in
groups and its relatives, our proof of Theorem 1.1 relies on undecidability of Hilbert's tenth
problem, which is the solvability of a system of polynomial Diophantine equations, i.e., the
existence of an integral solution of a system of the form

pi(x1, . . . , xr) = 0, i = 1, 2, . . . , s, (1)

where p1, . . . , ps are r-variate polynomials with integer coe�cients. This problem is unde-
cidable by a celebrated result of Matiyasevich [Mat70], building on earlier work by Davis,
Putnam, and Robinson; also see [Mat93, Maz94] for additional background and further ref-
erences.

On the hardness of computing [X,Y ]. When dimX = 2k and Y is (k−1)-connected, we
can no longer equip [X,Y ] with the group structure of the stable range. Thus, it is not clear
in what sense the the potentially in�nite set [X,Y ] could be computed in general. A natural
computational problem in this setting is to decide whether |[X,Y ]| > 1; in other words,
whether there is a homotopically nontrivial map X → Y for given simplicial complexes X
and Y as above.

We can prove that this problem is NP-hard for every even k ≥ 2; in order to keep this
paper reasonably concise, the proof is to be presented in the PhD. thesis of the second author.
The reduction is very similar to that of Theorem 1.1. We can show that the problem is at
least as hard as deciding the existence of a nonzero integral solution of the quadratic system
(Q-SYM) de�ned in Section 2 below with all the constant terms bq equal to zero. This
problem may well be undecidable, but as far as we know, the best known lower bound is that
of NP-hardness.

#P-hardness. Our second result concerns the problem of computing the higher homotopy
groups πn(Y ) ∼= [Sn, Y ] for a simply connected space Y , if n is not considered �xed but
part of the input (n is given in unary encoding).6 Anick [Ani89] proved that this problem is

6Note that with a unary encoding of n, the size of input is signi�cantly larger than with a binary (or decimal
encoding), and hence the hardness result is correspondingly stronger.
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#P-hard,7 where Y can even be assumed to be a 4-dimensional space.8

However, Anick's hardness result has the following caveat: it assumes that the input space
Y is given in a very concise form, as a cell complex with the degrees of the attaching maps

encoded in binary (see Section 5.3 for a review of the construction). A straightforward way of
converting this cell complex to a simplicial complex yields a 4-dimensional simplicial complex
with an exponential number of simplices, which renders the hardness result meaningless for
simplicial complexes. In Section 6.3, we provide a di�erent way of converting Anick's concise
encoding of the input space Y into a homotopy equivalent9 simplicial complex that can be
constructed in polynomial time, and in particular, has only polynomially many simplices.
This yields the following result:

Theorem 1.2. It is #P-hard to compute the rank of πn(Y ) (i.e. the number of summands

of πn(Y ) isomorphic to Z) for a given number n ∈ N (encoded in unary) and a given simply

connected 4-dimensional simplicial complex Y .

Outline of the proof of Theorem 1.1. We aim to present our results in a way that
makes the statements of the results and the main steps and ideas accessible while assuming
only a moderate knowledge of topology on the side of the reader.

We thus review a number of basic topological concepts and provide proofs for various
assertions and facts that may be rather elementary for topologists. On the other hand, some
of the proofs assume a slightly stronger topological background, since reviewing every single
notion and fact would make the paper too lengthy.

For proving Theorem 1.1, we present an algorithm that converts a given system of Dio-
phantine equations into an instance of the extension problem; i.e., it constructs simplicial
complexes A, X and Y and a map f : A → Y such that there is an extension of f to all of
X i� the given system of equations is solvable. Moreover, as stated in the theorem, there are
actually two versions of the reduction: The �rst uses a �xed target space Y = Yk and encodes
the equations into A, X, and f . The second uses a �xed pair (Xk, Ak) of source complexes
and encodes the equations into f and Y .

We will actually work only with quadratic Diophantine equations of a slightly special
form (which is su�cient; see Section 2). The unknowns are represented by the degrees of
restrictions of the desired extension f̄ to suitable k-dimensional spheres. The quadratic terms
in the equations are obtained using the Whitehead product, which is a binary operation that,
for a space Z, assigns to elements α ∈ πk(Z) and β ∈ π`(Z) an element [α, β] ∈ πk+`−1(Z);
see Section 4.2.

Here is a rough outline of the proof strategy. First we focus on Theorem 1.1 (a) (�xed
target) with k even, which is the simplest among our constructions.

7Somewhat informally, the class of #P-hard problems consists of computational problems that should
return a natural number (as opposed to YES/NO problems) and are at least as hard as counting the number
of all Hamiltonian cycles in a given graph, or counting the number of subsets with zero sum for a given set of
integers, etc. These problems are clearly at least as hard as NP-complete problems, and most likely even less
tractable.

8Actually, the hardness already applies to the potentially easier problem of computing the rational homotopy

groups πn(Y )⊗Q; practically speaking, one asks only for the rank of πn(Y ), i.e., the number of direct summands
isomorphic to Z.

9Spaces X and Y are homotopy equivalent if there are maps f : X → Y and g : Y → X such that the
compositions fg and gf are homotopic to identities. From the point of view of homotopy theory, such X and
Y are indistinguishable and, in particular, πk(X) = πk(Y ) for all k ≥ 0.

5



• The spaces X and A are simplest to describe as cell complexes. The subcomplex A is a
union of r spheres S2k−1, which intersect only at a single common point. This union is
called a wedge sum and denoted by A = S2k−1 ∨ · · · ∨S2k−1. The space X is homotopy
equivalent to another wedge sum, of s spheres Sk; i.e., X ' Sk ∨ · · · ∨ Sk.

• The �xed (k − 1)-connected target space Y is the k-sphere Sk.

• Maps X → Sk can be described completely by their restrictions to the k-spheres in
the wedge sum. Each such restriction is characterized, uniquely up to homotopy, by its
degree|this can be an arbitrary integer. Thus, a potential extension f̄ can be encoded
into a vector x = (x1, . . . , xr) of integers.

• Similarly, the map f : A→ Sk can be described by its restrictions to the (2k−1)-spheres
in the wedge sum. Crucially for our construction, the homotopy group π2k−1(Sk) has
an element of in�nite order, namely, the Whitehead square [ι, ι], where ι is the identity
Sk → Sk (we still assume k even). We will work with maps f whose restriction to the
qth sphere is (homotopic to) an integral multiple bq[ι, ι], for some (unique) integer bq.
Thus, f is speci�ed by the vector b = (b1, . . . , bs) of these integers.

• Given arbitrary integers a(q)
ij , 1 ≤ i < j ≤ r, q = 1, 2, . . . , s, we construct the pair (X,A)

in such a way that, taking f̄ : X → Y speci�ed by x as above, the restriction of f̄ to the
qth sphere of A is homotopic to

∑
i<j a

(q)
ij xixj [ι, ι] (here the addition and multiplication

by integers are performed in π2k−1(Sk)). Since [ι, ι] is an element of π2k−1(Sk) of in�nite

order, f̄ is an extension of f i�
∑

i<j a
(q)
ij xixj = bq for all q = 1, 2, . . . , s.

• In this way, we can simulate an arbitrary system of quadratic equations by an extension
problem. Some more work is still needed to describe X and A as �nite simplicial
complexes and f as a simplicial map.

• For Theorem 1.1 (a) with k odd, the Whitehead square [ι, ι] as above no longer has
in�nite order. Instead, we use Y = Sk ∨Sk and replace [ι, ι] by the Whitehead product
[ι1, ι2] of the inclusions of the two spheres into Y . This leads to skew-symmetric systems
of quadratic equations, and showing that these are still undecidable needs some work
(see Section 2).

In Theorem 1.1 (b) with k even, the (�xed) source space X is homotopy equivalent to Sk

and A = S2k−1. Under the homotopy equivalence X ' Sk, the inclusion A ↪→ X becomes
the Whitehead square [ι, ι], and for k odd it is replaced by [ι1, ι2]. In both cases, the system
of quadratic equations is encoded into the structure of the cell complex Y and the map
f : A→ Y .

2. Diophantine equations and undecidability

We will need to work with quadratic Diophantine equations of two special forms:

∑

1≤i<j≤r
a

(q)
ij xixj = bq, q = 1, 2, . . . , s, (Q-SYM)
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where a(q)
ij , bq ∈ Z and x1, . . . , xr are the unknowns (i.e., the left-hand sides are quadratic

forms with no square terms), and

∑

1≤i<j≤r
a

(q)
ij (xiyj − xjyi) = bq, q = 1, 2, . . . , s, (Q-SKEW)

with a(q)
ij , bq ∈ Z and unknowns x1, . . . , xr, y1, . . . , yr (so here we deal with skew-symmetric

bilinear forms).

Lemma 2.1. The solvability of the system (Q-SYM), as well as that of (Q-SKEW), in the

integers are algorithmically undecidable.

Proof. First, it is well known and easy to see that the solvability of a general quadratic system
of Diophantine equations is no easier than the solvability of an arbitrary Diophantine system
(1), and thus undecidable.10

First we show undecidability for (Q-SYM); this system di�ers from a general quadratic
system only by the lack of linear terms and squares. Given a general quadratic system

∑

1≤i,j≤r
a

(q)
ij xixj +

∑

1≤i≤r
b
(q)
i xi = cq, q = 1, . . . , s, (4)

we add new variables x0, x′0 and x′1, . . . , x
′
r, and we replace the terms xixj with xix′j and xi

with xix′0. We also add the following equations

x0x
′
0 = 1; xix

′
0 − x0x

′
i = 0, i = 1, . . . , s.

The resulting system is of the form (Q-SYM) (assuming an indexing of the variables such
that the xi precede the x′i) and it forces x0 = x′0 = ±1, and xi = x′i. Thus, each of its
solutions corresponds either to a solution of the original system (4) (when x0 = x′0 = 1), or to
a solution of the system obtained from (4) by changing the sign of all the linear terms (when
x0 = x′0 = −1). Since there is an obvious bijection xi 7→ −xi between the solutions of (4)
and those of the system with negated linear terms, the solvability of the constructed system
(Q-SYM) is equivalent to the solvability of (4).

Next, we show that (Q-SKEW) is no easier than (Q-SYM). Given a general system
(Q-SYM), we add new variables x0, y0, x′0, y

′
0 and, for each i = 1, . . . , r, also x′i, yi and y

′
i.

We replace each term xixj in the original system (Q-SYM) by the antisymmetric expression
xiy
′
j − x′jyi, and we add the following equations (for i = 1, 2, . . . , r):

x0y
′
0 − x′0y0 = 1, x0yi − xiy0 = 0, x′0y

′
i − x′iy′0 = 0, (x0y

′
i − x′iy0)− (xiy

′
0 − x′0yi) = 0.

This gives a system of the form (Q-SKEW), which we call the new system.
It is clear that each solution of (Q-SYM) yields a solution of the new system. Conversely,

supposing that the new system has a solution, we claim that it also has a solution with
x0 = y′0 = 1 and y0 = x′0 = 0. Once we have a solution satisfying these additional conditions,
it is easy to check that x1, . . . , xr form a solution of the original system.

10 The idea is to represent higher-degree monomials in the general system using new variables; e.g., for the
monomial x3y we can introduce new variables t1, t2, new quadratic equations t1 = x2 and t2 = xy, and replace
x3y by t1t2.
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To verify the claim, for notational convenience, let us index the x and y variables in the
new system by the set I = {0, 1, . . . , r, 0′, 1′, . . . , r′}, where xi′ = x′i and yi′ = y′i. We suppose
that (xi, yi : i ∈ I) form a solution of the new system. Since x0y

′
0−x′0y0 = 1, the 2×2 matrix(

x0 x′0
y0 y′0

)
has determinant 1 and thus an integral inverse matrix, which we denote by T .

Let us de�ne new values (x̄i, ȳi : i ∈ I) by
( x̄i
ȳi

)
= T · ( xiyi ), i ∈ I. We have x̄0 = ȳ′0 = 1

and ȳ0 = x̄′0 = 0, and it remains to show that the x̄i and ȳi satisfy the new system. This is
because, for every i, j ∈ I, we have

x̄iȳj − x̄j ȳi = det

(
x̄i x̄j
ȳi ȳj

)
= det

(
T ·
(
xi xj
yi yj

))

= detT · det

(
xi xj
yi yj

)
= xiyj − xjyi.

3. Cell complexes and simplicial sets

This section and the next one mostly present known material from topology; in several cases
we need to adapt results from the literature to our needs, which is sometimes best done by
re-proving them. Readers may want to skim these two sections quickly and return to them
later when needed.

Here we review two basic ways of building topological spaces from simple pieces: cell com-

plexes and simplicial sets. Cell complexes, also known as CW complexes, are fairly standard
in topology, and we will use them for a simple description of the various spaces in our proofs.
Simplicial sets are perhaps less well known, and for us, they will mainly be a convenient device
for converting cell complexes into simplicial complexes. Moreover, they are of crucial impor-
tance in the algorithmic results mentioned in the introduction. For a thorough discussion of
simplicial complexes, simplicial sets, cell complexes, and the connections between the three,
we refer to [FP90].

3.1. Cell complexes

In the case of cell complexes, the building blocks are topological disks of various dimensions,
called cells, which can be thought of as being completely \
exible" and which can be glued
together in an almost arbitrary continuous fashion. Essentially the only condition is that each
n-dimensional cell has to be attached along its boundary to the (n− 1)-skeleton of the space,
i.e., to the part that has already been built, inductively, from lower-dimensional cells. The
formal de�nition is as follows.

We recall that if X and Y are topological spaces and if f : A → Y is a map de�ned on
a subspace A ⊆ X, then the space X ∪f Y obtained by attaching X to Y via f is de�ned
as the quotient of the disjoint union X t Y under the equivalence relation generated by the
identi�cations a ∼ f(a), a ∈ A.

A closed or open n-cell is a space homeomorphic to the closed n-dimensional unit disk
Dn in n-dimensional Euclidean space or its interior D̊n, respectively; a point is regarded as
both a closed and an open 0-cell.
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Anm-dimensional cell complex 11 X is the last term of an inductively constructed sequence
of spaces X(0) ⊆ X(1) ⊆ X(2) ⊆ . . . ⊆ X(m) = X, called the skeleta of X:

1. X(0) is a discrete set of points (possibly in�nite) that are regarded as 0-cells.

2. Inductively, the n-skeleton X(n) is formed by attaching closed n-cells Dn
i (where i ranges

over some arbitrary index set) toX(n−1) via attaching maps ϕi : S
n−1
i = ∂Dn → X(n−1).

Formally, we can consider all attaching maps together as de�ning a map ϕ = tiϕi from
the disjoint union

⊔
i S

n−1
i to X(n−1) and form X(n) =

(⊔
iD

n
i

)
∪ϕ X(n−1).

For every closed cell Dn
i , one has a characteristic map12 Φi : D

n
i → X(n) ⊆ X, which

restricts to an embedding on the interior D̊n
i . The image Φi(D̊

n
i ) is commonly denoted by eni ,

and it follows from the construction that every point of X is contained in a unique open cell
(note that these are in general not open subsets of X, however).

As a basic example, the n-sphere is a cell complex with one n-cell and one 0-cell, obtained
by attaching Dn to a point e0 via the constant map that maps all of Sn−1 to e0.

Subcomplexes. A subcomplex A ⊆ X is a subspace that is closed and a union of open cells
of X. In particular, for each cell in A, the image of its attachment map is contained in A,
so A is itself a cell complex (and its cell complex topology agrees with the subspace topology
inherited from X).

The homotopy extension property. An important fact is that cell complexes have the
so-called homotopy extension property : Suppose that X is a cell complex and that A ⊆ X is a
subcomplex. If we are given a map f0 : A→ Y into a some space Y , an extension f̄0 : X → Y
of f0 and a homotopy H : A× [0, 1] between f0 and some other map f1 : A→ Y , then H can
be extended to a homotopy H̄ : X × [0, 1]→ Y between f̄0 and some extension f̄1 : X → Y of
f1. Here is an immediate consequence:

Corollary 3.1. For a cell complex X, subcomplex A ⊆ X, and a space Y , the extendability

of a map f : A→ Y to X depends only on the homotopy class of f in [A, Y ]. Moreover, the

map f : A → Y has an extension f̄ : X → Y i� there exists a map g : X → Y such that the

diagram

A
f
//

i
��

Y

X

g

>>

commutes up to homotopy, i.e., gi ∼ f .

Cellular maps and cellular approximation. A map f : X → Y between cell complexes
is called cellular if it maps skeleta to skeleta, i.e., f(X(n)) ⊆ Y (n) for every n.

The cellular approximation theorem (see [Hat01, Thm. 4.8]) states that every continuous
map f : X → Y between cell complexes is homotopic to a cellular one; moreover, if the given
map f is already cellular on some subcomplex A ⊆ X, then the homotopy can be taken to
be stationary on A (i.e., the image of every point in A remains �xed throughout).

11Cell complexes can be also in�nite-dimensional, in which case some care has to be taken in de�ning their
topology, but we will deal with cell complexes made of �nitely many cells, and thus �nite-dimensional.

12The composition of the inclusion Dn
i ↪→

(⊔
iD

n
i

)
tX(n−1) with the quotient map.
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3.2. Simplicial sets

For certain constructions it is advantageous to use a special type of cell complexes with an
additional structure that allows for a purely combinatorial description; the latter also facili-
tates representing and manipulating the objects in question, simplicial sets, on a computer.
We refer to [Fri12] for a very friendly thorough introduction to simplicial sets.

Intuitively, a simplicial set can be thought of as a kind of hybrid or compromise between
a simplicial complex (more special) on the one hand and a cell complex (more general) on the
other hand. Like in the case of simplicial complexes, the building blocks (cells) of which a
simplicial set is constructed are simplices (vertices, edges, triangles, tetrahedra, . . . ), and the
boundary of each n-simplex ∆n is attached to the lower-dimensional skeleton by identi�cations
that are linear on each proper face (subsimplex) of ∆n; thus, these identi�cations can be
described combinatorially by maps between the vertex sets of the simplices.13 However, the
attachments are more general than the one permitted for simplicial complexes; for example,
one may have several 1-dimensional simplices connecting the same pair of vertices, a 1-simplex
forming a loop, two edges of a 2-simplex identi�ed to create a cone, or the boundary of a
2-simplex all contracted to a single vertex, forming an S2.

Moreover, one keeps track of certain additional information that might seem super
uous but
turns out to be very useful for various constructions. For instance, even if the identi�cations
force some n-simplex to be collapsed to something lower-dimensional (so that it could be
discarded for the purposes of describing the space as a cell complex), it will still be formally
kept on record as a degenerate n-simplex; for instance, the edges of the triangle with a
boundary contracted to a point (the last example above) do not disappear|formally, each of
them keeps a phantom-like existence of a degenerate 1-simplex.

Formally, a simplicial set X is given by a sequence (X0, X1, X2, . . .) of mutually disjoint
sets, where the elements of Xn are called the n-simplices of X (we note that, unlike for
simplicial complexes, a simplex in a simplicial set need not be determined by the set of its
vertices; indeed, there can be many simplices with the same vertex set). The 0-simplices are
also called vertices.

For every n ≥ 1, there are n+1 mappings ∂0, . . . , ∂n : Xn → Xn−1 called face operators; the
intuitive meaning is that for a simplex σ ∈ Xn, ∂iσ is the face of σ opposite to the ith vertex.
Moreover, there are n+ 1 mappings s0, . . . , sn : Xn → Xn+1 called the degeneracy operators;
the approximate meaning of siσ is the degenerate simplex which is geometrically identical to
σ, but with the ith vertex duplicated. A simplex is called degenerate if it lies in the image
of some si; otherwise, it is nondegenerate. We write Xndg for the set of all nondegenerate
simplices of X. A simplicial set is called �nite if it has only �nitely many nondegenerate
simplices (if X is nonempty, there are always in�nitely many degenerate simplices, at least
one for every positive dimension).

There are natural axioms that the ∂i and the si have to satisfy, but we will not list them
here, since we won't really use them. Moreover, the usual de�nition of simplicial sets uses
the language of category theory and is very elegant and concise; see, e.g., [FP90, Sec. 4.2].

13More precisely, the vertex set of each simplex is equipped with an ordering, and the identi�cations are
required to be weakly order-preserving maps (not necessarily injective) between the vertex sets.
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If A and X are simplicial sets such that An ⊆ Xn for every n and the face and degeneracy
operators of A are the restrictions of the corresponding operators of X, then we call A a
simplicial subset of X.

Examples. Here we sketch some basic examples of simplicial sets; again, we won't provide
all details, referring to [Fri12]. Let ∆p denote the standard p-dimensional simplex regarded
as a simplicial set. For p = 0, (∆0)n consists of a single simplex, denoted by 0n, for every
n = 0, 1, . . .; 00 is the only nondegenerate simplex. The face and degeneracy operators are
de�ned in the only possible way.

For p = 1, ∆1 has two 0-simplices (vertices), say 0 and 1, and in general there are n + 2
simplices in (∆1)n; we can think of the ith one as containing i copies of the vertex 0 and
n+ 1− i copies of the vertex 1, i = 0, 1, . . . , n+ 1. For p arbitrary, the n-simplices of ∆p can
be thought of as all nondecreasing (n + 1)-term sequences with entries in {0, 1, . . . , p}; the
ones with all terms distinct are nondegenerate.

In a similar fashion, every simplicial complex K can be converted into a simplicial set
X in a canonical way; �rst, however, we need to �x a linear ordering of the vertices. The
nondegenerate n-simplices of X are in one-to-one correspondence with the n-simplices of K,
but many degenerate simplices show up as well.

Geometric realization. Like a simplicial complex, every simplicial set X de�nes a topolog-
ical space |X|, the geometric realization of X, which is unique up to homeomorphism. More
speci�cally, |X| is a cell complex with one n-cell for every nondegenerate n-simplex of X,
and these cells are glued together according to the identi�cations implied by the face and
degeneracy operators (we omit the precise de�nition of the attachments, since we will not
really use it and refer to the literature, e.g., to [Fri12] or [FP90, Sec. 4.3]).

Simplicial maps. Simplicial sets serve as a combinatorial way of describing a topological
space; in a similar way, simplicial maps provide a combinatorial description of continuous
maps.

A simplicial map f : X → Y of simplicial sets X,Y consists of maps fn : Xn → Yn,
n = 0, 1, . . ., that commute with the face and degeneracy operators.

A simplicial map f : X → Y induces a continuous, in fact, a cellular map |f | : |X| → |Y |
of the geometric realizations in a natural way (we again omit the precise de�nition). Often
we will take the usual liberty of omitting | · | and not distinguishing between simplicial sets
and maps and their geometric realizations.

Of course, not all continuous maps are induced by simplicial maps. However, simplicial
maps can be used to approximate arbitrary continuous maps up to homotopy. The simplicial

approximation theorem (which may be most familiar in the context of simplicial complexes)
says that for an arbitrary continuous map ϕ : |X| → |Y | between the geometric realizations
of simplicial sets, with X �nite, there exist a su�ciently �ne subdivision X ′ of X and a
simplicial map f : X ′ → Y whose geometric realization is homotopic to ϕ; see Section 3.4 for
more details.

Encoding �nite simplicial sets. A �nite simplicial complex can be encoded in a straight-
forward way by listing the vertices of each simplex.

For simplicial sets, the situation is a bit more complicated, since the simplices are no
longer uniquely determined by their vertices, but if X is �nite, then we can encode X by the
set Xndg of its nondegenerate simplices (which we assume to be numbered from 1 to N , where
N is the total number of nondegenerate simplices), plus a little bit of additional information.
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The simple but crucial fact (see, e.g. [FP90, Thm. 4.2.3]) we need is that every simplex
σ can be written uniquely as σ = sτ , where τ is nondegenerate and s is a degeneracy, i.e., a
composition s = sik . . . si1 of degeneracy operators where k = dimσ − dim τ (in particular,
σ is nondegenerate itself if σ = τ and s is the identity). Thus, as mentioned above, degen-
erate simplices σ do not need to be encoded explicitly but can be represented by sτ when
needed, where the degeneracy s can be encoded by the sequence (ik, . . . , i1) of indices of its
components.14 The extra information we need to encode X, in addition to the list of its
nondegenerate simplices, is how these �t together. Speci�cally, for σ ∈ Xndg

n and 0 ≤ i ≤ n,
the ith face can be written uniquely as ∂iσ ∈ Xn−1 = sτ with τ nondegenerate, and for each
σ, we record the (n+ 1)-tuple of pairs (τ, s).

Similarly, if f : X → Y is a simplicial map between �nite simplicial sets, then given
the encodings of X and Y , we can encode f by expressing, for each σ ∈ Xndg

n , the image
f(σ) = sτ , with τ ∈ Y ndg

m and recording the list of triples (σ, τ, s).
For a �nite simplicial set X, we de�ne size(X) as the number of nondegenerate simplices.

If the dimension ofX is bounded by some number d, then the number of bits in the encoding of
X described above is bounded by O(size(X) log size(X)), with the constant of proportionality
depending only on d.

The notion of size will be a convenient tool that allows us to ensure that our reductions
can be carried out in polynomial time, without analyzing the running time in complete detail,
which we feel would be cumbersome and not very enlightening.

More speci�cally, our reductions will be composed of a sequence of various basic construc-
tions of simplicial sets, which will be described in the next subsection.

For each of these basic constructions, it is straightforward to check15 that when we apply
them to �nite simplicial sets of bounded dimension, both the running time of the construction
(the number of steps needed to compute the encoding of the output from the encoding of
the input) as well as the size of the output simplicial set are polynomial in the size of the
input. Thus, to ensure polynomiality of the overall reduction, it will be enough to take care
that we combine only a polynomial number of such basic constructions, that the size of every
intermediate simplicial set constructed during the reduction remains polynomial in the initial
input, and that the dimension remains bounded.

3.3. Basic constructions

In this subsection, we review several basic constructions for cell complexes and simplicial
sets. (One advantage of simplicial sets over simplicial complexes is that various operations on
topological spaces, in particular Cartesian products and quotients, have natural counterparts
for simplicial sets. This is where the degeneracy operators and degenerate simplices turn out
to be necessary.) For more details, we refer to [Hat01, FP90].

Pointed and k-reduced simplicial sets and cell complexes. Several of the constructions
are de�ned for pointed spaces. We recall that a pointed space (X,x0) is a topological space
X with a choice of a distinguished point x0 ∈ X (the basepoint). If X is a cell complex or a
simplicial set then we will always assume that the basepoint to be a vertex (i.e., a 0-cell or
0-simplex, respectively). A pointed map (X,x0)→ (Y, y0) of pointed spaces (cell complexes,

14Moreover, this sequence is unique, by the simplicial set axioms that we have not speci�ed, if one stipulates
ik < . . . < i1.

15A notable exception are subdivisions, for which we provide more detail in an appendix.
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simplicial sets) is a continuous (cellular, simplicial) map sending x0 to y0. Homotopies of
pointed maps are also meant to be pointed; i.e., they must keep the image of the basepoint
�xed. The reader may recall that, for example, the homotopy groups πk(Y ) are de�ned as
homotopy classes of pointed maps. The set of pointed homotopy classes of pointed maps
X → Y will be denoted by [X,Y ]∗.

A simplicial set X is called k-reduced, k ≥ 0, if it has a single vertex and no nondegenerate
simplices in dimensions 1 through k. Similarly, a cell complex X is k-reduced if it has a single
vertex and no cells of dimensions 1 up to k. It is then necessarily k-connected.

If (Y, y0) is a 0-reduced cell complex (or simplicial set), then any cellular (or simplicial)
map from a pointed complex (X,x0) into Y is automatically pointed. Moreover, if Y is 1-
reduced, then every homotopy is pointed, too, and thus [X,Y ] is canonically isomorphic to
[X,Y ]∗.

Products. If X and Y are cell complexes, then their Cartesian product X×Y has a natural
cell complex structure whose n-cells are products ep×eq, where p+q = n and ep and ep range
over the p-cells of X and the q-cells of Y , respectively.

Furthermore, if X and Y are simplicial sets then there is a formally very simple way to
de�ne their product X × Y : one sets (X × Y )n := Xn × Yn for every n, and the face and
degeneracy operators work componentwise; e.g., ∂i(σ, τ) := (∂iσ, ∂iτ). As one would expect
from a good de�nition, the product of simplicial sets corresponds to the Cartesian product
of their geometric realizations, i.e., |X × Y | ∼= |X| × |Y |.16 The apparent simplicity of the
de�nition hides some intricacies, though, as one can guess after observing that, for example,
the product of two 1-simplices is not a simplex|so the above de�nition has to imply some
canonical way of triangulating the product.

Remark 3.2. A pair (sσ, tτ) of degenerate simplices in the factors may yield a nondegener-
ate simplex in the product, if the degeneracies s and t are composed of di�erent degeneracy
operators si. However, dim(X × Y ) = dimX + dimY , so the product contains no nondegen-
erate simplices of dimension larger than dimX + dimY , and hence size(X × Y ) is at most
size(X)× size(Y ) times some factor that depends only on the dimension17 dim(X × Y ).

Moreover, if the dimensions are bounded, the product can be constructed in polynomial
time.

Quotients and attachments. If X, Y and A are cell complexes with A ⊆ X and if
f : A→ Y is a cellular map, then the space X ∪f Y obtained by attaching X to Y along f is

16To be more precise, the above equality holds literally, with the product topology on the right hand side,
only under suitable assumptions on X and Y , e.g., if both X and Y have only countably many simplices. In the
general case, one has to interpret the product |X| × |Y | di�erently, in the category of so-called k-spaces, and
the same subtlety arises for products of cell complexes, see, e.g., the discussion in the respective appendices in
[FP90, Hat01]. For the spaces we will encounter, however, this issue will not arise and the product will be the
same as the usual product of topological spaces.

17This follows from the fact about realizations mentioned above. Another way of seeing this is that if
dimσ = p, dim τ = q and dim(sσ) = dim(tτ) = n > p + q then s and t involve n − p and n − q degeneracy
operators si with i ≤ n, respectively, so there must be a repetition since n− p+ n− q > n. Without further
re
ection, this immediately implies that size(X × Y ) ≤ size(X) · size(Y ) · (dimX)!(dimY )!.
In fact, the factor is only singly exponential in the dimensions. For instance, for a product ∆p × ∆q of

two standard simplices, the vertices of ∆p ×∆q correspond to the grid points in {0, . . . , p} × {0, . . . , q}, and
the non-degenerate k-simplices correspond to subsets of size k + 1 of the grid that are weakly monotone in
both coordinates (weakly monotone paths of length k). Thus, the number of non-degenerate simplices of full
dimension p + q equals

(
p+q
p

)
, and the number of all non degenerate simplices is at most 4p+q, say. Thus,

size(X × Y ) ≤ size(X) · size(Y )× 4dimX+dimY , say.
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also a cell complex in a natural way (see, e.g., [FP90, Sec. 2.3]). In particular, X/A is a cell
complex, with cells corresponding to the cells of X not contained in A, plus one additional
0-cell (corresponding to the image of A under the quotient map).

Similarly, if X is a simplicial set and if ∼ is an equivalence relation on each Xn that
is compatible with the face and degeneracy operators, then the quotient X/ ∼ is also a
simplicial set. In particular, this includes simplicial attachments X ∪f Y of simplicial sets
along a simplicial map f : A → Y de�ned on a simplicial subset A ⊆ X, and quotients X/A
by simplicial subsets. These constructions are compatible with geometric realizations. i.e.,
e.g., |X ∪f Y | ∼= |X| ∪|f | |Y |.

Moreover, the size of X ∪f Y is at most the size of X plus the size of Y , and in bounded
dimension, the attachment can be constructed in polynomial time.

Wedge sum (or wedge product). If X1, . . . , Xm are pointed spaces, then their wedge
sum X1 ∨ · · · ∨Xm is simply the disjoint union of the Xi with the basepoints identi�ed (this
is a very special type of attachment). If the Xi are cell complexes or simplicial sets, then so
is their wedge sum.

Later we will need the following bijection:

[X1 ∨X2 ∨ · · · ∨Xm, Y ]∗
∼=−→ [X1, Y ]∗ × [X2, Y ]∗ × · · · × [Xm, Y ]∗ (5)

where the components of this map are given by the restrictions to the respective Xi.

Mapping cylinder and mapping cone. For a map f : X → Y , the mapping cylinder of f
is the space Cyl(f) de�ned as the quotient of (X× [0, 1])tY under the identi�cations (x, 0) ∼
f(x) for each x ∈ X. The mapping cone Cone(f) is de�ned as the quotient Cyl(f)/(X×{1})
of Cyl(f) with the subspace X × {1} collapsed into a point.

By the discussion concerning attachments, if X and Y are cell complexes and f is cellular
then Cyl(f) and Cone(f) are cell complexes as well. Moreover, if f is a simplicial map
between simplicial sets, then by taking the analogous simplicial attachments and quotients,
we obtain simplicial sets, denoted by Cyl(f) and Cone(f) as well, and called the simplicial

mapping cylinder and simplicial mapping cone, respectively. The simplicial constructions are
compatible with geometric realizations; i.e., for example, |Cyl(f)| ∼= Cyl(|f |).

X

Y

f(X)

f

Cyl(f)

We will use the mapping cylinder in our construction to replace an arbitrary map f : X →
Y by an inclusion X ↪→ Cyl(f), which has the same homotopy properties as f . A more
precise statement is given in the following lemma (see, e.g., [Hat01, Corollary 0.21]).

Lemma 3.3. Let f : X → Y be a continuous map between topological spaces. We consider

X ∼= X × {1} and Y as subspaces of Cyl(f) and denote the corresponding inclusion maps18

by iX : X ↪→ Cyl(f) and iY : Y ↪→ Cyl(f).

18More precisely, the inclusion maps are given as the composition of the respective inclusions X ∼= X×{1} ⊆
X × [0, 1] t Y and Y ⊆ X × [0, 1] t Y with the quotient map X × [0, 1] t Y → Cyl(f).
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(a) Y is a strong deformation retract19 of Cyl(f).

(b) X (considered as a subspace via iX) is a strong deformation retract of Cyl(f) i� f is a

homotopy equivalence.

(c) iX ∼ iY f are homotopic as maps X → Cyl(f).

(d) If f : X → Y is a homotopy equivalence and if g : Y → X is a homotopy inverse for f ,
then iXg ∼ iY as well.

Reduced mapping cone and mapping cylinder. If X and Y and f are pointed, with
basepoints x0 and y0, it will be technically convenient, particularly in Section 6, to consider
the spaces C̃yl(f) and C̃one(f), called the reduced mapping cylinder and the reduced mapping

cone, respectively, that are obtained from Cyl(f) and Cone(f) by collapsing the segment x0×
[0, 1] (whose lower end is identi�ed with y0) to a single point. We will apply this construction
only to cellular or simplicial mapping cylinders and cones, in which case contracting the
subcomplex x0 × [0, 1] is a homotopy equivalence.

Moreover, if f is a homotopy equivalence then we may assume that its homotopy inverse g
is pointed as well and that the homotopies fg ' idY and gX ' idX keep the basepoints �xed
(see [Hat01, Corollary 0.19]). It follows that Lemma 3.3 remains true if we take C = C̃yl(f)
as the reduced mapping cylinder (the inclusions are given as those into Cyl(f), followed by
the quotient map Cyl(f) → C̃yl(f), which does not make any identi�cations within X or
within Y ).

By the remarks concerning the size of simplicial products and attachments, the size of the
(reduced or unreduced) simplicial mapping cylinder or cone is at most the size of X plus the
size of Y , times a factor depending only on dimX.

3.4. Subdivisions and simplicial approximation

For simplicial complexes, there is the well-known notion of barycentric subdivision (see, e.g.,
[Mun84, §15]). An analogous notion of subdivision, called normal subdivision, can also be
de�ned for simplicial sets. Informally speaking, the normal subdivision Sd(X) of a simplicial
set X is de�ned by barycentrically subdividing each simplex of X and then glueing these sub-
divided simplices together according to the identi�cations implied by the face and degeneracy
operators of X. We refer to [FP90, Section 4.6] for the precise formal de�nition and just state
the facts that we will need in what follows.

For the standard simplex ∆p, the nondegenerate k-simplices of Sd(∆p) correspond to
chains of proper inclusions of nondegenerate simplices (faces) of ∆p. It follows that Sd(∆p)
has (p + 1)! nondegenerate p-simplices and, in general, at most 2p+1(p + 1)! nondegenerate
simplices of any dimension. Consequently, for any simplicial set X, the size of Sd(X) is at
most the size of X times a factor that depends only on dimX and which can be bounded
from above by 2dimX+1(dimX + 1)!. Moreover, if the dimension is bounded, Sd(X) can be
constructed in time polynomial in size(X).

19We recall that a deformation retraction of a space X onto a subspace A is a map H : X × [0, 1] → X
such that H(x, 0) = x and H(x, 1) ∈ A for all x ∈ X and H(a, 1) = a for all a ∈ A. Thus, a deformation
retraction witnesses that the inclusion map iA : A ↪→ X is a homotopy equivalence with a homotopy inverse
r = H(·, 1) : X → A that is a retraction, i.e., that restricts to the identity on A.
A deformation retraction is called strong if it keeps A �xed pointwise throughout, i.e., if H(a, t) = a for all

a ∈ A and t ∈ [0, 1] (some authors include this directly in the de�nition of a deformation retraction).
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If f : X → Y is a simplicial map, then subdivision also induces a map Sd(f) : Sd(X) →
Sd(Y ), and this is compatible with compositions; i.e., Sd(fg) = Sd(f) Sd(g).

For each simplicial set X, there is a simplicial map lastvX : Sd(X) → X, called the
last vertex map,20 which is a homotopy equivalence that is compatible with simplicial maps
f : X → Y , i.e., f lastvX = lastvY Sd(f).21 22

There is also a simplicial approximation theorem for simplicial sets, which uses iterated
normal subdivisions. Speci�cally, the t-fold iterated normal subdivision of a simplicial set is
de�ned inductively as Sdt(X) := Sd(Sdt−1(X)), where Sd0(X) := X.

Theorem 3.4 ([FP90, Thm. 4. 6. 25]). Let X and Y be simplicial sets such that X has only

�nitely many nondegenerate simplices, and let f : |X| → |Y | be a continuous map. Then

there exist a �nite integer t (which depends on f) and a simplicial map g : Sdt(X) → Y
such that |g| is homotopic to the composition f | lastvtX | of f with the iterated last vertex map

lastvtX : Sdt(X)→ Y .

To convert arbitrary simplicial sets into homotopy-equivalent (in fact, homeomorphic)
simplicial complexes, another subdivision-like operation is needed, (see, e.g., [Jar04]). Given
a simplicial set Z, one can de�ne a simplicial complex B∗(Z) inductively, by introducing a
new vertex vσ for every nondegenerate simplex σ, and then replacing σ by the cone with
apex vσ over B∗(∂σ). If the simplicial set Z has a certain regularity property|which is
satis�ed, for instance, if Z = Sd(X)|then B∗(Z) and Z are homotopy equivalent (in fact,
homeomorphic).23 We summarize the properties that we need in the following proposition
(for completeness, we provide a proof in A).

Proposition 3.5. If X is a simplicial set, then the twofold subdivision B∗(Sd(X)) is a

simplicial complex. Moreover, there is a simplicial map γX : B∗(Sd(X)) → X, which is

a homotopy equivalence. For a simplicial subset A ⊆ X, B∗(Sd(A)) is a subcomplex of

B∗(Sd(X)) and γX |A = γA.
24

If X is �nite and of bounded dimension, there are algorithms that construct the simplicial

complex B∗(Sd(X)) and evaluate the map γX , both in polynomial time.

4. Homotopy groups

We review some further facts about homotopy groups that we will need. For more details see,
e.g., [Hat01, Section 4.1].

20On the standard simplex ∆n, seen as a simplicial set, this map is de�ned by sending a chain (σ0, . . . , σk)
(a k-simplex of Sd(∆n)) to the simplex [v0, . . . , vk], where vi is the last vertex of the simplex σi (recall that
the vertices in each simplex are ordered).

21In the language of category theory, Sd is a functor and lastv is a natural transformation between Sd and
the identity functor on simplicial sets.

22In fact, it is true that X and Sd(X) are not only homotopy equivalent but homeomorphic (as one might
expect given the terminology \ subdivision"). However, for simplicial sets this is a decidedly nontrivial result,
see [FP90, Cor. 4.6.5]. The di�culty is related to the fact that there is no way of de�ning this homeomorphism
for all simplicial sets in such a way that it becomes compatible with simplicial maps. For our purposes, the
natural homotopy equivalence lastvX will be su�cient and more convenient.

23As an illustration that this fails for general simplicial sets, consider the case where Z = Σp is the simplicial
set model of the d-sphere with only two nondegenerate simplices, one in dimension 0 and one in dimension d.
In this case, B∗(Σd) is a 1-dimensional simplex.

24In fact, the construction B∗ Sd is functorial and γ is a natural transformation (like the construction Sd
and the map lastv), but we will never use this stronger fact.
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4.1. Basic facts

So far, we used the de�nition of the nth homotopy group πn(X,x0) of a pointed space
(X,x0) as the set of homotopy classes of pointed maps (Sn, p0) → (X,x0), where p0 ∈ Sn
is an arbitrarily chosen basepoint, and the homotopies are required to keep the basepoint
�xed. Equivalently, the elements of πn(X,x0) can be viewed as homotopy classes [f ] of maps
f : (Dn, ∂Dn) → (X,x0) sending all of ∂Dn to x0, modulo homotopies that keep the image
of ∂Dn �xed (as before, we will often drop the basepoint from the notation).25

In what follows, we will also need the Abelian group operation in πn(X,x0), n ≥ 2,
which can be de�ned as follows: Suppose f1, . . . , fm are maps (Dn, ∂Dn)→ (X,x0). Suppose
we have a cellular decomposition of Dn as a cell complex Dn

m with n-cells en1 , . . . , e
n
m (in

Section 6.1 below we will provide a concrete geometric construction of Dn
m). Then we can

de�ne a map f from Dn ∼= Dn
m to (X,x0) representing the homotopy class [f1] + . . .+ [fm]

by sending the (n − 1)-skeleton of Dn
m to x0, and by de�ning the restriction of f to each

open cell eni to be fi.
A very important special case of homotopy groups are those of spheres. We will use the

following well-known facts:

• The sphere Sn is (n− 1)-connected.

• For all n ≥ 1, πn(Sn) is isomorphic to Z and generated by the homotopy class ι of the
identity. For each map ϕ : Sn → Sn, there is a unique integer a ∈ Z such that [ϕ] = aι;
it is called the degree of ϕ and denoted by degϕ. The degree is obviously invariant
under homotopy.

• We have π3(S2) ∼= Z. The group is generated by the famous Hopf map26 η : S3 → S2.

We will also need the following simple fact:

Lemma 4.1. Let g : Sn → Sn be a map of degree b ∈ Z. Then, for any map f : Sn → X, we

have [fg] = b · [f ] ∈ πn(X).

Proof. Consider the n-dimensional unit cube In ∼= Dn, where I = [0, 1] is the unit interval.
We identify Sn with the quotient In/∂In. From the map of sets (In, ∂In)→ (In, ∂In) given by
(s1, . . . , sn−1, sn) 7→ (s1, . . . , sn−1, bsn mod 1) we obtain g0 : Sn → Sn by passing to quotients.
By the de�nition of the addition of homotopy classes, on the one hand, [g0] is the b-fold sum
of the identity, and hence a particular example of a map of degree b. On the other hand, fg0

is a representative of b · [f ], the b-fold sum of [f ]. Since [fg] depends only on the homotopy
class [g], which is uniquely determined by the degree of g, the lemma follows.

Let X be a cell complex and A ⊆ X a subcomplex. Then the homotopy groups of the
spaces A, X and X/A in a certain range are connected by an exact sequence.

Theorem 4.2. Let A ⊆ X be cell complexes. Let p, q ≥ 0 be integers, q ≤ p + 1. If A
is p-connected and X is q connected, then X/A is also q-connected and there is an exact

sequence

πp+q(A)→ · · · → πi(A)→ πi(X)→ πi(X/A)→ πi−1(A)→ · · · → πq+1(X/A).

25The claimed equivalence is obtained by identifying Sn with the quotient Dn/∂Dn of the n-disk by its
boundary and p0 with the image of ∂Dn under the quotient map.

26See [Hat01, Ex. 4.45] for the de�nition (which is not di�cult, but which we will not need).
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Here the maps πi(A) → πi(X) and πi(X) → πi(X/A) are induced by the inclusion and the

projection, respectively, and the exactness means that the kernel of each homomorphism equals

the image of the preceding one.

Proof. One can de�ne homotopy groups of any pair (X,A), A ⊆ X, and these homotopy
groups �t into the following exact sequence

· · · → πi(A)→ πi(X)→ πi(X,A)→ πi−1(A)→ . . . , i ≥ 1;

see [Hat01], Section 4.1. From the exactness and the connectivity assumptions it is easy to
show that πi(X,A) = 0 for i ≤ q. Then, according to [Hat01, Proposition 4.28], the map
πi(X,A)→ πi(X/A) induced by the quotient map X → X/A is an isomorphism for i ≤ p+ q.
Substituting πi(X/A) in this range into the exact sequence above, we get the exact sequence
from the statement of the theorem.

In the proof of Theorem 1.1 we will need a description of the nth homotopy group of a
cell complex Y obtained from T by attaching (n+ 1)-cells e`, 1 ≤ ` ≤ m, by attaching maps
ϕ` : S

n → T .

Proposition 4.3. Let n ≥ 2 be an integer. Suppose that T is a 1-connected cell complex and

Y is a cell complex obtained from T as described above. Then

πn(Y ) ∼= πn(T )/〈[ϕ1], [ϕ2], . . . , [ϕm]〉,

where 〈[ϕ1], [ϕ2], . . . , [ϕm]〉 is the subgroup of πn(T ) generated by the homotopy classes of ϕ`,
1 ≤ ` ≤ m.

Proof. It is su�cient to prove the statement for a single cell attached; then we can proceed by
induction. Consider the reduced mapping cylinder C̃ylϕ, together with the inclusions of Sn

and T into it and the projection onto C̃ylϕ/Sn = C̃oneϕ = Y . The situation is summarized
in the diagram

Sn

ϕ
""

// C̃ylϕ // C̃ylϕ/Sn = Y

T

∼
OO

which commutes up to homotopy. Applying Theorem 4.2 for A = Sn, X = C̃ylϕ, p = n− 1
and q = 1, we obtain the exact sequence

πn(Sn)→ πn(C̃ylϕ)→ πn(Y )→ πn−1(Sn) = 0.

If we replace the inclusion Sn ↪→ C̃ylϕ by the map ϕ : Sn → T , we get

πn(Sn)
ϕ∗−→ πn(T )→ πn(Y )→ 0.

Hence πn(Y ) = πn(T )/〈ϕ∗(ι)〉, where ι is the homotopy class of the identity on Sn, and thus
ϕ∗(ι) is the homotopy class of ϕ.
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4.2. Whitehead products and wedge sums of spheres

Whitehead products. There is another type of operation on elements of homotopy groups
that we will need. Consider two spheres Sk and S` with their standard structures as cell
complexes (one vertex and one cell of the top dimension). Then the product Sk × S` is also
a cell complex, with one vertex, one respective cell ek and e` in dimensions k and `, and one
cell ek×e` in dimension k+ `. In particular, the (k+ `−1)-skeleton of the product is a wedge
Sk ∨ S`, to which the (k + `)-cell is attached via a map ϕ : Sk+`−1 ∼= ∂(Dk+`)→ Sk ∨ S`.

Now, if f : Sk → X and g : S` → X are (pointed) maps, we can combine them to a map
f ∨ g : Sk ∨ S` → X. If we compose this with the attachment map ϕ discussed before, we
get a map [f, g] : Sk+`−1 → X, called the Whitehead product of f and g. The homotopy
class of this product clearly depends only on the homotopy classes of the factors, so we get a
well-de�ned product πk(X)× π`(X) → πk+`−1(X), again denoted by [·, ·]. As a quite trivial
but nonetheless useful example, if X = Sk × S`, then the attachment map ϕ itself equals the
Whitehead product [ιSk , ιS` ] of the two inclusions ιSk : Sk ↪→ Sk ∨ S` and ιS` : S` ↪→ Sk ∨ S`.

In our proofs we will use that the Whitehead product is natural, graded commutative and
bilinear, i.e.

f∗[α, β] = [f∗α, f∗β],

[α, β] = (−1)k`[β, α],

[α+ γ, β] = [α, β] + [γ, β],

[α, β + δ] = [α, β] + [α, δ]

where α, γ ∈ πk(X), β, δ ∈ π`(X) and f : X → Y . For the proof see [Whi78], Chapter X,
7.2, Cor. 7.12 and Cor. 8.13.

In the proof of Theorem 1.1 we will need some facts about the homotopy groups of spheres
and their wedge sums.

Theorem 4.4 ([Hat01, Cor. 4B.2],[Whi78, XI, Thm. 2.5]). There is a homomorphism (called

the Hopf invariant) H : π2k−1(Sk)→ Z such that for d even H([ι, ι]) = ±2.

Let us note that for k odd the Whitehead product [ι, ι] ∈ π2k−1(Sk) is of order two,
i.e. 2[ι, ι] = 0. Whitehead products play a crucial role in Hilton's theorem which converts
the computation of homotopy groups of a wedge of spheres to the computations of homotopy
groups of spheres. We do not need this theorem in its full generality as it was proved in
[Hil55], and so we restrict ourselves to a special case.

Let k ≥ 2 and r, s ≥ 1 be integers. Let

T = Sk1 ∨ · · · ∨ Skr ∨ S2k−1
1 ∨ · · · ∨ S2k−1

s (6)

be the wedge sums of r copies of Sk and s copies of S2k−1. Denote by νi and µq the homotopy
classes of the inclusions Sk ↪→ T and S2k−1 ↪→ T onto the ith copy of Sk and the qth copy of
S2k−1, respectively. Then the homotopy groups πk(T ) and π2k−1(T ) can be described by the
following special case of Hilton's theorem.

Theorem 4.5 ([Hil55, Thm. A]). With the notation as above, there are isomorphisms

πk(T ) ∼=
⊕

1≤i≤r
πk(S

k
i ),

π2k−1(T ) ∼=
⊕

1≤i≤r
π2k−1(Ski )⊕

⊕

1≤q≤s
π2k−1(S2k−1

q )⊕
⊕

1≤i<j≤r
π2k−1(S2k−1

ij ).
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An element β ∈ π2k−1(Ski ) corresponds to the composition νiβ ∈ π2k−1(T ), an element β ∈
π2k−1(S2d−1

q ) to the composition µqβ ∈ π2k−1(T ), and an element β ∈ π2k−1(S2k−1
ij ) to the

composition [νi, νj ]β ∈ π2k−1(T ).

We will say that some elements x1, . . . , xr of an Abelian group are integrally independent

if the only valid relation a1x1 + · · ·+arxr = 0 with coe�cients ai ∈ Z is that with all ai zero.
The following statement is an immediate consequence of Theorems 4.5 and 4.4.

Corollary 4.6. If k ≥ 2 is odd, then the elements µq, 1 ≤ q ≤ s, and [νi, νj ], 1 ≤ i < j ≤ r
are integrally independent in π2k−1(T ).

If k ≥ 2 is even, then the elements µq, 1 ≤ q ≤ s and [νi, νj ], 1 ≤ i ≤ j ≤ r are integrally

independent in π2k−1(T ).

Proof. The reason is that every element in the list comes from a di�erent direct summand
and is of in�nite order.

In the case k = 2 and s = 0 we can say even more:

Corollary 4.7 ([Hat01, Ex. 4.52]). The homotopy group π3(
∨r
i=1 S

2
i ) is a free Abelian group

generated by the Whitehead products [νi, νj ], 1 ≤ i < j ≤ r, and homotopy classes νiη, where
η : S3 → S2 is the Hopf map.

5. The constructions for Theorem 1.1 presented as cell com-

plexes

Here we present the essence of the proof of Theorem 1.1. Namely, for every system of quadratic
Diophantine equations of the form (Q-SYM) (for k even) or (Q-SKEW) (for k odd), we
construct cell complexes A, X, Y , and a continuous map f : A → Y , where Y is (k − 1)-
connected and dimX = 2k, such that f is extendable to X i� the Diophantine system has a
solution. Moreover, one of (X,A) and Y can be assumed to be �xed, as in Theorem 1.1 (a)
and (b). We will also see the role of Whitehead products and Hilton's theorem in the proof.

What remains for the next section is to convertX, A, Y into �nite simplicial complexes and
f into a simplicial map, so that the solvability of the extension problem remains unchanged.
Moreover, the construction has to be algorithmic.

While discussing the cellular constructions of X, A, Y , it is also natural to describe the
cell complex used by Anick in the proof of his #P-hardness result. Indeed, his construction
uses tools very similar to those employed in our constructions.

The generalized extension problem. In order to simplify the presentation, it is convenient
to remove the assumption in the extension problem that A is a subspace of X, or in other
words, that the map A→ X is an inclusion. Instead, we consider three spaces A, W , Y and
(arbitrary) maps g : A→W and f : A→ Y , and we ask if there is a map h : W → Y making
the following diagram commutative up to homotopy:

A
f
//

g

��

Y

W

h

>> (GEP)

20



For a generalized extension problem as above, we obtain an equivalent extension problem by
setting X = Cyl(g) (where A is considered as a subspace of the cylinder in the usual way).
This is easy to see, but we nonetheless brie
y describe a proof of this fact that only uses the
homotopy extension property for pairs of cell complexes and the properties of the mapping
cylinder summarized in Lemma 3.3. This means that we can replace the mapping cylinder
Cyl(g) by any other cell complex that has these properties, and the same proof will still apply.
This will be useful for our simplicial constructions later on, for which it will be convenient to
work with so-called generalized mapping cylinders (see Section 6.2).

Let iA and iW be the inclusions of A and W into X. On the one hand, given a solution
f̄ : X → Y of the extension problem, i.e., f̄ iA = f , we can de�ne h := f̄ iW as the restriction
of f̄ to W . Then hg = f̄ iW g ∼ f̄ iA = f , so h is a solution to the generalized extension
problem.

On the other hand, given a solution h for the generalized extension problem (GEP), let
r : X → W be the retraction from X to W and de�ne f̄ := hr. Then f̄ iA = hriA ∼ hg ∼ f ,
so f̄ is an extension of a map homotopic to f , and since extendability depends only on the
homotopy class of a map (Corollary 3.1), f can be extended as well.

Thus, we are free to consider the generalized extension problem with dimW ≤ 2k and
dimA ≤ 2k − 1.

5.1. Fixed target

We describe an instance of the generalized extension problem for part (a) of Theorem 1.1,
where the target Y is �xed. The system of equations will be encoded into cell complexes A,
W and the maps g : A→W , f : A→ Y .

Fixed target with k even. Here Y = Sk,

A = S2k−1
1 ∨ · · · ∨ S2k−1

s , W = Sk1 ∨ · · · ∨ Skr . (8)

Then the diagram (GEP) becomes

A = S2k−1
1 ∨ · · · ∨ S2k−1

s

f
//

g

��

Sk

W = Sk1 ∨ · · · ∨ Skr
h

77

According to (5) from the discussion of wedge sums in Section 3.3, the homotopy class of
f : A → Sk is speci�ed completely by the homotopy classes of its restrictions to the spheres
forming A. We will use f∗µq = [f ]µq ∈ π2k−1(Sk) to denote these, where µq is the homotopy
class of the inclusion of the qth sphere S2k−1

q into A. Our particular choice is

f∗µq = bq[ι, ι]. (9)

Similarly, the homotopy class of g : A→W is given by its restrictions as

g∗µq =
∑

1≤i<j≤r
a

(q)
ij [νi, νj ], (10)
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where νi the homotopy class of the inclusion of the ith spere Ski into W . Finally, let h : W →
Sk be an arbitrary map and write h∗νi = xiι ∈ πk(Sk) for some integers xi ∈ Z. According
to (5) again, the diagram (GEP) commutes up to homotopy i� (hg)∗µq = f∗µq, i.e. i�

h∗
( ∑

1≤i<j≤r
a

(q)
ij [νi, νj ]

)
= bq[ι, ι] (11)

for all 1 ≤ q ≤ s. Using the naturality and bilinearity of the Whitehead product, the left
hand side equals

∑

1≤i<j≤r
a

(q)
ij [h∗νi, h∗νj ] =

∑

1≤i<j≤r
a

(q)
ij [xiι, xjι] =

∑

1≤i<j≤r
a

(q)
ij xixj [ι, ι].

According to Theorem 4.6 the homotopy class [ι, ι] is of in�nite order, and so the system of
equations (11) is equivalent to (Q-SYM). We get the following:

Proposition 5.1. Let the maps f : A → Sk and g : A → W be as in (9) and (10) above.

Then f can be extended to X = C̃yl(g) if and only if the system (Q-SYM) has a solution.

Fixed target with k odd. The element [ι, ι] ∈ π2k−1(Sk) has order 2, so we cannot use
Y = Sk. However, leaving A, W and g : A → W as before, we can take Y = Sk ∨ Sk and
specify f by

f∗µq = bq[ι1, ι2], (12)

where ι1 and ι2 are inclusions of Sk onto the �rst and the second summand in Sk ∨ Sk,
respectively. Using Hilton's theorem (Theorem 4.5) for πk(Sk ∨ Sk), the homotopy class of a
general map h : W → Y satis�es

h∗νi = xiι1 + yiι2, xi, yi ∈ Z. (13)

Using the fact that [ι1, ι2] = −[ι2, ι1], it is easy to show that the commutativity of the diagram
(GEP) is equivalent to the system of s equations in π2k−1(Sk ∨ Sk),
(∑

i<j

a
(q)
ij (xiyj − xjyi)

)
[ι1, ι2] +

(∑

i,j

a
(q)
ij xixj

)
[ι1, ι1] +

(∑

i,j

a
(q)
ij yiyj

)
[ι2, ι2] = bq[ι1, ι2].

By Corollary 4.6 of Hilton's theorem the element [ι1, ι2] ∈ π2k−1(Sd ∨ Sd) is of in�nite order,
while [ι1, ι1] and [ι2, ι2] are of order 2. Multiplying all the equations in (Q-SKEW) by 2, we

get an equivalent system, in which all the a(q)
ij are even. For this system, the above equation

is exactly the one from (Q-SKEW). We get the following:

Proposition 5.2. Let the maps f : A → Sk ∨ Sk and g : A → W be as in (12) and (10)
above. Then f can be extended to X = C̃yl(g) if and only if the system (Q-SKEW) has a

solution.

5.2. Fixed source

The idea for the �rst step of the proof of Theorem 1.1 (b) is similar, only the constructions
involve attaching cells and also the usage of Hilton's theorem is more substantial.
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Fixed source with k even. We put

A = S2k−1, W = Sk

where the homotopy class of g : A→ W is [g] = [ι, ι]. A given system of equations (Q-SYM)
will be encoded in the target space Y and in the homotopy class of f : A → Y . The target
space Y is a cell complex obtained from the wedge of spheres T de�ned in (6) by attaching
(2k)-cells eij , 1 ≤ i < j ≤ r and eii, 1 ≤ i ≤ r, i.e.

Y = (Sk1 ∨ · · · ∨ Skr ∨ S2k−1
1 ∨ · · · ∨ S2k−1

s )︸ ︷︷ ︸
T

∪
⋃

1≤i<j≤r
eij ∪

⋃

1≤i≤r
eii. (14)

The attaching maps for the cells are the maps S2k−1 → T whose homotopy classes are,
respectively,

ϕij = [νi, νj ]−
∑

1≤q≤s
a

(q)
ij µq, ϕii = [νi, νi].

Denote the images of the homotopy classes µq ∈ π2k−1(T ), 1 ≤ q ≤ s and νi ∈ πk(T ),
1 ≤ i ≤ r, in Y by µ′q and ν

′
i, respectively. Further, take a map f : A → Y of the homotopy

class
[f ] = 2b1µ

′
1 + 2b2µ

′
2 + · · ·+ 2bsµ

′
s.

Since πk(Y ) ∼= πk(T ) ∼= πk(S
k
1 )⊕ · · · ⊕ πk(Skr ) by Theorem 4.5, a general map h : W → Y has

a homotopy class
[h] = x1ν

′
1 + x2ν

′
2 + · · ·+ xrν

′
r

with arbitrary integer coe�cients xi. To show that the commutativity of the diagram (GEP)
(up to homotopy) is equivalent to the satisfaction of the system (Q-SYM), we will need the
following lemma.

Lemma 5.3. Let Y be the cell complex as above. Then the classes µ′q ∈ π2k−1(Y ), 1 ≤ q ≤ s,
are integrally independent and

[ν ′i, ν
′
j ] =

∑

1≤q≤s
a

(q)
ij µ

′
q, 1 ≤ i < j ≤ r,

[ν ′i, ν
′
i] = 0, 1 ≤ i ≤ r.

Proof. The statement is a consequence of Proposition 4.3 and Corollary 4.6.

Using this lemma and the bilinearity and graded commutativity of the Whitehead product,
we compute [hg] ∈ π2k−1(Y ) as

h∗[g] = h∗[ι, ι] = [h∗ι, h∗ι]

=
[ ∑

1≤i≤r
xiν
′
i,
∑

1≤j≤r
xjν
′
j

]
=

∑

1≤i,j≤r
xixj [ν

′
i, ν
′
j ]

= 2
∑

1≤i<j≤r
xixj [ν

′
i, ν
′
j ] +

∑

1≤i≤r
x2
i [ν
′
i, ν
′
i]

= 2
∑

1≤i<j≤r
xixj

( s∑

q=1

a
(q)
ij µ

′
q

)

= 2
∑

1≤q≤s

( ∑

1≤i<j≤r
a

(q)
ij xixj

)
µ′q
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Comparing with [f ] and using the fact that µ′q are integrally independent, we obtain the
system (Q-SYM).

Fixed source with odd k. As in the �xed target case, we resolve the problem of [ι, ι]
being of order 2 by replacing it with [ι1, ι2]. In this case, it means that we set A = S2k−1,
W = Sk ∨ Sk. The target space Y remains the same as for k even. We take f to be any map
with

[f ] = b1µ
′
1 + b2µ

′
2 + · · ·+ bsµ

′
s

and g has the advertised homotopy class [g] = [ι1, ι2], where ι1 and ι2 are the homotopy
classes of the inclusions of the two copies of Sk into W = Sk ∨ Sk. The homotopy class of a
map h : W → Y is again determined by its restrictions along ι1, ι2, namely

h∗ι1 = x1ν
′
1 + x2ν

′
2 + · · ·+ xrν

′
r, h∗ι2 = y1ν

′
1 + y2ν

′
2 + · · ·+ yrν

′
r,

where the xi and yi can be arbitrary integers. The composition [hg] ∈ π2k−1(Y ) equals

h∗[g] =
[ ∑

1≤i≤r
xiν
′
i,
∑

1≤j≤r
yjν
′
j

]
=

∑

1≤i,j≤r
xiyj [ν

′
i, ν
′
j ]

=
∑

1≤i<j≤r
(xiyj − xjyi)[ν ′i, ν ′j ] +

∑

1≤i≤r
xiyi[ν

′
i, ν
′
i]

=
∑

1≤i<j≤r
(xiyj − xjyi)

( ∑

1≤q≤s
a

(q)
ij µ

′
q

)

=
∑

1≤q≤s

( ∑

1≤i<j≤r
a

(q)
ij (xiyj − xjxi)

)
µ′q

(again using Lemma 5.3). Since the µ′q are integrally independent, the comparison with [f ]
leads to the system (Q-SKEW).

Summarizing our �ndings, for k both even and odd we get the following:

Proposition 5.4. For each k ≥ 2 let the maps f : A→ Y and g : A→W be as above. Then

f can be extended to X = C̃yl(g) if and only if there is a solution to the system (Q-SYM)
when k is even, or (Q-SKEW) when k is odd.

5.3. Anick's 4-dimensional cell complexes

Here we introduce complexes constructed by Anick [Ani89, p. 42] for his hardness result.
These are compact 4-dimensional cell complexes which arise from the wedgeW = S2

1∨· · ·∨S2
r

of r copies of S2 by attaching s 4-cells. According to Corollary 4.7, the homotopy class of a
general attaching map has to be an integral combination of the homotopy classes νiη and the
Whitehead products [νi, νj ], where η is the homotopy class of the Hopf map S3 → S2 and νi
is the homotopy class of the inclusion S2 →W on the ith copy of S2.

Together with [Hat01, Proposition 0.18] this implies that, up to homotopy equivalence, a

completely general way of attaching 4-cells toW is described by integers a(q)
ij for 1 ≤ i ≤ j ≤ r

and q = 1, 2, . . . , s. Speci�cally, the qth 4-cell is attached via a map S3
q → W representing

the homotopy class in π3(W ) de�ned by

ϕq =
∑

1≤i≤r
a

(q)
ii ιiη +

∑

1≤i<j≤r
a

(q)
ij [ιi, ιj ].
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Therefore, the homotopy type of the resulting Anick complex, i.e., its class of homotopy
equivalence, which we denote by Y 4

a , is completely determined by the vector a = (a
(q)
ij )1≤q≤s

1≤i≤j≤r
of integer coe�cients.

In Anick's #P-hardness result, the input complex Y 4
a (whose higher homotopy groups are

to be computed) is encoded very concisely by the vector a of integers, represented in binary:

Theorem 5.5 (Anick [Ani89]). It is #P-hard to compute the rank of πn(Y 4
a ) for a given

integer n ≥ 2 (encoded in unary) and a given integer vector a (represented in binary).

In Section 6, we will show that, given a, we can construct, in polynomial time, a �nite
4-dimensional simplicial complex homotopy equivalent to Y 4

a . Together with Anick's result,
this will imply Theorem 1.2.

6. Simplicial constructions

In this section, we prove that the constructions of cell complexes and cellular maps from
the last section can be converted into homotopy equivalent �nite simplicial complexes and
simplicial maps. Moreover, we exhibit algorithms for constructing such simplicial sets and
maps that run in time polynomial in the encoding size of the integer vector a(q)

ij (and possibly
bq) represented in binary. The constructions involve only simplicial products, attachments
(in particular, mapping cylinders), quotients, and subdivisions, which are all algorithmic.

The polynomial bound for the running time is needed only for Anick's space, where
polynomial running time is important; for the undecidability results we could use less e�cient
(and simpler) techniques. However, there is almost no overall saving in constructing only
Anick's space with a polynomial bound and doing the other constructions more wastefully,
since all of the involved spaces are similar. Moreover, we expect the tools developed here to
be useful, e.g., for future NP-hardness or #P-hardness results, where polynomiality of the
constructions is crucial, of course.

Let us denote by Σp a \model" of the sphere Sp as a simplicial set with only two nonde-
generate simplices, one in dimension 0 and the other in dimension p.

6.1. Constructing the sum of several maps Sp → Y .

In this short section we describe how, given simplicial maps f1, . . . , fm : Σp → Y , we can
construct a simplicial representative of the sum [f1] + · · · + [fm] ∈ πp(Y ). To this end, we
have to change the domain to a simplicial set with a larger number of simplices.

We de�ne the simplicial set Dp
m, which is a union of m copies of ∆p, where the ith copy

is glued by its ∂1-face to the ∂0-face of the (i + 1)st copy. The union of the remaining faces
(the ∂1-face of the �rst copy, the ∂0-face of the last copy and all the ∂i-faces with i > 1) is
denoted by ∂Dp

m. Here is a picture of D2
m:

•

•

::

•//

1

GG

•//

···
WW

•//

m

dd

with the double arrows denoting the boundary ∂D2
m. Another point of view is, that D1

m is
a chain of m copies of the 1-simplex ∆1 and each Dp

m is a cone over Dp−1
m.
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There is a simplicial map Dp
m → ∆p that sends the �rst copy of ∆p in Dp

m onto ∆p

by the identity, while the rest is sent to the degeneracy of the ∂0-face of ∆p. It induces a
simplicial map

q : Dp
m/∂D

p
m → Σp,

which is a homotopy equivalence (it is easy to see this, e.g., from homology). There is another
simplicial map that collapses the whole (p − 1)-skeleton of Dp

m. The map factors through
Dp

m/∂D
p
m as

Dp
m

// Dp
m/∂D

p
m

δ // Σp ∨ · · · ∨ Σp.

We specify a simplicial map f : Σp ∨ · · · ∨ Σp by mapping the ith copy of Σp to Y by fi.
The maps q, δ, and f �t into a diagram

Dp
m/∂D

p
m

δ //

q ∼
��

Σp ∨ · · · ∨ Σp f
// Y

Σp

55

Since q has a continuous homotopy inverse, there is a unique homotopy class of maps Σp → Y
extending [fδ] up to homotopy, namely the homotopy class of [f1] + · · ·+ [fm].

By the naturality of the subdivision, we also have maps

q : Sdt(Dp
m/∂D

p
m)→ Σp, δ : Sdt(Dp

m/∂D
p
m)→ Sdt(Σp) ∨ · · · ∨ Sdt(Σp)

(the map q is the composition of the subdivision of the original q with the iterated last vertex
map Sdt(Σp)→ Σp) that will serve to add representatives f1, . . . , fm : Sdt(Σp)→ Y .

6.2. Generalized mapping cylinders

In the above approach, in order to construct simplicial maps Σp → Y , we replaced the domain
Σp by a homotopy equivalent simplicial set. This will be very useful for the proof of part
(a) of Theorem 1.1. For part (b), the domain has to be left unchanged, and thus a di�erent
construction has to be used.27 It is roughly \dual" to the previous one: it replaces the target
Y by a homotopy equivalent simplicial set.

Thus, instead of subdividing the sphere Σp, we will replace the target space Y by a
\generalized mapping cylinder". This solution works also for domains other than Σp. Thus,
for a map f : X → Y , we will be interested in diagrams, commutative up to homotopy, of the
following form.

Y

iY∼
��

X
iX
//

f
>>

M

De�nition 6.1. Let M be a pointed simplicial set with two simplicial subsets X,Y ⊆ M
containing the basepoint of M . Let iX : X → M and iY : Y → M be the corresponding
inclusion maps, and let f : |X| → |Y | be a pointed continuous map. We say that M is a

27There is a further issue with the subdivision|it is not polynomial. The construction of a representative
of a multiple b[f ] of a map f : Σp → Y requires b simplices, and this number is exponential in the number of
bits of b.
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generalized mapping cylinder for f , with upper rim X and lower rim Y , if iY is a homotopy

equivalence and iX ∼ iY f . We denote this situation by M : X
f
// Y .

We remark that the above de�nition depends only on the homotopy class of f ; we may
thus say that M is a generalized mapping cylinder for the homotopy class [f ].

By Lemma 3.3 and the remark following it, the reduced mapping cylinder C̃yl(f) of
f : X → Y is an example of such a generalized mapping cylinder with upper rim X and lower
rim Y . Moreover, if f is a homotopy equivalence with a homotopy inverse g, one can easily
see from the de�nition that a generalized mapping cylinder M for f is also a generalized
mapping cylinder Mop for g with upper rim Y and lower rim X (i.e., the roles of upper and
lower rim are interchanged).28

The important property of generalized mapping cylinders, that we are going to use heavily,
is that they may be used for attaching cells.

Proposition 6.2. Let M : Σp
1∨· · ·∨Σp

m
f
// Y be a generalized mapping cylinder for a pointed

map f , whose restriction to the ith summand is fi : |Σp
i | → |Y |. Then the composition

Y
iY−→M

proj−−→M/(Σp
1 ∨ · · · ∨ Σp

m) extends to a homotopy equivalence

Y ∪ (ep+1
1 ∪ · · · ∪ ep+1

m )
∼−−→M/(Σp

1 ∨ · · · ∨ Σp
m)

where the cell ep+1
i on the left is attached to Y along the map fi.

Proof. Put X = Σp
1 ∨ · · · ∨ Σp

m. Then the space from the statement, obtained from Y by
attaching cells, is the mapping cone of f . By [Bre93, Theorem I.14.19] the mapping cone
of f : X → Y is homotopy equivalent to that of iY f : X → M (since iY is a homotopy
equivalence). Further, by [Bre93, Theorem I.14.18] it is also homotopy equivalent to the
mapping cone of iX : X → M (since iY f ∼ iX). By [Bre93, Theorem VII.1.6] the mapping
cone of iX is homotopy equivalent to M/X.

All the involved maps respect Y (which is naturally a subspace of all the mapping cones
and also maps by proj iY to the quotient M/X), proving that the resulting homotopy equiv-
alence is indeed an extension of the composition proj iY .

Generalized mapping cylinders can be composed in an obvious way:

Lemma 6.3. Let f : X → Y and g : Y → Z be pointed continuous maps, and let M and

N be generalized mapping cylinders for f and g, respectively. Let NM := N ∪Y M be the

simplicial set obtained by identifying the lower rim of M with the upper rim of N . Then NM
is a generalized mapping cylinder for gf .

Proof. Consider the diagram
X

f
��

iX
''
M iM

''
Y

g

��

iY 77

jY
''

N ∪Y M
N iN

77

Z jZ

77

28When f is injective, one can use Y as a generalized mapping cylinder for f .
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where iX , iY , jY , iZ , iM , iN are inclusions, both triangles commutes up to homotopy and
the square commutes strictly. Consequently, the triangle formed by the spaces X, Z and
N ∪Y M commutes up to homotopy, too. To show that N ∪Y M is a generalized mapping
cylinder for gf , it su�ces to prove that the inclusion iN is a homotopy equivalence.

It is well known (see [Hat01, Theorem 4.5]) that to every inclusion iY : Y → M which
is a homotopy equivalence there is a deformation retraction r : M → Y . Then the map
h : N ∪Y M → N de�ned as jY r on M and as the identity on N is a homotopy inverse to
iN .

We will also need simplicial maps representing (the homotopy classes of) a constant num-
ber of speci�c maps, such as the Whitehead product [ι, ι] : S2d−1 → Sd of the identity on Sd

with itself, the Whitehead product [ι1, ι2] : S2d−1 → Sd1 ∨ Sd2 of the inclusions Sdi → Sd1 ∨ Sd2
and the Hopf map η : S3 → S2. In each case, it is possible to construct these explicitly, but
we will use the following general lemma:

Lemma 6.4. Let X and Y be �nite simplicial sets and let f : |X| → |Y | be an arbitrary but

�xed pointed continuous map. Then there exists a generalized mapping cylinder X
f
// Y . It

is of dimension max{dimX + 1, dimY }.

The point here is that, in contrast with Theorem 3.4, we can prescribe the exact triangula-
tions of the upper and lower rim, which will make it easy to compose the resulting generalized
mapping cylinders.

Proof. By the simplicial approximation theorem for simplicial sets (Theorem 3.4), there exist
an iterated barycentric subdivision X ′ = Sdt(X) of X and a simplicial map g : X ′ → Y
homotopic to f |`|, where ` : X ′ → X is the natural homotopy equivalence (the iterated last
vertex map).

Let M := C̃yl(`) and N := C̃yl(g) be the corresponding reduced simplicial mapping
cylinders. Since ` is a homotopy equivalence, we can also view M as a generalized mapping
cylinder Mop for a homotopy inverse h : |X| → |X ′| of |`|, with upper rim X and lower rim
X ′. Thus, NMop is a generalized mapping cylinder for |g|h ∼ f |`|h ∼ f .

The following proposition plays a crucial role in our simplicial constructions:

Proposition 6.5. Let Y be a �nite simplicial set and let f1, . . . , fm : Sdt Σp → Y be given

simplicial maps. Then there is an algorithm that, given an integer vector c = (c1, . . . , cm),

constructs a generalized mapping cylinder Σp f
// Y for the homotopy class

[f ] = c1[f1] + · · ·+ cm[fm] ∈ πp(Y ) = [Σp, Y ]∗,

in time polynomial in the (binary) encoding size of c.

The proof will be given in a series of lemmas. Before going into the proof, we will generalize
this proposition slightly. A homotopy class of a pointed map f : Σp

1 ∨ · · · ∨ Σp
s → Y is

determined uniquely by its restrictions Σp
k → Y . When each restriction is expressed as an

integral combination of the fi, we may use Proposition 6.5 together with Lemma 6.7 to provide
a generalized mapping cylinder for f .
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Lemma 6.6. There is an algorithm that, given an integer of the form c = ±2d, d ∈ N,
constructs a generalized mapping cylinder Nc : Σp //Σp for the map of degree c. Moreover, if

p is �xed then size(Nc) is linear in d+ 1 and the running time of the algorithm is polynomial

in d+ 1, which is the encoding size of c.

Proof. Consider maps g−1, g2 : |Σp| → |Σp| of degrees −1 and 2, respectively, and choose a
generalized mapping cylinder Ni for each gi according to Lemma 6.4. For p constant, these
are �xed simplicial sets.

Thus, by Lemma 6.3,
N2d := N2 · · ·N2︸ ︷︷ ︸

d factors

is a generalized mapping cylinder for (g2)d, a map of degree 2d. By further composing this
with N−1, if necessary, we obtain a generalized mapping cylinder Nc for a map of degree c.

Moreover, if p is �xed then we can precompute the generalized mapping cylinders N−1,
N2, which leads to size(Nc) and running time as requested.

Lemma 6.7. Suppose that X1, . . . , Xm and Y are pointed simplicial sets and thatMi : Xi
// Y

are generalized mapping cylinders for pointed maps fi : |Xi| → |Y |, 1 ≤ i ≤ m. Then there is

an algorithm that constructs a generalized mapping cylinder M : X1 ∨ · · · ∨Xm
f
// Y for the

map f : |X1 ∨ · · · ∨Xm| → |Y | with restrictions f ||Xi| = fi.
Moreover, if p is �xed then size(N) is linear in

∑
i size(Mi) and the running time is

polynomial.

Proof. The wedge sum M ′ = M1 ∨ · · · ∨Mm is a generalized mapping cylinder

M ′ : X1 ∨ · · · ∨Xm
f1∨···∨fm // Y ∨ · · · ∨ Y.

We attach to M ′ the mapping cylinder of the folding map ∇ : Y ∨ · · · ∨ Y → Y to obtain the
required generalized mapping cylinder M .

Lemma 6.8. Let M1, . . . ,Mm : Σp // Y be generalized mapping cylinders for [f1], . . . , [fm] ∈
πp(Y ). Then there is an algorithm that constructs a generalized mapping cylinderM : Σp // Y
for the homotopy class [f1] + . . .+ [fm] ∈ πp(Y ), in polynomial time if p is �xed.

Proof. Let us consider the following chain of maps:

Σp q←−− Dp
m/∂D

p
m

δ−−→ Σp
1 ∨ · · · ∨ Σp

m
f−−→ Y,

where f restricts to fi on the ith summand. The �rst two maps are simplicial and thus their
mapping cylinders provide generalized mapping cylinders for any homotopy inverse q of q
and for δ, respectively. A generalized mapping cylinder for f was constructed in Lemma 6.7.
Composing these cylinders gives the result, since fδq ∼ f1 + · · ·+ fm; see Section 6.1.

Proof of Proposition 6.5. Let Mi : Σp fi // Y , i = 1, . . . ,m, be generalized mapping cylinders.
Using the binary expansion of an integer c, Lemma 6.8, and Lemma 6.6, we can construct

the generalized mapping cylinder Nc for every map Σp → Σp of degree c in time polynomial
(at most quadratic) in the bit length of c. The composition MiNci is a generalized mapping
cylinder for ci[fi]. Lemma 6.8 then constructs a generalized mapping cylinder for the sum
c1[f1] + · · ·+ cm[fm].
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6.3. Proofs of the main results

In Section 5 we described the relevant spaces as cell complexes. It remains to construct them
as �nite simplicial complexes and the map f : A→ Y as a simplicial map.

Proof of Theorem 1.1 (a). We will give details only for k even. Using the notation from
Section 5.1, we triangulate the target sphere Y = Sk in an arbitrary manner and �x simplicial
maps

w+, w− : Sdt(Σ2k−1)→ Sk

that represent the homotopy classes of the Whitehead square and its negative,

[w±] = ±[ι, ι] ∈ π2k−1(Sk)

(by the simplicial approximation theorem, a su�ciently �ne subdivision Sdt(Σ2k−1) and the
required simplicial maps exist, and they can be hard-wired into the algorithm). Let now b
be the vector of the right hand sides of an arbitrary system of the form (Q-SYM) and let
1 ≤ q ≤ s. By adding |bq| times the map w±, we obtain a simplicial map

A′q := Sdt
(
D2k−1

|bq |/∂D
2k−1

|bq |
) f ′q−−→ Sk

that represents bq[ι, ι].29 Finally, we take A′ = A′1 ∨ · · · ∨ A′s and specify f ′ : A′ → Sk by its
restrictions to the A′q, namely, the maps f ′q.

We recall that the spaceX is constructed as the mapping cylinder of a map g : A→W that
was expressed in terms of the Whitehead products [νi, νj ] and the coe�cients of the system
(Q-SYM). In the simplicial setup it will be more convenient to use generalized mapping
cylinders for this purpose. As explained during the discussion of the generalized extension
problem in the beginning of Section 5, the extension problems are equivalent. Using a �xed
representatives w′± : Sdt(Σ2k−1) → Σk ∨ Σk, we may construct the generalized mapping
cylinder X ′ : A′ //W , with the inclusion denoted by i′ : A′ → X ′, of the composition

A′1 ∨ · · · ∨A′s︸ ︷︷ ︸
A′

q∨···∨q−−−−−→ Σ2k−1
1 ∨ · · · ∨ Σ2k−1

s︸ ︷︷ ︸
A

g−−→ Σk
1 ∨ · · · ∨ Σk

r︸ ︷︷ ︸
W

.

Thus, we have constructed an extension problem, given by i′ and f ′, and by Proposition 5.1,
its solvability is equivalent to the solvability of the system (Q-SYM) that we started with.

Finally, we replace the simplicial sets A′ and X ′ by the simplicial complexes B∗(Sd(A′))
and B∗(Sd(X ′)) (see Proposition 3.5). The map f ′ is replaced by the composition f ′γA′ in
the diagram

B∗(Sd(A′))
γA′ //

� _

��

A′
f ′
//

� _

��

Sk

B∗(Sd(X ′))
γX′ // X ′

where the maps γA′ and γX′ were also de�ned in Proposition 3.5.
Since both γX′ and γA′ are homotopy equivalences, the extendability of |f ′| is equivalent

to that of |f ′γA′ | by Corollary 3.1. �
29When bq = 0, we take A′q = Sdt(Σ2k−1) and f ′q : Sdt(Σ2k−1)→ Sk the constant map onto the basepoint.
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Proof of Theorem 1.1 (b). Again, we work out the case k even. Let A, X, Y , f and g
be as in Proposition 5.1 and �x an arbitrary pair of simplicial sets (X ′, A′) whose geometric
realization is homotopy equivalent to (X,A). Using generalized mapping cylinders for this
purpose, we may assume that A′ = Σ2k−1. We �x some simplicial maps

w′± : Sdt(Σ2k−1)→ Σk ∨ Σk

representing the Whitehead product and its negative. According to Proposition 6.2, the cell
complex Y of (14) is homotopy equivalent to the quotient M/S, where M is an arbitrary

generalized mapping cylinder M : S
ϕ
// T for the map ϕ : |S| → |T | between the geometric

realizations of the simplicial sets

S =
∨

i<j
Σ2k−1
ij ∨

∨
i
Σ2k−1
ii , T =

∨
i
Σk
i ∨
∨

q
Σ2k−1
q ,

whose restrictions to the spheres of S are the attaching maps ϕij and ϕii for the cells of Y ;
see Section 5. The generalized mapping cylinder M is constructed by Proposition 6.5.

Since the image of f : A→ Y lies in T , the replacement of Y by M/S results in replacing
f by the composition

f̃ : Σ2k−1 f
// T

iT //M
proj
//M/S.

(the homotopy equivalence Y 'M/S restricts to proj iT on T by Proposition 6.2).
It remains to replace f̃ by a simplicial map. But since f is a combination of the Whitehead

products and the remaining maps iT and proj are simplicial, we may achieve this by replacing

M/S further by the generalized mapping cylinder Y ′ : Σ2k−1 f̃
//M/S as in Section 6.2. We

denote the inclusion Σ2k−1 → Y ′ by f ′. From the de�nition of the generalized mapping
cylinder, iM/S f̃ ∼ f ′ and iM/S is a homotopy equivalence, and therefore the extendability of

f̃ is equivalent to that of f ′. This �nishes the construction of a simplicial replacement of the
extension problem.

To make everything into simplicial complexes, we apply B∗ Sd to all the involved simplicial
sets A′ = Σ2k−1, X ′, Y ′ and the simplicial map f ′. �

Proof of Theorem 1.2. Let us �x some simplicial representatives

h : Sdt(Σ3)→ Σ2, w : Sdt(Σ3)→ Σ2 ∨ Σ2, m2,m−1 : Sdt(Σ2)→ Σ2

for the Hopf map η, the Whitehead product [ι1, ι2], and the maps of degree 2 and −1,
respectively. We may then build the generalized mapping cylinder

M : Σ3
1 ∨ · · · ∨ Σ3

s
ϕa //Σ2

1 ∨ · · · ∨ Σ2
r ,

for the map ϕa whose restriction to the kth summand Σ3
k is given by

ϕq =
∑

1≤i≤r
a

(q)
ii ιiη +

∑

1≤i<j≤r
a

(q)
ij [ιi, ιj ].

We construct Anick's simplicial complex Y 4
a as

Y 4
a = B∗ Sd

(
M/(Σ3

1 ∨ · · · ∨ Σ3
s)
)
.
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By Proposition 6.2, it is homotopy equivalent to the cellular complex obtained from the wedge
Σ2

1 ∨ · · · ∨ Σ2
r by attaching 4-cells along the maps with homotopy classes ϕq.

To get the statement of Theorem 1.2, it is now su�cient to realize that the algorithmic
construction above can be carried out in the time polynomial in the binary encoding of the
vector a(q)

ij , 1 ≤ i ≤ j ≤ r, 1 ≤ q ≤ s. �

Acknowledgement. We are grateful to Maurice Rojas for providing us useful information
on Diophantine equations.

Appendix A. Subdivisions of simplicial sets

Here we outline a proof of Proposition 3.5.
Since a simplicial set also encodes an ordering of the vertices within each simplex, there is

another \barycentric subdivision" Sd∗(X) associated with any simplicial set X, obtained by
reversing the order of the vertices in every simplex of Sd(X) (in Sd(X), the inclusion chains of
simplices are ordered according to ascending dimension, and in Sd∗(X) according to descend-
ing dimension). Thus, for example, Sd(∆1) can be described pictorially as • //• •oo

while Sd∗(∆1) is • •oo //• . The barycentric subdivision Sd∗(X) is related to the origi-
nal simplicial set X via an initial vertex map Sd∗(X)→ X, which is a homotopy equivalence.

Moreover there is a universal way of associating a simplicial complex with any simplicial
set X: it has the same vertex set as X and a collection of vertices spans a (unique) simplex
if and only if there exists a simplex in the original simplicial set X with this vertex set. An
alternative, equivalent de�nition of B∗X is that it is the simplicial complex associated in this
way with Sd∗(X).

Proof of Proposition 3.5. The face operators ∂i can be iterated to obtain more general face
operators. Since each ∂i leaves out the i-th vertex of a simplex, by iterating we obtain face
operators that leave out a set of vertices. When this set is I ⊆ {0, . . . , n}, we write the
corresponding operator as ∂I . It is easy to observe that we can express ∂I as

∂I = ∂i1 · · · ∂ik ,

where i1 < · · · < ik is the ordering of the elements of I = {i1, . . . , ik}. We call k the
codimension of ∂I . Similarly, we can iterate the si and obtain general degeneracy operators sI .

Since we are interested in the computational side of the story, we will describe the simplicial
complex B∗(Sd(X)) explicitly. Its vertices are the chains

σ = σ0
//
f1 // σ1

//
f2 // //

fk // σk,

where σ0, . . . , σk are simplices of X with σk non-degenerate, and each fi is a face operator of
codimension at least 1, for which σi−1 = fiσi.

We say that a chain

τ = τ0
//
g1 // τ1

//
g2 // //

g` // τ`

(still with τ` non-degenerate and all face operators gi of codimension at least 1) is a subchain
of σ, which we write as σ > τ , if there exists an injective monotone map (a subsequence)
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ϕ : {0, . . . , `} → {0, . . . , k} with ` < k and a commutative diagram

σϕ(0)
// //

����

σϕ(1)
// //

����

// // σϕ(`)

����
τ0
//

g1 // τ1
//
g2 // //

g` // τ`

(the top maps are the appropriate compositions of the fi), where every arrow σϕ(i)
// //τi is

an iterated degeneracy operator pi for which piτi = σϕ(i). The commutativity means that the
respective compositions of operators are equal. For each ϕ, there exists at most one subchain
τ , but for a given τ , the choice of ϕ is not unique. The composition σ0 → σϕ(0) → τ0 gives a
canonical operator σ0 → τ0. It is not too hard to show30 that this operator depends only on
σ and τ and not on the choice of ϕ.

The n-simplices of B∗(Sd(X)) are then formed by the subsets {σ0, . . . ,σn} for all decreas-
ing sequences σ0 > · · · > σn of chains; we order the vertices in each simplex according to the
subchain relation.

The simplicial map γ : B∗(Sd(X)) → X is de�ned on vertices by sending σ to the last
vertex of σ0. For a simplex speci�ed by σ0 > · · · > σn, we have a canonical chain

(σ0)0
// (σ1)0

// // (σn)0

of operators and we use these to map the last vertices lastv((σi)0) of the faces (σi)0 to (σn)0.
In this way, we obtain an (ordered) collection of vertices of (σn)0. The value of γ on the
sequence σ0 > · · · > σn is then the simplex of (σn)0 spanned by these vertices (it might be
degenerate, e.g. when some of the (σi−1)0 → (σi)0 preserve the last vertex).

According to [FP90, Prop. 4.6.3] and [Jar04, Cor. 4.3], the horizontal map and the vertical
map in the triangle

Sd∗(Sd(X))
π //

��

B∗(Sd(X))

γ
vv

X

are homotopy equivalences (the vertical map is the composition of the initial vertex map
with the last vertex map). Since the diagram commutes,31 the map γ must be a homotopy
equivalence, too.

Appendix B. Extending maps into (k − 1)-reduced simplicial

sets

blah Appendix B blah. . . Here we prove the claim made after Theorem 1.1 regarding the
construction of the target space Y as a (k − 1)-reduced simplicial set. It is usual in e�ective
algebraic topology that certain computations with simplicial sets only work when at least

30The important ingredients are that every simplex can be expressed uniquely as a degeneracy of a non-
degenerate simplex, and that every operator can be written uniquely as a degeneracy of a face.

31This is not too hard to show, but we do not want to dwell into the exact de�nition of Sd∗(Sd(X)). The
main point is that the preimages under π of the simplex σ0 > · · · > σn are given by the choices of the
subsequences ϕ. The commutativity is then implied by the independence of the operators (σi−1)0 → (σi)0 on
these choices.
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some of the inputs are 0-reduced or 1-reduced. A typical example is the computation of
the homology groups of a loop space ΩX of a simplicial set X. First, we remark, that it is
impossible to compute these homology groups for general X, as otherwise we would obtain
an algorithmic computation of π1(X), which is known to be impossible by (cite). On the
positive side, there is a very old method for the computation of these homology groups which,
however, works only for 1-reduced X (using the so-called cobar construction and homological
perturbation theory; see (cite)).32

It is thus natural to ask if the undecidability of the extension problem of Theorem 1.1
might only be caused by Y being (k−1)-connected but not (k−1)-reduced. In this section, we
will prove a version of Theorem 1.1 with (k − 1)-reduced Y . The simplicial set Y ′ appearing
in the proof of part (a) of Theorem 1.1 might be chosen to be either Σk or Σk∨Σk (depending
on the dimension), both of which are (k − 1)-reduced and no further work is needed.

To �nish the proof of part (b), we need to replace Y ′ by some (k − 1)-reduced simplicial
set without changing the extendability. To this end, we introduce a very useful notion of an
n-equivalence. Let 0 ≤ n ≤ ∞. A continuous map Y → Z is said to be an n-equivalence if
it induces an isomorphism on all homotopy groups up to dimension n− 1 and a surjection in
dimension n (the ∞-equivalences are usually called weak homotopy equivalences). We will
need the following basic property of n-equivalences.

Proposition B.1. Let X be a cell complex of dimension n, f : A → Y a continuous map

de�ned on a subcomplex A ⊆ X and h : Y → Z an n-equivalence. Then f is extendable to X
if and only if hf is extendable to X.

Proof. If f has an extension g, then hf extends to hg. The other direction is [Spa66, Sec-
tion 7.6, Theorem 22].

With the previous proposition in mind, we construct a replacement of Y by brute force,
i.e. by going through all \candidate replacements" and checking if they give equivalent ex-
tension problems. In detail, we �x (X ′, A′) as in Section 6.3 and make a list of all pairs
(Z ′, h′), where Z ′ is a �nite (k − 1)-reduced simplicial set and h′ : Y ′ → Z ′ a simplicial map.
In each step we test whether h′ is a (2k)-equivalence. If that is the case, then the problem of
extending the composition h′f ′ : A′ → Z ′ to X ′ is equivalent to that of f ′ : A′ → Y ′, which
we proved to be undecidable.

By the Hurewicz theorem, h′ is a (2k)-equivalence if and only if Cone(h′) has zero ho-
mology groups up to dimension 2k. This can be tested easily using a Smith normal form
algorithm. The pair (Z ′, h′) with the above properties exists by the following theorem, �n-
ishing the proof of Theorem 1.1 with (k − 1)-reduced target.

Theorem B.2. Let n ≥ k ≥ 2 and let Y be a (k−1)-connected simplicial set whose homology

groups Hi(Y ), i ≤ n, are �nitely generated. Then there exist a �nite (k−1)-reduced simplicial

set Z and an n-equivalence ψ : Y → Z.

We believe that the theorem should be known in some form but we were not able to �nd it
in the literature. For its proof, we will need a couple of more advanced notions. Accordingly,
the proof will be more sketchy.

32On the other hand it is possible to compute these homology groups for any 1-connected X. This is another
application of the \brute force" version of Theorem B.2 that is explained just prior to its statement.
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Let ∆n be the standard n-simplex (regarded as a simplicial set). For 0 ≤ k ≤ n, the
kth n-horn is the simplicial subset Λnk ⊆ ∆n spanned by all the proper faces of ∆n with the
exception of the k-th face.

A simplicial set Z is said to be a Kan complex if every simplicial map f : Λnk → Z can be
extended to a simplicial map ∆n → Z. The map f is called a horn in Z and we say that this
horn can be �lled if the extension exists.

A usual method for constructing Kan complexes is the successive �lling of horns, which
is described, e.g., in [FP90, Proofs of Prop. 4.5.5 and 4.5.6].

Given a simplicial set Y and a horn f : Λnk → Y in Y , we can form a larger simplicial set
Y ∪f ∆n by attaching ∆n to Y along f ; this larger simplicial set (continuously) deformation
retracts to Y , and, by construction, the horn f : Λnk → Y can be �lled in the larger simplicial
set. We refer to this operation as a single horn �lling.

If we simultaneously attach �llings for all un�llable horns in Y , we obtain a simplicial
set K(Y ) that contains Y and such that all horns in Y can be �lled in K(Y ). Iterating this
procedure33, we obtain a sequence Y ⊆ K(Y ) ⊆ K2(Y ) ⊆ . . ., where, by construction, every
horn in Kn(Y ), can be �lled in Kn+1(Y ). Let K∞(Y ) be the union of the simplicial sets
Kn(Y ), n ∈ N.

Proposition B.3.

• The simplicial set K∞(Y ) is a Kan complex.

• The inclusion Y → K∞(Y ) is an ∞-equivalence.

• If Y is (d− 1)-reduced then so is K(Y ) and consequently also K∞(Y ).

• Let L ⊆ K∞(Y ) be a �nite simplicial subset. Then L lies in a simplicial subset obtained

from Y by a �nite sequence of single horn �llings.

Proof. Any horn in K∞(Y ) lies in some Kn(Y ) and is thus �llable in Kn+1(Y ) ⊆ K∞(Y ). The
proof of the second point is similar, using a deformation retraction of Kn(Y ) onto Y . The
third point is clear. For the last point, L lies in some Kn(Y ). By induction, L∩Kn−1(Y ) uses
only a �nite number of single horn �llings. A �nite number of single horn �llings is required
to cover L.

Thus, there exists a homotopy equivalence Y → K∞(Y ) of any simplicial set with a Kan
complex. For the proof of Theorem B.2, we will need that every Kan complex contains a
minimal Kan complex as a deformation retract [May92, Theorem 9.5] and that a minimal
(k − 1)-connected Kan complex is in fact (k − 1)-reduced. Thus, composing the inclusion
Y → K∞(Y ) with the deformation retraction yields an ∞-equivalence ι : Y → Z of Y with a
(k − 1)-reduced Kan complex Z.

Proof of Theorem B.2. Let Z0 ⊆ Z denote the image of ι and ι0 : Y → Z0 the restriction
of ι. By the following proposition, there exists a simplicial set Z ′, containing Z0 as a subset,
and a simplicial (n + 1)-equivalence ψ : Z ′ → Z. Since this map is the identity on Z0, there

33Formally, we de�ne K0(Y ) := Y and Kn(Y ) := K(Kn−1(Y )) for n ≥ 1.
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is a canonical map h : Y ′ → Z ′ making the diagram

Z ′

ψ

��

Y
ι0 //

h′ ..

ι 00

Z0
, �
99

� s

%%
Z

commutative (namely the composition of ι0 : Y → Z0 with the inclusion Z0 � � //Z ′). Since ι
is an ∞-equivalence and ψ induces an isomorphism on homotopy groups up to dimension n,
the same is true for h′ and in particular, it is an n-equivalence. �

Proposition B.4. Let n ≥ k ≥ 2 and let Z be a (k − 1)-connected Kan complex whose

homology groups Hi(Z), i ≤ n, are �nitely generated. Then there exist a �nite (k−1)-reduced
simplicial set Z ′ and an n-equivalence ψ : Z ′ → Z.

If Z0 is an arbitrary �nite (k − 1)-reduced subset of Z, then Z ′ can be chosen to contain

Z0 as a subset ψ to be the identity on Z0.

To prove Proposition B.4, we follow the argument in [Hat01, Proposition 4C.1] but make
the attachment maps simplicial by using the idea of �lling horns described above.

Proof of Proposition B.4. We proceed by induction on n. For n ≤ k−1, we can take Z ′ = Z0.
Assume that we have constructed a �nite simplicial set Zn−1 and a map ψn−1 : Zn−1 → Z

that is an (n− 1)-equivalence.
Let Ẑ be the simplicial set obtained from the simplicial mapping cylinder Cyl(ψn−1) of

ψn−1 : Zn−1 → Z by collapsing Z0 ×∆1 onto the base Z0. Since ψn−1 is the identity on Z0,
the usual deformation retraction of Cyl(ψn−1) onto Z induces a deformation retraction of Ẑ
onto Z. We enlarge the pair (Ẑ, Zn−1) to a Kan pair (K,L) by �lling horns. Since Zn−1 is
(k − 1)-reduced, so is L.

By the assumption on ψn−1 and by the Hurewicz theorem, we have Hi(K,L) = 0 for
i ≤ n− 1. Consider the exact sequence of homology groups for the pair (K,L):

. . .→ Hn(K)→ Hn(K,L)→ Hn−1(L)→ Hn−1(K)→ Hn−1(K,L) = 0.

Pick generators γj of Hn(K,L). Since Hn(K) ∼= Hn(Z) and Hn−1(L) ∼= Hn−1(Zn−1) are
�nitely generated, a �nite number of generators su�ces. By the relative Hurewicz theorem,
Hn(K,L) ∼= πn(K,L, ∗) (simplicial homotopy groups, since we are working with a Kan pair).
Thus, we can choose n-simplices gj of K representing the γj , whose faces lie in L.

Let K ′ be the simplicial subset of K spanned by L and the simplices gj . Then the natural
homomorphism Hn(K ′, L) → Hn(K,L) is surjective by the choice of the simplices gj . Since
these relative homology groups are zero in lower dimensions, it follows from the long exact
sequence of the triple (K,K ′, L) that Hi(K,K

′) = 0 for i ≤ n. In e�ect, the inclusionK ′ → K
is an n-equivalence (by the relative Hurewicz theorem again). Composing with an arbitrary
deformation retraction of K onto Z we obtain an n-equivalence K ′ → Z satisfying all the
required properties except that K ′ is in�nite.

Thus, it remains to replace K ′ by a �nite simplicial set. Since there are only �nitely many
simplices gj , there is a simplicial set L′ with Zn−1 ⊆ L′ ⊆ L, obtained from Zn−1 by �lling
�nitely many horns, and such that the boundaries of all the simplices gj lie in L′. We take Zn

to be the �nite simplicial set spanned by L′ and the simplices gj . Since |L′| is a deformation
retract of |L|, we get that |Zn| is a deformation retract of |K ′|. Thus, Zn has all the required
properties.
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Algorithmic solvability of the lifting-extension problem∗

Martin Čadek Marek Krčál Lukáš Vokř́ınek

December 10, 2016

Abstract

Let X and Y be finite simplicial sets (e.g. finite simplicial complexes), both
equipped with a free simplicial action of a finite group G. Assuming that Y is d-
connected and dimX ≤ 2d, for some d ≥ 1, we provide an algorithm that computes
the set of all equivariant homotopy classes of equivariant continuous maps |X| → |Y |;
the existence of such a map can be decided even for dimX ≤ 2d + 1. This yields
the first algorithm for deciding topological embeddability of a k-dimensional finite
simplicial complex into Rn under the condition k ≤ 2

3n− 1.
More generally, we present an algorithm that, given a lifting-extension problem

satisfying an appropriate stability assumption, computes the set of all homotopy
classes of solutions. This result is new even in the non-equivariant situation.

1. Introduction

Our original goal for this paper was to design an algorithm that decides existence of an
equivariant map between given spaces under a certain “stability” assumption. To explain
our solution however, it is more natural to deal with a more general lifting-extension
problem. At the same time, lifting-extension problems play a fundamental role in algebraic
topology since many problems can be expressed as their instances. We start by explaining
our original problem and its concrete applications and then proceed to the main object of
our study in this paper – the lifting-extension problem.
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Equivariant maps. Consider the following algorithmic problem: given a finite group G
and two free G-spaces X and Y , decide the existence of an equivariant map f : X → Y .

In the particular case G = Z/2 and Y = Sn−1 equipped with the antipodal Z/2-action,
this problem has various applications in geometry and combinatorics.

Concretely, it is well-known that if a simplicial complex K embeds into Rn then there
exists a Z/2-equivariant map (K ×K) r ∆K → Sn−1; the converse holds in the so-called
metastable range dimK ≤ 2

3
n − 1 by [26]. Algorithmic aspects of the problem of embed-

dability of K into Rn were studied in [17] and, with the exception of low dimensions, the
meta-stable range was the only remaining case left open. Theorem 1.4 below shows that
it is solvable.

Equivariant maps also provide interesting applications of topology to combinatorics.
For example, the celebrated result of Lovász on Kneser’s conjecture states that for a graph
G, the absence of a Z/2-equivariant map B(G)→ Sn−1 imposes a lower bound χ(G) ≥ n+2
on the chromatic number of G, where B(G) is a certain simplicial complex constructed
from G, see [14].

Building on the work of Brown [2], which is not applicable for Y = Sn−1, we investigated
in papers [4, 5] the simpler, non-equivariant situation, where X and Y were topological
spaces and we were interested in [X, Y ], the set of all homotopy classes of continuous maps
X → Y . Employing methods of effective homology developed by Sergeraert et al. (see e.g.
[19]), we showed that for any fixed d ≥ 1, [X, Y ] is polynomial-time computable if Y is
d-connected and dimX ≤ 2d.1 In contrast, [6] shows that the problem of computing [X, Y ]
is #P-hard when the dimension restriction on X is dropped. More strikingly, a related
problem of the existence of a continuous extension of a given map A → Y , defined on a
subspace A of X, is undecidable as soon as dimX ≥ 2d+ 2.

Here we obtain an extension of the above computability result for free G-spaces and
equivariant maps. The input G-spaces X and Y can be given as finite simplicial sets
(generalizations of finite simplicial complexes, see [9]), and the free action of G is assumed
simplicial. The simplicial sets and the G-actions on them are described by a finite table.

Theorem 1.1. Let G be a finite group. There is an algorithm that, given finite simplicial
sets X and Y with free simplicial actions of G, such that Y is d-connected, d ≥ 1, and
dimX ≤ 2d+ 1, decides the existence of a continuous equivariant map X → Y .

If such a map exists and dimX ≤ 2d, then the set [X, Y ] of all equivariant homotopy
classes of equivariant continuous maps can be equipped with the structure of a finitely
generated abelian group, and the algorithm outputs the isomorphism type of this group.

The isomorphism type is output as an abstract abelian group given by a (finite) number
of generators and relations. Furthermore, there is an algorithm that, given an equivariant
simplicial map ` : X → Y , computes the element of this group that ` represents. In the
opposite direction, although every homotopy class can be represented by a simplicial map

1An extension of [4] to the case of a simply connected Y whose non-stable homotopy groups, i.e. the
groups πn(Y ) for n > 2d, are finite (e.g. an odd-dimnsional sphere) that works for X of arbitrary dimension
can be found in [25].
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X ′ → Y for some subdivision X ′ of X, we do not know of effective means of producing
such representatives.2

As a consequence, we also have an algorithm that, given two equivariant simplicial
maps X → Y , tests whether they are equivariantly homotopic under the above dimension
restrictions onX. Building on the methods of the present paper, [12] removes the dimension
restriction for the latter question: it provides a homotopy-testing algorithm assuming only
that Y is simply connected.

A work in progress that started in [11] has a goal to extend the results of the present
paper to non-free G-actions; for this extension, it seems necessary to work with diagrams
of fixed points of various subgroups H ≤ G and maps between them, while free actions
allow to work with a single space (namely, the fixed points of the trivial subgroup).

Lifting-extension problem. We obtain Theorem 1.1 by an inductive approach that
works more generally and more naturally in the setting of the (equivariant) lifting-extension
problem, summarized in the following diagram:

A
f

//

��

ι

��

Y

ψ
����

X g
//

`

::

B

(1.2)

The input objects for this problem are the solid part of the diagram and we require that:

• A, X, Y , B are free G-spaces;
• f : A→ Y and g : X → B are equivariant maps;
• ι : A // // X is an equivariant cofibration (simplicially: an inclusion);
• ψ : Y // // B is an equivariant fibration (simplicially: a Kan fibration, see [15]); and
• the square commutes (i.e. gι = ψf).

The lifting-extension problem asks whether there exists a diagonal in the square, i.e.
an equivariant map ` : X → Y , marked by the dashed arrow, that makes both triangles
commute. We call such an ` a solution of the lifting-extension problem (1.2).

Moreover, if such an ` exists, we would like to compute the set [X, Y ]AB of all solutions
up to equivariant fibrewise homotopy relative to A.3 More concretely, in the cases covered
by our algorithmic results, we will be able to equip [X, Y ]AB with a structure of an abelian
group, and the algorithm computes the isomorphism type of this group. To be more precise,
this structure is only canonical up to a choice of zero, with various choices differing by
translations, so that [X, Y ]AB really has an “affine” nature (in very much the same way as
an affine space is naturally a vector space up to a choice of its origin). For an abstract
point of view, see [24].

2It is possible, for a given homotopy class z ∈ [X,Y ], to go through all subdivisions X ′ and all possible
simplicial maps X ′ → Y and test if they represent z. However, such a procedure does not seem to be very
effective.

3A homotopy h : [0, 1]×X → Y is fibrewise if ψ(h(t, x)) = g(x) for all t ∈ [0, 1] and x ∈ X. It is relative
to A if, for a ∈ A, h(t, a) is independent of t, i.e. h(t, a) = f(a) for all t ∈ [0, 1] and a ∈ A.
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Generalized lifting-extension problem. Spaces appearing in a fibration ψ : Y // // B
must typically be represented by infinite simplicial sets4, and their representation as in-
puts to an algorithm can be problematic. For this reason, we will consider a generalized
lifting-extension problem, where, compared to the above, ψ : Y → B can be an arbitrary
equivariant map, not necessarily a fibration.

In this case, it makes no sense from the homotopy point of view to define a solution as a
map X → Y making both triangles commutative. A homotopically correct definition of a
solution is as a pair (`, h), where ` : X → Y is a map for which the upper triangle commutes
strictly and the lower one commutes up to the specified homotopy h : [0, 1] × X → B
relative to A. We will not pursue this approach any further (in particular, we will not
define the right notion of homotopy of such pairs) and choose an equivalent, technically
less demanding alternative, which consists in replacing the map ψ by a homotopy equivalent
fibration.

To this end, we factor ψ : Y → B as a weak homotopy equivalence j : Y
∼−→ Y ′ followed

by a fibration ψ′ : Y ′ // // B (in the simplicial setup, see Lemma 7.2). We define a solution
of the considered generalized lifting-extension problem to be a solution `′ : X → Y ′ of the
lifting-extension problem

A
f
//

��

ι

��

Y
j
// Y ′

ψ′
����

X g
//

`′
77

B

If ψ was a fibration to begin with, we naturally take Y = Y ′ and j = id, and then the
two notions of a solution coincide. With some abuse of notation, we write [X, Y ]AB for the
set [X, Y ′]AB of all homotopy classes of solutions of the above lifting-extension problem.
Clearly, for every diagonal ` : X → Y (i.e. a map ` satisfying f = `ι and g = ψ`), the
composition `′ = j` is a solution and, in this way, ` represents a homotopy class in [X, Y ]AB.
On the other hand, not every homotopy class is represented by a diagonal ` : X → Y .

We remark that Y ′ is used merely as a theoretical tool – for actual computations, we use
a different approximation of Y , namely a suitable finite stage of a Moore–Postnikov tower
for ψ : Y → B; see Section 4. Moreover, Y ′ is not determined uniquely, and thus neither
are the solutions of the generalized lifting-extension problem. However, rather standard
considerations show that the existence of a solution and the isomorphism type of [X, Y ′]AB
as an abelian group are independent of the choice of Y ′.

Examples of lifting-extension problems. In order to understand the meaning of the
(generalized) lifting-extension problem, it is instructive to consider some special cases.

(i) (Classification of extensions.) First, consider G = {e} trivial (thus, the equivariance
conditions are vacuous) and B a point (which makes the lower triangle in the lifting-
extension problem superfluous). Then we have an extension problem, asking for the

4If ψ is a Kan fibration between finite simply connected simplicial sets then its fibre is a finite Kan
complex and it is easy to see that it then must be discrete. Consequently, ψ is a covering map between
simply connected spaces and thus an isomorphism.

4



existence of a map ` : X → Y extending a given f : A → Y . We recall that this
problem is undecidable when dimX is not bounded, according to [6]. Moreover,
[X, Y ]A is the set of appropriate homotopy classes of such extensions.5

(ii) (Equivariant maps.) Consider G finite, A = ∅, and B = EG, a contractible free G-
space (it is unique up to equivariant homotopy equivalence). For every free G-space
Z, there is an equivariant map cZ : Z → EG, unique up to equivariant homotopy.
If we set g = cX and ψ = cY in the generalized lifting-extension problem, it can
be proved that [X, Y ]∅EG is in a bijective correspondence with equivariant maps
X → Y up to equivariant homotopy. This is how we obtain Theorem 1.1. Note
that we cannot simply take B to be a point in the lifting-extension problem with a
nontrivial G, since there is no free action of G on a point. Actually, EG serves as
an equivariant analogue of a point among free G-spaces.

(iii) (Extending sections in a vector bundle.) Let G = {e}, and let ψ : Y → B be the
inclusion BSO(n − k) → BSO(n), where BSO(n) is the classifying space of the
special orthogonal group SO(n). Then the commutative square in the generalized
lifting-extension problem is essentially an oriented vector bundle of dimension n
over X together with k linearly independent vector fields over A. The existence of
a solution is then equivalent to the existence of linearly independent continuations
of these vector fields to the whole of X. We remark that, in order to apply our
theorem to this situation, a finite simplicial model of the classifying space BSO(n)
would have to be constructed. As far as we know, this has not been carried out yet.

We briefly remark that for non-oriented bundles, it is possible to pass to certain
two-fold “orientation” coverings and reduce the problem to one for oriented bundles
but with a further Z/2-equivariance constraint.

Main theorem. Now we are ready to state the main result of this paper.

Theorem 1.3. Let G be a finite group and let an instance of the generalized lifting-
extension problem be input as follows: A, X, Y , B are finite simplicial sets with free
simplicial actions of G, A is an equivariant simplicial subset of X, and f , g, ψ are equiv-
ariant simplicial maps. Furthermore, both B and Y are assumed to be simply connected,
and the homotopy fibre6 of ψ : Y → B is assumed to be d-connected for some d ≥ 1.

There is an algorithm that, for dimX ≤ 2d + 1, decides the existence of a solution.
Moreover, if dimX ≤ 2d and a solution exists, then the set [X, Y ]AB can be equipped with
the structure of an abelian group, and the algorithm computes its isomorphism type.

5The problem of computing homotopy classes of solutions (under our usual condition on the dimension
of X) was considered in [5], but with a different equivalence relation on the set of all extensions: [5]
dealt with the (slightly unnatural) coarse classification, where two extensions `0 and `1 are considered
equivalent if they are homotopic as maps X → Y , whereas here we deal with the fine classification, where
the equivalence of `0 and `1 means that they are homotopic relative to A.

6The homotopy fibre of ψ is the fibre of ψ′, where ψ is factored through Y ′ as above. It is unique up
to homotopy equivalence, and so the connectivity is well defined.
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As in Theorem 1.1, the isomorphism type means an abstract abelian group (given by
generators and relations) isomorphic to [X, Y ]AB. Given an arbitrary diagonal ` : X → Y
in the considered square, one can compute the element of this group that ` represents.

Constructing the abelian group structure on [X, Y ]AB will be one of our main objectives.
In the case of all continuous maps X → Y up to homotopy, with no equivariance condition
imposed, as in [4], the abelian group structure on [X, Y ] is canonical. In contrast, in the
setting of the lifting-extension problem, the structure is canonical only up to a choice of a
zero element.

This non-canonicality of zero is one of the phenomena making the equivariant problem
(and the lifting-extension problem) substantially different from the non-equivariant case
treated in [4]. We will have to deal with the choice of zero, and working with “zero sections”
in the considered fibrations.

Embeddability and equivariant maps. Theorem 1.1 has the following consequence for
embeddability of simplicial complexes:

Theorem 1.4. Let n be an integer. There is an algorithm that, given a finite simplicial
complex K of dimension k ≤ 2

3
n− 1, decides the existence of an embedding of K into Rn.

The algorithmic problem of testing embeddability of a given k-dimensional simplicial
complex into Rn, which is a natural generalization of graph planarity, was studied in [17].
Theorem 1.4 clarifies the decidability of this problem for k ≤ 2

3
n− 1; this is the so-called

metastable range of dimensions, which was left open in [17]. Briefly, in the metastable
range, the classical theorem of Weber (see [26]) asserts that embeddability is equivalent to
the existence of a Z/2-equivariant map (K×K)r∆K → Sn−1 whose domain is equivariantly
homotopy equivalent to a finite simplicial complex7 with a free simplicial action of Z/2.
Thus, Theorem 1.4 follows immediately from Theorem 1.1; we refer to [17] for details.

We also remark that the algorithm of Theorem 1.4 does not produce an actual map
(K × K) r ∆K → Sn−1 and, thus, we do not know of an effective way of producing an
actual embedding (in addition, we have not analyzed Weber’s proof sufficiently well to be
able to tell whether it produces an embedding from an equivariant map in an algorithmic
way).

Polynomial running times. We remark that, for fixed G and d, the algorithms of The-
orems 1.1 and 1.3 run in polynomial time. The algorithm of Theorem 1.4 also runs in
polynomial time when the dimension n is fixed. These claims are proved in an extended
version [0] of the present paper.

Outline of the proof. In the rest of this section, we sketch the main ideas and tools
needed for the algorithm of Theorem 1.3. Even though the computation is in some aspects

7The complex is (the canonical triangulation of) the union of all products σ × τ of disjoint simplices
σ, τ ∈ K, σ ∩ τ = ∅.
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similar to that of [4], there are several new ingredients which we had to develop in order
to make the computation possible. We describe these briefly after the outline of the proof.

Our first tool is a Moore–Postnikov tower Pn for ψ : Y → B within the framework
of (equivariant) effective algebraic topology (essentially, this means that all objects are
representable in a computer); it is enough to construct the number of stages equal to the
dimension of X. It can be shown that [X, Y ]AB

∼= [X,Pn]AB for n ≥ dimX and so it suffices to
compute inductively [X,Pn]AB from [X,Pn−1]AB for n ≤ dimX. This is the kind of problems
considered in obstruction theory. Namely, there is a natural map [X,Pn]AB → [X,Pn−1]AB
and it is possible to describe all preimages of any given homotopy class [`] ∈ [X,Pn−1]AB
using, in addition, an inductive computation of [∆1 × X,Pn−1]

(∂∆1×X)∪(∆1×A)
B . In general

however, [X,Pn−1]AB is infinite and it is thus impossible to compute [X,Pn]AB as a union of
preimages of all possible homotopy classes [`] (on the other hand, if these sets are finite,
the above description does provide an algorithm, probably not very efficient, see [2, 25]).

For this reason, we use in the paper to a great advantage our second tool, an (effective)
abelian group structure on the set [X,Pn]AB of homotopy classes of diagonals, which only
exists on a stable part n ≤ 2d and, of course, only if this set is non-empty. The group
structure comes from an “up to homotopy” abelian group structure on Pn (or, in fact,
a certain pullback of Pn) which we make algorithmic – this is the heart of the present
paper. We remark that the abelian group structure on [X,Pn]AB was already observed in
[16]; however, this paper did not deal with algorithmic aspects.

In the stable part of the Moore–Postnikov tower, the natural map [X,Pn]AB → [X,Pn−1]AB
is a group homomorphism and the above mentioned computation of preimages of a given
homotopy class [`] may be reduced to a finite set of generators of the image; the compu-
tation is conveniently summarized in a long exact sequence (4.17). This finishes the rough
description of our inductive computation.

New tools. In the process of building the Moore–Postnikov tower, and also later, it is
important to work with infinite simplicial sets, such as the Moore–Postnikov stages Pn, in
an algorithmic way. This is handled by the so-called equivariant effective algebraic topology
and effective homological algebra. The relevant non-equivariant results are described in
[19, 5]. In many cases, only minor and/or straightforward modifications are needed. One
exception is the equivariant effective homology of Moore–Postnikov stages, for which we
rely on a separate paper [23].

Compared to the previous work [4], the main new ingredient is the weakening of the H-
space structure that exists on Moore–Postnikov stages. This is needed in order to carry out
the whole computation algorithmically. Accordingly, the construction of this structure is
much more abstract. In [4], we had B = ∗ and Postnikov stages carried a unique basepoint.
In the case of nontrivial B, the basepoints are replaced by sections and Moore–Postnikov
stages may not admit a section at all – this is related to the possibility of [X, Y ]AB being
empty. It might also happen that we choose a section of Pn−1 which does not lift to Pn.
In that case, we need to change the section of Pn−1 and compute [X,Pn−1]AB again from
scratch.
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Plan of the paper. In the second section, we give an overview of equivariant effective
homological algebra that we use in the rest of the paper. The third section is devoted
to the algorithmic construction of an equivariant Moore–Postnikov tower. The proofs of
Theorems 1.1 and 1.3 are given in the following section, although proofs of its two important
ingredients are postponed to Sections 5 and 6. In the fifth section, we construct a certain
weakening of an (equivariant and fibrewise) H-space structure on pointed stable stages of
Moore–Postnikov towers. In the sixth section, we show how this structure enables one to
endow the sets of homotopy classes with addition in an algorithmic way. Finally, we derive

an exact sequence relating [X,Pn]AB to [X,Pn−1]AB and [∆1 × X,Pn−1]
(∂∆1×X)∪(∆1×A)
B and

thus enabling an inductive computation. In the seventh section, we provide proofs that we
feel would not fit in the previous sections.

2. Equivariant effective homological algebra

2.1. Basic setup. For a simplicial set, the face operators are denoted by di, and the
degeneracy operators by si. The standard m-simplex ∆m is a simplicial set with a unique
non-generate m-simplex and no relations among its faces. The simplicial subset generated
by the i-th face of ∆m will be denoted by di∆

m. The boundary ∂∆m is the union of all
these faces and the i-th horn m

i is generated by all faces dj∆
m, j 6= i. Finally, we denote

the vertices of ∆m by 0, . . . ,m.
Sergeraert et al. (see [19]) have developed an “effective version” of homological algebra,

in which a central notion is an object (simplicial set or chain complex) with effective
homology. Here we will discuss analogous notions in the equivariant setting, as well as
some other extensions. For a key result, we rely on a separate paper [23] which shows,
roughly speaking, that if the considered action is free, equivariant effective homology can
be obtained from non-equivariant one.

We begin with a description of the basic computational objects, sometimes called locally
effective objects. The underlying idea is that in every definition one replaces sets by
computable sets and mappings by computable mappings. For us, a computable set will be
a set whose elements have a finite encoding by bit strings, so that they can be represented
in a computer. On the other hand, it may happen that no “global” information about the
set is available; e.g. it is algorithmically undecidable in general whether a given computable
set is nonempty. A computable subset of a computable set T is a subset S ⊆ T equipped
with an algorithm that decides, for a given element of T , whether it belongs to S. A
mapping between computable sets is computable if there is an algorithm computing its
values.

We will need two particular cases of this principle – simplicial sets and chain complexes.

2.2. Simplicial sets. A locally effective simplicial set is a simplicial set X whose simplices
have a specified finite encoding and whose face and degeneracy operators are specified by
algorithms. Our simplicial sets will be equipped with a simplicial action of a finite group
G that is also computed by an algorithm (whose input is an element of G and a simplex of
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X). We will assume that this action is free and that a distinguished set of representatives
of orbits is specified – such X will be called G-cellular. In the locally effective context,
we require that there is an algorithm that expresses each simplex x ∈ X (necessarily in a
unique way) as x = ay where a ∈ G and y ∈ X is a distinguished simplex.

Remark. We will not put any further restrictions on the representation of simplicial sets in
a computer – the above algorithms will be sufficient. On the other hand, it is important
that such representations exist. We will describe one possibility for finite simplicial sets
and complexes.

Let X be a finite simplicial set with a free action of G. Let us choose arbitrarily one
simplex from each orbit of the non-degenerate simplices; these simplices together with
all of their degeneracies are the distinguished ones. Then every simplex x ∈ X can be
represented uniquely as x = asIy, where a ∈ G, sI is an iterated degeneracy operator
(i.e. a composition sim · · · si1 with i1 < · · · < im), and y is a non-degenerate distinguished
simplex. With this representation, it is possible to compute the action of G and the
degeneracy operators easily, while face operators are computed using the relations among
the face and degeneracy operators and a table of faces of non-degenerate distinguished
simplices. This table is finite and it can be provided on the input.

A special case is that of a finite simplicial complex. Here, one can prescribe a simplex
(degenerate or not) uniquely by a finite sequence of its vertices.

2.3. Chain complexes. For our computations, we will work with nonnegatively graded
chain complexes C∗ of abelian groups on which G acts by chain maps; denoting by ZG
the integral group ring of G, one might equivalently say that C∗ is a chain complex of
ZG-modules. We will adopt this terminology from now on. We will also assume that
these chain complexes are ZG-cellular, i.e. equipped with a distinguished ZG-basis; this
means that for each n ≥ 0 there is a collection of distinguished elements of Cn such that
the elements of the form ay, with a ∈ G and y distinguished, are all distinct and form a
Z-basis of Cn.

In the locally effective version, we assume that the elements of the chain complex have
a finite encoding, and there is an algorithm expressing arbitrary elements as (unique)
ZG-linear combinations of the elements of the distinguished bases. We require that the
operations of zero, addition, inverse, multiplication by elements of ZG, and differentials
are computable.8

A basic example, on which these assumptions are modelled, is that of the normalized
chain complex C∗X of a simplicial set X (the quotient of the usual chain complex by the
subcomplex spanned by degenerate simplices): for each n ≥ 0, a Z-basis of CnX is given
by the set of nondegenerate n-dimensional simplices of X. If X is equipped with a free
simplicial action of G, then this induces an action of G on C∗X by chain maps, and a ZG-
basis for each CnX is given by a collection of nondegenerate distinguished n-dimensional
simplices of X, one from each G-orbit.

8These requirements (with the exception of the differentials) are automatically satisfied when the ele-
ments of the chain complex are represented directly as ZG-linear combinations of the distinguished bases.
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If X is locally effective as defined above, then so is C∗X (for evaluating the differential,
we observe that a simplex x is degenerate if and only if x = sidix for some i, and this can
be checked algorithmically).

Convention 2.4. We fix a finite group G. All simplicial sets are locally effective, equipped
with a free action of G and G-cellular in the locally effective sense. All chain complexes
are non-negatively graded locally effective chain complexes of free ZG-modules that are
moreover ZG-cellular in the locally effective sense.

All simplicial maps, chain maps, chain homotopies, etc. are equivariant and computable.

Later, Convention 5.1 will introduce additional standing assumptions.

Definition 2.5. An effective chain complex is a (locally effective) chain complex equipped
with an algorithm that generates a list of elements of the distinguished basis in any given
dimension (in particular, the distinguished bases are finite in each dimension).

For example, if a simplicial set X admits an algorithm generating a (finite) list of its
non-degenerate distinguished simplices in any given dimension, then its normalized chain
complex C∗X is effective.

2.6. Reductions, strong equivalences. We recall that a reduction (also called contrac-
tion or strong deformation retraction) C∗ =⇒ C ′∗ between two chain complexes is a triple
(α, β, η) such that α : C∗ → C ′∗ and β : C ′∗ → C∗ are equivariant chain maps such that
αβ = id (i.e. β is an inclusion with retraction α) and η is an equivariant chain homotopy
on C∗ with ∂η+ η∂ = id−βα (i.e. η is a deformation of C∗ onto C ′∗); moreover, we require
that ηβ = 0, αη = 0 and ηη = 0. The following diagram illustrates this definition:

(α, β, η) : C∗ =⇒ C ′∗ ≡ C∗η
55

α
**
C ′∗

β

jj

Reductions are used to solve homological problems in C∗ by translating them to C ′∗ and
vice versa, see [19]; a particular example is seen at the end of the proof of Lemma 2.17.
While, for this principle to work, chain homotopy equivalences would be enough, they are
not sufficient for the so-called perturbation lemmas (we will introduce them later), where
the real strength of reductions lies.

For the following definition, we consider pairs (C∗, D∗), where C∗ is a chain complex
and D∗ is a subcomplex of C∗. Such pairs are always understood in the ZG-cellular sense;
i.e. the distinguished basis of each Dn is a subset of the distinguished basis of Cn.

Definition 2.7. A reduction (C∗, D∗) =⇒ (C ′∗, D
′
∗) of (ZG-cellular) pairs is a reduction

C∗ =⇒ C ′∗ that restricts to a reduction D∗ =⇒ D′∗, i.e. such that α(D∗) ⊆ D′∗, β(D′∗) ⊆ D∗,
and η(D∗) ⊆ D∗.

From this reduction, we get an induced reduction C∗/D∗ =⇒ C ′∗/D
′
∗ of the quotients.

We will need to work with a notion more general than reductions, namely strong equiv-
alences. A strong equivalence C∗ ⇐⇒ C ′∗ is a pair of reductions C∗ ⇐= Ĉ∗ =⇒ C ′∗, where
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Ĉ∗ is some chain complex. Similarly, a strong equivalence (C∗, D∗) ⇐⇒ (C ′∗, D
′
∗) is a pair

of reductions (C∗, D∗) ⇐= (Ĉ∗, D̂∗) =⇒ (C ′∗, D
′
∗). Strong equivalences can be (algorithmi-

cally) composed: if C∗ ⇐⇒ C ′∗ and C ′∗ ⇐⇒ C ′′∗ , then one obtains C∗ ⇐⇒ C ′′∗ (see e.g. [5,
Lemma 2.7]).

Definition 2.8. Let C∗ be a chain complex. We say that C∗ is equipped with effective
homology if there is specified a strong equivalence C∗ ⇐⇒ Cef

∗ of C∗ with some effective
chain complex Cef

∗ . Effective homology for pairs (C∗, D∗) of chain complexes is introduced
similarly using strong equivalences of pairs. A simplicial set X is equipped with effective
homology if C∗X is. Finally, a pair (X,A) of simplicial sets is equipped with effective
homology if (C∗X,C∗A) is.

Remark. In what follows, we will only assume (X,A), Y , B to be equipped with effective
homology. Consequently, it can be seen that Theorems 1.1 and 1.3 also hold under these
weaker assumptions. The dimension restriction on X can be weakened to: the equivariant
cohomology groups of (X,A), defined in Section 2.15, vanish above dimension 2d.

By passing to the mapping cylinder X ′ = (∆1×A)∪X, we may even relax the condition
on the pair (X,A) to each of A, X being equipped with effective homology separately
since then the pair (X ′, A) has effective homology (this is very similar to but easier than
Proposition 5.11) and the resulting generalized lifting-extension problem is equivalent to
the original one.

The following theorem shows that, in order to equip a chain complex with effective
homology, it suffices to have it equipped with effective homology in the non-equivariant
sense.

Theorem 2.9 ([23]). Let C∗ be a chain complex (of free ZG-modules). Suppose that,
as a chain complex of abelian groups, C∗ can be equipped with effective homology (i.e. in
the non-equivariant sense). Then it is possible to equip C∗ with effective homology in the
equivariant sense. This procedure is algorithmic.

The original strong equivalence C∗ ⇐⇒ Cef
∗ gets replaced by an equivariant one C∗ ⇐⇒

BCef
∗ , where BCef

∗ is a bar construction of some sort; see [23] for details.
Thus, although non-equivariant effective homology is not the same as equivariant ef-

fective homology, it is possible to construct one from the other. In this paper, effective
homology will be understood in the equivariant sense, unless stated otherwise.

We recall that the Eilenberg–Zilber reduction is a particular reduction C∗(X × Y ) =⇒
C∗X ⊗ C∗Y ; see e.g. [8, 5, 19]. It is known to be functorial (see e.g. [8, Theorem 2.1a]),
and hence it is equivariant. We extend it to pairs.

Proposition 2.10 (Product of pairs). If pairs (X,A) and (Y,B) of simplicial sets are
equipped with effective homology, then it is also possible to equip the pair

(X,A)× (Y,B)
def
=
(
X × Y, (A× Y ) ∪ (X ×B)

)

with effective homology.
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Proof. The Eilenberg–Zilber reduction C∗(X × Y ) =⇒ C∗X ⊗ C∗Y is functorial, which
implies that it restricts to a reduction

C∗
(
(A× Y ) ∪ (X ×B)

)
=⇒ (C∗A⊗ C∗Y ) + (C∗X ⊗ C∗B)

def
= D∗.

The strong equivalences C∗X ⇐⇒ Cef
∗ X and C∗Y ⇐⇒ Cef

∗ Y induce a strong equivalence
(by [19, Proposition 61], whose construction is functorial, and hence applicable to the
equivariant setting)

C∗X ⊗ C∗Y ⇐⇒ Cef
∗ X ⊗ Cef

∗ Y

that, again, restricts to a strong equivalence of the subcomplex D∗ above with its obvious
effective version Def

∗ . The composition of these two strong equivalences finally yields a
strong equivalence C∗((X,A)× (Y,B))⇐⇒ (Cef

∗ X ⊗ Cef
∗ Y,D

ef
∗ ).

Important tools, allowing us to work efficiently with reductions, are two perturbation
lemmas. Given a reduction C∗ =⇒ C ′∗, they provide a way of obtaining a new reduction,
in which the differentials of the complexes C∗, C ′∗ are “perturbed”. Again, we will need
versions for pairs.

Definition 2.11. Let C∗ be a chain complex with a differential ∂. A collection of mor-
phisms δ : Cn → Cn−1 is called a perturbation of the differential ∂ if the sum ∂ + δ is also
a differential.

Since there will be many differentials around, we will emphasize them in the notation.

Proposition 2.12 (Easy perturbation lemma). Let (α, β, η) : (C∗, D∗, ∂) =⇒ (C ′∗, D
′
∗, ∂
′) be

a reduction and let δ′ be a perturbation of the differential ∂′ on C ′∗ satisfying δ′(D′∗) ⊆ D′∗.
Then (α, β, η) also constitutes a reduction (C∗, D∗, ∂ + βδ′α) =⇒ (C ′∗, D

′
∗, ∂
′ + δ′).

Proposition 2.13 (Basic perturbation lemma). Let (α, β, η) : (C∗, D∗, ∂) =⇒ (C ′∗, D
′
∗, ∂
′)

be a reduction and let δ be a perturbation of the differential ∂ on C∗ satisfying δ(D∗) ⊆
D∗. Assume that for every c ∈ C∗ there is a ν ∈ N such that (ηδ)ν(c) = 0. Then
it is possible to compute a perturbation δ′ of the differential ∂′ on C ′∗ and a reduction
(α′, β′, η′) : (C∗, D∗, ∂ + δ) =⇒ (C ′∗, D

′
∗, ∂
′ + δ′).

The absolute versions (i.e. versions where all considered subcomplexes are zero) of the
perturbation lemmas are due to [20]. There are explicit formulas provided there for δ′

etc. (see also [19]), which show that the resulting reductions are equivariant (since all the
involved maps are equivariant). Similarly, these formulas show that in the presence of
subcomplexes D∗ and D′∗, these are preserved by all the maps in the new reductions (since
all the involved maps preserve them).

The following proposition is used for the construction of the Moore–Postnikov tower in
Section 3. Here Zn+1(C∗) denotes the group of all cycles in Cn+1.

Proposition 2.14. Let C∗ be an effective chain complex such that Hi(C∗) = 0 for i ≤ n.
Then there is a (computable) retraction Cn+1 → Zn+1(C∗), i.e. a homomorphism that
restricts to the identity on Zn+1(C∗).

Proof. We construct a contraction9 σ of C∗ by induction on the dimension, and use it for

9We recall that a contraction is a map σ of degree 1 satisfying ∂σ + σ∂ = id.
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splitting Zn+1(C∗) off Cn+1. It suffices to define σ on the distinguished bases. Since every
basis element x ∈ C0 is a cycle, it must be a boundary. We compute some y ∈ C1 for which
x = ∂y, and we set σ(x) = y; since G is finite, we may treat ∂ : C1 → C0 as a Z-linear map
between finitely generated free Z-modules and solve for y using Smith normal form.

Now assume that σ has been constructed up to dimension i − 1 in such a way that
∂σ + σ∂ = id, and we want to define σ(x) for a basis element x ∈ Ci. Since x− σ(∂x) is a
cycle, we can compute some y with x− σ(∂x) = ∂y, and set σ(x) = y.

This finishes the inductive construction of σ. The desired retraction Cn+1 → Zn+1(C∗)
is given by id−σ∂.

2.15. Eilenberg–MacLane spaces and fibrations. For an abelian group π, there is a
simplicial abelian group K(π, n+1), whose m-simplices are the normalized (n+1)-cocycles
on ∆m, i.e. K(π, n+1)m = Zn+1(∆m, π). It is a standard model for the Eilenberg–MacLane
space. We will also need a standard model for its path space, which is the simplicial
abelian group E(π, n)m = Cn(∆m, π) of normalized cochains. The coboundary operator
δ : E(π, n)→ K(π, n+ 1) is a fibration with fibre K(π, n).

The Eilenberg–MacLane spaces are useful for their relation to cohomology. Here we only
summarize the relevant results, details may be found in [15, Section 24] or [5, Section 3.7]
(both in the non-equivariant setup though).

When π is a ZG-module, there is an induced action of G on both K(π, n) and E(π, n).
We note that, in contrast to our general assumption, this action is not free and conse-
quently, these spaces may not possess effective homology. This will not matter since they
will not enter our constructions on their own but as certain principal twisted cartesian
products, see [15] for the definition. Firstly, K(π, n) possesses non-equivariant effective
homology by [5, Theorem 3.16]. The principal twisted cartesian product P = Q×τK(π, n)
has a free G-action whenever Q does and [10, Corollary 12] constructs the non-equivariant
effective homology of P from that of Q and K(π, n). Theorem 2.9 then provides (equiv-
ariant) effective homology for P .

It is easy to see that the addition in the simplicial abelian groups K(π, n), E(π, n) and
the homomorphism δ between them are equivariant. Moreover, for every simplicial set X,
there is a natural isomorphism

map(X,E(π, n)) ∼= Cn(X; π)G

between equivariant simplicial maps and equivariant cochains, that sends f : X → E(π, n)
to f ∗(ev), where ev ∈ Cn(E(π, n);π)G is the canonical cochain that assigns to each n-
simplex of E(π, n)n, i.e. an n-cochain on ∆n, its value on the unique non-degenerate n-
simplex of ∆n.

The set map(X,E(π, n)) is naturally an abelian group, with addition inhereted from
that on E(π, n), and the above isomorphism is and isomorphism of groups.

When X is finite, this isomorphism is computable (objects on both sides are given
by a finite amount of data). When X is merely locally effective, then an algorithm that
computes a simplicial map X → E(π, n) can be converted into an algorithm that evaluates
the corresponding cochain in Cn(X; π)G, and vice versa.

13



The above isomorphism restricts to an isomorphism

map(X,K(π, n)) ∼= Zn(X; π)G.

We will denote the cohomology groups of C∗(X; π)G by H∗G(X; π).10 We have an induced
isomorphism

[X,K(π, n)] ∼= Hn
G(X; π)

between homotopy classes of equivariant maps and these cohomology groups. By the
naturality of these isomorphisms, the maps which are zero on A correspond precisely to
relative cocycles and consequently

[(X,A), (K(π, n), 0)] ∼= Hn
G(X,A; π).

2.16. Constructing diagonals for Eilenberg–MacLane fibrations. When solving
the generalized lifting-extension problem, we will replace ψ : Y → B by a fibration built
inductively from Eilenberg–MacLane fibrations δ : E(π, n) → K(π, n + 1). The following
lemma will serve as an inductive step in the computation of [X, Y ]AB. It also demonstrates
how effective homology of pairs enters the game.

Lemma 2.17. There is an algorithm that, given a commutative square

A c //

��

��

E(π, n)

δ
����

X z
//

88

K(π, n+ 1)

where the pair (X,A) is equipped with effective homology, decides whether a diagonal exists.
If it does, it computes one.

If Hn+1
G (X,A; π) = 0, then a diagonal exists for every c and z.

Let us remark that although our main result, Theorem 1.3, assumes X finite, we will
need to use the lemma for infinite simplicial sets X, and then the effective homology
assumption for (X,A) is important.

Proof. Thinking of c as a cochain in Cn(A; π)G, we extend it to a cochain on X by mapping
all n-simplices not in A to zero. This prescribes a map c̃ : X → E(π, n) that is a solution
of the lifting-extension problem from the statement for z replaced by δc̃. Since the lifting-
extension problems and their solutions are additive, one may subtract this solution from
the previous problem and obtain an equivalent lifting-extension problem

A
0 //

��

��

E(π, n)

δ
����

X
z−δc̃

//

c0

88

K(π, n+ 1)

10Our groups H∗G(X;π) are the equivariant cohomology groups of X with coefficients in a certain system
associated with π (see the remark in [1, Section I.9]) or, alternatively, they are the cohomology groups of
X/G with local coefficients specified by π.
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A solution of this problem is an (equivariant) relative cochain c0 whose coboundary is
z0 = z − δc̃ (this c0 yields a solution c̃ + c0 of the original problem). If C∗(X,A) is
effective, then such a c0 is computable whenever it exists (and it always exists in the case
Hn+1
G (X,A; π) = 0).

However, C∗(X,A) itself is not effective in general, it is only strongly equivalent to an
effective complex. Thus, we need to check that the computability of a preimage under δ
is preserved under reductions in both directions. Let (α, β, η) : C∗ =⇒ C ′∗ be a reduction.
First, let us suppose that z′0 : C ′∗ → π is a cocycle with z′0α = δc0. Then

z′0 = z′0αβ = (δc0)β = δ(c0β),

and we may set c′0 = c0β. Next, suppose that z0 : C∗ → π is a cocycle with z0β = δc′0.
Then

z0 = z0(∂η + η∂ + βα) = z0η∂ + δc′0α = δ(z0η + c′0α),

and we may set c0 = z0η + c′0α.

3. Moore–Postnikov tower

We recall that we defined Y ′ by factoring ψ as a composition Y //∼ // Y ′
ψ′
// // B of a weak

homotopy equivalence followed by a fibration; such a factorization exists by Lemma 7.2.
Using this approximation, [X, Y ]AB was defined as the set of homotopy classes [X, Y ′]AB. In
order to compute this set, we approximate Y ′ by the Moore–Postnikov tower of Y over B.
Then the computation will proceed by induction over the stages of this tower, as will be
explained in Section 4. For now, we give a definition of an equivariant Moore–Postnikov
tower of a simplicial map ψ : Y → B and review some of the statements of the last section
in the context of this tower. The actual construction of the tower, when both simplicial
sets Y and B are equipped with effective homology, will be carried out later in Section 7.

Definition 3.1. Let ψ : Y → B be a map. A (simplicial) extended Moore–Postnikov tower
for ψ is a commutative diagram

Pn

pn

��

ψn

��

Pn−1

Y

ϕn

@@

ϕn−1

77

ϕ1

//

ψ=ϕ0
''

P1

p1
��

P0 = B
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satisfying the following conditions:

1. The induced map ϕn∗ : πi(Y ) → πi(Pn) is an isomorphism for i ≤ n and an epimor-
phism for i = n+ 1.

2. The induced map ψn∗ : πi(Pn)→ πi(B) is an isomorphism for i ≥ n+2 and a monomor-
phism for i = n+ 1.

3. The map pn : Pn → Pn−1 is a Kan fibration induced by a map

k′n : Pn−1 → K(πn, n+ 1)

for some ZG-module πn, i.e. there exists a pullback square

Pn
q′n //

pn

��

E(πn, n)

δ
��

Pn−1
k′n
// K(πn, n+ 1)

identifying Pn with the pullback Pn−1 ×K(πn,n+1) E(πn, n). Alternatively, one may
identify Pn as the principal twisted cartesian product Pn ×τ K(πn, n) – this will be
used to equip Pn with effective homology.

A Moore–Postnikov tower for ψ is then obtained from the extended Moore–Postnikov
tower by removing the space Y and the maps ϕn.

Both variants admit n0-truncated versions comprised only of stages Pn with n ≤ n0.

We remark that the axioms imply πn ∼= πnF , where F is the homotopy fibre of Y → B,
i.e. the fibre of Y ′ → B.

Definition 3.2. We say that an extended Moore–Postnikov tower has effective homology
if Y and all the stages Pn have effective homology and all the maps ϕn, pn, q′n, k′n are
computable. There are similar notions for a Moore–Postnikov tower and for n0-truncated
versions of both variants.

We remark that it is also possible to compute the homotopy groups πn from the effective
homology of a Moore–Postnikov tower as homology groups Hn+1(cone pn∗) of the mapping
cone of pn∗ : C∗(Pn)→ C∗(Pn−1), see the proof of Theorem 3.3.

The reason to have various versions of Moore–Postnikov towers is to specify the objects
that we construct, equip with effective homology etc. Concretely, a Moore–Postnikov tower
for ψ : Y → B is also a Moore–Postnikov tower for the replacement ψ′ : Y ′ → B. They are
different as extended Moore–Postnikov towers and, in fact, we will be able to equip the
former with effective homology, while we do not know of a way of doing the same for the
latter (because of the space Y ′). Another example is Addendum 3.4.
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Theorem 3.3. There is an algorithm that, given a map ψ : Y → B between simply con-
nected simplicial sets with effective homology and an integer n0, constructs an n0-truncated
extended Moore–Postnikov tower for ψ and equips it with effective homology.

The proof of the theorem, as well as its addendum below, is postponed to Section 7.

Addendum 3.4. There is an algorithm that, given the data of Theorem 3.3 and a com-
putable map β : B̃ → B whose domain B̃ has effective homology, constructs an n0-truncated
Moore–Postnikov tower with stages P̃n = B̃ ×B Pn and equips it with effective homology.

We remark that the P̃n form a Moore–Postnikov tower for the natural map Ỹ = B̃ ×B
Y ′ → B̃ from the homotopy pullback Ỹ of Y along β, but we do not know of a way of
dealing effectively with Ỹ . This is the reason why we are not able to equip the extended
Moore–Postnikov tower for Ỹ → B̃ with effective homology.

We obtain a new lifting-extension problem from the Moore–Postnikov tower for ψ

A
fn

//
��

��

Pn

ψn
����

X g
//

::

B

where fn = ϕnf . The following theorem explains the role of the Moore–Postnikov tower
in our algorithm.

Theorem 3.5. There exists a map ϕ′n : Y ′ → Pn inducing a bijection ϕ′n∗ : [X, Y ′]AB →
[X,Pn]AB for every n-dimensional simplicial set X with a free action of G.

The theorem should be known but we could not find an equivariant fibrewise version
anywhere. For this reason, we include a proof in Section 7.

From the point of view of Theorem 1.3, we have reduced the computation of [X, Y ]AB =
[X, Y ′]AB to that of [X,Pn]AB, where n = dimX. Before going into details of this computa-
tion, we present a couple of results that are directly related to the Moore–Postnikov tower.
They will be essential tools in the proof of Theorem 1.3.

3.6. Inductive construction of diagonals. We slightly reformulate Lemma 2.17 in
terms of the Moore–Postnikov tower in the following proposition, which works for stages
of a Moore–Postnikov tower.

Proposition 3.7. There is an algorithm that, given a diagram

A
f

//
��

��

Pn

pn
����

X g
//

99

Pn−1

where the pair (X,A) is equipped with effective homology, decides whether a diagonal exists.
If it does, it computes one.

When Hn+1
G (X,A; πn) = 0, a diagonal exists for every f and g.
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Proof. We will use property (3) of Moore–Postnikov towers, which expresses pn as a pull-
back:

A
f

//

��

��

Pn //

pn

��

E(πn, n)

δ
����

X g
//

`

<<

Pn−1
k′n
// K(πn, n+ 1)

Thus, diagonals ` are exactly of the form (g, c) : X → Pn−1 ×K(πn,n+1) E(πn, n), where
c : X → E(πn, n) is an arbitrary diagonal in the composite square and thus computable by
Lemma 2.17.

We obtain two important consequences as special cases. The first one is an algorithmic
version of lifting homotopies across Pn // // Pm.

Proposition 3.8 (homotopy lifting/extension). Given a diagram

(i×X) ∪ (∆1 × A) //

��

∼
��

Pn

����

∆1 ×X //

77

Pm

where i ∈ {0, 1} and (X,A) is equipped with effective homology, it is possible to compute a
diagonal. In other words, one may lift and extend homotopies in Moore–Postnikov towers
algorithmically.

Proof. It is possible to equip (∆1 × X, (i × X) ∪ (∆1 × A)) with effective homology by
Proposition 2.10. Moreover, this pair has zero cohomology since there exists a (continuous)
equivariant deformation of ∆1 ×X onto the considered subspace. Thus a diagonal can be
constructed by a successive use of Proposition 3.7.

The second result concerns algorithmic concatenation of homotopies. Let 2
1 denote the

first horn in the standard 2-simplex ∆2, i.e. the simplicial subset of the standard simplex
∆2 spanned by the faces d2∆2 and d0∆2. Given two homotopies h2, h0 : ∆1×X → Y that
are compatible, in the sense that h2 is a homotopy from `0 to `1 and h0 is a homotopy from
`1 to `2, one may prescribe a map 2

1×X → Y as h2 on d2∆2×X and as h0 on d0∆2×X.
This map has an extension H : ∆2 ×X → Y and the restriction of H to d1∆2 ×X gives a
homotopy from `0 to `2, which can be thought of as a concatenation of h2 and h0. We will
need the following effective, relative and fibrewise version; the proof is entirely analogous
to that of the previous proposition and we omit it.

Proposition 3.9 (homotopy concatenation). Given a diagram

( 2
1 ×X) ∪ (∆2 × A) //

��

∼
��

Pn

����

∆2 ×X //

66

Pm
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where (X,A) is equuipped with effective homology, it is possible to compute a diagonal. In
other words, one may concatenate homotopies in Moore–Postnikov towers algorithmically.

4. Computing homotopy classes of maps

In this section, we prove Theorems 1.1 and 1.3. First, we explain our computational model
for abelian groups, since these are one of our main computational objects and also form
the output of our algorithms.

There are two levels of these computational models: semi-effective and fully effective
abelian groups. They are roughly analogous to locally effective chain complexes and ef-
fective ones. There is, however, one significant difference: while an element of a chain
complex is assumed to have a unique computer representation, a single element of a semi-
effective abelian group may have many different representatives. We can perform the group
operations in terms of the representatives but, in general, we cannot decide whether two
representatives represent the same group element. This setting is natural when working
with elements of [X,Pn]AB, i.e. homotopy classes of diagonals. The representatives are sim-
plicial maps X → Pn, and at first, we will not be able to decide whether two given such
maps are homotopic.

Given a semi-effective abelian group, it is not possible to compute its isomorphism type
(even when it is finitely generated); for this we need additional information, summarized
in the notion of a fully effective abelian group. A semi-effective abelian group can be made
fully effective provided that it is a part of a suitable exact sequence, additionally provided
with set-theoretic sections; this is described in Lemma 4.5.

This suggests a computation of [X,Pn]AB in two steps. First, in Theorem 4.13, we endow
it with a structure of a semi-effective abelian group (whose addition comes from the weak
H-space structure on Pn constructed later in Section 5.14). Next, we promote it to a

fully effective abelian group by relating it to [X,Pn−1]AB and [∆1 ×X,Pn−1]
(∂∆1×X)∪(∆1×A)
B

through a long exact sequence of Theorem 4.16 and using induction.
We note that the long proofs of Theorems 4.13 and 4.16 are postponed to later sections.

This enables us to complete the proof of the main Theorem 1.3 in the present section.

4.1. Operations with abelian groups. This subsection is a short summary of a detailed
discussion found in [4]; results not included there are proved.

In our setting, an abelian group A is represented by a set A, whose elements are called
representatives ; we also assume that the representatives have a finite encoding by bit
strings. For α ∈ A, let [α] denote the element of A represented by α. The representation
is generally non-unique; we may have [α] = [β] for α 6= β.

We call A represented in this way semi-effective, if algorithms for the following three
tasks are available: provide an element o ∈ A with [o] = 0 (the neutral element); given
α, β ∈ A, compute γ ∈ A with [γ] = [α] + [β]; given α ∈ A, compute β ∈ A with
[β] = −[α].
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For semi-effective abelian groups A, B, with sets A, B of representatives, respectively,
we call a mapping f : A→ B computable if there is a computable mapping ϕ : A → B such
that f([α]) = [ϕ(α)] for all α ∈ A.

We call a semi-effective abelian group A fully effective if there is given an isomorphism
A ∼= Z/q1 ⊕ · · · ⊕ Z/qr, computable together with its inverse. In detail, this consists of

• a finite list of generators a1, . . . , ar of A (given by representatives) and their orders
q1, . . . , qr ∈ {2, 3, . . .} ∪ {0} (where qi = 0 gives Z/qi = Z),

• an algorithm that, given α ∈ A, computes integers z1, . . . , zr so that [α] =
∑r

i=1 ziai;
each coefficient zi is unique within Z/qi.

The proofs of the following lemmas are not difficult. The first is [4, Lemma 3.2 and 3.3].

Lemma 4.2 (kernel and cokernel). Let f : A→ B be a computable homomorphism of fully
effective abelian groups. Then both ker(f) and coker(f) can be represented as fully effective
abelian groups.

This implies formally that the same holds for im(f), since it equals the kernel of the
projection B → coker(f).

Example 4.3. Clearly, every chain group Cn in an effective chain complex C∗ is fully
effective. Thus, so are the subgroups of cocyles Zn(C∗) and boundaries Bn(C∗) and, con-
sequently, also the homology groups Hn(C∗) = Zn(C∗)/Bn(C∗). The same applies to
cohomology groups of effective cochain complexes.

Definition 4.4. A semi-effective exact sequence (of abelian groups) is an exact sequence

· · · −→ An+1
dn+1−−−−→ An

dn−−→ An−1
dn−1−−−−→ An−2 −→ · · ·

of semi-effective abelian groups and computable homomorphisms such that the induced
isomorphisms

dn : coker dn+1 → ker dn−1

have computable inverses, called sections. If the sequence is bounded from either side, we
require sections only for inner homomorphisms.

Since An/ ker dn is represented by An and im dn by a subset of An−1, this amounts
to computable partial mappings ρn−1 : An−1

// An, defined on representatives of im dn,
such that dn[ρn−1(γ)] = [γ]. In general, it may happen that [γ] = [γ′], while [ρn−1(γ)] 6=
[ρn−1(γ′)].

Lemma 4.5 (5-lemma). There is an algorithm that, given a semi-effective exact sequence

A2
d2−−→ A1

d1−−→ A0
d0−−→ A−1

d−1−−−→ A−2,

with all A−2, A−1, A1 and A2 fully effective, makes also A0 fully effective.

20



Proof. Consider the induced short exact sequence

0 −→ coker d2
d1−−→ A0

d0−−→ ker d−1 −→ 0.

Viewing sections as maps from the kernel to the cokernel, it is still a semi-effective exact
sequence. Now apply [4, Lemma 3.5].

Definition 4.6. We say that a mapping f : A→ B between groups is an affine homomor-
phism if its translate f 0 : A→ B, given by f 0(a) = f(a)−f(0), is a group homomorphism.
This is equivalent to

f(a+ b) = f(a) + f(b)− f(0) (4.7)

Clearly, for semi-effective A and B, an affine homomorphism f is computable iff f 0 and
the constant f(0) are computable. We will also need the following simple lemma.

Lemma 4.8 (preimage). Let f : A → B be a computable affine homomorphism of fully
effective abelian groups. Then there is an algorithm that, given b ∈ B, decides whether it
lies in im f . If it does, it computes a preimage a ∈ f−1(b).

Proof. Equivalently, we ask for f 0(a) = b − f(0). Compute the images f 0(a1), . . . , f 0(ar)
of the generators of A. Next, decide if the equation

x1f
0(a1) + · · ·+ xrf

0(ar) = b− f(0)

has a solution (this is done by translating to the direct sum of cyclic groups and solving
there using standard methods). If a solution exists, output a = x1a1 + · · ·+ xrar.

4.9. Making Eilenberg–MacLane spaces fibrewise. The description of Pn in the
definition of a Moore–Postnikov tower as a pullback is both classical and useful for the
actual construction of the tower. For the upcoming computations, it has a major dis-
advantage though – the spaces appearing in the pullback square are not spaces over
B. This is easily corrected by replacing the Eilenberg–MacLane space by the product
Kn+1 = B × K(πn, n + 1) and the “path space” by En = B × E(πn, n). Denoting by
kn the fibrewise Postnikov invariant, i.e. the map whose first component is the projec-
tion ψn−1 : Pn−1 → B and the second component is the original (non-fibrewise) Postnikov
invariant k′n, we obtain another pullback square

Pn
qn

//

pn

��

En

δ
��

Pn−1 kn
// Kn+1

We will need that Ln = B × K(πn, n) is a fibrewise abelian group: for two elements

z = (b, z′) and w = (b, w′) of Ln lying over the same b ∈ B, we define z +w
def
= (b, z′ +w′).

The same applies to En and Kn+1.
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Since we know that homotopy classes of maps into Eilenberg–MacLane spaces corre-
spond to cohomology groups and these are easy to compute, the following result should
not be surprising; in its statement, the fixed map A→ Ln is the only fibrewise map (over
B) with values on the zero section, i.e. (gι, 0) : A→ B ×K(πn, n); we call it the zero map
and denote it 0.

Lemma 4.10. Let (X,A) be equipped with effective homology. Then it is possible to equip
[X,Ln]AB with a structure of a fully effective abelian group; the elements are represented by
algorithms that compute (equivariant) fibrewise simplicial maps X → Ln that take A to the
zero section.

Proof. We start with isomorphisms

[X,Ln]AB
∼= [(X,A), (K(π, n), 0)] ∼= Hn

G(X,A; π) ∼= Hn
G(X,A; π)ef

where the group on the right is the cohomology group of the “effective” cochain com-
plex C∗ef(X,A; π)G = HomZG(Cef

∗ (X,A), π) of equivariant cochains on the effective chain
complex of (X,A); the last isomorphism comes from effective homology of (X,A).

Elements of these groups are represented by algorithms that compute the respective
(equivariant) simplicial maps or equivariant cocycles and it is possible to transform one
such representing algorithm into another, so that the isomorphisms are computable in both
directions. The last group is fully effective by Example 4.3.

It will also be useful to generalize the above lemma to the case of maps whose restriction
to A is fixed to a non-zero map. For practical reasons, we will formulate this for [X,Kn+1]AB
and will assume that the fixed restriction is of the form δc for some fibrewise map c : A→
En.

Lemma 4.11. Let (X,A) be equipped with effective homology. Then it is possible to equip
[X,Kn+1]AB with a structure of a fully effective abelian group; the elements are represented
by algorithms that compute (equivariant) fibrewise simplicial maps X → Kn+1 whose re-
striction to A equals δc.

Proof. We denote the group from the statement [X,Kn+1]A,cB and start with the computa-
tion of its zero. Namely, it is possible to compute an extension c̃ : X → En as in the proof
of Lemma 2.17. The zero is then represented by δc̃. There is an isomorphism

[X,Kn+1]A,0B

∼=−−→ [X,Kn+1]A,cB , [`] 7→ [`+ δc̃],

computable in both directions. The group on the left has been endowed with a fully
effective abelian group structure in Lemma 4.10.

We remark that the homotopy class of the zero is independent of the choice of c̃: it is
the only homotopy class in the image of δ∗ : [X,En]AB → [X,Kn+1]AB – the domain has a
single element since En is (fibrewise) contractible. We denote this homotopy class 0 = [δc̃].
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Semi-effectiveness of [X,Pn]AB for stable stages Pn.

Definition 4.12. We call a Moore–Postnikov stage Pn stable if n ≤ 2d, where d is the
connectivity of the homotopy fibre of ψ : Y → B (as in the introduction).

We remark that d is also the connectivity of the homotopy fibre of ψn : Pn → B and,
thus, stability may be defined without any reference to Y .

The significance of the stability condition lies in the existence of an abelian group
structure on [X,Pn]AB. The construction of this structure is (together with the construction
of the Moore–Postnikov tower) technically the most demanding part of the paper and we
postpone it to later sections. For its existence, we will have to assume that [X,Pn]AB is
non-empty; in fact, the structure depends on the choice of a zero of this group, i.e. an
element [on] ∈ [X,Pn]AB.

Theorem 4.13. Suppose that Pn is a stable stage of a Moore–Postnikov tower with effective
homology and that (X,A) is equipped with effective homology. Then, for any given solution
on : X → Pn, the set [X,Pn]AB admits a structure of a semi-effective abelian group with zero
[on], whose elements are represented by algorithms that compute diagonals X → Pn.

The proof of the theorem occupies a significant part of the paper. First, we construct
a “weak H-space structure” on Pn (or, in fact, a pullback of it) in Section 5 and then show
how this structure gives rise to addition on the homotopy classes of diagonals in Section 6.

4.14. Exact sequence relating consecutive stable stages. To promote the semi-
effective group structure on [X,Pn]AB to a fully effective one, we will apply Lemma 4.5
to a certain exact sequence relating two consecutive stable stages of the Moore–Postnikov
tower. The sequence involves the groups [X,Ln]AB and [X,Kn+1]AB, where the fixed restric-

tions are the zero map A→ Ln and the composite δqnfn : A
fn−→ Pn

qn−→ En
δ−→ Kn+1.

Theorem 4.15. Suppose that n ≤ 2d and that (X,A) is equipped with effective homology.
For any given zero [on−1] ∈ [X,Pn−1]AB, the computable map kn∗ in

[X,Pn]AB
pn∗−−−→ [X,Pn−1]AB

kn∗−−−→ [X,Kn+1]AB

is an affine homomorphism and im pn∗ = k−1
n∗ (0).

In the next theorem, a given zero [on] ∈ [X,Pn]AB induces naturally, for all i ≤ n, zeros
[oi] ∈ [X,Pi]

A
B and Theorem 4.13 then provides [X,Pi]

A
B with a group structure. Further,

the group [∆1 × X,Pi](∂∆1×X)∪(∆1×A)
B consists of homotopy classes of homotopies oi ∼ oi

relative to A (this prescribes the fixed restriction to the subspace (∂∆1 ×X) ∪ (∆1 ×A)),
whose zero is the homotopy class of the constant homotopy at oi.
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Theorem 4.16. Suppose that n ≤ 2d, that (X,A) is equipped with effective homology, that

a zero [on] ∈ [X,Pn]AB is given and that [∆1 ×X,Pi](∂∆1×X)∪(∆1×A)
B is fully effective for all

i < n− 1. Then there is a semi-effective exact sequence

[∆1 ×X,Pn−1]
(∂∆1×X)∪(∆1×A)
B

∂n−−→ [X,Ln]AB
jn∗−−−→

jn∗−−−→ [X,Pn]AB
pn∗−−−→ [X,Pn−1]AB

kn∗−−−→ [X,Kn+1]AB (4.17)

of abelian groups.

The exactness itself ought to be well known and is nearly [3, Proposition II.2.7]. The
proofs are postponed to Section 6.8.

4.18. Proof of Theorem 1.3. Let us review the reductions made so far. By Theorem 3.5,
it is enough to compute [X,Pn]AB for n = dimX ≤ 2d. The rest of the proof does not depend
on the dimension of X. Concretely, using induction with respect to n ≤ 2d, we provide
algorithms for the following two tasks, where (X,A) is now allowed to be an arbitrary pair
with effective homology:

(a) decide if [X,Pn]AB is non-empty and, if this is the case, compute an element [on];
(b) given a zero [on] ∈ [X,Pn]AB, make [X,Pn]AB into a fully effective abelian group.

These clearly suffice to prove the theorem. Since P0 = B, we have [X,P0]AB = ∗ and both
tasks are trivial in this case.

To get (a), use (a) and (b) inductively to decide if [X,Pn−1]AB is empty, in which case
[X,Pn]AB is also empty, or to compute an element [on−1] ∈ [X,Pn−1]AB and make [X,Pn−1]AB
into a fully effective abelian group with the zero [on−1]. Next, use Lemma 4.8 to decide
if 0 lies in the image of kn∗ (which is affine by Theorem 4.15). If not, [X,Pn]AB is empty
by Theorem 4.15. Otherwise, still using Lemma 4.8, compute a preimage [o′n−1] ∈ k−1

n∗ (0).
Finally, lift o′n−1 : X → Pn−1 to on : X → Pn using Proposition 3.7 – a lift exists by
Theorem 4.15. We have thus computed an element [on] ∈ [X,Pn]AB.

To get (a), use Theorem 4.13 to make [X,Pn]AB into a semi-effective abelian group.
According to Theorem 4.16, this group fits into an exact sequence with all remaining
terms fully effective either by Lemma 4.10, Lemma 4.11 or by induction, since they concern
diagonals into Pn−1 (the domain (∆1 × X, (∂∆1 × X) ∪ (∆1 × A)) of the leftmost term
admits effective homology by Proposition 2.10). Lemma 4.5 makes [X,Pn]AB fully effective.

Deciding existence for n = dimX = 2d + 1. Since Hn+1
G (X,A; πn) = 0, Lemma 2.17

guarantees the existence of a diagonal X → Pn as a lift of any partial diagonal X → Pn−1

and it is thus enough to decide whether the stable [X,Pn−1]AB is non-empty.

4.19. Proof of Theorem 1.1. We describe how the set of equivariant homotopy classes of
maps [X, Y ] between two G-simplicial sets can be computed as a particular stable instance
of the lifting-extension problem, namely [X, Y ]∅EG, so that Theorem 1.3 applies.
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This instance is obtained by setting B = EG, where EG (known as the Rips complex)
is a non-commutative version of E(π, 0). It has as n-simplices sequences (a0, . . . , an) of
elements ai ∈ G, and its face and degeneracy operators are the maps

di(a0, . . . , an) = (a0, . . . , ai−1, ai+1, . . . , an)

si(a0, . . . , an) = (a0, . . . , ai−1, ai, ai, ai+1, . . . , an).

There is an obvious diagonal action of G which is clearly free.
As every k-simplex of EG is uniquely determined by its (ordered) collection of vertices,

it is clear that a simplicial map g : X → EG is uniquely determined by the mapping
g0 : X0 → G of vertices and g is equivariant if and only if g0 is. A particular choice of a
map X → EG is thus uniquely specified by sending the distinguished vertices of X to (e);
it is clearly computable. Moreover, any two equivariant maps X → EG are (uniquely)
equivariantly homotopic (vertices of ∆1 ×X are those of 0×X and 1×X).

Factoring Y → EG as Y //∼ // Y ′ // // EG using Lemma 7.2, the geometric realization of
Y ′ equivariantly deforms onto that of Y . This shows that the first map in

[X, Y ]
∼=−→ [X, Y ′]← [X, Y ′]∅EG

is a bijection and it remains to study the second map. As observed above, for every
simplicial map X → Y ′, the lower triangle in

∅ //

��

Y ′

����

X //

`

99

EG

commutes up to homotopy. Since Y ′ // //EG is a fibration, one may replace ` by a homotopic
map for which it commutes strictly, showing surjectivity of [X, Y ′]∅EG → [X, Y ′]. The
injectivity is implied by uniqueness of homotopies – every homotopy of maps X → Y ′ that
are diagonals is automatically vertical.

It remains to show how to identify a given equivariant map ` : X → Y as an element of
the computed group [X,Pn]∅EG. By its fully effective abelian group structure, it is enough
to find the corresponding diagonal X → Pn. As above, compute a homotopy h from ψ` to
g : X → EG; then, using Proposition 3.8, compute a lift of h that fits into

0×X ` //

��

��

Y
ϕn
// Pn

����

∆1 ×X
h

//

h̃

66

EG

The restriction of h̃ to 1×X is the required diagonal X → Pn.

We remark that it is also possible to compute [X, Y ] as [X,X × Y ]∅X .
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5. Weak H-spaces

Our goal for the following two sections is to equip [X,Pn]AB with a semi-effective abelian
group structure. We will do this indirectly – we replace Pn, a space over B, by a certain
pullback P̃n, a space over B̃. Proposition 6.7 will then give an isomorphism [X,Pn]AB

∼=
[X, P̃n]A

B̃
, computable in both directions, and will thus reduce our task to a similar one for

P̃n. The main advantage of P̃n over Pn is that the projection ψ̃n : P̃n → B̃ admits a section
õn : B̃ → P̃n that we may think of as a choice of a point in each fibre of ψ̃n (made in a

“continuous” way) – we say that P̃n is pointed.

Our next step is to give P̃n a structure of a fibrewise H-space; again, one could think
of this as a choice of an H-space structure on each fibre that is made in a “continuous”
way; the section õn then serves as the basepoint for this H-space. The fibrewise H-space
structure on P̃n induces an abelian group structure on the set of fibrewise homotopy classes
of maps to P̃n as usual; this is described in Section 6.

To simplify the notation, i.e. in order to deal with Pn rather than P̃n, we will assume
in this section that Pn itself is pointed (and stable) and equip it with a fibrewise H-space
structure and treat the general case only in the next section.

First, we explain a simple approach to constructing a strict fibrewise H-space structure,
which we were not able to make algorithmic, but which introduces ideas employed in the
actual proof of Theorem 4.13, and which also shows why a weakening of the H-space
structure is needed.

We start with additional running assumptions.

Convention 5.1. In addition to Convention 2.4, all simplicial sets are equipped with a
map to B and all maps, homotopies, etc. are fibrewise, i.e. they commute with the specified
maps to B. In the case of homotopies, this means that they remain in one fibre the whole
time or, in other words, that they are vertical.

When P is equipped with a map to B as above, we also say that P is a space over B
(and we really mean a simplicial set over B; the same applies to H-spaces).

Definition 5.2. We say that a space P over B, with projection ψ : P // // B, is pointed
if there is provided a section o : B → P , i.e. a map such that ψo = id. We will call this
distinguished section o the zero section.

5.3. Fibrewise H-spaces. Let P be a pointed space over B with projection ψ : P // // B
and zero section o : B → P . We recall that the pullback P ×B P consists of pairs (x, y)
with ψ(x) = ψ(y). Associating to (x, y) this common value makes P ×B P into a space
over B. We recall that a (fibrewise) H-space structure on P is a (fibrewise) map

add: P ×B P → P,

where we write add(x, y) = x + y, that satisfies a single condition – the zero section
o should act as a zero for this addition, i.e. for x ∈ P lying over b = ψ(x) we have
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o(b) + x = x = x + o(b). In the proceeding, we will abuse the notation slightly and write
o for any value of o, so that we rewrite the zero axiom as o + x = x = x + o. After all,
there is a single value of o for which this makes sense. It will be convenient to organize
this structure into a commutative diagram

P ∨B P
∇

&&

ϑ
��

P ×B P add
// P

with P ∨B P the fibrewise wedge sum, P ∨B P = (B ×B P ) ∪ (P ×B B) (where B ⊆ P is
the image of the zero section o), and with ∇ denoting the fold map given by (o, x) 7→ x
and (x, o) 7→ x. As explained, all maps are fibrewise over B. Under this agreement, the
above diagram is a definition of a (fibrewise) H-space structure.

We say that the H-space structure is homotopy associative if there exists a homotopy
(x + y) + z ∼ x + (y + z) (i.e. formally a homotopy of maps P ×B P ×B P → P ) that is
constant when restricted to x = y = z = o. Homotopy commutativity is defined similarly.
Finally, it has a right homotopy inverse if there exists a map inv : P → P , denoted x 7→ −x,
such that −o = o and such that there exists a homotopy x + (−x) ∼ o, constant when
restricted to x = o.

We have already met an example of an H-space, namely Ln = B×K(πn, n). We recall
that Pn is a stable stage if n ≤ 2d, where d is the connectivity of the homotopy fibre of ψ.
In general, we have the following theorem, whose proof can be found in Section 7.

Theorem 5.4. Every pointed stable Moore–Postnikov stage Pn admits a fibrewise H-space
structure. Any such structure is homotopy associative, homotopy commutative and has a
right homotopy inverse. It is unique up to homotopy relative to Pn ∨B Pn.

The importance of this result does not lie in the existence of an H-space structure itself
but in its uniqueness and its properties. After all, we will need to construct this structure
and, in this respect, the above existential result is not sufficient.

5.5. H-space structures on pullbacks. We describe a general method for introducing
H-space structures on pullbacks since Pn is defined in this way. Let us start with a general
description of our situation. We are given a pullback square

P //

��

R

ψ
����

Q χ
// S

with ψ a fibration. We assume that all of Q, R and S are H-spaces over B, and that R
and S are strictly associative, commutative and with a strict inverse. If both ψ and χ
preserved the addition strictly we could define addition on P ⊆ Q×R componentwise. In
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our situation, though, χ preserves the addition only up to homotopy and, accordingly, the
addition on P will have to be perturbed to

(x, y) + (x′, y′) = (x+ x′, y + y′ +M(x, x′)). (5.6)

There are two conditions that need to be satisfied in order for this formula to be correct:
ψM(x, x′) = χ(x + x′) − (χ(x) + χ(x′)) (so that the right-hand side of (5.6) lies in the
pullback) and M(x, o) = o = M(o, x) (to get an H-space). Both are summed up in the
following lifting-extension problem

P ∨B P o //

ϑ
��

R

ψ
����

P ×B P m
//

M

::

S

with m(x, x′) = χ(x + x′) − (χ(x) + χ(x′)). In our situation, ψ is δ : En → Kn+1. Thus,
Lemma 2.17 would give us a solution if the pair (P ×B P, P ∨B P ) had effective homology.

However, we have not been able to prove this and, consequently, we cannot construct
the addition on the pullback. In the computational world, we are thus forced to replace this
pair by a certain homotopy version (P ×̂B P, P ∨̂B P ) of it that admits effective homology.
This transition corresponds, as will be explained later, to a passage from H-spaces to
a weakened notion, where the zero section serves as a zero for the addition only up to
homotopy.

After this rather lengthy introduction, the plan for the rest of the section is to introduce
weak H-spaces and then to describe an inductive construction of weak H-space structure
on pointed stable stages of Moore–Postnikov towers. We believe that to understand the
weak version, it helps significantly to keep in mind the above formula for addition on P .
For the same reason, we give a formula for a right inverse in P , assuming that it exists in
Q (and in R and S, as required earlier):

−(x, y) = (−x,−y −M(x,−x)). (5.7)

5.8. Weak H-spaces. We will need a weak version of an H-space. Roughly speaking this
is defined to be a fibrewise addition x+y together with left zero and right zero homotopies
λ : y ∼ o + y and ρ : x ∼ x + o that become homotopic as homotopies o ∼ o + o. In
simplicial sets, a homotopy between homotopies can be defined in various ways. Here we
will interpret it as a map η : ∆2 × B → P that is a constant homotopy on d2∆2 × B and
restricts to the two unit homotopies on d1∆2 ×B and d0∆2 ×B, respectively:

o+ o

//η//
o s0o

//

λ(o)
<<

o

ρ(o)
bb

28



We will organize this data into a map add: P ×̂B P → P with similar properties to
the strict H-space structure. The space P ×̂B P will be a special case of the following
construction which works for any commutative square (of spaces over B)

S =

Z
u0 //

u1

��

Z0

v0
��

Z1 v1
// Z2

that we denote for simplicity by S. We define |S| and its subspace d2|S| as particular small
models of the homotopy colimit of the square S and of the homotopy pushout of Z0 and
Z1 along Z; namely,

|S| =
(
∆2 × Z

)
∪
(
d1∆2 × Z0

)
∪
(
d0∆2 × Z1

)
∪
(
2× Z2

)
,

d2|S| =
(
d2∆2 × Z

)
∪
(
0× Z0

)
∪
(
1× Z1

)
,

where we assume for simplicity that all maps in S are inclusions; otherwise, the union has
to be replaced by a certain (obvious) colimit. In the case of inclusions, |S| is naturally a
subspace of ∆2×Z2 and as such admits an obvious map to ∆2×B whose fibres are equal
to those of Z, Z0, Z1 or Z2 (over B), depending on the point of ∆2. In the picture below,
B = {∗} and |S| is thus depicted as a space over ∆2; here, Z2 is a 3-simplex, Z0 and Z1

its edges and Z their common vertex.

∆2 ×B

d1∆
2 × Z0

2× Z2

∆2 × Z

d0∆
2 × Z1

The construction |S| possesses the following universal property: to give a map f : |S| →
Y is the same as to give maps fi : Zi → Y (for i = 0, 1, 2), homotopies hi : fi ∼ f2vi (for
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i = 0, 1) and a “second order homotopy” H : ∆2 × Z → Y whose restriction to di∆
2 × Z

equals hiui (for i = 0, 1). Similarly, a map d2|S| → Y is specified by f0 : Z0 → Y and
f1 : Z1 → Y as above and a homotopy f0u0 ∼ f1u1.

In order to apply this definition to weak H-spaces, we consider the square

SP =

B ×B B // // B ×B P def
= Pright

��

��

Pleft
def
= P ×B B // //

��

��

P ×B P

(the subspaces consist of pairs where one of the two components, or both, lie on the zero
section). We will denote B×BB for simplicity by B, to which it is canonically isomorphic.

Definition 5.9. Let P → B be a Kan fibration. We define simplicial sets

P ∨̂B P def
= d2|SP |, P ×̂B P def

= |SP |.

We denote the inclusion by ϑ : P ∨̂B P → P ×̂B P .
Furthermore, we define a “fold map” ∇̂ : P ∨̂B P → P , prescribed as the identity map

on 0× Pright and 1× Pleft and as the constant homotopy at o on d2∆2 ×B.

We remark that P ∨̂B P and P ×̂B P are weakly homotopy equivalent to P ∨B P and
P ×B P , respectively; this is proved in Lemma 7.4. Now, we are ready to define weak
H-spaces.

Definition 5.10. A weak H-space structure on P is a (fibrewise) map add: P ×̂B P → P
that fits into a commutative diagram

P ∨̂B P
∇̂

%%

ϑ
��

P ×̂B P add
// P

We denote the part of add corresponding to 2× (P ×B P ) by x+ y = add(2, x, y), the part
corresponding to d1∆2×Pright, i.e. the left zero homotopy, by λ, and the part corresponding
to d0∆2 × Pleft, i.e. the right zero homotopy, by ρ.

Finally, we define a “diagonal” ∆̂ : P → P ×̂B P by x 7→ (2, x, x).

All these associations are natural, making P ∨̂B P , P ×̂B P into functors and ∇̂, ϑ, ∆̂
into natural transformations.

Proposition 5.11. Assume that all the spaces in the square S have effective homology.
Then so does the pair (|S|, d2|S|).

The proof is given in Section 7. The following special case will be crucial in constructing
a weak H-space structure on pointed stable stages of Moore–Postnikov towers.
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Corollary 5.12. Let Pn be a pointed stage of a Moore–Postnikov tower with effective
homology. Then it is possible to equip the pair (Pn×̂BPn, Pn ∨̂BPn) with effective homology.

Proof. According to Addendum 3.4, it is possible to equip Pn×BPn with effective homology.
Thus, the result follows from the previous proposition.

Remark. Alternatively, we may construct effective homology of Pn×B Pn at the same time
as we build the tower for Y → B but, compared to Pn, with all Eilenberg–MacLane spaces
and all Postnikov classes “squared”.

The following proposition will be used in Section 5.14 as a certificate for the existence
of a weak H-space structure on Pn; namely, it will guarantee that all relevant obstructions
vanish.

Proposition 5.13. For any Moore–Postnikov stage Pn, the pair (Pn ×̂B Pn, Pn ∨̂B Pn) is
(2d + 1)-connected, where d is the connectivity of the homotopy fibre of ψ : Y → B (or
equivalently of ψn : Pn → B).

In particular, the cohomology groups H∗G(Pn×̂BPn, Pn∨̂BPn; π) of this pair with arbitrary
coefficients π vanish up to dimension 2d+ 1.

The proof can be found in Section 7.

5.14. Constructing weak H-spaces. Prime examples of weak H-spaces are the strict
ones and, in particular, every fibrewise simplicial group is a weak H-space. In the proceed-
ing, we will make use of the trivial bundles Kn+1 = B×K(πn, n+1) and En = B×E(πn, n).
Since Kn+1 is a fibrewise simplicial group, we have a whole family of weak H-space struc-
tures on Kn+1, one for each choice of a zero section o : B → Kn+1; namely, we define
addition z+o w = z+w− o (the inverse then becomes −oz = −z+ 2o). A similar formula
defines an H-space structure on En for every choice of its zero section. We denote the usual
zero section by 0.

We are now ready to prove the following crucial proposition.

Proposition 5.15. If Pn is a pointed stable stage of a Moore–Postnikov tower with effective
homology, with a zero section on, it is possible to construct a structure of a weak H-space
on Pn with a strict right inverse.

Proof. The proof is by induction and the base case is trivial since P0 = B. Let Pn−1

be a Moore–Postnikov stage and kn : Pn−1 → Kn+1 the respective (fibrewise) Postnikov
invariant. There is a pullback square

Pn
qn

//

pn

��

En

δ
��

Pn−1
kn // Kn+1

(5.16)

of spaces over B. We denote the images of the zero section on : B → Pn by on−1 = pnon
in Pn−1, by qnon in En and by knon−1 in Kn+1. In this way Kn+1 is equipped with two
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sections, the zero section 0 and the composition knon−1. We will see that the fact that
these do not coincide in general causes some technical problems.

Assume inductively that there is given a structure of a weak H-space on Pn−1.

Pn−1 ∨̂B Pn−1

∇̂

((

ϑ
��

Pn−1 ×̂B Pn−1 add
// Pn−1

In analogy with Section 5.5, we form the “non-additivity” map m : Pn−1 ×̂B Pn−1 → Kn+1

as the difference of the following two compositions

Pn−1 ×̂B Pn−1
add

ww

kn×̂kn
''

Pn−1

kn ''

− Kn+1 ×̂B Kn+1

addknon−1
ww

Kn+1

where addknon−1 is the H-space structure on Kn+1 whose zero section is knon−1. We recall
that it is given by z +knon−1 w = z + w − knon−1.

We now construct a weak H-space structure on Pn = Pn−1×Kn+1 En under our stability
assumption n ≤ 2d. The zero of this structure will be on. We compute a diagonal in

Pn−1 ∨̂B Pn−1
0 //

ϑ
��

En

δ

��

Pn−1 ×̂B Pn−1 m
//

M

77

Kn+1

(5.17)

by Lemma 2.17, whose hypotheses are satisfied according to Corollary 5.12 and Propo-
sition 5.13. The existence of M says roughly that kn is additive up to homotopy. We
define

add: Pn ×̂B Pn −→ Pn = Pn−1 ×Kn+1 En

by its two components pn add and qn add. The first component pn add is uniquely specified
by the requirement that pn : Pn → Pn−1 is a homomorphism, i.e. by the commutativity of
the square

Pn ×̂B Pn add //

pn×̂pn
��

Pn

pn

��

Pn−1 ×̂B Pn−1 add
// Pn−1
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The second component qn add is given as a sum

Pn ×̂B Pn
qn×̂qn
yy

pn×̂pn
&&

En ×̂B En
addqnon %%

+ Pn−1 ×̂B Pn−1

Mxx

En

The last two diagrams are a “weak” version of the formula (5.6). A simple diagram chase
shows that the two components are compatible and satisfy the condition of a weak H-space;
details can be found in Lemma 7.6.

Assuming that inv is constructed on Pn−1 in such a way that x + (−x) = on−1, we
define a right inverse on Pn by the formula

−(x, c) = (−x,−c+ 2qnon −M(2, x,−x)).

Again, inv is well defined and is a right inverse for add; details can be found in Lemma 7.6.

6. Structures induced by weak H-spaces

In this section, we prove Theorems 4.13, 4.15 and 4.16. We start by general considerations.

Definition 6.1. We say that a lifting-extension problem

A
f
//

��

ι

��

P

ψ
����

X g
//

>>

B

o

]]

is pointed if P is pointed in such a way that f = ogι.

This condition is equivalent to og being a solution; thus, [X,P ]AB in naturally pointed
by the homotopy class [og]. Until further notice, we consider a pointed lifting-extension
problem.

In the case of a strict H-space P over B, it is easy to define addition on [X,P ]AB: simply
put [`0] + [`1] = [`0 + `1]. In particular, this defines addition on [X,Ln]AB which, under the
identification of [X,Ln]AB with Hn

G(X,A; πn), corresponds to the addition in the cohomology
group.

It is technically much harder to equip [X,P ]AB with addition when the H-space structure
on P is weak. In this case, the restriction of `0 + `1 to A equals f + f 6= f (note that the
values of f lie on the zero section and o + o 6= o) and thus does not represent an element
of [X,P ]AB. This problem is solved in Section 6.2 using a strictification of weak H-space
structures, which serves as a compact definition of addition in [X,P ]AB and is also a useful
tool in proofs that deal with the addition in [X,P ]AB on a global level, e.g. in deriving the
exact sequence of Theorem 4.16.
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6.2. Strictification and addition of homotopy classes. The point of this subsection
is to describe a perturbation of a weak H-space structure to one for which the zero is strict.
We will then apply this to the construction of addition on [X,Pn]AB. Assume thus that we
have a weak H-space structure

P ∨̂B P
ϑ
��

∇̂

%%
P ×̂B P add

// P

Form the following lifting-extension problem where the top map is add on P ×̂B P and
∇ pr2 on d2∆2× (P ∨B P ). Lemma 7.4 shows that the map on the left is a weak homotopy
equivalence and thus a diagonal exists (but in general not as a computable map).

(P ×̂B P ) ∪
(
d2∆2 × (P ∨B P )

)
��

∼
��

[add,∇ pr2]
// P

ψ

����

∆2 × (P ×B P ) //

44

B

The restriction of the diagonal to 0× (P ×B P ) is then a (strict!) H-space structure which
we denote add′ with the corresponding addition +′. The restriction to d1∆2× (P ×B P ) is
a homotopy +′ ∼ +.

Definition 6.3. Let P be a weak H-space with addition add. Let add′ be its perturbation
to a strict H-space structure as above. We define the addition in [X,P ]AB by [`0] + [`1] =
[`0 +′ `1]. Below, we prove that it is independent of the choice of a perturbation.

Composing the above homotopy +′ ∼ + with a pair of solutions (`0, `1), we obtain
`0 +′ `1 ∼ `0 + `1 whose restriction to A is the left zero homotopy λf : f = f +′ f ∼ f + f .
We will use this observation as a basis for the computation of the homotopy class of `0 +′ `1,
since we do not see a way of computing add′ directly.

Restricting to the case P = Pn of Moore–Postnikov stages, the addition in [X,Pn]AB
is computed in the following algorithmic way. Let `0, `1 : X → Pn be two solutions and
consider `0 + `1 whose restriction to A equals f + f . Extend the left zero homotopy
λf : f ∼ f + f on A to a homotopy σ : ` ∼ `0 + `1 on X. It is quite easy to see that the
resulting map ` is unique up to homotopy relative to A.11 Since `0 +′ `1 is also obtained in
this way, this procedure gives correctly [`] = [`0] + [`1] ∈ [X,Pn]AB. From the algorithmic
point of view, this is well behaved – if (X,A) is equipped with effective homology, we
may extend homotopies by Proposition 3.8. This proves the first half of the following
proposition.

11Given two such homotopies, one may form out of them a map ( 2
2 × X) ∪ (∆2 × A) → Pn, whose

extension to ∆2 ×X, fibrewise over B, gives on d2∆2 ×X the required homotopy.
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Proposition 6.4. If (X,A) is equipped with effective homology and Pn is given a weak
H-space structure, then there exists an algorithm that computes, for any two solutions
`0, `1 : X → Pn of a pointed lifting-extension problem, a representative of [`0] + [`1]. If
the weak H-space structure has a strict right inverse, then the computable ong + (−`) is a
representative of −[`].

Proof. The formula ` 7→ ong + (−`) prescribes a mapping [X,Pn]AB → [X,Pn]AB since its
restriction to A equals f + (−f) = f . It is slightly more complicated to show that it is
an inverse for our perturbed version of the addition. To this end, we have to exhibit a
homotopy

ong ∼ `+ (ong + (−`))
that agrees on A with the left zero homotopy λf . We start with the left zero homotopy
λ(−`) : −` ∼ ong+(−`) and add ` to it on the left to obtain `+λ(−`) : ong ∼ `+(ong+(−`)).
By Lemma 6.5, its restriction to A, i.e. f + λ(−f), is homotopic to the left zero homotopy
λ(f + (−f)) = λf . By extending this second order homotopy from A to X, we obtain a
new homotopy ong ∼ ` + (ong + (−`)) that agrees with the left zero homotopy on A, as
desired.

To make the statement of the following lemma understandable, we use on to denote the
appropriate value of on, i.e. they are abbreviations for onψn(x). Applying to x = −f as in
the previous proof, this equals onψn(−f) = f .

Lemma 6.5. The homotopies λ(on + x), on + λ(x) : on + x ∼ on + (on + x) are homotopic
relative to ∂∆1 × Pn.

Proof. We concatenate the two homotopies from the statement with the left zero homotopy
λ(x) : x ∼ on+x and it is then enough to show that the two concatenations are homotopic.
The homotopy between them is ∆1 ×∆1 × Pn → Pn, (s, t, x) 7→ λ(s, λ(t, x)).

6.6. Solution of pullback problems. So far, we have discussed only pointed Moore–
Postnikov stages and pointed lifting-extension problems. We will now describe, in a general
stable situation of Theorem 4.13, a way of passing from a solution on : X → Pn to a pointed
Postnikov stage and a pointed lifting-extension problem.

First we describe a general procedure for replacing, via pullbacks, lifting-extension
problems by equivalent ones. Suppose that we have a diagram

A //
��

��

P̃n //

����

Pn

����

X // B̃ // B

in which the right square is a pullback square. Then diagonals in the left square are in
bijection with diagonals in the composite square and the same applies to homotopies. Thus,

[X, P̃n]A
B̃

∼=−−→ [X,Pn]AB.
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We will now apply this to a special factorization of g : X → B with the first map the
identity, so that B̃ = X, and the induced pullback square:

A
f̃n

//

fn

((

��

ι

��

P̃n //

ψ̃n
����

Pn

ψn
����

X
id //

g

66X // B

Viewing P̃n = X ×B Pn as a subspace of X ×Pn, the map ψ̃n becomes the projection onto
the left factor and f̃n = (ι, fn). A diagonal on : X → Pn in the composite square then

induces a diagonal õn = (id, on) : X → P̃n in the left square and this is simply a section of

ψ̃n. In addition, it is easy to verify that f̃n = õnι, i.e. f̃n takes values on this section.

Proposition 6.7. There is a bijection [X,Pn]AB
∼= [X, P̃n]A

B̃
, computable in both directions,

with the latter lifting-extension problem pointed.

Remark. There is a different factorization g : X
on−→ Pn

ψn−→ B and the induced pullback
Pn×B Pn → Pn also admits a section by the diagonal map. The advantage of this pullback
is that it depends only on ψ : Y → B and not on A, X, f or g. On the other hand, it
seems bigger than the pullback P̃n proposed above. An H-space structure on Pn×B Pn can
be interpreted directly as a structure on Pn, given by a ternary operation and related to
heaps; this approach has been developed in [22].

Theorem 4.13 (restatement). Suppose that Pn is a stable stage of a Moore–Postnikov
tower with effective homology and that (X,A) is equipped with effective homology. Then,
for any given solution on : X → Pn, the set [X,Pn]AB admits a structure of a semi-effective
abelian group with zero [on], whose elements are represented by algorithms that compute
diagonals X → Pn.

Proof. This is a corollary of a collection of results obtained so far. By Proposition 6.7, we
may replace the Moore–Postnikov tower and the given lifting-extension problem by their
pointed versions. By Proposition 5.15, it is possible to construct on P̃n the structure of a
weak H-space. By results of this subsection, it is possible to strictify this structure, making
P̃n into an H-space. According to Theorem 5.4, it is homotopy associative, homotopy
commutative and with a right homotopy inverse; consequently, [X,Pn]AB

∼= [X, P̃n]A
B̃

is an
abelian group. By Proposition 6.4, it is possible to compute the addition and the inverse in
the latter group on the level of representatives, making it into a semi-effective abelian group.
Since the isomorphism is computable in both directions by Proposition 5.15, [X,Pn]AB also
becomes a semi-effective abelian group.

6.8. Proof of Theorems 4.15 and 4.16. We will need the fact that pn : Pn → Pn−1 is
a principal fibration with fibrewise action of Ln = B × K(πn, n) (in the fibrewise world,
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an action is a map Pn ×B Ln → Pn). Thinking of Pn as a subset of Pn−1 ×En, an element

z ∈ Ln acts on (x, c) ∈ Pn by (x, c) + z
def
= (x, c + z) where the sum c + z is taken within

the fibrewise simplicial group En.

Theorem 4.15 (restatement). Suppose that n ≤ 2d and that (X,A) is equipped with
effective homology. For any given zero [on−1] ∈ [X,Pn−1]AB, the computable map kn∗ in

[X,Pn]AB
pn∗−−−→ [X,Pn−1]AB

kn∗−−−→ [X,Kn+1]AB

is an affine homomorphism and im pn∗ = k−1
n∗ (0).

Proof. Both claims will be proved as a part of the proof of the following theorem.

Theorem 4.16 (restatement). Suppose that n ≤ 2d, that (X,A) is equipped with effective

homology, that a zero [on] ∈ [X,Pn]AB is given and that [∆1 ×X,Pi](∂∆1×X)∪(∆1×A)
B is fully

effective for all i < n− 1. Then there is a semi-effective exact sequence

[∆1 ×X,Pn−1]
(∂∆1×X)∪(∆1×A)
B

∂n−−→ [X,Ln]AB
jn∗−−−→

jn∗−−−→ [X,Pn]AB
pn∗−−−→ [X,Pn−1]AB

kn∗−−−→ [X,Kn+1]AB

of abelian groups.

Proof. We start by defining the map jn∗: on the level of maps, jn∗(ζ) = on + ζ (the action
of Ln on Pn) and it passes to homotopy classes. We then obtain a sequence

[X,Ln]AB
jn∗−−−→ [X,Pn]AB

pn∗−−−→ [X,Pn−1]AB
kn∗−−−→ [X,Kn+1]AB,

whose exactness at the second term is straightforward. To prove exactness at the third
term, we recall that 0 ∈ [X,Kn+1]AB is the only element in the image of δ∗, as remarked after
Lemma 4.11. Thus, [`n−1] ∈ im pn∗ iff `n−1 lifts to Pn iff kn`n−1 lifts to En iff [kn`n−1] ∈ im δ∗
iff kn∗[`n−1] = 0.

It is possible to extend the sequence to the left by [∆1 ×X,P ]
(∂∆1×X)∪(∆1×A)
B , the set

of homotopy classes of fibrewise homotopies ∆1 ×X → Pn−1 from on−1 to on−1 relative to
A; its base point is the constant homotopy at on−1. First, we describe

∂n : [∆1 ×X,Pn−1]
(∂∆1×X)∪(∆1×A)
B → [X,Ln]AB.

Let h : ∆1 × X → Pn−1 be a homotopy as prescribed above. Choose a lift h̃ of h along
pn : Pn → Pn−1 that starts at on and is relative to A (this can be carried out in an
algorithmic way by Proposition 3.8). Restricting to the end of the homotopy prescribes a

map h̃end : X → Pn that lies over on−1 and is thus of the form h̃end = on + ζ for a unique
map ζ : X → Ln. We set ∂n[h] = [ζ]; this is well defined by Lemma 6.9.

By definition, jn∗∂n[h] = [h̃end] and the homotopy h̃ shows this equal to [on]. The

exactness is also easy – a homotopy h̃ : on ∼ on + ζ in Pn projects down to Pn−1 to a
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homotopy ∆1 × X → Pn−1 representing a preimage of [ζ] (since its lift is h̃ with the
appropriate end on + ζ). To summarize, we have an exact sequence of pointed sets

[∆1 ×X,Pn−1]
(∂∆1×X)∪(∆1×A)
B → [X,Ln]AB → [X,Pn]AB → [X,Pn−1]AB → [X,Kn+1]AB.

Our next aim is to show that the maps in this sequence are homomorphisms of groups.
By replacing the stages Pn−1, Pn by their pullbacks P̃n−1, P̃n if necessary, we may assume
that these stages are pointed and that so is the lifting-extension problem in question.
Therefore, the addition on homotopy classes is defined through strict H-space structures
(namely, strictifications of weak H-space structures), as described in Section 6.2. According
to the uniqueness part of Theorem 5.4, we may assume that the strict H-space structure
is constructed as in Section 5.5. The corresponding non-additivity map m′ and its lift M ′

are as in the following diagram

Pn−1 ∨B Pn−1
0 //

ϑ
��

En

δ
��

Pn−1 ×B Pn−1
m′
//

M ′
77

Kn+1

and the addition is defined on Pn inductively using

(x, y) +′ (x′, y′) = (x+′ x′, y +qnon y
′ +M ′(x, x′)).

An important property is that this makes jn into a homomorphism (since M ′ vanishes
when one of the arguments lies on the zero section on−1). Therefore, already on the level
of representatives, pn∗ and jn∗ are homomorphisms.

Since kn∗ preserves zeros, it is enough to show that kn∗ is an affine homomorphism.
Applying (4.7) to kn∗, we need a homotopy

knx+knon−1 kny ∼ kn(x+′ y)

relative to Pn−1∨B Pn−1 or, in other words, a relative homotopy 0 ∼ m′. Such a homotopy
is obtained as an image under δ of a relative homotopy 0 ∼ M ′, which exists since En is
(fibrewise) contractible.

It remains to treat the connecting homomorphism ∂n. If h0, h1 : ∆1 × X → Pn−1

represent two elements of the domain, then the lift of h0 +′ h1 may be chosen to be the
sum h̃0 +′ h̃1 of the two lifts. Thus, (h̃0 +′ h̃1)end = (h̃0)end +′ (h̃1)end and this corresponds
to the sum of the ∂n-images.

Computability of sections. A section of pn∗ is defined by mapping a partial diagonal
` : X → Pn−1 to an arbitrary lift ˜̀: X → Pn of `, with a prescribed restriction to A. The
computation of ˜̀ is taken care of by Proposition 3.7; a lift exists because ker kn∗ = im pn∗.

For the construction of a section σ of jn∗, let ` : X → Pn be a diagonal such that
pn` is homotopic to on−1. Proposition 6.10 computes a homotopy on−1 ∼ pn`. Using
Proposition 3.8, we lift it along pn to a homotopy `′ ∼ `, relative to A, for some `′. Since
pn`
′ = on−1 = pnon, we have `′ = on + ζ for a unique ζ : X → Ln and we set σ(`) = ζ.
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Lemma 6.9. Continuing the notation from the proof of Theorem 4.16, the homotopy class
[ζ] does not depend on the choices made; thus, ∂n is a well defined map. In addition, if ζ ′

is any other representative of this homotopy class, i.e. ∂n[h] = [ζ ′], there exists a lift h̃′ of
h that is a homotopy between on and on + ζ ′ relative to A.

Proof. If h is homotopic to h′, by a homotopy relative to (∂∆1 × X) ∪ (∆1 × A), and h̃′

is any lift of h′, then we may lift the homotopy h ∼ h′ to a homotopy h̃ ∼ h̃′ relative to
(0 × X) ∪ (∆1 × A),12 that restricts to 1 × X to a fibrewise homotopy on + ζ ∼ on + ζ ′,
relative to A, implying ζ ∼ ζ ′; thus, ∂n is well defined.

For the second part, concatenating the homotopy h̃ : on ∼ on + ζ, with the homotopy
on + ζ ∼ on + ζ ′ induced from the given ζ ∼ ζ ′, we obtain h̃′ : on ∼ on + ζ ′. If the
concatenation of homotopies is computed, as in Proposition 3.9, using the lift in

( 2
1 ×X) ∪ (∆2 × A) //

��

��

Pn

pn
����

∆2 ×X
s1×id

//

33

∆1 ×X
h
// Pn−1

then this concatenation will also be a lift of h, since the restriction of h(s1× id) to d1∆2×X
equals h; here s1 : ∆2 → ∆1 is the map sending the non-degenerate 2-simplex of ∆2 to the
s1-degeneracy of the non-degenerate 1-simplex of ∆1.

Proposition 6.10. Suppose that (X,A) is equipped with effective homology and that [∆1×
X,Pi]

(∂∆1×X)∪(∆1×A)
B is a fully effective abelian group for all i < n − 1. Then there is an

algorithm that decides whether given [on−1], [`n−1] ∈ [X,Pn−1]AB are equal. If this is the
case, the algorithm computes a homotopy on−1 ∼ `n−1.

We remark that the above homotopy decision algorithm admits a generalization to
non-stable stages and, thus, provides homotopy testing for maps to an arbitrary simply
connected space, see [12].

Proof. We compute the homotopy hn−1 by induction on the height i of the Moore–Postnikov
stage Pi. Let oi and `i denote the projections of on−1 and `n−1 onto the i-th stage Pi. Sup-
pose that we have computed a homotopy hi−1 : oi−1 ∼ `i−1 and lift it by Proposition 3.8 to
a homotopy h̃i−1 : `′i ∼ `i from some map `′i, necessarily of the form `′i = oi + ζ ′i.

Since Proposition 3.9 provides algorithmic means for concatenating homotopies, it re-
mains to construct a homotopy h′i : oi ∼ `′i. Consider the connecting homomorphism in
(4.17) for stages Pi−1 and Pi, i.e.

∂i : [∆1 ×X,Pi−1]
(∂∆1×X)∪(∆1×A)
B −→ [X,Li]

A
B.

12This is a solution of a lifting extension problem whose left part is an inclusion in the pair (∆1, ∂∆1)×
(∆1, 0) × (X,A) with the middle term ∞-connected, thus also the whole product, and the inclusion is a
weak homotopy equivalence.
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From the already proved exactness of (4.17) and from `′i ∼ `i, it follows that [ζ ′i] lies in the
image of ∂i if and only if oi ∼ `i. If this is the case, we obtain a representative h′i−1 of a
preimage by Lemma 4.8. Thus, ∂i[h

′
i−1] = [ζ ′i].

According to Lemma 6.9, there exists a lift of h′i−1 that is a homotopy h′i : oi ∼ oi + ζ ′i
relative to A. This specifies the top map in the following lifting-extension problem

(∂∆1 ×X) ∪ (∆1 × A) //

��

Pi

��

∆1 ×X
h′i−1

//

h′i

66

Pi−1

and h′i can thus be computed using Proposition 3.7.

7. Leftover proofs

The purpose of this section is to prove statements that were used in the main part but
whose proofs would disturb the flow of the paper.

Theorem 3.3 (restatement). There is an algorithm that, given a map ψ : Y → B be-
tween simply connected simplicial sets with effective homology and an integer n0, constructs
an n0-truncated extended Moore–Postnikov tower for ψ and equips it with effective homol-
ogy.

The proof will be presented in two parts. First, we describe the construction of the
objects and then we prove that they really constitute an extended Moore–Postnikov tower.

The construction itself follows ideas by E. H. Brown for non-equivariant simplicial sets
in [2] and by C. A. Robinson for topological spaces with free actions of a group in [18].

We described the construction in the non-equivariant non-fibrewise case G = 1 and
B = ∗ in detail in [5]. Here, we give a brief overview with the emphasis on the necessary
changes for G and B non-trivial.

Construction. The first step of the construction is easy. Put P0 = B and ϕ0 = ψ. To
proceed by induction, suppose that we have constructed Pn−1 and a map ϕn−1 : Y → Pn−1

with properties 1 and 2 from the definition of the Moore–Postnikov tower. Moreover,
assume that Pn−1 is equipped with effective homology.

Viewing coneϕ(n−1)∗ as a perturbation of C∗Pn−1⊕C∗Y , we obtain from strong equiv-
alences C∗Pn−1 ⇐⇒ Cef

∗ Pn−1 and C∗Y ⇐⇒ Cef
∗ Y a strong equivalence coneϕ(n−1)∗ ⇐⇒ Cef

∗
with Cef

∗ effective (for details, see [5, Proposition 3.8]). Let us consider the composition

Cef
n+1 → Zn+1(Cef

∗ )→ Hn+1(Cef
∗ )

def
= πn,

where the first map is an (equivariant) retraction of Zn+1(Cef
∗ ) ⊆ Cef

n+1, computed by the
algorithm of Proposition 2.14; the second map is simply the projection onto the homology
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group. The homology group itself is computed from Cef
∗ – by forgetting the action of G, it

is a chain complex of finitely generated abelian groups and Smith normal form is available.
The G-action on πn is easily computed from the G-action on Cef

∗ . Composing with the
chain map coneϕ(n−1)∗ → Cef

∗ coming from the strong equivalence, we obtain

κ+ λ : Cn+1Pn−1 ⊕ CnY =
(

coneϕ(n−1)∗
)
n+1
→ Cef

n+1 → πn

whose components are denoted κ and λ. They correspond, respectively, to maps

k′n : Pn−1 → K(πn, n+ 1), l′n : Y → E(πn, n)

that fit into a square

Y
l′n //

ϕn−1

��

E(πn, n)

δ
��

Pn−1
k′n
// K(πn, n+ 1)

(7.1)

which commutes by the argument of [5, Section 4.3].
Now we can take Pn = Pn−1 ×K(πn,n+1) E(πn, n) to be the pullback as in part 3 of

the definition of the tower. By the commutativity of the square (7.1), we obtain a map
ϕn = (ϕn−1, l

′
n) : Y → Pn as in

Y l′n

''

ϕn−1

��

ϕn

""

Pn //

pn

��

E(πn, n)

δ

��

Pn−1
k′n
// K(πn, n+ 1)

which we will prove to satisfiy the remaining conditions for the n-th stage of a Moore–
Postnikov tower.

First, however, we equip Pn with effective homology. To this end, observe that Pn is
isomorphic to the twisted cartesian product Pn−1 ×τ K(πn, n), see [15, Proposition 18.7].
Since Pn−1 is equipped with effective homology by induction, and K(πn, n) admits effective
homology non-equivariantly by [5, Theorem 3.16], it follows from [10, Corollary 12] (or [5,
Proposition 3.10]) that Pn can also be equipped with effective homology non-equivariantly.
Since the G-action on Pn is clearly free (any fixed point would get mapped by ψn to a fixed
point in B), Theorem 2.9 provides (equivariant) effective homology for Pn (distinguished
simplices of Pn are pairs with the component in Pn−1 distinguished).

Correctness. From the exact sequence of homotopy groups associated with the fibration
sequence

Pn → Pn−1 → K(πn, n+ 1)
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and the properties 1 and 2 for Pn−1, we easily get that Pn satisfies the condition 2 and that
ϕn∗ : πi(Y )→ πi(Pn) is an isomorphism for 0 ≤ i ≤ n− 1.

The rest of the proof is derived, as in [5, Section 4.3], from the morphism of long exact
sequences of homotopy groups

πn+1(Y ) //

ϕn∗
��

πn+1(cylϕn−1) //

∼=
��

πn+1(cylϕn−1, Y )
∼=
��

// πn(Y )
ϕn∗
��

// πn(cylϕn−1)
∼=
��

// 0

0 // πn+1(Pn) // πn+1(cyl pn) // πn+1(cyl pn, Pn) // πn(Pn) // πn(cyl pn)

associated with pairs (cylϕn−1, Y ) and (cyl pn, Pn). The arrow in the middle is an isomor-
phism by [5, Lemma 4.5], while the remaining two isomorphisms are consequences of the
fact that both cylinders deform onto the same base Pn−1. The zero on the left follows
from the fact that the fibre of pn is K(πn, n) and the zero on the right comes from the
condition 1 for Pn−1. By the five lemma, ϕn∗ is an isomorphism on πn and an epimorphism
on πn+1 which completes the proof of condition 1.

Addendum. For a given computable β : B̃ → B, the pullbacks P̃n = B̃ ×B Pn may be
identified with twisted cartesian products P̃n−1 ×τ K(πn, n) and as such admit effective

homology by induction, starting from the assumed effective homology of P̃0 = B̃.

For the next proof, we will use the following observation.

Lemma 7.2. Every map ψ : P → Q can be factored as ψ : P //
j
// P ′

ψ′
// // Q, where j is a

weak homotopy equivalence and ψ′ is a Kan fibration.

By a weak homotopy equivalence, we will understand a map whose geometric realization
is a G-homotopy equivalence.

Proof. This is the small object argument (see e.g. [13, Section 10.5] or [7, Section 7.12])
applied to the collection J of “G-free horn inclusions” G× n

i → G×∆n, n ≥ 1, 0 ≤ i ≤ n.
Using the terminology of [13], the J -injectives are exactly those maps that have non-
equivariantly the right lifting property with respect to n

i → ∆n (this follows from the
equivalence (7.3) from the next proof), i.e. Kan fibrations. The geometric realization of
every relative J -cell complex is a G-homotopy equivalence since the geometric realization
of G×∆n clearly deforms onto that of G× n

i .

Theorem 3.5 (restatement). There exists a map ϕ′n : Y ′ → Pn inducing a bijection
ϕ′n∗ : [X, Y ′]AB → [X,Pn]AB for every n-dimensional simplicial set X with a free action of G.

Proof. By construction, ϕn : Y → Pn is an (n+1)-equivalence. By the proof of Lemma 7.2,
we may assume Y → Y ′ to be a relative J -cell complex. We show that ϕn factors through
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Y ′. Given that this is true for Pn−1, we form the square

Y
ϕn

//
��

∼
��

Pn

pn
����

Y ′
ϕ′n−1

//

ϕ′n
99

Pn−1

in which a diagonal exists by the fact that Y → Y ′ is a relative J -cell complex and such
maps have the left lifting property with respect to Kan fibrations.

The map ϕ′n is also an (n+ 1)-equivalence. We will prove more generally that

ψ∗ : [X,P ]AB → [X,Q]AB

is an isomorphism for any (n+ 1)-equivalence ψ : P → Q.
The basic idea is that X is built from A by consecutively attaching “cells with a free

action of G”, namely X = ∪Xi and in each step Xi = Xi−1∪G×∂∆miG×∆mi with mi ≤ n.13

First, we prove that ψ∗ is surjective under the assumption that ψ is an n-equivalence.
For convenience, we replace ψ by a G-homotopy equivalent Kan fibration using Lemma 7.2.
Suppose that the above map ψ∗, but with X replaced by Xi−1, is surjective and we prove
the same for Xi. This is clearly implied by the solvability of the following lifting-extension
problem

Xi−1
//

��

��

P

ψ
����

Xi `
//

99

Q

(to find a preimage of [`] at the bottom, we find the top map by the inductive hypothesis;
if the lift exists, it gives a preimage of [`] as required). As Xi is obtained from Xi−1 by
attaching a single cell, the problem is equivalent to

G× ∂∆mi //

��

��

P

ψ
����

that is further
equivalent to

∂∆mi //
��

��

P

ψ
����

G×∆mi //

99

Q ∆mi //

;;

Q

(7.3)

where the problem on the right is obtained from the left by restricting to e ×∆mi and is
non-equivariant. Its solution is guaranteed by ψ being an mi-equivalence.

To prove the injectivity of ψ∗, we put back the assumption of ψ being an (n + 1)-
equivalence. We study the preimages of [`] ∈ [X,Q]AB under ψ∗; these clearly form [X,P ]AQ.
By the surjectivity part, this set is non-empty. By pulling back P along `, we thus obtain
a fibration `∗P → X with a section X → `∗P which is an n-equivalence.14 Thus,

[X,P ]AQ
∼= [X, `∗P ]AX

∼=←−− [X,X]AX = ∗
13Thus, the action needs only be free away from A and the same generalization applies to the dimension.
14The fibres of ψ are n-connected and isomorphic to those of `∗P → X. From the long exact sequence

of homotopy groups of this fibration, it follows that `∗P → X is also an (n+ 1)-equivalence and its section
then must be an n-equivalence.
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by the surjectivity part (any surjection from a one-element set is a bijection).

Next, we need the following lemma.

Lemma 7.4. The natural maps P ∨̂B P → P ∨B P and P ×̂B P → P ×B P are weak
homotopy equivalences.

The inclusion (P ×̂B P ) ∪
(
d2∆2 × (P ∨B P )

)
// // ∆2 × (P ×B P ) is a weak homotopy

equivalence.

Proof. The space P ∨̂B P is naturally a subspace of d2∆2 × (P ∨B P ) and it is enough to
show that it is in fact a deformation retract. A continuous deformation is obtained from a
deformation of d2∆2 × Pright onto (0× Pright) ∪ (d2∆2 × B) and a symmetric deformation
of d2∆2 × Pleft onto (1× Pleft) ∪ (d2∆2 ×B).

To prove the remaining claims, consider the deformation of ∆2 × (P ×B P ) onto 2 ×
(P ×B P ), given by deforming ∆2 linearly onto 2 and by a constant homotopy at identity
on the second component P ×B P . By an easy inspection, it restricts to a deformation of
P ×̂B P onto 2× (P ×B P ), giving the second claim.

Since both ∆2 × (P ×B P ), P ×̂B P deform onto the same 2× (P ×B P ), it is enough
for the last claim to find a deformation of

(P ×̂B P ) ∪
(
d2∆2 × (P ∨B P )

)

onto P ×̂B P . This is provided by the deformation of d2∆2 × (P ∨B P ) onto P ∨̂B P (the
intersection of the two spaces in the union above) from the first paragraph.

Now we are ready to prove the following proposition.

Proposition 5.13 (restatement). For any Moore–Postnikov stage Pn, the pair (Pn ×̂B
Pn, Pn ∨̂B Pn) is (2d + 1)-connected, where d is the connectivity of the homotopy fibre of
ψ : Y → B (or equivalently of ψn : Pn → B).

In particular, the cohomology groups H∗G(Pn×̂BPn, Pn∨̂BPn; π) of this pair with arbitrary
coefficients π vanish up to dimension 2d+ 1.

Proof. By the first part of the previous lemma, we may replace the pair in the statement
by (Pn ×B Pn, Pn ∨B Pn).

First, we recall that Pn → B is a minimal fibration (each δ : E(πi, i)→ K(πi, i+1) is one
and the class of minimal fibrations is closed under pullbacks and compositions, see [15]).
It is well known that over each simplex σ : ∆i → B any minimal fibration is trivial and it
is easy to modify this to an isomorphism σ∗Pn ∼= ∆i×F of fibrations with sections, where
F denotes the fibre of Pn → B and is d-connected by the assumptions.15. Consequently,

15Start with an inclusion (∆i × ∗) ∪ (0 × F ) → σ∗Pn given by the zero section on the first summand
and by the inclusion on the second. Extend this to a fibrewise map ∆i × F → σ∗Pn which is a fibrewise
homotopy equivalence, hence an isomorphism, by the minimality of Pn → B.
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Pn ∨B Pn is a fibre bundle with fibre F ∨ F . Thus, we have a map of fibre sequences

F ∨ F //

��

Pn ∨B Pn //

��

B

F × F // Pn ×B Pn // B

The left map is (2d+ 1)-connected. By the five lemma applied to the long exact sequences
of homotopy groups, the middle map Pn ∨B Pn → Pn ×B Pn is also (2d+ 1)-connected.

To show that the equivariant cohomology groups vanish, we make use of a contraction of
C∗(Pn ×̂BPn) onto C∗(Pn ∨̂BPn) in dimensions ≤ 2d+1; its existence follows from the proof
of Proposition 2.14. By the additivity of HomZG(−, π), there is an induced contraction of
C∗G(Pn ×̂BPn; π) onto C∗G(Pn ∨̂BPn; π) and thus the relative cochain complex is acyclic.

Theorem 5.4 (restatement). Every pointed stable Moore–Postnikov stage Pn admits a
fibrewise H-space structure. Any such structure is homotopy associative, homotopy commu-
tative and has a right homotopy inverse. It is unique up to homotopy relative to Pn ∨B Pn.

Proof. By the previous proposition, the left vertical map in

Pn ∨B Pn ∇ //

��

ϑ
��

Pn

ψn
����

Pn ×B Pn //

add

77

B

is (2d + 1)-connected. Since the homotopy groups of the fibre of ψn are concentrated in
dimensions d ≤ i ≤ n, the relevant obstructions (they can be extracted from the proof of
Proposition 3.7) for the existence of the diagonal lie in

H i+1
G (Pn ×B Pn, Pn ∨B Pn) = 0

(since i + 1 ≤ n + 1 ≤ 2d + 1). The diagonal is unique up to homotopy by the very same
computation. Thus, in particular, replacing add by the opposite addition addop : (x, y) 7→
y + x yields a homotopic map, proving homotopy commutativity. Similarly, homotopy
associativity follows from the uniqueness of a diagonal in

(B ×B Pn ×B Pn) ∪ (Pn ×B Pn ×B B) //

��

��

Pn

ψn
����

Pn ×B Pn ×B Pn //

33

B

(the pair on the left is again (2d+ 1)-connected) with two diagonals specified by mapping
(x, y, z) to (x+ y) + z and x+ (y + z).

The existence of a homotopy inverse is a fibrewise and equivariant version of [21, The-
orem 3.4]; the proof applies without any complications when the action of G is free. We
will not provide more details since we construct the inverse directly in Section 5.14.
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For the next proof, we will use a general lemma about filtered chain complexes. Let C∗
be a chain complex equipped with a filtration

0 = F−1C∗ ⊆ F0C∗ ⊆ F1C∗ ⊆ · · ·

such that C∗ =
⋃
i FiC∗. As usual, we assume that each FiC∗ is a ZG-cellular subcomplex,

i.e. generated by a subset of the given basis of C∗. We assume that this filtration is locally
finite, i.e. for each n, we have Cn = FiCn for some i ≥ 0. For the relative version, let D∗
be a (ZG-cellular) subcomplex of C∗ and define FiD∗ = D∗ ∩ FiC∗.

Lemma 7.5. Under the above assumptions, if each filtration quotient GiC∗ = FiC∗/Fi−1C∗
has effective homology then so does C∗. More generally, if each (GiC∗, GiD∗) has effective
homology then so does (C∗, D∗).

Proof. We define G∗ =
⊕

i≥0GiC∗, the associated graded chain complex. Then C∗ is
obtained from G∗ via a perturbation that decreases the filtration degree i. Taking a
direct sum of the given strong equivalences GiC∗ ⇐= ĜiC∗ =⇒ Gef

i C∗, we obtain a strong

equivalence G∗ ⇐= Ĝ∗ =⇒ Gef
∗ with all the involved chain complexes equipped with a

“filtration” degree. Since the perturbation on G∗ decreases this degree, while the homotopy
operator preserves it, we may apply the perturbation lemmas, Propositions 2.12 and 2.13,
to obtain a strong equivalence C∗ ⇐= Ĉ∗ =⇒ Cef

∗ .

Proposition 5.11 (restatement). Assume that all the spaces in the square S have ef-
fective homology. Then so does the pair (|S|, d2|S|).

We continue the notation of Section 5.8.

Proof. We apply Lemma 7.5 to the natural filtration FiC∗|S| = C∗ ski |S|, where ski |S|
is the preimage of the i-skeleton ski ∆

2 under the natural projection |S| → ∆2. The
Eilenberg–Zilber reduction applies to the quotient

C∗ sk2 |S|/C∗ sk1 |S| ∼= C∗(∆
2 × Z, ∂∆2 × Z) =⇒ C∗(∆

2, ∂∆2)⊗ C∗Z ∼= s2C∗Z

where s denotes the suspension. The effective homology of Z provides a further strong
equivalence with s2Cef

∗ Z. Similarly, C∗ sk1 |S|/C∗ sk0 |S| is isomorphic to

C∗((d2∆2, ∂d2∆2)× Z)⊕ C∗((d1∆2, ∂d1∆2)× Z0)⊕ C∗((d0∆2, ∂d0∆2)× Z1)

and thus strongly equivalent to sCef
∗ Z ⊕ sCef

∗ Z0 ⊕ sCef
∗ Z1. Finally, C∗ sk0 |S| is strongly

equivalent to Cef
∗ Z0 ⊕ Cef

∗ Z1 ⊕ Cef
∗ Z2.

The subcomplexes corresponding to d2|S| are formed by some of the direct summands
above and are thus preserved by all the involved strong equivalences. This finishes the
verification of the assumptions of Lemma 7.5.

The following lemma was used in the proof of Proposition 5.15.
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Lemma 7.6. The two components pn add and qn add defined in the proof of Proposi-
tion 5.15 determine a map add: Pn ×̂B Pn → Pn and this map is a weak H-space structure.

The two components pn inv and qn inv defined in Section 5.14 determine a map inv : Pn →
Pn and this map is a right inverse for add.

Proof. The compatibility for add:

δqn add = δ
(

addqnon(qn ×̂ qn) +M(pn ×̂ pn)
)

= addknon−1(δ ×̂ δ)(qn ×̂ qn) +m(pn ×̂ pn)

= addknon−1(kn ×̂ kn)(pn ×̂ pn) +
(
kn add− addknon−1(kn ×̂ kn)

)
(pn ×̂ pn)

= kn add(pn ×̂ pn) = knpn add

The weak H-space condition addϑ = ∇̂ on Pn verified for its two components:

pn addϑ = add(pn ×̂ pn)ϑ = addϑ(pn ∨̂ pn) = ∇̂(pn ∨̂ pn) = pn ∇̂
qn addϑ =

(
addqnon(qn ×̂ qn) +M(pn ×̂ pn)

)
ϑ = addqnon ϑ(qn ∨̂ qn) + Mϑ︸︷︷︸

0

(pn ∨̂ pn)

= ∇̂(qn ∨̂ qn) = qn ∇̂

The compatibility for inv:

δ(−c+ 2qnon −M(2, x,−x)) = −δc+ 2δqnon −m(2, x,−x)

= −knx+ 2knon−1 − (kn(x+ (−x)︸ ︷︷ ︸
on−1

)− knx+ knon−1 − kn(−x)) = kn(−x)

The condition add(id ×̂ inv) ∆̂ = on of being a right inverse:

(x, c) + (−(x, c)) = (x, c) + (−x,−c+ 2qnon −M(2, x,−x))

= (x+ (−x), c+ (−c+ 2qnon −M(2, x,−x))− qnon +M(2, x,−x))

= (on−1, qnon) = on
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[22] L. Vokř́ınek. Computing the abelian heap of unpointed stable homotopy classes of maps.
Arch. Math. (Brno), 49 (2013), 359–368.
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Decidability of the extension problem for maps into

odd-dimensional spheres∗

Lukáš Vokř́ınek

May 31, 2016

Abstract

In a recent paper [3], it was shown that the problem of the existence of a continuous map
X → Y extending a given map A→ Y , defined on a subspace A ⊆ X, is undecidable, even for
Y an even-dimensional sphere. In the present paper, we prove that the same problem for Y
an odd-dimensional sphere is decidable. More generally, the same holds for any d-connected
target space Y whose homotopy groups πnY are finite for 2d < n < dimX.

We also prove an equivariant version, where all spaces are equipped with free actions of
a given finite group G and all maps are supposed to respect these actions. This yields the
computability of the Z/2-index of a given space up to an uncertainty of 1.

1. Introduction

The main object of study of this paper is the extension problem. Given spaces X, Y and a map
f : A→ Y defined on a subspace A ⊆ X, it questions the existence of a continuous extension

A
��

ι

��

f
// Y

X

g

;;

If Y is allowed non-simply connected, this problem is undecidable by a simple reduction to the
word problem in groups. Thus, we restrict ourselves to the situation of a simply connected Y .

In [8], Steenrod expressed a hope that the extendability problem would be algorithmically
solvable. It was proved in [1] that this is indeed the case if one restricts to a suitably “stable”
situation, i.e. if dimX ≤ 2 connY +1. The algorithm of that paper depends on computations with
abelian groups of homotopy classes of maps that are not available unstably. Later, the authors
showed in [3] that the previous positive result was very much the best possible: the extension
problem with dimX > 2 connY + 1 is undecidable, even for such a simple target space as Sd+1

with d+ 1 even. This undecidability result has implications to other problems; namely, [5] proves
the undecidability of the problem of the existence of a robust zero of a given simplex-wise linear
map K → Rd+2 with d+ 1 even.

It may thus come as a bit of a surprise that the extension problem for maps into a sphere Sd+1

with d+ 1 odd is decidable: this is an instance of Theorem 1 below – the theorem does apply to
Y = Sd+1, for d + 1 odd, since πnS

d+1 is finite for n > d + 1. Again, [5] implies decidability of
the problem of the existence of a robust zero of a given simplex-wise linear map K → Rd+2, for
d+ 1 odd.

∗The research was supported by the Center of Excellence – Eduard Čech Institute (project P201/12/G028 of
GA ČR).
2010 Mathematics Subject Classification. Primary 55Q05; Secondary 55S35.
Key words and phrases. Homotopy class, computation, higher difference.
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Theorem 1. There exists an algorithm that, given a pair of finite simplicial sets (X,A), a finite
d-connected simplicial set Y , for d ≥ 1, with homotopy groups πnY finite, for 2d < n < dimX,
and a simplicial map A→ Y , decides the existence of a continuous extension X → Y .

We do not have any bounds on the running time of such an algorithm. In the light of the
#P-hardness of the computation of the homotopy group πkY when k is a part of the input (in
unary), see [3], we do not expect that this algorithm is polynomial-time when the dimension of
X is not fixed. However, even if dimX is bounded, it seems that our algorithm will not have
polynomial running time. Nevertheless, the alternation between decidability and undecidability
of the extension problem for maps into a sphere Sd+1 seems striking.

In Section 5, we discuss an extension of Theorem 1 to the equivariant situation of [4]. In the
special case G = Z/2, A = ∅ and Y = Sd+1 with the anti-podal Z/2-action, it gives the decidability
of the problem of the existence of a Z/2-equivariant map X → Sd+1, for d + 1 odd. The index
of X, denoted indX, is the smallest d + 1, for which an equivariant map X → Sd+1 exists;
this invariant has many applications in geometry and combinatorics. Thus, with the equivariant
version of Theorem 1, it is possible to narrow down indX to two possible values.

Theorem 2. There exists an algorithm that, given a finite simplicial set X equipped with a free
action of Z/2, and d+ 1 odd, decides whether indX ∈ {d, d+ 1}.

Remark on the difference between spheres. We will now outline the main difference between
spheres Sd+1 with d+ 1 even and d+ 1 odd.

In the case d+1 even, the rational homotopy groups are non-trivial in dimensions d+1 and 2d+1
and the Postnikov invariant is “rationally” the same as the cup-square K(Z, d+1)→ K(Z, 2d+2).
Using this, it is possible to encode a system of quadratic equations in Z into an extension problem
and the former is known to be algorithmically unsolvable (the actual proof of the undecidability
result in [3] is slightly different, but uses a similar idea).

When d + 1 is odd, the only non-trivial rational homotopy group of Sd+1 lies in dimension
d+ 1 and, thus, all obstructions have finite coefficients. The above mentioned system of quadratic
equations, when considered with values in Z/2, say, is easily solved by analyzing all possible
values of the unknowns modulo 2. Although we have no guarantee that general obstructions are
of polynomial nature, it is however still true that only a finite number of possibilities needs to be
analyzed; this is the basic idea of our proof of Theorem 1.

2. Sets with an action and mappings to abelian groups

Before we start with topology, we introduce one of our main technical tools – a formula, that will
imply “periodicity” of certain homotopy phenomena. This periodicity serves as a (rather weak)
replacement of additivity that occurs in the stable situation.

Let S and T be sets equipped with an operation +: S × T → S that has a right-sided zero
0 ∈ T , i.e. such that x+ 0 = x; we will call this operation an action of T on S. We use the (only
sensible) bracketing convention x+ y + z = (x+ y) + z and define a derived action of T on S by

x+ ky = x+ y + · · ·+ y︸ ︷︷ ︸
k-times

.

Again, it has a right-sided zero 0. For any formal expression written in terms of the action of T
on S, we will use a superscript (−)(k) to denote the derived expression obtained by replacing each
x+ y by x+ ky.

Let f : S → G be an arbitrary mapping of S into an abelian group G. Our aim in this section
is to give a relation between f(x + θy) and f(x) modulo a prime power q = pm, i.e. modulo the
subgroup qG of q-multiples in G, where θ is a sufficiently big number (a high power of p, in fact);
as an important special case, if qG = 0, we get a relation between f(x + θy) and f(x). We will
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make a heavy use of higher-order differences

∆`f(x; y1, . . . , y`) =
∑

0≤j≤`
1≤i1<···<ij≤`

(−1)`−jf(x+ yi1 + · · ·+ yij ).

Clearly, ∆`f(x; y1, . . . , y`) = 0 whenever yi = 0 for some i. Deriving this higher-order difference,
we obtain

∆
(k)
` f(x; y1, . . . , y`) =

∑

0≤j≤`
1≤i1<···<ij≤`

(−1)`−jf(x+ kyi1 + · · ·+ kyij ).

We understand ∆
(k)
` as an operator from functions S → G to functions S × T ` → G. Since we

may add functions with values in abelian groups, it is also possible to form integral combinations

of the operators ∆
(k)
` .

We first demonstrate the relation between f(x+ θy) and f(x) modulo q on an example.

Example 3. In this example, we have q = pm = 4 and θ = 8. Then

f(x+ 8y) = ∆
(2)
4 f(x; y, y, y, y) + 4f(x+ 6y)− 6f(x+ 4y) + 4f(x+ 2y)− f(x)

and we continue in a similar way with the third term,

f(x+ 4y) = ∆
(1)
4 f(x; y, y, y, y) + 4f(x+ 3y)− 6f(x+ 2y) + 4f(x+ y)− f(x).

Substituting the second formula into the first, we get

f(x+ 8y) ≡ f(x) + ∆
(2)
4 f(x; y, y, y, y) + 2∆

(1)
4 f(x; y, y, y, y). (mod 4)

Denoting D4,4 = ∆
(2)
4 + 2∆

(1)
4 , we finally obtain f(x+ 8y) ≡ f(x) +D4,4f(x; y, y, y, y).

In general, we have the following lemma, in which the congruence modulo q means, as above,
that the difference of the two sides is a q-multiple, i.e. lies in the subgroup qG.

Lemma 4. Let q = pm and ` = pn be two powers of a given prime p and let θ = pn+m−1.

Then there exists an integral combination Dq,` of the operators ∆
(k)
` such that, for each mapping

f : S → G into an abelian group G, we have

f(x+ θy) ≡ f(x) +Dq,`f(x; y, . . . , y). (mod q)

In particular, Dq,`f(x; y1, . . . , y`) = 0 whenever yi = 0, for some i.

Proof. The proof is executed by induction with respect to m. By definition, and using ` = pn,

f(x+ θy) = f(x+ pnpm−1y) = ∆
(pm−1)
` f(x; y, . . . , y)−

pn−1∑

j=0

(−1)p
n−j
(
pn

j

)
f(x+ jpm−1y).

For j > 0, write j = pn
′
j′ where j′ is coprime to p and observe that

j

(
pn

j

)
= pn

(
pn − 1

j − 1

)

is divisible by pn, so that pn−n
′ |
(
pn

j

)
. Setting n′ +m = n+m′, we have either m′ ≤ 0, in which

case n−n′ ≥ m and the binomial coefficient
(
pn

j

)
is divisible by q = pm, or we obtain, for q′ = pm

′
,

by induction

f(x+ jpm−1y) = f(x+ pn+m′−1j′y) ≡ f(x) +D
(j′)
q′,`f(x; y, . . . , y). (mod q′)
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Upon multiplication by
(
pn

j

)
, that is divisible by pn−n

′
= q/q′, we then obtain

(
pn

j

)
f(x+ jpm−1y) ≡

(
pn

j

)
f(x) +

(
pn

j

)
D

(j′)
q′,`f(x; y, . . . , y), (mod q)

that holds trivially even in the earlier case m′ ≤ 0 (the D
(j′)
q′,` -term on the right makes no sense but

gets multiplied by 0). Since
∑pn−1
j=0 (−1)p

n−j(pn
j

)
= −1, substituting the previous equation into

the first yields f(x) with coefficient 1, so that

f(x+ θy) ≡ f(x) + ∆
(pm−1)
` f(x; y, . . . , y)−

pn−1∑

j=1

(−1)p
n−j
(
pn

j

)
D

(j′)
q′,`f(x; y, . . . , y)

≡ f(x) +Dq,`f(x; y, . . . , y), (mod q)

if we set

Dq,` = ∆
(pm−1)
` −

pn−1∑

j=1

(−1)p
n−j
(
pn

j

)
D

(j′)
q′,` .

The last statement of the lemma follows from the corresponding property of the ∆
(k)
` .

3. Postnikov tower

We set D = dimX. As in Theorem 1, we assume that Y is a d-connected simplicial set that
has all homotopy groups πnY finite for 2d < n < D. In this section, we construct the Postnikov
tower for Y , whose basic building stones are the Eilenberg-MacLane spaces K(π, n+ 1) and their
path spaces E(π, n); more precisely, we use the canonical minimal models with both simplicial
sets minimal and the projection δ : E(π, n) → K(π, n + 1) a minimal fibration. They have a
simple combinatorial description – the k-simplices of E(π, n) are the normalized n-cochains on
the standard k-simplex ∆k with coefficients in π, i.e. (E(π, n))k = Cn(∆k;π), and K(π, n) is the
subset of normalized n-cocycles. For this reason, simplicial maps X → E(π, n) are in bijection
with cochains from Cn(X;π) and simplicial maps X → K(π, n) are in bijection with cocycles from
Zn(X;π). For details, consult [7] or [1].

The Postnikov stages are built from the Eilenberg-MacLane spaces using pullbacks – these will
be understood in this paper as subspaces of the product in the usual way. We construct Postnikov
stages as simplicial sets with effective homology, a structure that will not be defined in this paper,
since it is used only as an input to theorems from other papers. We will need explicitly only a very
basic part, namely, that: simplices of the Postnikov stages have an agreed upon representation
in a computer (its precise form is not important) and that there are algortihms supplied that
compute their faces and degeneracies. This allows us to represent also simplicial maps X → Pn
in a computer, e.g. by listing the images of all non-degenerate simplices of X.

Theorem 5. For each simply connected simplicial set Y , it is possible to construct simplicial sets
Pn (as simplicial sets with effective homology), for n < D, and simplicial maps ϕn : Y → Pn, such
that ϕn∗ : πk(Y )→ πk(Pn) is an isomorphism, for k ≤ n, and πk(Pn) = 0, for k > n.

Further, for 2d < n < D, it is possible to construct simplicial sets Pn,i that fit into a pullback
square (alternatively, Pn,i is a principal bundle over Pn,i−1 with fibre K(Z/q, n))

Pn,i //

��

E(Z/q, n)

δ

��

Pn,i−1
k // K(Z/q, n+ 1)

(1)

with q = pm a prime power (depending on n and i; the same applies to k) and Pn−1 = Pn,0, Pn =
Pn,rn , where rn is some non-negative integer. The composition of the projections Pn,i → Pn,i−1

for i = 1, . . . , rn is a map pn : Pn → Pn−1, that satisfies pnϕn = ϕn−1.
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Proof. [2, Theorem 1.2] gives the simplicial sets Pn, the maps ϕn, pn and also the homotopy
groups πn = πn(Y ). To obtain the refinements Pn,i, we compute a decomposition

πn ∼= Z/q1 ⊕ · · · ⊕ Z/qr

of the n-th homotopy group into a sum of cyclic groups of prime power orders (the output of [2,
Theorem 1.2] expresses πn as a sum of cyclic groups; it remains to factor the orders of the cyclic
summands into products of prime powers). Defining πn,i = Z/q1⊕· · ·⊕Z/qi and using the obvious
projections pr : πn → πn,i, the space Pn,i is obtained as the following pullback

Pn,i //

��

E(πn,i, n)

δ

��

Pn−1
kn // K(πn, n+ 1)

pr∗ // K(πn,i, n+ 1)

The isomorphism K(πn,i, n+1) ∼= K(πn,i−1, n+1)×K(Z/qi, n+1) and a similar one for the path
space E(πn,i, n) imply straightforwardly that (1) is indeed a pullback square (with q = qi).

For the following theorem and its proof, we will denote certain actions as x+ Θy, even though
they are not derived from any action x+ y. In this situation, upon deriving the action, we obtain
x+θΘy that we will denote x+Θ′y, for Θ′ = θΘ. That is, we get a derived action x+Θ′y whenever
Θ | Θ′. In this situation, when deriving expressions, we write (−)(Θ′) when the action x+ Θ′y is
used in the expression; in particular, (−)(Θ) uses the original (non-derived) action x+ Θy.

Theorem 6. There is Θ � 0 (easily computed) and an action x + Θy of P2d on each Pn,i, for
all 2d ≤ n < D and 0 ≤ i ≤ rn, that has a right-sided zero 0 ∈ P2d and such that the projections
Pn,i → Pn,i−1 respect this action.

Proof. We will define, by induction with respect to n and i, positive integers Θn,i, in such a way
that Θn,i−1 | Θn,i, and actions x+ Θn,iy of P2d on Pn,i. The actions x+ Θy from the statement
are then obtained by setting Θ = ΘD−1,rD−1

and deriving the action x+Θn,iy on Pn,i as explained
before the statement of the theorem – we have Θn,i | Θ.

Starting with n = 2d, the paper [1] constructs an abelian H-group structure on P2d, i.e. an
action of P2d on itself; we set Θ2d = 1. For the inductive step, we apply Lemma 4 to the Postnikov
invariant k : Pn,i−1 → K(Z/q, n+ 1) with q = pn the order of the coefficients of the Eilenberg-
MacLane space and a yet to be specified ` = pm; the lemma applies since the target of k is a
simplicial abelian group, i.e. an abelian group in each dimension. The function

D
(Θn,i−1)
q,` k : Pn,i−1 × P2d × · · · × P2d → K(Z/q, n+ 1)

is zero whenever one of the components in P2d is 0, i.e. on the product of Pn,i−1 with the so-called
fat wedge; thus, we have a diagram

Pn,i−1 × {fat wedge} 0 //

��

��

E(Z/q, n)

δ
����

Pn,i−1 × P2d × · · · × P2d
D

(Θn,i−1)

q,` k

//

M ′
44

K(Z/q, n+ 1)

(2)

The cofibre of the map on the left (i.e. the quotient of the bigger space by the smaller) is (Pn,i−1)+∧
P2d ∧ · · · ∧ P2d, where (−)+ denotes a disjoint union with a basepoint (i.e. the cofibre of a map
from the empty space); this smash product is easily seen to be (`(d+1)−1)-connected. Therefore,

when `� 0, a diagonal M ′ exists, since the sole obstruction lies in H̃n+1((Pn,i−1)+ ∧ P2d ∧ · · · ∧
P2d;Z/q) = 0. We define M(x, y) = M ′(x; y, . . . , y), so that

δM(x, y) = D
(Θn,i−1)
q,` k(x; y, . . . , y) = k(x+ θΘn,i−1y)− k(x),
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where θ is as in Lemma 4. Denoting Θn,i = θΘn,i−1, this allows us to define an action of P2d on
Pn,i ⊆ Pn,i−1 × E(Z/q, n) – viewed as the pullback in (1) – by the formula

(x, c) + Θn,iy = (x+ Θn,iy, c+M(x, y));

this indeed lies in Pn,i, since

δ(c+M(x, y)) = δc+ δM(x, y) = k(x) + (k(x+ Θn,iy)− k(x)) = k(x+ Θn,iy).

After the following two claims, we will be ready to prove Theorem 1.

Lemma 7. For 2d < n < D, let ΠX : [X,Pn] → [X,P2d] denote the post-composition with the
projection Pn → P2d. Given g′ : X → P2d, it is possible to compute g1, . . . , gk : X → Pn such that
Π−1
X [g′] = {[g1], . . . , [gk]}, i.e. it is possible to compute all lifts of g′ up to homotopy.

Proof. We compute lifts of g′ to X → P2d+1 in the following way: [1, Lemma 6.2] computes one
such a lift g̃; employing the (computable!) principal action ofK(π2d+1, 2d+1) on P2d+1, representa-
tives of all other homotopy classes of lifts are obtained by acting on g̃ by mapsX → K(π2d+1, 2d+1)
representing all possible homotopy classes [X,K(π2d+1, 2d+ 1)] ∼= H2d+1(X;π2d+1) – since π2d+1

is finite, this cohomology group is indeed finite and representatives of all cohomology classes are
easily computed. In the next step, it is possible to go through all these partial lifts and compute
all their lifts to P2d+2, etc.

Theorem 8. There is an algorithm that decides the existence of a (pointed) homotopy between
given simplicial maps f, g : X → Pn.

Proof. The proof of [6, Theorem C.1] gives a reduction to the question of nullhomotopy; for maps
X → Pn, the nullhomotopy decision algorithm is the claim (null)n in [6].

In the proof of Lemma 7, we may use Theorem 8 to remove multiple occurrences of homotopy
classes of lifts, thus computing e.g. their number.

4. Proof of Theorem 1

For n = D − 1, let f : A → Pn denote the composition A −→ Y
ϕn−−→ Pn, where the first map is

the map given on the input and which we are trying to extend to X. By the usual obstruction
theory, it is enough to check whether an extension to g : X → Pn exists – the higher obstructions
are all zero. Thus, we consider the Postnikov stage Pn with an action x + Θy by the stage P2d

from Theorem 6. Consider the commutative square (the R and R′ are the restriction maps while
ΠX and ΠA are post-compositions with the projection Pn → P2d as in Lemma 7)

[g] ∈ [X,Pn]
ΠX //

R

��

[X,P2d]

R′

��

[f ] ∈ [A,Pn]
ΠA

// [A,P2d] 3 [f ′]

and denote [f ′] = ΠA[f ]. We compute the groups on the right explicitly using [1, Theorem 1.1]
and consider the subset H = (R′)−1[f ′] of all possible extensions of f ′ to a map X → P2d. There
is a finite set H0 ⊆ H such that H = H0 + Θ kerR′; namely, if [h0] ∈ H is arbitrary and we
identify kerR′ ∼= Z/q1 ⊕ · · · ⊕ Z/qr (possibly with some qi = 0 giving Z/0 = Z), we may take for
H0 all r-tuples of the form [h0] + (z1, . . . , zr) ∈ H with each |zi| ≤ Θ/2.

We will now show that if f admits an extension, then it admits one whose homotopy class lies
in Π−1

X (H0). This set is finite and its representatives can be computed by Lemma 7. For each
[g] ∈ Π−1

X (H0), we may then test whether R[g] = [f ] using Theorem 8 and finishing the proof.

6



Thus, suppose that g is any extension of f and express its image in [X,P2d] as ΠX [g] = [h]−Θ[k]
with [h] ∈ H0 and [k] ∈ kerR′. Then [ĝ] = [g] + Θ[k] also gives an extension of f since

R[ĝ] = R([g] + Θ[k]) = R[g] + ΘR′[k] = [f ]

(the operations on homotopy classes are natural and [k] ∈ kerR′). Thus, we see that, indeed, an
extension ĝ exists with ΠX [ĝ] = ΠX [g] + Θ[k] = [h] ∈ H0.

5. A fibrewise equivariant version

The purpose of this section is to prove an equivariant extension of Theorem 1. With the same
proof, it is also possible to cover the fibrewise case; we leave it to an interested reader to formulate
the appropriate statement (consult [4] for one approach).

Theorem 9. Let G be a fixed finite group. There exists an algorithm that, given

• a pair of finite simplicial sets (X,A) with a free action of G,

• a finite d-connected simplicial set Y with a free action of G, for d ≥ 1, and with the homotopy
groups πnY finite for all 2d < n < dimX,

• an equivariant simplicial map A→ Y ,

decides the existence of a continuous equivariant extension X → Y .

In the special case G = Z/2, A = ∅, this gives Theorem 2 via two applications Y = Sd+1 and
Y = Sd−1, both with the anti-podal Z/2-action.

Proof. As usual, a map X → Y is equivalent to a section of the projection map ϕ : X × Y → X
and the same holds for extensions. Thus, let Pn be a Moore–Postnikov tower for ϕ, constructed
in [4, Theorem 3.2], and refine it to Pn,i as in Theorem 5. Using [4, Theorem 1.1], we decide if a
section X → P2d exists and compute one such. Its image will serve as a zero for the action of P2d

on the higher stages Pn,i.
The argument of Theorem 6 could be repeated, once the actions with a strict right-sided zero

are replaced by fibrewise actions Pn,i×X P2d → Pn,i with a strict right-sided zero section. To start
the induction process, [4, Proposition 5.14, Section 6.1] gives a (strict) fibrewise H-space structure
on P2d, i.e. an action of P2d on itself. In the induction step, we use a variation

Pn,i−1 ×X {fat wedge} 0 //

��

��

E(Z/q, n)

δ
����

Pn,i−1 ×X P2d ×X · · · ×X P2d
D

(Θn,i−1)

q,` k

//

M ′
44

K(Z/q, n+ 1)

of the diagram (2), in which the fat wedge is the subspace of those `-tuples with at least one
component lying on the zero section.

Denoting by Fn,i the fibre of Pn,i → X, we see that each Fn,i is d-connected. Since Pn,i−1 ×X
P2d ×X · · · ×X P2d forms a bundle over X with fibre Fn,i−1 × F2d × · · · × F2d and the part
with the fat wedge also forms a bundle over X with fibre Fn,i−1 × {fat wedge}, this pair is
again (`(d + 1) − 1)-connected. Thus, a diagonal map M ′ exists in the above square, inducing
M : Pn,i−1 ×X P2d → E(Z/q, n), by M(x, y) = M ′(x; y, . . . , y), and this allows us to produce
inductively an action of P2d on Pn,i using the same formula as in the proof of Theorem 6,

(x, c) + Θn,iy = (x+ Θn,iy, c+M(x, y)).

The rest of the proof follows that of Theorem 1, using variations of Lemma 7 and Theorem 8
(the latter is [6, Theorem C.1]).
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Are two given maps homotopic?

An algorithmic viewpoint∗

M. Filakovský, L. Vokř́ınek

February 22, 2017

Abstract

This paper presents two algorithms. The first decides the existence of a pointed homotopy
between given simplicial maps f, g : X → Y and the second computes the group [ΣX,Y ]∗ of
pointed homotopy classes of maps from a suspension; in both cases, the target Y is assumed
simply connected. More generally, these algorithms work relative to A ⊆ X.

1. Introduction

In this paper, we study the following problem: decide whether given maps f, g : X → Y are
homotopic. For computational purposes, we assume that X and Y are finite simplicial complexes
or, more generally, finite simplicial sets, f and g simplicial maps but we ask for a continuous
homotopy between them. It is well known that no decision algorithm may exist if Y is allowed to
be non-simply connected; this follows easily from Novikov’s result [6] on the unsolvability of the
word problem in groups. We will thus restrict our attention to the case of a simply connected Y .
In this respect, the following result is optimal. It is stated in a more general context of pointed
homotopy.

Theorem A. There is an algorithm that decides the existence of a pointed homotopy between given
simplicial maps f, g : X → Y , where X, Y are finite simplicial sets with Y simply connected.

The paper [2] solves this problem under a certain connectivity restriction on Y . Under the
same connectivity restriction, [2] also presents an algorithm that, for given simplicial sets X, Y ,
computes [X,Y ], i.e. the set of homotopy classes of continuous maps from X to Y (in fact, an
abelian group). Our next result removes this connectivity restriction if the domain is a suspension,
generalizing the computation of homotopy groups of spaces described by Brown in [1].

Theorem B. There is an algorithm that computes the group [ΣX,Y ]∗ of pointed homotopy classes
of maps from a suspension ΣX to a simply connected simplicial set Y .

It turns out the [ΣX,Y ]∗ is a polycyclic group (a solvable group with all filtration quotients
cyclic) and, as such, can be effectively described by generators and relations. In addition, it will
also be “fully effective” (to be defined in Section 3), allowing one e.g. to express the homotopy
class of any given pointed simplicial map f : X → Y in terms of the computed generators.

Relative version. Our proof of Theorems A and B works naturally in the comma category A/sSet
of simplicial sets “under A”, i.e. simplicial sets X equipped with a map A → X. Morphisms in

∗The research of L. V. was supported by the Center of Excellence – Eduard Čech Institute (project P201/12/G028
of GA ČR).
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this category are maps f : X → Y for which the following diagram

A
α //

ι

��

Y

X

f

>>

commutes. For spaces under A, the appropriate notion of homotopy is that of a homotopy relative
to A. When ι is an inclusion, α is fixed and Y is a Kan complex, the resulting set of homotopy
classes will be denoted by [X,Y ]A. For general X, Y ∈ A/sSet, we define [X,Y ]A by first replacing,
up to weak homotopy equivalence, ι by an inclusion A // // Xcof and Y by a Kan complex Y fib and
then setting [X,Y ]A = [Xcof , Y fib]A. Since the replacements are equipped with maps Xcof → X
and Y → Y fib, every simplicial map X → Y under A defines an element of [X,Y ]A (however, not
every element of [X,Y ]A is represented by a simplicial map X → Y ).

We will need a slight generalization of [ΣX,Y ]∗ coming from the folowing reinterpretation:
pointed maps ΣX → Y are the same as maps I×X → Y from the cylinder that are constant onto
the basepoint on the “boundary” (∂I ×X) ∪ (I × ∗). For a map f : X → Y , extending the given
α : A→ Y as above, consider

(∂I ×X) ∪ (I ×A) //

��

Y

I ×X

77

where the map at the top is f on each copy of X in ∂I ×X and is the constant homotopy at α on
I×A. For brevity, we denote the resulting set of homotopy classes of maps under the “boundary”
(∂I ×X) ∪ (I ×A) by [I ×X,Y ]∂f .

Now we are ready to state a generalization of Theorems A and B.

Theorem C. Let X, Y ∈ A/sSet be given on the input, with all A, X, Y finite simplicial sets
and Y simply connected. Then algorithms for the following tasks exist:

C.1. Given two simplicial maps f, g : X → Y in A/sSet, decide whether they represents the
same element of [X,Y ]A.

C.2. Given a simplicial map f : X → Y in A/sSet, compute the group [I ×X,Y ]∂f .

Theorems A and B are obtained from Theorem C by setting A = ∗; for the latter, we also set
f constant onto the basepoint.

Remark. The paper [4] also covers the situation where all spaces lie over a fixed space B and are
equipped with a free action of a fixed finite group G. All maps and homotopies are then required
to be fiberwise over B and G-equivariant. The theorems presented here may also be extended
to this situation but we decided not to complicate the statements and proofs even further. The
fiberwise case can be found as an earlier version of this paper on arXiv.

Notation. In the rest of the paper, the following notation will be employed: We denote the
standard n-simplex by ∆n, its i-th vertex by i, its i-th face by di∆

n and its boundary by ∂∆n.
The i-th horn in ∆n, i.e. the simplicial subset spanned by the faces dj∆

n, j 6= i, will be denoted
n
i . For simplicity, we will also denote I = ∆1. Then ∂Ik is the obvious boundary of the k-cube,

i.e. of the k-fold product Ik = I × · · · × I.
We will say that a map T × X → Y is constant at f : X → Y if it equals the composition

T × X pr−→ X
f−→ Y . More generally, we use this terminology for maps defined on subspaces of

T ×X. Thus, e.g. [I ×X,Y ]∂f is the set of homotopy classes of maps I ×X → Y whose restriction
to (∂I ×X) ∪ (I ×A) is constant at f .
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2. Postnikov towers

The proof of Theorem C relies on computations in a Postnikov tower of Y . Its algorithmic
construction has been carried out in [3]. Here we only give a brief summary of the main results
concerned with the construction and computations in the tower.

Definition of Postnikov tower. Let Y be a simply connected simplicial set. A (simplicial)
Postnikov tower for Y is a commutative diagram

Pn

pn

��

Pn−1

Y

ϕn

@@

ϕn−1

77

ϕ1

//

ϕ0
''

P1

p1

��

P0 = ∗

satisfying the following conditions:

• The induced map ϕn∗ : πi(Y )→ πi(Pn) is an isomorphism for 0 ≤ i ≤ n.

• πi(Pn) = 0 for i ≥ n+ 1.

• The space Pn is a principal twisted cartesian product over Pn−1, necessarily with fibre the
Eilenberg–MacLane space K(πn, n). Equivalently, there exists a pullback square

Pn
qn //

pn

��

WK(πn, n)

δ
��

Pn−1
kn

// WK(πn, n)

(1)

identifying Pn with the pullback Pn−1 ×WK(πn,n) WK(πn, n).

In the above, WK(πn, n) is the classifying space and WK(πn, n) the universal principal twisted
cartesian product over it or, more precisely, their standard simplicial models with WK(πn, n) =
K(πn, n + 1) a minimal complex and δ a minimal fibration, see [5]. We will be making use of a
natural isomorphism

map(X,WK(π, n)) ∼= Cn(X;π)

between simplicial maps X →WK(π, n) and normalized cochains on X with coefficients in π. It
restricts to an isomorphism map(X,K(π, n)) ∼= Zn(X;π). The passage between simplicial maps
and cochains/cocycles is computable in both directions, see [2].

From the computational perspective, the Postnikov tower faces the following problem: the
standard simplicial models for Eilenberg–MacLane spaces, although minimal, are generally infinite.
This is solved by a somewhat technical notion of a simplicial set with effective homology that was
introduced by Sergeraert et al. A detailed exposition is given in [8] and an extension to free
actions of a finite group G in [4]. We will not need an explicit definition here – we will use directly
only a small part, namely, that all simplices have a specified representation in a computer. Thus,
a simplicial map X → Pn is given by a finite amount of data (the table of the images of non-
degenerate simplices of X). We also recall that a map is said to be computable if an algorithm is
provided that evaluates this map at a given element.
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Theorem 2.1 ([3, Theorem 1]). There is an algorithm that, given a finite simply connected
simplicial set Y and an integer n, constructs the first n stages of a Postnikov tower for Y . The
stages Pi are constructed as simplicial sets with effective homology, and ϕi, ki, pi as computable
maps.

From now on, we will assume that ι is an inclusion; if this was not the case, simply replace the
space X by the mapping cylinder of ι, i.e. the space Xcof = (I ×A) ∪ι X.

The following Whitehead-type theorem is standard, its fibrewise equivariant version is proved
in [4, Theorem 3.3].

Theorem 2.2. The map ϕn : Y → Pn induces a bijection ϕn∗ : [X,Y ]A → [X,Pn]A for every
n-dimensional simplicial set X.

In the above theorem, Pn is a space under A via the composition αn = ϕnα. Since Pn is a Kan
complex, the homotopy classes in [X,Pn]A are represented by simplicial maps X → Pn under A (no
replacement needed). Applying the theorem to I×X, we obtain, for n ≥ dim(I×X) = 1+dimX,
an isomorphism [I ×X,Y ]∂f

∼= [I ×X,Pn]∂fn , where fn = ϕnα. When there is no risk of confusion,
we will denote the above composites αn and fn simply as α and f .

Computations with Postnikov towers. The group structure on [I×X,Y ]∂f is defined in terms
of concatenation of homotopies. In addition, homotopy lifting will be used heavily in our algorithm
and, thus, we need algorithmic versions of such tasks. They will be instances of a general algorithm
for lifting maps up one stage of a Postnikov tower. In the statements below, a diagonal is a map
indicated by the dashed arrow for which both triangles commute.

Proposition 2.3. There is an algorithm that, given a diagram

A //
��

��

Pn

pn
����

X //

==

Pn−1

with X finite decides whether a diagonal exists. If it does, it computes one.

Proof. Composing with the defining pullback square (1), we obtain an equivalent problem

A
c //

��

��

WK(πn, n)

δ
����

X
z
//

::

WK(πn, n)

Thinking of c as a cochain in Cn(A;πn), we extend it to a cochain on X by mapping all n-simplices
not in A to zero. This prescribes a map c̃ : X → WK(πn, n) that is a solution of the lifting-
extension problem from the statement for z replaced by δc̃. Since the lifting-extension problems
and their solutions are additive, one may subtract this solution from the previous problem and
obtain an equivalent problem (the equivalence is described below in more detail)

A
0 //

��

��

WK(πn, n)

δ
����

X
z−δc̃

//

c0

99

WK(πn, n)

A solution of this problem is a relative cochain c0 ∈ Cn(X,A;πn) whose coboundary is z0 = z−δc̃
(this c0 yields a solution c0 + c̃ of the original problem). Since C∗(X,A;πn) is a cochain complex
of finitely generated abelian groups, a computation as above (decide if an element lies in the
image of δ and compute a preimage under δ) is possible using the Smith normal form (or using
Lemma 3.4).
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The following two special cases apply even to lifting through multiple stages since the diagonals
in question always exist. In the case m = 0, the Postnikov stage Pm is a point and as such may
be ignored; the propositions then speak simply about extensions of maps to Pn.

Proposition 2.4 (homotopy lifting/extension). Given a diagram

(i×X) ∪ (∆1 ×A) //

��

∼
��

Pn

����

∆1 ×X //

77

Pm

with X finite, where i ∈ {0, 1}, it is possible to compute a diagonal. In other words, one may
lift/extend homotopies in Postnikov towers algorithmically.

Homotopy concatenation. The second special case is used to concatenate homotopies.

Proposition 2.5 (homotopy concatenation). Given a diagram

( 2
i ×X) ∪ (∆2 ×A) //

��

∼
��

Pn

����

∆2 ×X //

77

Pm

with X finite, where i ∈ {0, 1, 2}, it is possible to compute a diagonal. In other words, one may
concatenate homotopies in Postnikov towers algorithmically.

We will now use Proposition 2.5 to make [I ×X,Pn]∂f into a group with some computational
qualities. We describe them in this section; in the next section, we introduce the necessary notions
and summarize the situation in Proposition 3.1.

To start with, elements of [I ×X,Pn]∂f are represented by simplicial maps I ×X → Pn, whose
restriction to (∂I ×X)∩ (I ×A) is constant at f (in particular, when viewed as homotopies, they
are relative to A).

Let h2, h0 : I × X → Pn be two such maps. Viewing each hi as defined on di∆
2 × X, we

obtain a single map 2
1 ×X → Pn which, together with the map ∆2 × A → Pn that is constant

at α, prescribes the top map in Proposition 2.5, in which we take m = 0 so that P0 = ∗. Let
∆2 ×X → Pn be the computed diagonal map. Then we will call its restriction to d1∆2 ×X the
concatenation of h2 and h0 and denote it by h0 + h2.

Zero for the concatenation is clearly the homotopy constant at f . An inverse of a homotopy
(or, in fact, subtraction of homotopies) is computed similarly to the addition using 2

0.

3. Polycyclic groups

Semi-effective groups. We want to axiomatize the kind of computational structure that we
equipped [I × X,Pn]∂f with. It is a group, but its elements are given non-uniquely by repre-
sentatives, i.e. actual simplicial maps, and the group operations are computed in terms of these
representatives.

A semi-effective set is a mapping of sets S → S, denoted σ 7→ [σ] such that elements of S
have an agreed upon representation in a computer (that we will not specify concretely). We say
that S is represented by S and the element σ ∈ S is a representative of [σ]. This representation
of elements is generally non-unique – we may have [σ] = [τ ] for σ 6= τ . A mapping f : S → T
between semi-effective sets is said to be computable, if there is provided a computable mapping
ϕ : S → T that represents f , i.e. such that f([σ]) = [ϕ(σ)].

A semi-effective group, which we write additively, is a group G whose underlying set is semi-
effective and whose group operations are computable, i.e. algorithms are provided that compute
(γ, δ) 7→ γ + δ, ∗ 7→ o, γ 7→ −γ such that [γ + δ] = [γ] + [δ], [o] = 0, [−γ] = −[γ].
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An important example of a semi-effective group is the cohomology group Hn(X,A;π) ∼=
[X,K(π, n)]A. It is represented by the set Zn(X,A;π) of relative cocycles or equivalently by
the set map((X,A), (K(π, n), 0)) of simplicial maps X → K(π, n) that are zero on A. In this case,
much more is true, since we are able to compute e.g. the isomorphism type of this group – we will
formalize this additional computational structure in the notion of a fully effective abelian group.

Returning to the homotopy concatenation, we have already obtained the following result.

Proposition 3.1. The set [I×X,Pn]∂f is a semi-effective group represented by the set of simplicial
maps I ×X → Pn whose restriction to (∂I ×X) ∪ (I ×A) is constant at f .

A semi-effective collection of groups indexed by S is a parametrized version of a semi-effective
group, where: a parametrization is a computable mapping ϕ : G → S; each fibre Gσ = ϕ−1(σ)
represents a semi-effective group Gσ and the operations are given, uniformly in σ ∈ S, by com-
putable mappings G ×S G → G, S → G and G → G. The above proposition can be upgraded to
[I ×X,Pn]∂ being a semi-effective collection of groups indexed by simplicial maps f : X → Y .

Fully effective abelian groups. First, we recall from [2] some simple observations regarding
computational aspects of abelian groups.

Definition 3.2. We call a semi-effective abelian group G fully effective if there is given an iso-
morphism Z/q1 ⊕ · · · ⊕ Z/qr ∼= G, computable together with its inverse. In detail, denoting by
gi ∈ G the element corresponding to the generator of Z/qi, this consists of

• an algorithm that outputs a finite list of elements g1, . . . , gr ∈ G (given by representatives)
and their orders q1, . . . , qr ∈ {1, 2, . . .} ∪ {0} (where qi = 0 gives Z/qi = Z),

• an algorithm that, given γ ∈ G, computes integers z1, . . . , zr so that [γ] = z1g1 + · · · + zrgr;
each coefficient zi is unique within Z/qi.

We allow qi = 1 to simplify our arguments later; it is clearly possible to obtain a reduced list
with all qi 6= 1 by throwing out from the list the generators gi with qi = 1.

Example 3.3. As explained, Hn(X,A;π) is semi-effective when represented by either relative
cocycles or simplicial maps X → K(π, n) that are zero on A. It is also fully effective, since
one may compute the isomorphism type of the cohomology groups using a Smith normal form
algorithm (see e.g. [9]) applied to the differentials in the cochain complex.

Lemma 3.4 (kernel and cokernel, [2, Lemmas 2.2 and 2.3]). Let f : G → H be a computable
homomorphism of fully effective abelian groups. Then both ker f and coker f can be represented
as fully effective abelian groups. More generally, the computation of coker f only requires H fully
effective abelian, a list of generators of G (not necessarily abelian) and f computable.

Another useful construction is [2, Lemma 2.4] that shows that the class of fully effective
abelian groups is closed under extensions. We will not use this result; instead, we will need its
generalization to the case of polycyclic groups, namely Proposition 3.10.

Fully effective polycyclic groups. The group [I ×X,Y ]∂f is generally non-abelian and we will
thus need to extend some of the machinery from abelian groups to a wider class of groups, called
polycyclic. According to Theorem 2.2, [I ×X,Y ]∂f

∼= [I ×X,Pn]∂f and the later is a semi-effective

group by Proposition 3.1. In this way, the original group [I × X,Y ]∂f is also semi-effective, but
not represented by maps I ×X → Y . Of course, this is also in accordance with the fact that Y is
generally not a Kan complex.

Definition 3.5. A group G is called polycyclic, if it has a subnormal series with cyclic factors. In
detail, there exists a sequence of subgroups

G = Gr ≥ · · · ≥ G0 = 0 (2)

such that:
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• Gi−1 is a normal subgroup of Gi for i = 1, . . . , r,

• Gi/Gi−1 is a cyclic group for i = 1, . . . , r.

Example 3.6. Every finitely generated abelian group is polycyclic: when G ∼= Z/q1 ⊕ · · · ⊕ Z/qr
with the corresponding generators g1, . . . , gr, the filtration is given by the subgroups Gi generated
by g1, . . . , gi.

Suppose that elements gi ∈ Gi have been chosen in such a way that their images in Gi/Gi−1

are generators of these cyclic groups; clearly, such a choice is possible. Denoting by qi the order
of Gi/Gi−1, the following map

Z/q1 × · · · × Z/qr −→ G

(z1, . . . , zr) 7−→ z1g1 + · · ·+ zrgr

is easily seen to be bijective: given g ∈ G, consider its image zr ∈ Gr/Gr−1
∼= Z/qr. Then

g− zrgr ∈ Gr−1 and we continue in the same manner to show that g− zrgr − · · ·− z1g1 ∈ G0 = 0,
i.e. g = z1g1 + · · · + zrgr in a unique way. In particular, G is generated by g1, . . . , gr. At the
same time, the word problem in G, i.e. the problem of deciding whether two given words in the
generators gi are equal, can be translated to Z/q1× · · · ×Z/qr and easily solved there. This leads
to the following definition:

Definition 3.7. We say that a semi-effective group G, represented by a set G, is fully effective
polycyclic if it is polycyclic with subnormal series (2) and a bijection Z/q1 × · · · × Z/qr ∼= G as
above is computable together with its inverse. In detail, this consists of

• an algorithm that outputs a finite list of elements g1 ∈ G1, . . . , gr ∈ Gr (given by representa-
tives) and the orders q1, . . . , qr ∈ {1, 2, . . .} ∪ {0} of Gi/Gi−1 (where qi = 0 gives Z/qi = Z),

• an algorithm that, given γ ∈ G, computes integers z1, . . . , zr so that [γ] = z1g1 + · · · + zrgr;
each coefficient zi is unique within Z/qi.

As explained just prior to the definition, the algorithm in the second point is equivalent to the
computability of the projections pi : Gi → Gi/Gi−1

∼= Z/qi.
Remark. In fact, it is even possible to specify (the isomorphism type of) the whole group by a
finite amount of data: this consists of the conjugates gi+gj−gi ∈ Gi−1 for i > j and the multiples
qigi ∈ Gi−1.

Proposition 3.8. Let G be a fully effective polycyclic group, H a fully effective abelian group
and f : G→ H a computable homomorphism. Then it is possible to compute K = ker f as a fully
effective polycyclic group.

Proof. We will proceed by induction with respect to the length r of the subnormal series for G.
We denote Ki = ker f |Gi = Gi ∩K. In the following diagram, every row is a short exact sequence
and so are the solid columns.

0

��

0

��

0

��

0 // Kr−1
� _

��

� � // Kr� _

��

// Kr/Kr−1
//

� _

��

0

0 // Gr−1
� � //

f

��

Gr //

f

��

Gr/Gr−1
//

f ′

��

0

0 // f(Gr−1)
� � //

��

f(Gr) //

��

f(Gr)/f(Gr−1) //

��

0

0 0 0
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It is easy to see that the dashed column is then also exact (by Snake lemma, say). By induction,
Kr−1 is fully effective polycyclic. By Lemma 3.4, it is possible to compute ker f ′ ∼= Kr/Kr−1;
say that it is generated by tr ∈ Gr/Gr−1

∼= Z/qr. This means that f(trgr) ∈ f(Gr−1) and
thus, from the knowledge of the generators of Gr−1, it is possible to compute some h ∈ Gr−1

with f(trgr) = f(h). Finally, −h + trgr ∈ Kr is the required element mapping to the generator
tr ∈ Kr/Kr−1 ⊆ Gr/Gr−1. The projection Kr → Kr/Kr−1

∼= Z/(qrt−1
r ) is the composition

Kr
� � // Gr // Gr/Gr−1

∼= Z/qr
t−1
r × // Z/(qrt−1

r )

(the multiplication by t−1
r is defined on the image of Kr) and is thus computable.

Finally, we show that fully effective polycyclic groups are closed under extensions. We state a
more general version of an exact sequence for pointed sets, in which “ker dn” is interpreted as the
equivalence relation associated with the mapping dn:

Definition 3.9. A semi-effective exact sequence of pointed sets is an exact sequence

· · · −→ Gn+1
dn+1−−−−→ Gn

dn−−−→ Gn−1
dn−1−−−−→ Gn−2 −→ · · ·

of semi-effective pointed sets and computable pointed maps such that the induced maps

dn : Gn/ ker dn
∼=−−→ im dn

have computable inverses, called sections. Since Gn/ ker dn is represented by Gn and im dn by a
subset of Gn−1, this amounts to computable partial mappings ρn−1 : Gn−1

// Gn, defined on
representatives of im dn, such that dn[ρn−1(γ)] = [γ]. In general, it may happen that [γ] = [γ′],
while [ρn−1(γ)] 6= [ρn−1(γ′)].

When the sequence in question is bounded from either side, we ask the condition for all inner
maps. (This is the case in our major example.)

A semi-effective exact seqeunce (of groups) has all Gn semi-effective groups and all dn homo-
morphisms of groups (there is no condition on sections ρn−1). In this case, one may freely pass
between images and kernels and, thus, one may write dn : coker dn+1 → ker dn−1.

Proposition 3.10. Given a semi-effective short exact sequence of groups

0 −→ K
f−−→ G

g−−→ H −→ 0

with K, H fully effective polycyclic, it is possible to equip G with a structure of a fully effective
polycyclic group.

Proof. We denote the inverses ρ and σ. Since f is injective, ρ induces a well defined mapping
(retraction) r : f(K) → K. Let H = Hs ≥ · · · ≥ H0 = 0 and K = Kt ≥ · · · ≥ K0 = 0 be
subnormal series. Then we have the following subnormal series

G = g−1(Hs) ≥ · · · ≥ g−1(H0) = f(Kt) ≥ · · · ≥ f(K0) = 0

for G with filtration quotients either Hi/Hi−1 or Kj/Kj−1, the corresponding projections

g−1(Hi)
g−−→ Hi −→ Hi/Hi−1,

f(Kj)
r−−→ Kj −→ Kj/Kj−1,

and generators either [σ(ηi)], where ηi represents the generator hi ∈ Hi, or f(kj), where kj ∈ Kj

is the generator.
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4. Proof of Theorem C

We fix a map f : X → Y under A as in the statement. We introduce the following abbreviations

Kn = K(πn, n), WKn = WK(πn, n), WKn = WK(πn, n), Gn,k = [Ik ×X,Pn]∂f ,

the last being the set of homotopy classes relative to (∂Ik×X)∪(Ik×A) of maps, whose restriction
to this subspace is constant at f .

First, we state a number of claims. They all depend on two non-negative integers n and k; for
(gen) and (poly), we require k ≥ 1.

(gen)n,k It is possible to compute generators of Gn,k.

(htpy)n,k For a given gn : Ik ×X → Pn, it is possible to compute a homotopy fn ∼ gn, relative
to (∂Ik ×X) ∪ (Ik × A), from the map constant at fn to gn (a “nullhomotopy”) or
decide that such a homotopy does not exist.

(poly)n,k It is possible to equip Gn,k with a structure of a fully effective polycyclic group.

By (gen)n, we will understand that (gen)n,k holds for all k and similarly for other claims.
We will now stick to (gen)n, etc. and return to the refined claims later.

By Theorem 2.2, in order to prove Theorem C.1, it is enough to prove (htpy)n,0 for n = dimX
and, in order to prove Theorem C.2, it is enough to prove (poly)n,1 for n = 1 + dimX. We prove
the claims inductively in the following way:

(gen)n−1

$$

(gen)n

(htpy)n−1

$$

(htpy)n

(poly)n−1 (poly)n

bb

To show the claimed implications, we use the following theorem, that will be proved later:

Theorem 4.1. Let f : X → Y be a map in A/sSet. Then there is an exact sequence of groups
and pointed sets

[I ×X,Pn−1]∂f
df−−−→ Hn(X,A;πn)

a−−→ [X,Pn]A
pn∗−−−→ [X,Pn−1]A

kn∗−−−→ Hn+1(X,A;πn)

where the basepoints of all sets of homotopy classes of maps to Postnikov stages are represented
either by f or the constant map at f . Assuming (htpy)n−1,0, it is a semi-effective exact sequence.

Applying Theorem 4.1 to the pair (Ik ×X, (∂Ik ×X)∪ (Ik ×A)) in place of (X,A), we get an
exact sequence

Gn−1,k+1
df−−−→ Hn−k(X,A;πn)

a−−→ Gn,k
pn∗−−−→ Gn−1,k

kn∗−−−→ Hn+1−k(X,A;πn) (3)

that is semi-effective under (htpy)n−1,k. Also, by the last paragraph of the proof of Theorem 4.1,
it is an exact sequence of groups.

Proof of (poly)n =⇒ (gen)n. This is clear.

Proof of (gen)n−1 + (htpy)n−1 =⇒ (htpy)n. We denote by fi and gi the projections of f and
g to the i-th stage of the Postnikov tower. First, using (htpy)n−1, we compute a homotopy
h′ : fn−1 ∼ gn−1 or decide that h′ does not exist. Next, we lift h′ using Proposition 2.4 to a

homotopy h̃′ : f ′n ∼ gn. Since pnf
′
n = pnfn, we may write f ′n = fn + ζn for a unique map

ζn : Ik ×X → Kn, zero on the “boundary”. We use (gen)n−1 to decide whether [ζn] ∈ im df and

to further compute h′′ with df [h′′] = [ζn]. Using Proposition 5.1, it is possible to find a lift h̃′′

that starts at fn and finishes at f ′n; it is computed using Proposition 2.3. Thus, the concatenation

h = h̃′ + h̃′′, computed by Proposition 2.5, is a homotopy from fn to gn. If any of h′, h′′ fails to
exist, the maps fn, gn are not homotopic.
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Proof of (htpy)n−1 + (poly)n−1 =⇒ (poly)n. The exact sequence (3) induces a short exact se-
quence

0 −→ coker df
a−−→ Gn,k

pn∗−−−→ ker kn∗ −→ 0

that is still semi-effective – this is easily seen by viewing the sections as maps from the kernel to
the cokernel. The first term of the short exact sequence is fully effective abelian by Lemma 3.4
and the last term is fully effective polycyclic by Proposition 3.8; both claims use (poly)n−1. The
proof now follows from Proposition 3.10.

Remark. In more detail, we have proved implications

(gen)n−1,k+1 + (htpy)n−1,k =⇒ (htpy)n,k

(gen)n−1,k+1 + (htpy)n−1,k + (poly)n−1,k =⇒ (poly)n,k

(for coker df , generators of Gn−1,k+1 are sufficient).
There is a further implication (gen)n−1,k =⇒ (gen)n,k that works only for k ≥ 2: one may

compute generators of Gn,k from those of ker kn∗ and coker df ; clearly, coker df is generated by the
images of generators of Hn−k(X,A;πn) and it is not too difficult to compute a set of generators
of ker kn∗ from a set of generators of Gn−1,k (denoting these generators gα ∈ Gn−1,k, compute
relations between the kn∗(gα) ∈ Hn+1−k(X,A;πn); viewing these as certain integral combinations
of the kn∗(gα) being zero, the corresponding combinations of the gα generate ker kn∗; in the non-
abelian case k = 1, this does not work, since each relation gives rise to infintely many combinations
of the gα, varying in the ordering of summands).

To summarize, for n = dimX, it is possible to organize the algorithm of Theorem C.2, i.e.
the claim (poly)n+1,1, in such a way that, in its course, we only use (gen)m,2, for m ≤ n, and
(poly)m,1, for m ≤ n+ 1. Similarly, to obtain Theorem C.2, i.e. the claim (htpy)n,0, we invoke
(poly)n−1,1 and, thus, we only use (gen)m,2, for m ≤ n− 2, and (poly)m,1, for m ≤ n− 1.

5. Proof of Theorem 4.1

First, we introduce a general “exact sequence” that relates the sets of homotopy classes of maps
to consecutive stages of a Postnikov tower and that does not depend on the choices of basepoints.

Exact sequences. Our (semi-effective) exact sequence will take the following form

G
d−−→ H == D

s−−→ E
t−−→ F

where D, E are semi-effective sets, F a semi-effective pointed set with basepoint [o] ∈ F , H a
semi-effective group and G a semi-effective collection of groups Gε indexed by ε ∈ E . The maps s
and t are computable maps of sets, represented by σ and τ , the arrow at D denotes a computable
action of H on D and d is a computable collection of group homomorphisms dδ : Gσ(δ) → H
indexed by δ ∈ D.

Definition. We say that the above sequence is exact if
• im s = t−1([o]),
• s(d) = s(d′) if and only if d, d′ lie in the same orbit of the H-action, i.e. d′ = d + h for some
h ∈ H, and

• the stabilizer of [δ] ∈ D is exactly the image of dδ.

We may construct out of this sequence an ordinary exact sequence of semi-effective pointed
sets and computable maps (it is not semi-effective – generally, the sections are not computable)
in the following way: choose a basepoint δ ∈ D and then consider

Gσ(δ)
dδ−−−→ H

a−−→ D
s−−→ E

t−−→ F

with a(h) = [δ] + h, the action of H on the fixed element [δ]. It is easily seen to be really exact,
where Gσ(δ) and H are equipped with the respective zeros as basepoints, D with basepoint [δ], E
with basepoint [σ(δ)] and F with the given element [o] ∈ F .
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Exact sequence relating consecutive stages. By composing α : A→ Y with various maps in
the Postnikov tower of Y , we make all Pn, Pn−1, WKn and WKn into spaces under A. Further,
Kn is considered as a space under A via the constant map onto the zero of Kn. For the purpose
of the description of the exact sequence, we will denote maps X → Pn−1 by `n−1, `′n−1, etc. and
maps X → Pn by `n, `′n, etc. Our main exact sequence is

[I ×X,Pn−1]∂
d−−→ [X,Kn]A == [X,Pn]A

pn∗−−−→ [X,Pn−1]A
kn∗−−−→ [X,WKn]A, (4)

where the first term is a collection of groups, indexed by maps `n−1 : X → Pn−1 under A, with the
corresponding group [I ×X,Pn−1]∂`n−1

as in Proposition 3.1, i.e. the group of homotopy classes of

maps whose restriction to (∂I×X)∪(I×A) is constant at `n−1. The element [o] ∈ [X,WKn]A is the
only homotopy class in the image of δn∗ : [X,WKn]A → [X,WKn]A (since WKn is contractible,
there is a unique homotopy class X → WKn, obtained by extending the given A → WKn

arbitrarily, see e.g. the proof of Proposition 2.3).
The maps pn∗ and kn∗ are induced by pn and kn, respectively. The action is also induced by the

action of Kn on Pn. Both maps and the action are clearly computable. It remains to describe the
homomorphisms d`n : [I×X,Pn−1]∂pn∗(`n) → [X,Kn]A. Starting with a homotopy h : I×X → Pn−1

as above, lift it to a homotopy h̃ : I×X → Pn so that its restriction to (0×X)∪(I×A) is constant

at the given map `n. The restriction of h̃ to 1×X is then of the form `n+ζ for a unique ζ : X → Kn

and we set d`n [h] = [ζ], a well defined map according to Proposition 5.1 below. Each map d`n is
computable by Proposition 2.4. It is also a group homomorphism, since a concatenation of lifts is

clearly a lift of a concatenation (namely, h̃′ + h = (h̃′ + ζ) + h̃, where h̃′ + ζ denotes the effect of

applying the action of the constant homotopy at ζ on h̃′ and is thus a lift of h′ starting at g + ζ;

therefore, h̃′ + h ends at ζ ′ + ζ).

Proposition 5.1. The homotopy class [ζ] does not depend on the choices made; thus, d`n is a

well defined map. In the opposite direction, if d`n [h] = [ζ ′], then there exists a lift h̃′ of h that is
a homotopy between `n and `n + ζ ′ relative to A.

Proof. If h is homotopic to h′, by a homotopy relative to (∂I ×X) ∪ (I ×A), and h̃′ is any lift of

h′, then we may lift the homotopy h ∼ h′ to a homotopy h̃ ∼ h̃′ relative to (0×X)∪ (I ×A), that
restricts to 1×X to a fibrewise homotopy `n + ζ ∼ `n + ζ ′, relative to A, implying ζ ∼ ζ ′; thus,
d`n is well defined.

For the second part, concatenating the homotopy h̃ : `n ∼ `n + ζ, with the homotopy `n + ζ ∼
`n+ζ ′ induced from the given ζ ∼ ζ ′, we obtain h̃′ : `n ∼ `n+ζ ′. If the concatenation of homotopies
is computed, as in Proposition 2.5, using the lift in

( 2
1 ×X) ∪ (∆2 ×A) //

��

��

Pn

pn

����

∆2 ×X
s1×id

//

33

∆1 ×X
h
// Pn−1

then this concatenation will also be a lift of h; here s1 : ∆2 → ∆1 is the map sending the non-
degenerate 2-simplex of ∆2 to the s1-degeneracy of the non-degenerate 1-simplex of ∆1.

Proof of exactness. The exactness at [X,Pn−1]A means that `n−1 : X → Pn−1 lifts to Pn if
and only if the composition kn`n−1 factors (up to homotopy) through WKn (the basepoint of
[X,WKn]A is the unique such homotopy class) and is thus clear.

The exactness at [X,Pn]A means that, given two maps `n, `
′
n : X → Pn, their projections to

Pn−1, denoted `n−1 = pn`n, `′n−1 = pn`
′
n, are homotopic if and only if `n + ζ ∼ `′n for some

ζ : X → Kn. By lifting a homotopy h : `n−1 ∼ `′n−1 to a homotopy h̃ : `′′n ∼ `′n, we may replace `′n
by a homotopic map `′′n in such a way that `n−1 = `′′n−1 and then the result is clear.
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To prove exactness at [X,Kn]A, we observe that every homotopy h : `n ∼ `n + ζ is a lift
of its projection pnh; therefore, the image of d`n consists exactly of homotopy classes of maps
ζ : X → Kn such that `n ∼ `n + ζ and this is exactly the claimed exactness.

Resulting exact sequence of pointed sets. Let f : X → Y be a map in A/sSet. Applying the
general construction to (4) yields an exact sequence of pointed sets

[I ×X,Pn−1]∂f
df−−−→ [X,Kn]A

a−−→ [X,Pn]A
pn∗−−−→ [X,Pn−1]A

kn∗−−−→ [X,WKn]A. (5)

Section of pn∗ is computed as in the first paragraph of the proof of exactness using Proposition 2.3.
A section of a is computed as in the second paragraph of the proof of exactness but with `n−1 equal

to the basepoint fn−1; we use (htpy)n−1 to compute h and then lift it to h̃ using Proposition 2.4.
Next, `′′n is obtained by restriction and the representative ζ is obtained as the “difference” `′′n− `n.

To finish the proof of Theorem 4.1, we need to identify the second and the last term with
cohomology groups. For the second term, we envoke the computable isomorphism [X,Kn]A ∼=
Hn(X,A;πn). We recall that WKn is made into a space under A via knαn−1, which is generally
non-zero, but has an extension knfn−1 : X →WKn. Thus, we get an isomorphism

[X,WKn]A ∼= Hn+1(X,A;πn), [g] 7→ [g − knfn−1]

where g − knfn−1 : X → WKn is a map that is zero on A and as such can be thought of as a
relative cocycle. The inverse map is obtained by adding knfn−1 and, thus, both directions are
computable.

Case of groups. It remains to show that (3) consists of group homomorphisms for k ≥ 1.
This has been proved for df with respect to addition in Kn and the remaining maps are clearly
homomorphisms with respect to concatenation of homotopies. By Eckmann–Hilton argument, the
various group structures coincide.
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Constructing homotopy equivalences of chain complexes of
free ZG-modules

Lukáš Vokř́ınek

Abstract. We describe a general method for algorithmic construction of G-

equivariant chain homotopy equivalences from non-equivariant ones. As a

consequence, we obtain an algorithm for computing equivariant (co)homology
of Eilenberg-MacLane spaces K(π, n), where π is a finitely generated ZG-

module.

The results of this paper will be used in a forthcoming paper to construct
equivariant Postnikov towers of simply connected spaces with free actions of a

finite group G and further to compute stable equivariant homotopy classes of

maps between such spaces.
The methods of this paper work for modules over any non-negatively

graded differential graded algebra, whose underlying graded abelian group is

free with 1 as one of the generators.

1. Introduction

Notation. In this paper, G will stand for a fixed finite group. Its (integral)
group algebra will be denoted G = ZG. A chain complex of free abelian groups
will be called a Z-complex. It is said to be locally finite, if it consists of finitely
generated abelian groups. Similarly, a chain complex of free G-modules will be
called a G-complex. A homomorphism of G-modules or chain complexes will be also
called a G-linear map or an equivariant map.

Introduction. It is well-known, that a Z-complex is homotopy equivalent to
a locally finite Z-complex if and only if its homology groups are finitely generated.
The same is true for G-complexes equivariantly.

In this paper, we are interested in constructing such homotopy equivalences
algorithmically. Namely, we present an alogrithm that, given a non-equivariant
homotopy equivalence of a G-complex M with some locally finite Z-complex, con-
structs a G-linear homotopy equivalence of M with a locally finite G-complex.

Our main application is to the so-called effective algebraic topology, which
studies simplicial sets (often infinite) from the effective, i.e. algorithmic, point of
view, e.g. computes their homotopy groups. These simplicial sets are accessed via
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Key words and phrases. chain complex, homotopy module, reduction, homotopy equivalence,
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2 LUKÁŠ VOKŘÍNEK

their chain complexes which, although infinite, often admit a computable homotopy
equivalence with a locally finite chain complex. Introduced by Sergeraert, these are
called simplicial sets with effective homology (see e.g. [8] or [2]). Building on this
notion, we proved in [2] that all finite simply connected simplicial sets have a
Postnikov tower consisting of simplicial sets with effective homology and indeed
with polynomial-time homology (the running times of the involved algorithms are
polynomial).

With the results of this paper, we will show in [1] that the same is possible for
finite simply connected simplicial sets equipped with a free action of G. In the case
G = Z/2, this leads to the solution of the problem “Does a simplicial complex K
embed into Rd?” in the so-called meta-stable range dimK ≤ 2

3d − 1, which was
left open in [6].

In this paper, we will show, as a demonstration of our main theorem, that the
Eilenberg-MacLane space K(π, n), where π is a finitely generated G-module, can
be equipped (equivariantly) with effective homology; this is at the same time an
important step in the general case mentioned above. As a consequence, the equi-
variant homology and cohomology of K(π, n) is algorithmically computable. This
generalizes the well-known result [3] of Eilenberg and MacLane to the equivariant
situation.

Our methods are completely general and as such work for modules over an
arbitrary differential graded algebra R, which is non-negatively graded and whose
underlying graded abelian group is free with 1 as one of the generators. We will
thus present most of our results for R and only for the applications we will restrict
to G.

We will also briefly investigate the running times of the algorithms in this paper
– they turn out to be polynomial when the group G is fixed and the dimensions of
the elements are bounded by a fixed number d. The meaning of polynomiality in
this context requires further explanation; see Section 8.

Outline. The construction of the G-linear homotopy equivalence proceeds as
follows. Starting from a non-equivariant homotopy equivalence M ' N of a G-
complex M with a Z-complex N , we put on N the structure of an “up to homotopy”
G-complex. This structure is analogous to the A∞-structure living on a chain
complex homotopy equivalent to a dga. The G-complexes are dg-modules for a dga
G concentrated in dimension 0 and similarly the up to homotopy version is governed
by a dga which we call G∞, not concentrated in dimension 0 anymore. The chain
maps M → N and N → M are not G∞-linear however. They are some relaxed
versions, which we call G∞-chain maps. The homotopies are not even G∞-maps!

There is a way of strictifying G∞-maps by passing to certain “cofibrant replace-
ments” BM and BN of the G∞-modules M and N (they are perturbations of the
usual bar construction), while the new chain homotopies for these strictifications
have to be constructed differently. In the end, we replace the homotopy equiva-
lence M ' N by a G-linear homotopy equivalence BM ' BN . The last step is to
construct a G-linear homotopy equivalence BM 'M .

We give precise statements in Section 3 and proofs in Sections 8 and 9.

2. Basic conventions

All our chain complexes will be non-negatively graded and of the homological
type, i.e. the differential ∂ will be of degree −1. This applies also to differential
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graded algebras where we assume of course that ∂ is a graded derivation, ∂(x · y) =
∂x · y + (−1)|x| · x · ∂y.

Given two chain complexes C and D, we form their tensor product C ⊗ D
whose degree n part is (C ⊗ D)n =

⊕
p+q=n Cp ⊗ Dq. If f and g are two maps,

their tensor product f ⊗ g is defined by (f ⊗ g)(x⊗ y) = (−1)|g|·|x| · fx⊗ gy. The
differential on C ⊗D is then given as ∂⊗ = ∂ ⊗ id + id⊗∂.

For two chain complexes C and D, we form the unbounded1 chain complex
Hom(C,D) with

Hom(C,D)k =

∞∏

n=0

Hom(Cn, Dn+k).

and the differential which we denote [∂, f ] = ∂f − (−1)|f | · f∂ (it is a graded
commutator) where |f | is the degree of f , i.e. f ∈ Hom(C,D)|f |. In this way, f is
a chain map if [∂, f ] = 0 and h is a homotopy between f and g if [∂, h] = g − f .
We will also use the graded Leibniz rule

[∂, fg] = [∂, f ]g + (−1)|f | · f [∂, g].

We will denote the suspension of a chain complex C by sC. It is defined as
(sC)n = Cn−1 with differential −∂. A good explanaition of this sign change starts
by considering the (identity) map s : C → sC and writing elements of sC as sx.
Postulating s to be a chain map of degree 1, the differential on sC is forced to

∂sx = −s∂x.
A chain map f of degree k is alternatively a k-cycle of Hom(C,D) or a chain map
skC → D of degree 0.

3. Reductions and effective homological algebra

Definitions. By a reduction (strong deformation retraction) (α, β, η) : C ⇒ D,
we will understand the following pieces of data:

• a pair of chain maps α : C → D, β : D → C of degree 0, called the projection
and the inclusion respectively, and a map η : C → C of degree 1, called the
homotopy operator, satisfying

• αβ = id, [∂, η] = id−βα (i.e. η is a chain homotopy from βα to id) and
• αη = 0, ηβ = 0 and ηη = 0.

The last three conditions will be important later2.
In our case, we will be interested in a special class of reductions which we call

locally effective. For those both chain complexes and all maps have to be locally
effective, where:

• the local effectivity of a chain complex means that one is able to represent its
elements in a computer and there are algorithms provided that compute all the
relevant operations – the addition, scalar multiplication, and the differential;

• the local effectivity of a (not necessarily chain) map means that there are algo-
rithms provided which compute the value on an arbitrary element.

1Alternatively, one may take its truncation by throwing away all negatively graded pieces

and replacing the 0-chains by 0-cycles, i.e. chain maps.
2On the other hand, it is known that by replacing an arbitrary chain homotopy η from βα

to id by
(
(id−βα)η(id−βα)

)
∂
(
(id−βα)η(id−βα)

)
, the additional relations will start to hold.
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In the applications, we will need a more general concept than that of a reduc-

tion. A strong equivalence C ⇔ D is a span of reductions C ⇐ C̃ ⇒ D. Again,
we will be interested in locally effective strong equivalences – those, where both
reductions are locally effective.

The statement of the main theorem. We are now ready to state our main
theorem.

Theorem 1. There exists an algorithm which, given a locally effective G-
complex M and a locally effective strong equivalence M ⇔ N , constructs a G-linear
locally effective strong equivalence M ⇔ N ′. When N is locally finite, so is N ′.

The construction of M ⇔ N ′ from M ⇔ N is polynomial-time in an appropri-
ate sense; in Section 8, we will briefly explain the exact meaning of this claim and
give a proof.

This theorem will be used in [1] in the following manner. We will be given an
infinite, but locally effective G-complex M , which we would like to compute with
equivariantly. A typical example of such a complex is the chain complex of an infi-
nite simplicial set, such as the Eilenberg-MacLane space K(π, n), see the corollary
below. By non-equivariant considerations, we will be able to construct a strong
equivalence of M with a locally finite Z-complex, making it possible to perform
any (co)homological computations with the original complex M . By Theorem 1,
we will obtain a G-linear strong equivalence, making it possible to perform even
equivariant (co)homological computations.

Corollary 2. There is an algorithm that, given a finitely generated G-module
π and natural numbers n and k, computes HG

k (K(π, n)) and Hk
G(K(π, n)).

Both statements will be proved later, Theorem 1 in Sections 8 and Corollary 2
in Section 9.

Modules over differential graded algebras. Let R be a differential graded
algebra or, for short, a dga. Let M be a left R-module (more precisely differential
graded R-module), i.e. a chain complex M equipped with a chain map

R⊗M →M,

satisfying the usual axioms of a module. The chain condition is equivalent to the
Leibniz rule

∂(rx) = (∂r)x+ (−1)|r| · r(∂x)

for the scalar multiplication. There is a left R-module structure on sM given by

r · sx = (−1)|r| · s(r · x).

It is easy to verify that the resulting R⊗ sM → sM is really a chain map (while
the version with no sign fails to be). An R-linear map f of degree k is a map of
degree k satisfying

r · fx = (−1)|f |·|r| · f(r · x).

In particular, s : M → sM is R-linear and this fact may serve as the definition of
the R-module structure on sM . Alternatively, a map f : M → N of degree k is
R-linear if and only if the corresponding map f : skM → N of degree 0 is R-linear
(i.e. commutes with the action of R in the non-graded sense).
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Constructing reductions. We will now rephrase the conditions on a (locally
effective) reduction – our version is a considerable weakening that proves useful
when working equivariantly.

The chain complexes in this section will be modules over a differential graded
algebra R and all maps will be assumed to be R-linear but not necessarily chain
maps. First, let there be given an R-linear reduction (α, β, η) : C ⇒ D. Then, by
αη = 0 and ηβ = 0, one may think of η as a map

η′ : kerα ∼= C/ imβ −→ kerα

of degree 1. As such, the condition [∂, η] = id−βα is translated into [∂, η′] = id,
i.e. η′ is a contraction of kerα. On the other hand, it is possible to construct a
homotopy η from any contraction η′ of kerα by projecting to kerα via id−βα, i.e.

η = η′(id−βα).

We have thus shown so far that a reduction can be specified by a chain map α, its
section β and a contraction η′ of kerα satisfying η′η′ = 0; we stress here that the
chain complex kerα does not depend on the section β.

It is well known that a chain complex of projective modules admits a contraction
if and only if it is acyclic. An analogous result holds in the algorithmic setup, once
we define all the required notions. We will say that a locally effective R-module F
is free as a graded R-module if it is provided with an algorithm that expresses its
elements as (unique) combinations of some fixed homogeneous basis3. The basis is
not required to be compatible with the differential – in effect, F is free as a graded
R-module and not as a (differential graded) R-module. Similarly, we will say that
a locally effective R-module is projective as a graded R-module if it is equipped

with a locally effective (i.e. computable) retraction id: P
i−→ F

p−→ P from some
R-module F that is free as a graded R-module. Again, the maps are not assumed
to be chain maps, but are required to be R-linear.

The projective modules have the following property: whenever there is given an
“algorithmically certified” surjection A→ B, i.e. a map together with an algorithm
that computes for each element of the codomain B its (arbitrary) preimage, there
exists an algorithm that computes a lift in any diagram

A

����

P

??

// B

This lift is computed through the retraction. Namely, one computes a lift of the

composition F
p−→ P → B by specifying its values on the basis using the algorithmic

(set-theoretic) section and then the resulting lift F → A is composed with the

inclusion P
i−→ F → A to obtain a lift in the original diagram. This is of course

very classical, but we wanted to point out that the same idea works, with correct
definitions, also in the algorithmic setup.

We return now to the relationship between acyclicity and contractibility. Let
C be an R-module, projective as a graded R-module, which is “algorithmically
acyclic”: this means that there exists an algorithm that computes, for each cycle
z ∈ C, some c ∈ C with the property z = ∂c. Then one can construct a contraction

3Typically, the elements of F are represented in a computer directly as such combinations.
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σ of C recursively. For simplicity, we assume that C is itself free as a graded R-
module with Bn the part of the basis of degree n. We assume that σ is already
defined on the R-submodule C(n−1) generated by B0 ∪ · · · ∪ Bn−1, and satisfies
[∂, σ] = id. Since ∂Bn ⊆ C(n−1), the mapping id−σ∂ is defined on Bn and we may
compute a lift in

Cn+1

∂
����

Bn

σ

;;

id−σ∂
// Zn

by the algorithm for a section of ∂ provided by the acyclicity of C. We then extend
σ from C(n−1) ∪ Bn uniquely to an R-linear map defined on C(n). Since both
[∂, σ] = ∂σ+ σ∂ and id are R-linear and agree on C(n−1) ∪Bn they agree on C(n).
This finishes the induction. Finally, to get σσ = 0, replace σ by σ∂σ. We have
thus almost finished the proof of the following technical lemma.

Lemma 3. Let α : C → D be an R-linear chain map for which the following
conditions hold:

(1) As a graded R-module, C is free (or more generally projective) in the locally
effective sense as above.

(2) The map α : C → D is provided with a locally effective R-linear section
β0 : D → C (which needs not be a chain map).

(3) There is an algorithm that computes, for each cycle z ∈ kerα, some chain
η0z ∈ kerα with the property ∂η0z = z.

Then one can construct an R-linear reduction (α, β, η) : C ⇒ D.

Proof. First we observe that kerα is projective as a graded R-module – it
retracts off C with the projection C → kerα given by id−β0α. Thus, by the
above, one may construct a contraction η′ of kerα from the algorithm η0. The only
remaining step is to construct a section β that is a chain map. We set

β = β0 − η′[∂, β0],

which is well defined as [∂, β0] takes values in kerα by

α[∂, β0] = [∂, αβ0︸︷︷︸
id

]− [∂, α]︸ ︷︷ ︸
0

β0 = [∂, id] = 0.

As η′ also takes values in kerα we have αβ = αβ0 = id. Finally, β is a chain map:

[∂, β] = [∂, β0]− [∂, η′]︸ ︷︷ ︸
id

[∂, β0] + η′ [∂, [∂, β0]]︸ ︷︷ ︸
0

= 0. �

4. Bar construction

A useful sign convention. We will be using in the proceeding the following
abbreviation. When xk are elements of a graded abelian group, we denote |x|i...j =
|xi|+ · · ·+ |xj |.
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Bar construction. Let M be a left R-module and N a right R-module and
consider the following graded abelian group

B(R,R,M) =
⊕

m≥0

R⊗ (sR)⊗m ⊗M

whose elements we write as r0|r1| · · · |rm ⊗ x (the bar | is a shorthand for ⊗s) and
with the differential ∂ = ∂⊗ + ∂alg, where ∂⊗ = ∂⊗0 + · · ·+ ∂⊗m+1 for the operators

∂⊗k (r0| · · · |rm ⊗ x) = (−1)k+|r|0...k−1 · r0| · · · |∂rk| · · · |rm ⊗ x
∂⊗m+1(r0| · · · |rm ⊗ x) = (−1)m+|r|0...m · r0| · · · |rm ⊗ ∂x,

with 0 ≤ k ≤ m (∂⊗ is the differential on the tensor product R ⊗ (sR)⊗m ⊗M),

and where ∂alg = ∂alg
0 + · · ·+ ∂alg

m+1 for the operators

∂alg
k (r0| · · · |rm ⊗ x) = (−1)k−1+|r|0...k−1 · r0| · · · |rk−1rk| · · · |rm ⊗ x

∂alg
m+1(r0| · · · |rm ⊗ x) = (−1)m+|r|0...m−1 · r0| · · · |rm−1 ⊗ rmx,

with 0 ≤ k ≤ m (the index alg stands for “algebraic”).
We remark that it is more customary to suspend M too but this convention

produces horrible signs later on. The reason is that the above bar construction
B(R,R,M) will codify, after perturbing its differential, the action of

⊕
m≥0R ⊗

(sR)⊗m (which we will make into an algebra in the next section) on M rather than
on sM .

We define the augmentation map ε : B(R,R,M)→M by ε(r0 ⊗ x) = r0x and
by sending all longer tensors to zero, ε(r0| · · · |rm ⊗ x) = 0 for m ≥ 1.

Theorem 4. Suppose that, as a graded R-module, M is free. Then the aug-
mentation map ε : B(R,R,M)→M is a projection of an R-linear reduction.

Proof. By Lemma 3, we need to construct a section and a non-equivariant
contraction of ker ε (which is even stronger than the requested algorithm). To define
a section ι0 start with some R-basis of M and specify ι0(x) on a basis element x
by ι0(x) = 1⊗ x ∈ BM0.

A non-equivariant contraction of ker ε is given by

ζ0 : r0| · · · |rm ⊗ x 7→ 1|r0| · · · |rm ⊗ x.
It is obvious that [∂⊗, ζ0] = 0 and that [∂alg, ζ0]z = z for all z of length m > 0. Let
finally z be of length m = 0. Then ∂algζ0z = z+ 1⊗ εz. Thus, on elements of ker ε
of length 0, we also obtain [∂alg, ζ0] = ∂algζ0 = id. �

Remark. The same is true when M is merely projective as a gradedR-module.

5. Homotopy R-modules

It is well known that the structure of a module over a differential graded algebra
is homotopy invariant, i.e. passes to homotopy equivalent chain complexes, when
the dga in question is cofibrant (see e.g. [5]). In our applications, we are interested
in modules over the dga G = ZG which is not cofibrant. We will therefore be
interested in its cofibrant replacement, which we will call G∞. Any chain complex
of G-modules will then automatically be a G∞-module and this structure will pass
to all homotopy equivalent chain complexes.
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Since we are interested in computations with these modules, a mere existence
is not sufficient. We will therefore not need to prove that G∞ is indeed a cofi-
brant replacement of G but we will concentrate on algorithms for the transfer of
the structure of a G∞-module. In this section, we introduce more generally, for
an essentially arbitrary dga R, its replacement R∞. In the next section we con-
tinue with describing the transport of the structure along homotopy equivalences
(reductions).

The differential graded algebra R∞. Let R be a differential graded alge-
bra which is free as a graded abelian group. Its basis elements will be called the
generators of R and we assume that the unit 1 of the algebra is one of them. We
will now describe its replacement R∞ = ΩBR. As an associative unital graded al-
gebra, it is generated by the graded abelian group

⊕
m≥0R⊗ (sR)⊗m with simple

tensors in R⊗ (sR)⊗m denoted by (r0, . . . , rm); the dimension of this generator is
m+ |r|0...m. The differential is given by the formula

∂(r0, . . . , rm) =
m∑

k=0

(−1)k+|r|0...k−1 · (r0, . . . , ∂rk, . . . , rm) (∂⊗)

+

m∑

k=1

(−1)k−1+|r|0...k−1 · (r0, . . . , rk−1rk, . . . , rm) (∂+)

+
m∑

k=1

(−1)k+|r|0...k−1 · (r0, . . . , rk−1) · (rk, . . . , rm) (∂−)

It is easy to see that ∂ has degree −1 and is indeed a differential. We denote its
first term by ∂⊗ and the remaining two by ∂alg = ∂+ + ∂−. The ideal of relations
is generated by (1)− 1 and by all (r0, . . . , rm) with at least one ri = 1. By an easy
calculation, this ideal is closed under ∂ and R∞ is defined as the quotient by this
ideal.4

There is an alternative description in the case that R is augmented – in this
caseR∞ is, as an associative unital graded algebra, the tensor algebra of

⊕
m≥0R⊗

(sR)⊗m where R denotes the augmentation ideal. Since R is a differential ideal,
the above formula yields a well-defined differential on this tensor algebra.

The relation of R∞ to R. There is an evident dga-map R∞ → R sending
(r) to r and the remaining generators to 0. It admits an obvious section R → R∞
which is only a chain map – it does not respect the multiplication.

The algebra R∞ has a natural filtration by subcomplexes Rd which are formed
by elements of length at most d where the length of a product is

`(ρ1 · · · · · ρn) = `ρ1 + · · ·+ `ρn

and the length of a generator is `(r0, . . . , rm) = m+ 1. Clearly, one has Rd · Re ⊆
Rd+e and R∞ =

⋃
dRd.

Theorem 5. The map Rd → R is a projection of a reduction for all d ≥ 1.

4By the form of the differential it is clear that R∞ is a cellular dga: it is generated by

(r0, . . . , rm) with r0, . . . , rm generators of R, none of which is 1 and may be added according to
their dimension and glued by their boundary. In particular, R∞ is indeed cofibrant.
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Proof. For d = 1 the map is an isomorphism. The contraction η′d of the
quotient Rd/Rd−1 is given by

(r) · (r0, . . . , rm) · ρ 7−→ (−1)|r|+1 · (r, r0, . . . , rm) · ρ

if the first factor has length 1 (and is not the sole factor), while the contraction is
defined to be 0 on the remaining additive generators.

One may then define a homotopy ηd on Rd by extending the above to the gen-
erators of Rd−1 by 0. It is a homotopy of id with some map pd = id−[∂, ηd] : Rd →
Rd−1. The deformation of Rd is then given as

ηd + ηd−1(id−[∂, ηd]) + · · ·+ η2(id−[∂, η3]) · · · (id−[∂, ηd]),

clearly a homotopy between id and the projection p2 · · · pd : Rd → R1 ∼= R. �

Remark. It is very simple to compute pd = id−[∂, ηd] directly and thus to simplify the computa-

tion of the overall contraction. The value on (r) · (r0, . . . , rm) · ρ is (rr0, r1, . . . , rm) · ρ, the value

on (r, s) · (r0, . . . , rm) · ρ is (−1)|s| · (rs, r0, . . . , rm) · ρ and pd is zero otherwise.

Corollary 6. The map R∞ → R is a projection of a reduction. �

6. Transfer of the structure

In this section, we will describe how a structure of anR∞-module is transported
along a reduction. There are two directions, which we call “easy” and “basic” in ac-
cordance with the easy and basic perturbation lemmas of homological perturbation
theory, see e.g. [8, Section 4.8].

The easy case. We assume here, thatR is augmented5. Let (α, β, η) : M ⇒ N
be a reduction and let N be equipped with a structure of an R∞-module. Then we
define an R∞-module structure on M by ρx = βραx, whenever ρ = (r0, . . . , rm) ∈
R∞ with all ri in the augmentation ideal. Since the augmentation ideal is closed
under ∂, the Leibniz rule

∂(ρx) = β(∂ρ)αx+ (−1)|ρ| · βρα(∂x) = (∂ρ)x+ (−1)|ρ| · ρ(∂x)

holds for ρ. When some ri is a multiple of 1, the action is given by the axioms of an
R∞-module and the Leibniz rule is automatically satisfied for such ρ. Therefore,
M is indeed an R∞-module.

All the maps α, β and η are R∞-linear and thus M ⇒ N is in fact an R∞-
linear reduction. We will explain in Section 8 how to replace this reduction by an
R-linear one in a more general context which applies also to the transfer in the
opposite direction.

5More generally, when there is given an arbitrary Z-linear map ε : R0 → Z satisfying ε(1) = 1
(which exists by our assumption of freeness of R0), we may set ρx = βραx when ρ = (r0, . . . , rm)

with m ≥ 2 and

(r)x = β(r)αx+ ε(r) · (id−βα)x+ ε(∂r) · ηx,
(r, s)x = β(r, s)αx+ (ε(rs)− ε(r) · ε(s)) · ηx.
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The basic case. Let (α, β, η) : M ⇒ N be a reduction and let M be equipped
with a structure of an R∞-module. We first define the following family of maps
M →M

Sh(r0, . . . , rm)x =
∑

n≥0,
0<k1<···<kn<m+1

(r0, . . . , rk1−1)η · · · η(rkn , . . . , rm)x

(the shuffles of (r0, . . . , rm) and η). The corresponding family of maps N → N is
given by

(r0, . . . , rm)y = α Sh(r0, . . . , rm)βy.

The following is the main result of this section.

Theorem 7. The above prescription defines an action of R∞ on N .

Proof. Lemma 8 below gives a formula for the differential of Sh(r0, . . . , rm).
Decorating it with chain maps α and β (i.e. [∂, α] = 0 and [∂, β] = 0), the result is
easily obtained. �

Lemma 8. The differential [∂,Sh(r0, . . . , rm)] equals

Sh ∂⊗(r0, . . . , rm) +

m∑

k=1

(−1)k−1+|r|0...k−1 · Sh(r0 . . . , rk−1rk, . . . , rm)

+
m∑

k=1

(−1)k+|r|0...k−1 · Sh(r0, . . . , rk−1)βα Sh(rk, . . . , rm).

Proof. This is a relatively simple computation: [∂,Sh(r0, . . . , rm)] equals

m∑

k=1

(−1)k−1+|r|0...k−1 · Sh(r0, . . . , rk−1)[∂, η] Sh(rk, . . . , rm)

+
∑

0≤i≤j≤m
(−1)i+|r|0...i−1 · Sh(r0, . . . , ri−1)η[∂, (ri, . . . , rj)]η Sh(rj+1, . . . , rm)

(in the case i = 0 and/or j = m the term on the left and/or right of [∂, (ri, . . . , rj)]
is to be left out). The first term equals

m∑

k=1

(−1)k−1+|r|0...k−1 · Sh(r0, . . . , rk−1) Sh(rk, . . . , rm)

+

m∑

k=1

(−1)k+|r|0...k−1 · Sh(r0, . . . , rk−1)βα Sh(rk, . . . , rm)

while the second is
∑

0≤i≤k≤j≤m
(−1)k+|r|0...k−1 · Sh(r0, . . . , ri−1)η(ri, . . . , ∂rk, . . . , rj)η Sh(rj+1, . . . , rm)

+
∑

0≤i<k≤j≤m
(−1)k−1+|r|0...k−1 · Sh(r0, . . . , ri−1)η(ri, . . . , rk−1rk, . . . , rj)η Sh(rj+1, . . . , rm)

+
∑

0≤i<k≤j≤m
(−1)k+|r|0...k−1 · Sh(r0, . . . , ri−1)η(ri, . . . , rk−1)(rk, . . . , rj)η Sh(rj+1, . . . , rm)
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which further equals to

Sh(∂⊗(r0, . . . , rm)) +

m∑

k=1

(−1)k−1+|r|0...k−1 · Sh(r0, . . . , rk−1rk, . . . , rm)

+
m∑

k=1

(−1)k+|r|0...k−1 · Sh(r0, . . . , rk−1) Sh(rk, . . . , rm).

Adding these together and cancelling the equal terms yields the desired formula. �

7. Strictification of R∞-modules

Consider an R∞-module M . We will define its resolution, which will be an
R-module. When M is an R-module, it is the bar construction B(R,R,M) and
in the general case, we have to accomodate the differential to the fact that M does
not have a strict action of R.6 What this means is that

(BM)m = R⊗ (R)⊗m ⊗M
is only a “homotopy coherent” semi-simplicial object (the simplicial identities do
not hold strictly, but only up to a coherent system of higher order homotopies).
We will not give details here of how this structure can be described explicitly as
it turns out that one may strictify this diagram in a simple way and get a sort of
cubical diagram whose geometric realization we will now describe.

Concretely, on the graded abelian group

BM =
⊕

m

R⊗ (sR)⊗m ⊗M,

consider the operators (where we use | instead of ⊗s as usual to increase readability)

∂⊗k (r0| · · · |rm ⊗ x) = (−1)k+|r|0...k−1 · r0| · · · |∂rk| · · · |rm ⊗ x, 0 ≤ k ≤ m
∂⊗m+1(r0| · · · |rm ⊗ x) = (−1)m+|r|0...m · r0| · · · |rm ⊗ ∂x
∂+
k (r0| · · · |rm ⊗ x) = (−1)k−1+|r|0...k−1 · r0| · · · |rk−1rk| · · · |rm ⊗ x, 1 ≤ k ≤ m
∂−k (r0| · · · |rm ⊗ x) = (−1)k+|r|0...k−1 · r0| · · · |rk−1 ⊗ (rk, . . . , rm)x, 1 ≤ k ≤ m.

of degree −1. We define ∂⊗ = ∂⊗0 + · · ·+ ∂⊗m+1 and similarly ∂+ = ∂+
1 + · · ·+ ∂+

m

and ∂− = ∂−1 + · · · + ∂−m. The differential ∂⊗ is that of the tensor product R ⊗
(sR)⊗m ⊗M . Finally, we define the differential on BM as

∂ = ∂⊗ + ∂+ + ∂−.

Lemma 9. The operator ∂ is a differential, i.e. ∂2 = 0.

Proof. It is easy to verify the following relations for k < `

∂⊗∂⊗ = 0, ∂+
k ∂

+
` + ∂+

`−1∂
+
k = 0, ∂⊗∂

+
` + ∂+

` ∂⊗ = 0

yielding (∂⊗ + ∂+)2 = 0. Moreover, for k < ` one has

∂−k ∂
−
` (r0| · · · |rm ⊗ x) = (−1)k+`+|r|k...`−1 · r0| · · · |rk−1 ⊗ (rk, . . . , r`−1)(r`, · · · , rm)x

∂−k ∂
+
` (r0| · · · |rm ⊗ x) = (−1)k+`−1+|r|k...`−1 · r0| · · · |rk−1 ⊗ (rk, . . . , r`−1r`, · · · , rm)x,

6We remark that there is a technically somewhat simpler resolution B(R,R∞,M) which is
however not locally finite and thus useless for our intended applications.
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while for k > ` the following hold

(∂−k ∂
+
` + ∂+

` ∂
−
k )(r0| · · · |rm ⊗ x) = 0

(∂−k ∂⊗ + ∂⊗∂
−
k )(r0| · · · |rm ⊗ x) = −r0| · · · |rk−1 ⊗ (∂alg(rk, . . . , rm))x,

which sum up to ∂−k ∂+(∂⊗+∂+)∂−k = 0. Summing up further over k and together
with the previous (∂⊗ + ∂+)2 = 0, we finally obtain ∂2 = 0. �

The reduction BM ⇒M . There are obvious chain maps ε0 : BM →M , the
augmentation, given by

ε0(r0| · · · |rm ⊗ x) = (r0, . . . , rm)x,

and ι0 : M → BM , ι0(x) = 1⊗ x. Together with the homotopy operator

ζ0(r0| · · · |rm ⊗ x) = 1|r0| · · · |rm ⊗ x,
they expresses M as a deformation retract of BM . There is no sense in speaking
about any equivariance here – M is an R∞-complex, while BM is an R-complex
and none of these maps is R∞-linear.

In the special case of an R-module M , the projection ε0 : BM →M is R-linear
– in fact, BM = B(R,R,M) and ε0 is the augmentation of Theorem 4. As observed
in that theorem, it is a part of an R-linear reduction. This will be important later.

8. Homotopy R-linear maps

Definition 10. An R∞-map of degree d is a map f : BM → BN of the form

f(r0| · · · |rm ⊗ x) =
m∑

k=0

(−1)d(k+|r|0...k) · r0| · · · |rk ⊗ fm−k|rk+1| · · · |rm)x

for some maps f` : (sR)⊗` → Hom(M,N) of degree d, which we call the components
of f . We will write f∗ : M → N to denote the collection of the f`.

We will be interested mostly in R∞-chain maps (i.e. R∞-maps which are at
the same time chain maps) of degree 0 but it is convenient to have also a notion of
an R∞-homotopy.

In the following proposition, we understand (sR)⊗` equipped with the differ-
ential ∂⊗.

Proposition 11. Let f be an R∞-map of degree d. Then the differential
f ′ = [∂, f ] is an R∞-map of degree d−1 whose components f ′` satisfy the equations

[∂, f`]|r1| · · · |r`) = f ′`|r1| · · · |r`)

+
∑̀

k=1

(−1)d(k+|r|1...k) · (r1, . . . , rk) ◦ f`−k|rk+1| · · · |r`)

+
`−1∑

k=1

(−1)k+d+|r|1...k · f`−1|r1| · · · |rk · rk+1| · · · |r`)

+

`−1∑

k=0

(−1)k+1+d+|r|1...k · fk|r1| · · · |rk) ◦ (rk+1, . . . , r`), (4)

where the elements of R∞ in the second and the fourth row are to be interpreted as
their respective images in Hom(N,N) and Hom(M,M).
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In particular, f is an R∞-chain map of degree d if and only if the equations
(4) are satisfied with f ′` = 0.

Remark. Another point of view is that the f` are maps R⊗` → Hom(M,N) of degree d + `. If

we adopted different sign conventions on the algebra R∞ and the bar construction BM , these
would get the following interpretations: f0 is a map, which preserves the action of r ∈ R up to

homotopy f1|r) and a coherent system of higher order homotopies f2|r1|r2), etc.

Proof. Throughout the proof, we will use maps ϕ` : R⊗(sR)⊗(`−1)⊗M → N
of degree d+ 1, given by ϕ`(r1| · · · |r` ⊗ x) = f`|r1| · · · |r`)x. Their differentials are
related to those of f` in exactly the same manner,

[∂, ϕ`](r1| · · · |r` ⊗ x) = [∂, f`]|r1| · · · |r`)x.
We will also abbreviate z = r1| · · · |r` ⊗ x. One can easily check the following
inductive formulas

∂(r0|z) = ∂r0|z − (−1)|r0| · r0|∂z + (−1)|r0| · r0z − (−1)|r0| · r0 ⊗ ε0z,

f(r0|z) = (−1)d(1+|r0|) · r0|fz + (−1)d|r0| · r0 ⊗ ϕmaxz, (?)

where ε0 : BM → M is the augmentation and ϕmax denotes the component with
the maximal index; in particular ϕmaxz = ϕ`z. Composing in one direction, we get

∂f(r0|z) = (−1)d(1+|r0|) · ∂r0|fz + (−1)(d−1)(1+|r0|) · r0|∂fz
− (−1)(d−1)(1+|r0|) · r0fz + (−1)(d−1)(1+|r0|) · r0 ⊗ ε0fz

+ (−1)d|r0| · ∂r0 ⊗ ϕmaxz + (−1)(d−1)|r0| · r0 ⊗ ∂ϕmaxz,

while the composition in the opposite direction is

f∂(r0|z) = (−1)d|r0| · ∂r0|fz + (−1)d(1+|r0|) · ∂r0 ⊗ ϕmaxz

+ (−1)(d−1)(1+|r0|) · r0|f∂z − (−1)(d−1)|r0| · r0 ⊗ ϕmax∂z

+ (−1)|r0| · fr0z − (−1)(d−1)|r0| · r0 ⊗ f0ε0z.

By its form, f is always R-linear, i.e. fr0z = (−1)d|r0| · r0fz. Thus, the
corresponding terms in the difference [∂, f ] = ∂f − (−1)d · f∂ cancel out and we
obtain

[∂, f ](r0|z) = (−1)(d−1)(1+|r0|) · r0|[∂, f ]z

+ (−1)(d−1)|r0| · r0 ⊗
(
(−1)d−1 · ε0fz + ∂ϕmaxz + (−1)d · ϕmax∂z + (−1)d · f0ε0z

)
.

According to (?), f ′ = [∂, f ] is an R∞-map of degree d − 1 with components ϕ′`
given by

ϕ′` = −(−1)d · ε0f + ∂ϕ` − (−1)d+1 · ϕmax∂ − (−1)d+1 · f0ε0

The differential from the statement equals

[∂, ϕ`] = ∂ϕ` − (−1)d+1 · ϕ`∂⊗

= (∂ϕ` − (−1)d+1 · ϕmax∂) + (−1)d+1 · ϕmax(∂+ + ∂−).

Expressing the first term from the formula for ϕ′` we obtain

[∂, ϕ`] = ϕ′` + (−1)d · ε0f + (−1)d+1 · ϕ`−1∂
+ + (−1)d+1 · (ϕmax∂

− + f0ε0).

The terms of this equation correspond exactly to the terms of (4). �
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The components of the composition gf of two R∞-maps f and g are easily
seen to be

(gf)`|r1| · · · |r`) =
∑̀

k=0

(−1)|f |(k+|r|1...k) · gk|r1| · · · |rk) ◦ f`−k|rk+1| · · · |r`).

The composition is associative with unit id : BM → BM , whose components are
id0 = id and id` = 0 for all ` > 0, see also the first example below.

Example.

• Any R∞-linear map f0 : M → N extends to an R∞-map f : BM → BN with
components f` = 0, for all ` > 0. By (4), the association f0 7→ f is compatible
with differentials. In particular, if f0 is a chain map then so is f .

• The projection ε0 : BM → M can be made into an R∞-chain map ε∗ : BM →
M by

ε`|r1| · · · |r`)(r′0| · · · |r′m ⊗ x) = (−1)`+|r|1...` · (r1, . . . , r`, r
′
0, . . . , r

′
m)x.

The inclusion ι0 : M → BM can be made into an R∞-chain map ι∗ : M → BM
by

ι`|r1| · · · |r`)x = 1|r1| · · · |r` ⊗ x.

We have ει = id, while the other composition ιε is R∞-homotopic to id via the
R∞-homotopy ζ∗ with components

ζ`|r1| · · · |r`)(r′0| · · · |r′m ⊗ x) = (−1)`+|r|1...` · 1|r1| · · · |r`|r′0| · · · |r′m ⊗ x.

Put together, they give an R∞-reduction (ε∗, ι∗, ζ∗) : BM ⇒M .

Transfer of the structure, the easy case. We observed that anR∞-module
structure on N makes M ⇒ N naturally into anR∞-linear reduction. By the above
example, it induces an R-linear reduction BM ⇒ BN .

Transfer of the structure, the basic case. Suppose now that M is an R∞-
module and that there is given a reduction (α0, β0, η0) : M ⇒ N . We will extend
α0 and β0 to R∞-maps α∗ and β∗. With a bit of extra work on the homotopy
operator later in the section, we will obtain an R-linear reduction BM ⇒ BN .

The respective components of α∗ and β∗ are

α`|r1| · · · |r`)x = (−1)`+|r|1...` · α0 Sh(r1, . . . , r`)η0x

β`|r1| · · · |r`)y = η0 Sh(r1, . . . , r`)β0y

We will now show, that β∗ is indeed an R∞-chain map, leaving α∗ to the reader.
We need to verify the equations (4) with α′` = 0. Thus, we compute

[∂, β`]|r1| · · · |r`) = [∂, β`|r1| · · · |r`)]− β`∂⊗|r1| · · · |r`)
= [∂, η0] Sh(r1, . . . , r`)β0 − η0[∂,Sh(r1, . . . , r`)]β0

+ η0(Sh ∂⊗(r1, . . . , r`))β0
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which equals, by the Leibniz rule and Lemma 8, to the sum

(id−β0α0) Sh(r1, . . . , r`)β0 −
`−1∑

k=1

(−1)k−1+|r|1...k · η0 Sh(r1 . . . , rkrk+1, . . . , r`)β0︸ ︷︷ ︸
β`−1|r1|···|rkrk+1|···|r`)

−
`−1∑

k=1

(−1)k+|r|1...k · η0 Sh(r1, . . . , rk)β0︸ ︷︷ ︸
βk|r1|···|rk)

α0 Sh(rk+1, . . . , r`)β0︸ ︷︷ ︸
(rk+1,...,r`)

The first term is Sh(r1, . . . , r`)β0 − β0(r1, . . . , r`). The computation is finished by
the observation

Sh(r1, . . . , r`)β0 = (r1, . . . , r`)β0 +
`−1∑

k=1

(r1, . . . , rk) η0 Sh(rk+1, . . . , r`)β0︸ ︷︷ ︸
β`−k|rk+1|···|r`)

.

It is easy to see that the composition αβ equals id since the only non-zero
composite is α0β0 = id, thanks to the identities α0η0 = 0, η0β0 = 0 and η0η0 = 0.

Constructing the homotopy operator for BM ⇒ BN . The homotopy
operator of the reduction (α0, β0, η0) : M ⇒ N does not extend to an R∞-map in
general. We will construct an R-linear homotopy operator for BM ⇒ BN directly.

Proposition 12. There exists an R-linear reduction (α, β, η) : BM ⇒ BN ,
where α and β are the R∞-chain maps constructed above.

Proof. We will use abbreviations η̂0 = id | · · · | id⊗η0 and similar ones α̂0, β̂0.
The main observation is that

(id−βα)z = (id−β̂0α̂0)z + shorter terms

= [∂⊗, η̂0]z + shorter terms

= [∂, η̂0]z + shorter terms,

where the shorter terms in the last line will be denoted

z′ = (id−βα)z − [∂, η̂0]z.

Since the involved maps are chain maps, we have (∂z)′ = ∂z′.
We will construct η recursively as

ηz = η̂0z + ηz′

(recall that z′ is shorter than z). It remains to show [∂, η] = id−βα. We have

[∂, η]z = [∂, η̂0]z + ∂ηz′ + η(∂z)′.

Since z′ is shorter than z, we may assume that ∂ηz′ + η∂z′ = z′ − βαz′; then

[∂, η]z = (id−βα)z − βαz′

and we are thus left to show that βαz′ = 0. To this end, we compute

βαz′ = βαz − βαβαz︸ ︷︷ ︸
0

−βα[∂, η̂0]z = −[∂, βαη̂0]z.

Finally, observe that αη̂0 = 0, by the defining formula for the components of α and
by η0η0 = 0. The side conditions αη = 0, ηβ = 0, ηη = 0 are also easily verified. �
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The proof of Theorem 1. Let M be a G-complex and let there be given a

span of reductions M ⇐ M̃ ⇒ N . Then we have constructed a span of G-linear

reductions BM ⇐ BM̃ ⇒ BN appearing on the right of

M ⇐ BM ⇐ BM̃ ⇒ BN.

By the explicit form of the involved operators, it is clear that this construction is
algorithmic. The reduction on the left is given by Theorem 4 and the fact that
BM = B(G,G,M). �

Polynomiality. Let the finite group G be fixed. Assume that all the algo-
rithms involved in M , N (including the action of G on M) and in the strong equiv-
alence M ⇔ N have running times bounded by a polynomial function pd(sizex)
when the inputs x are restricted to dimensions |x| ≤ d.

It is then clear from our formulas that the same will be true for the strong
equivalence M ⇔ BN with the corresponding running time bound depending only
on the original bound pd. This is important in the parametrized context that
follows.

In [2], the authors defined a “chain complex with polynomial-time homology”
as a parametrized family M(i)⇔ N(i) of strong equivalences as above where

• the algorithms take as inputs pairs (i, x) with i ∈ I a parameter and x the input
data for the considered computation in M(i)⇔ N(i),

• the running times of these algorithms are bounded by pd(size i+ sizex) and
• a further algorithm is required that outputs a basis of each Nn(i), n ≤ d, with

running time bounded by pd(size i).

Then, given such a family, Theorem 1 constructs another family M(i) ⇔ BN(i),
this time “with equivariant polynomial-time homology”. For the last point, observe
that the rank of (BN(i))n over G is

rk(BN(i))n =

n∑

m=0

|G|m · rkNn−m(i)

and thus bounded by a multiple of pd(i); moreover, each basis element of BN(i) is
computed from the respective basis element of N(i) in linear time.

9. The equivariant (co)homology of Eilenberg-MacLane spaces

The proof of Corollary 2. Let WG denote the total space of the universal
principal twisted cartesian product WG → WG, see e.g. [7]. Since G is finite,
WG is a locally finite simplicial set and thus C∗WG is a locally finite Z-complex.
The standard results of effective algebraic topology, see e.g. [2, Theorem 3.16],
provide a strong equivalence of C∗K(π, n) with a locally finite Z-complex D (one
says that K(π, n) has effective homology). The Eilenberg-Zilber theorem, or rather
its algorithmic version, see e.g. [8, Theorem 124], then provides a reduction M =
C∗(WG × K(π, n)) ⇒ C∗WG ⊗ C∗K(π, n). Composing with the previous, one
obtains a strong equivalence M ⇔ C∗WG ⊗ D with a locally finite Z-complex
C∗WG⊗D. Theorem 1 then constructs a G-linear strong equivalence of M with a
locally finite G-complex N = B(C∗WG⊗D). Thus the (co)homology groups of

C∗(WG×G K(π, n)) ∼= C∗(WG×K(π, n))/G = M/G,
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are isomorphic to the (co)homology groups of N/G and these may be computed
e.g. by a simple application of the Smith normal form to the differentials in N/G;
see [4] for a polynomial time algorithm. �

10. Notes

A note on homotopy invariance of R∞-chain maps. The content of this
short note is to prove the following lemma.

Lemma 13. Let g0 : M → N be the bottom part of an R∞-chain map g∗ of
degree d and let g0 be homotopic to f0. Then one can extend f0 to an R∞-chain
map f∗.

Proof. By the additivity of the equations (4), it is enough to extend any
null-homotopic f0 = [∂, η] to an R∞-chain map f∗. We set

f`|r1| · · · |r`) = (−1)d+1 · [η, (r1, . . . , r`)].

Then by the graded Leibniz rule, [∂, f`]|r1| · · · |r`) equals

(−1)d+1 · [∂, [η, (r1, . . . , r`)]]− (−1)d · f`∂⊗|r1| · · · |r`)
= (−1)d+1 · [[∂, η], (r1, . . . , r`)] + [η, ∂(r1, . . . , r`)]− [η, ∂⊗(r1, . . . , r`)]

= (−1)d+1 · [f0, (r1, . . . , r`)] + [η, ∂alg(r1, . . . , r`)].

The first term equals (−1)1+d · f0(r1, . . . , r`) + (−1)d(`+|r|1...`) · (r1, . . . , r`)f0 and
the second term, by the definition and the graded Leibniz rule again, equals

`−1∑

k=1

(−1)k−1+|r|1...k · [η, (r1, . . . , rkrk+1, . . . , r`)]

+
`−1∑

k=1

(−1)k+|r|1...k · [η, (r1, . . . , rk)(rk+1, . . . , r`)]

=
`−1∑

k=1

(−1)k+d+|r|1...k · f`−1|r1| · · · |rkrk+1| · · · |r`)

+

`−1∑

k=1

(−1)k+1+d+|r|1...k · fk|r1| · · · |rk)(rk+1, . . . , r`)

+

`−1∑

k=1

(−1)d(k+|r|1...k) · (r1, . . . , rk)f`−k|rk+1| · · · |r`).

Consequently, the f` satisfy the equations (4) with f ′` = 0 and thus prescribe an
R∞-chain map of degree d. �

A note on dg-categories. The results of this paper work for any locally free
dg-category instead of a dga R. The definition of an R∞-map is a more economic
version of a C∞-module for the dg-category

C = R⊗ (• Zf
//•)

describing R-linear maps: it consists of two objects with endomorphisms forming
R and a map f of degree d between them respecting this action. The corresponding
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components of an R∞-map are as follows

f`|r1| · · · |r`) =
∑̀

k=0

(−1)(d+1)(k+|r|1...k) · (r1, . . . , rk, f, rk+1, . . . , r`).
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