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Abstrakt

Habilita¢ni prace je souborem élanku [13, 34, 20, 30, 23, 24] publikovanych v mezi-
narodnich casopisech, které jsou vsechny evidovany v databazich WoS nebo SCO-
PUS. Vétsina téchto ¢lanku mé spoluautory, jimiz jsou A. Rod Gover, Andreas
Cap, Fabian Radoux, Jean-Philippe Michel, Matthias Hammerl, Petr Somberg
a Vladimir Soucek. Podil vsech autoru na spoleénych c¢lancich je rovnocenny.
Reprinty ¢lankt jsou v Sekci 6.

Oblast vyzkumu téchto matematiku se proting v konformni geometrii, kterd je
nejznaméjsi strukturou ve t¥idé tzv. AHS struktur. Vyznam konformni geometrie
spociva mj. v jejim blizkém vztahu k matematické fyzice a také k analyze. Pravé
na pomezi téchto oblasti matematiky patii problém, ktery motivuje vysledky
shrnuté v této habilitaci: studium symetrii Laplaceova operdatoru A. To jsou
operatory ¥ takové, ze A o X = ¥ o A pro néjaky operator ¥'. Technickd for-
mulace problému, jejichz vyfeSeni je nutné pro uplny popis symmetrii Laplaceova
operatoru, je v Sekci 1.1.

Symetrie Laplaceova operatoru jsou znamé diky ¢ldanku [15] publikovaném
v Annals of Mathematics. Cil této habilitace je ovsem mnohem obecnéjsi: prezen-
tovat geometrické nastroje a postupy pro studium symetrii invariantnich operatoru
ve ttidé AHS geometrickych struktur. Presnéjsi formulace vyzaduji jisty matema-
ticky aparat a ctenafr je najde v Sekci 1. Hlavni vysledky se tykaji invariant-
niho kvantovdni v Sekci 3, symetrii konformnich mocnin Laplaceova operatoru
a diskuze plochd versus kriva geometrie v Sekci 4 a prodluzovani pronich BGG
operdtoru v Sekci 5.



Preface

The thesis is a collection of articles [13, 34, 20, 30, 23, 24]. All of them have been
published in international journals indexed by WoS or SCOPUS. Results and some
background theory are summarized in the survey part (Sections 1 — 5) on pages
4 — 27. Reprints of articles are in Section 6.

Our main research interest lies in the theory (bi)linear invariant operators on
manifolds with a geometrical structure (known as AHS structure). This provides
a suitable geometrical framework for the specific problem which motivates this
survey: to understand symmetries of the Laplace operator [15]. Such symmet-
ries play an important role in analysis (in the study of separable solutions of
PDE’s) and in mathematical physics (where the terminology ‘higher’ or ‘hidden’
symmetries is often used). I hope this survey will be useful for researches on the
borderline of these fields.
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1 Introduction

1.1 A motivation: symmetries of the Laplacian on R”

The Laplacian operator is of prominent interest in differential geometry, mathe-
matical physics and analysis and has many analogues in other mathematical fields.
We shall start with the simplest version, i.e. the Laplacian on smooth functions
on the Euclidean space R™. This is the operator A = V'V, : C*°(R") — C>~(R")
where V; = 0/0x; and we have used the Einstein’s summation convention. There
is an obvious notion of symmetries of A : C*(R") — C*(R") given by diffe-
rential operators ¥ : C°(R") — C*°(R") such that A¥X = ¥A. We shall term
such operators commuting symmetries of A. As a slight reformulation, one can
also introduce commuting symmetries as operators preserving eigenspaces of A.
Another (and weaker) possibility is to study operators ¥ which preserve the null
space of A and this will be the property of our interest. We say X is a conformal
symmetry or just a symmetry of A if

AY, =Y'A  for some Y :C*(R") — C*(R"). (1)

Note this also means that Y preserves the range of A. A short computation reveals
that operators ¥ and Y’ have the same symbol. The vector space of symmetries
forms obviously an algebra which we denote by HS. Operators of the form ¥ =
TA are always symmetries which we shall term ¢rivial symmetries. Observe the
space of trivial symmetries is a left ideal which we denote by (A) € HS. The
main problem is to describe the quotient HS := HS/(A).

What do we need to understand fully symmetries of A? First, we need to
classify symmetries ¥ which means to find out which tensor fields can appear
as symbols of symmetries in the first place. Another question is to construct
a preferred symmetry with a prescribed symbol. Then one should understand
the algebra HS. All these problems are solved in the essential Eastwood’s paper
[15]. This result also shows the significance of conformal geometry. Although
defined using the Euclidean metric, the Laplacian is in a suitable sense confor-
mally invariant, cf. Section 1.2. (Note this follows already from knowledge of first
order symmetries.) Thus the basic step in the study of symmetries should be to
understand nvariance of A.

These questions motivate the main aim of this thesis: we explore to which
extent and directions one can develop a general theory of symmetries of (suitably
invariant) differential operators.

1.2 From Euclidean space to conformal geometry

Conformal structure is the pair (M, [g]) where M is a smooth manifold of the
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dimension n, g a (pseudo)Riemannian metric and the class [g] contains metrics
obtained by rescaling g by a positive smooth function. This determines the class of
corresponding Levi-Civita connections [V]. Although the Laplacian A = g%V, V,
is not conformally invariant, there is a curvature modification known as the con-
formal Laplacian (or Yamabe operator) Ay = A — 4(7;—__21)5c cE[-n/2+ 1] —
E[—n/2 — 1] where Sc is the scalar curvature of g and £[w] are density bundles,
cf. Section 2.4 for details concerning our convention for conformal weights w € R.
The conformal invariance means Ay = Ay for therperator Ay defined with
respect to another choice ¢ € [g] with corresponding V € [V].

Note the problem of symmetries of Ay is much simpler in the Euclidean case
(where Ay = A because Sc = 0, cf. Section 1.1) than for general conformal
structures (M, [g]). In fact, the full understanding of symmetries of Ay is available
only on locally flat conformal structures (M, [g]), i.e. when g is locally isomorphic
to the Euclidean metric on R". Generally, first order symmetries of Ay come
from infinitesimal symmetries of the structure (i.e. conformal Killing fields) but
the classification of higher order symmetries is a highly nontrivial problem. Only
the case of second order symmetries is solved and we shall discuss this result in
Section 4.2.

Above we started with the Laplacian A and observed its conformal invariance.
Taking a slightly different point of view, we can start with a given conformal struc-
ture (M, [g]), choose an arbitrary invariant differential operator ® and consider
symmetries of ¥ analogously as in (1). We shall do this, in the locally flat setting,
for conformal powers of the Laplacian ® : £[—-n/2 + | — E]—n/2 — {]. That is,
® = A’ on Euclidean spaces. Details are in Section 4. Also symmetries of the
Dirac and Maxwell operators are studied [4, 16, 2].

1.3 From conformal geometry to AHS structures

Conformal geometry is the most studied structure among almost Hermitean sym-
metric (AHS) geometrical structures on M. Another important AHS structure is
projective geometry given as a class of torsion free connections on M which share
the same geodesics (as unparametrised curves). This is a general feature: every
AHS structure is closely related to a reduction of the structure group of GL(n) to
a suitable (simple) subgroup together with a certain class [V] of affine connections
on M.

We shall however need a theoretical background of AHS manifolds going far
beyond elementary differential geometry used so far. Building on ideas of Cartan
and Tanaka, there is nowadays well established notion of so called Cartan bundle
G — M and Cartan connection w of type (G, P) which is a “curved version”
of the bundle G — G/P and the Maurer-Cartan form w. Here P C G are Lie
groups. Specializing to the case of a parabolic subgroup P of semisimple G, we



obtain parabolic geometry. A general and widely developed theory (based the
Lie representation theory for P C G) is available in [10]. Here AHS structures
form an important subclass and we shall extensively use tractor bundles, splitting
operators and other tools in the so called “BGG machinery”. A brief summery of
this theory is provided in the beginning of Section 2.

Note invariance (or naturality) of various operations means that such ope-
ration is canonically defined using only the geometrical structure (without any
additional choices). One can be more specific on locally flat AHS structures M
which are locally isomorphic to G/P. Here the G-action gives a realization of
the Lie algebra g of G as g C X(G/P) thus locally g C X(M). Invariance of
a differential operator ® then means that & intertwines the action of g. In the
curved case (where the G-action is lost) we simply say that ® is invariant if it can
be given by an explicit formula in terms of a chosen V € [V] and its curvature in
such a way that ® does not depend on this choice.

1.4 Invariant quantization on AHS structures

It turns out that there is indeed a preferred symmetry of the Laplacian for a given
symbol. This is provided by a more general notion of the so called invariant
quantization. Recall given vector bundles E and F over M and denoting by
Diff*(E, F) the space of linear differential operators I'(E) — T'(F) of the order
< k, there is the (principal) symbol map symb : Diff*(E, F) — T'(Symb*(E, F)).
Here Symb*(E, F) = S*TM ® E*® F is the bundle of symbols of Diff*(E, F') and
S% denotes the kth symmetric tensor product. By quantization we mean a right
inverse QF : I'(Symb"*(E, F)) — Diff*(E, F) of the symbol map symb. Obviously,
there is an associated bilinear operator (o, ¢) — Q*(0)(y) for o € T'(Symb*(E, F))
and ¢ € T'(E). We say OF is invariant quantization if this bilinear operator is
invariant for a given AHS structure on M.

As an illustration, consider a smooth manifold M and the exterior derivative
d. We can view the Lie derivative Lx along the vector field X € X(M) as the
invariant quantization for the symbol X € I'(T'M). Then the formula Lxd = dLx
just means Lx is a first order symmetry of d for every vector field X. (Note
this formula is the infinitesimal version of the fact that d commutes with local
diffeomorphisms.) Also observe this cannot have an analogue for higher order
symmetries as there is no higher order analogue of the Lie derivative. The lat-
ter follows from the classification of such operators [22]. Of course, if we equip
M with an AHS structure (i.e. restrict invariance to this category), there will be
many more invariant (bi)linear operators. Thus we can expect existence of in-
variant quantization on such structures. This is indeed the case and we present
a construction of invariant quantization for AHS manifolds in a suitably generic
sense in Section 3.1. However, it turns out such construction does not give a com-



plete (non)existence result for the invariant quantization Q. The latter problem
is much more difficult and will be discussed only for the invariant quantization on
conformal densities Q¥ : I'(Symb*(Ew], E[w + §])) — Dift*(E[w], E[w + §]) where
w,d € R. More specifically, we shall show how (non)existence of QF depends on
0 in Section 3.2.

1.5 Prolongation of first BGG operators

As mentioned in Section 1.1, one of the basic problems in the study of symme-
tries is to understand which tensor fields can appear as symbols of symmetries
of the Laplacian. To formulate the answer, it is useful to employ the abstract
index notation in the sense of Penrose [33]. That is, £&* = TM, &, = T*M,
gla-ar) = SKTM (i.e. symmetrization of indices is denoted by round brackets)
and we shall raise and lower indices using the metric gq, € I'(E(qp)) and its inverse.
It turns out that symbols of symmetries (modulo trivial symmetries) of A on R™
are g% ¢ T'(£@~a)o) characterized by the condition V(@g%@)o = (. Here
the subscript 0 denotes the projection to trace free part. Sections o%'~* satisfy-
ing such system of PDE’s are known as conformal Killing tensors. Also, we point
out that the (conformally invariant) differential operator g s V(90 g1-ax)o
is overdetermined.

The latter operator is actually invariant on any conformal manifold (M, [g]).
Similar operators control conformal Killing forms (which are symbols of first or-
der symmetries of the Dirac), twistor spinors etc. They all belong to the class of
“first BGG operators” where corresponding systems of PDE’s are always overde-
termined. They can be naturally constructed using the BGG machinery on all
AHS manifolds (see the beginning of Section 5.1). There is a general approach
how to deal with overdetermined differential operators known as prolongation.
Roughly speaking, this means to add new variables to the section o (on which an
overdetermined operator acts) such that differentiating this system, the result can
be expressed in terms of variables from the system in an algebraic way. (New va-
riables play the role of derivatives of ¢.) This leads to another of the main results
of this habilitation: we present a canonical (and constructive) way how to design
such prolongation for all first BGG operators on AHS structures, see Section 5.1.
That is, the prolongation is invariant. Technically, this is formulated in terms of
the so called prolongation connection V on certain natural vector bundles (known
as tractor bundles) on AHS structures.

In fact, this goes beyond the study of symbols of symmetries as solutions
of first BGG operators encode many important geometrical properties of AHS
structures (e.g. metrizability of projective classes etc.). We shall comment upon
that in Section 5.2 together with an explicit form of V for some conformal first
BGG operators.



1.6 Summary: the author’s contribution and further di-
rections

Main results (which summarize the author’s contribution to the field) in this ha-
bilitation are: a generic construction of invariant quantization on AHS structures
(based on [13]), a complete construction of conformal quantization on densities
(based on [34]), description of symmetries of powers A* of the Laplacian on con-
formally flat manifolds (based on [20]) and 2nd order symmetries of Ay on curved
conformal structures (based on [30]), a general construction of invariant prolon-
gations for first BGG operators on AHS structures (based on [23]) and conformal
examples of explicit form of the prolongation connections (based on [24]).

Reprints of these six articles are appended in Section 6 on page 31 and results
from these articles are marked by boxes below. Also note the list of References is
at the end of the survey part, i.e. before Section 6.

Let as also mention several applications and related research directions of
presented results. Understanding of higher (or hidden) symmetries has an inter-
pretation in physics models [35] and can be used in the seek for explicit solutions
of physically important systems of PDE’s [2, 1]. Symmetries of the Laplacian A
(or more specifically systems of several symmetries which mutually commute) are
closely related to existence of distinguished coordinate systems where A has sepa-
rable solutions [32]. Here [30] is one of few results in the curved case which goes
beyond the first order, cf. [2]. In principal, knowing the prolongation connection
\Y (or rather its curvature Q), one can deduce curvature obstruction for existence
of solution, see Section 5.1 for details.

Results discussed below are based on geometric considerations (with a substan-
tial use of representation theory) but are of interest also for mathematical physics
and analysis. The author believes that the survey will be useful for researches
in these fields. Let us also mention at least two current projects the author col-
laborates on: new properties of Paterson-Walker metrics [25, 26] (where specific
first BGG operators play an essential role) and study of “higher supersymmetries”
(as symmetries of the (Laplace,Dirac) systems) [31] where a new and physically
interesting realization of certain superalgebras of symmetries is obtained.



2 Almost Hermitean symmetric structures

In this section we review the basic theory and invariant calculus of AHS structures.
The general theory (cf. Sections 2.1 — 2.3) can be made more explicit for particular
AHS geometries and we demonstrate this in the conformal case, cf. Section 2.4.
This order is not essential and one can also read Section 2.4 first. This depends
on the reader whether he or she prefers to go from ‘general’ to ‘specific’ or vise
versa. This theory (originating in ideas of Cartan [7]) is nowadays standard and
we refer for the recent monograph [10] for details.

AHS structures and invariant calculus

2.1 |l|-graded Lie algebras and first order structures

The starting point for defining an AHS-structure is a simple Lie algebra g endowed
with a so called |1|-grading, i.e. a decomposition g = g_; & go & g1, such that
[9:, 9;] C gitj, where we agree that g, =0 for £ ¢ {—1,0,1}. The classification of
such gradings is well known, since it is equivalent to the classification of Hermitean
symmetric spaces. We put p := go @ g1 C ¢g. By the grading property, p is
a subalgebra of p and g, is a nilpotent ideal in p.

Given a Lie group G with Lie algebra g, there are natural subgroups Gy C P C
G corresponding to the Lie subalgebras go C p C g. For P one may take a sub-
group lying between the normalizer Ng(p) of p in G and its connected component
of the identity. Then Gy C P is defined as the subgroup of all elements whose
adjoint action preserves the grading of g. In particular, restricting the adjoint
action to g_;, one obtains a representation Gy — GL(g_1). This representation is
infinitesimally injective, so it makes sense to talk about first order G—structures
with structure group Gy on smooth manifolds of dimension dim (g_;).

By definition, such a structure is given by a smooth principal bundle p : Gy —
M with structure group Gy, such that the associated bundle Gy X ¢, g—1 is isomor-
phic to the tangent bundle T'M. It turns out that the Killing form on g induces
a Go—equivariant duality between g_; and g;, so Gy X, g1 = T*M. Using this,
one can realize arbitrary tensor bundles on M as associated bundles to Gy. More
generally, any representation of Gy, via forming associated bundles, gives rise to
a natural vector bundle on manifolds endowed with such a structure. It turns
out that G is always reductive with one—dimensional center. Hence finite dimen-
sional representations of Gy on which the center acts diagonalizably (which we will
always assume in the sequel) are completely reducible, i.e. they split into direct
sums of irreducible representations.

The one-dimensional center of Gy leads to a family of natural line bundles.
For w € R, we can define a homomorphism Gy — R, by mapping g € Gy to



]det(Ad_(g))]%, where n = dim (g_;) and Ad_(g) : g_1 — g1 is the restriction
of the adjoint action of ¢g. This evidently is a smooth homomorphism, thus giving
rise to a one-dimensional representation R|w] of Gy. It is easy to see that R[w]
is non—trivial for w # 0. (The factor % is included to get the usual normalization
in the case of conformal structures.) The corresponding associated bundle will
be denoted by £[w]|, and adding the symbol [w] to the name of a natural bundle
will always indicate a tensor product with £[w|. Using the convention that 1-
densities are the objects which can be naturally integrated on non-—orientable
manifolds, £[w] is by construction the bundle of (—%)-densities. In particular, all
the bundles E[w] are trivial line bundles, but there is no canonical trivialization

for w # 0.

2.2 Canonical Cartan connections and AHS—structures

The exponential mapping restricts to a diffeomorphism from g; onto a closed
normal Abelian subgroup P, C P such that P is the semidirect product of Gy and
P, . Hence G can also naturally be viewed as a quotient of P. In particular, given
a principal P-bundle G — M, the subgroup P, acts freely on G, and the quotient
G/P, is naturally a principal bundle with structure group G,. Next, suppose
that there is a Cartan connection w € Q!(G, g) on the principal bundle G. Then
the g_;—component of w descends to a well defined one—form 6§ € QY(G/P,,g 1),
which is Gy—equivariant and strictly horizontal. This means that (G/P, — M, 0)
is a first order structure with structure group (Gy. In this sense, any Cartan
geometry (p : G — M,w) of type (G, P) has an underlying first order structure
with structure group Gy. Conversely, one can talk about extending a first order
structure to a Cartan geometry.

It turns out that, for almost all choices of (G, P), for any given first order
structure with structure group Gy there is a unique (up to isomorphism) exten-
sion to a Cartan geometry of type (G, P), for which the Cartan connection w
satisfies a certain normalization condition. (The latter is given by the Kostant’s
codifferential 0%, see Section 5.1.) This is usually phrased as saying that such
structures admit a canonical normal Cartan connection. The main exception is
g = gl(n + 1,R) with a |1|-grading such that gy = gl(n,R) and g+; = R". For an
appropriate choice of G, the adjoint action identifies Gy with GL(g_1) = GL(n,R).
A first order structure for this group on a manifold M is just the full linear frame
bundle of M and hence contains no information. In this case, an extension to
a normal Cartan geometry of type (G, P) is equivalent to the choice of a projec-
tive equivalence class of torsion free connections on the tangent bundle T'M | i.e. to
a classical projective structure.

Normal Cartan geometries of type (G, P) as well as the equivalent underlying
structures (i.e. classical projective structures respectively first order structures
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with structure group Gy) are often referred to as AHS-structures. AHS is short
for “almost Hermitian symmetric”. To explain this name, recall that the basic
example of a Cartan geometry of type (G, P) is provided by the natural projection
G — G/P and the left Maurer—Cartan form as the Cartan connection. This is
called the homogeneous model of geometries of type (G, P). Now the homogeneous
spaces G/P for pairs (G, P) coming from |1|-gradings as described above, are
exactly the compact irreducible Hermitian symmetric spaces.

2.3 Natural bundles, fundamental derivative and tractor
connection

Via forming associated bundles, any representation of the group P gives rise to
a natural bundle for Cartan geometries of type (G, P). As we have seen above,
P is the semi—direct product of the reductive subgroup Gy and the normal vector
subgroup P, , so its representation theory is fairly complicated. Via the quotient
homomorphism P — G, any representation of GGy gives rise to a representation
of P. It turns out that the representations of P obtained in this way are exactly
the completely reducible representations, i.e. the direct sums of irreducible rep-
resentations. Correspondingly, we will talk about completely reducible and irre-
ducible natural bundles on Cartan geometries of type (G, P). If we have a Cartan
geometry (p : G — M,w) with underlying structure (py : Go — M,0) and E is
a representation of Gy, which we also view as a representation of P, then we can
naturally identify G x p E with Gy X, E. Hence completely reducible bundles can
be easily described in terms of the underlying structure.

There is a second simple source of representations of P, which leads to an im-
portant class of natural bundles. Namely, one may restrict any representation
of G to the subgroup P and the corresponding natural vector bundles are called
tractor bundles. The most important tractor bundle is the adjoint tractor bundle.
For a Cartan geometry (p : G — M, w) it is defined by A := G xp g, so it is
the associated bundle with respect to the restriction of the adjoint representation
of G to P. Now the P-invariant subspaces g; C p C g give rise to a filtration
Al € A° C A of the adjoint tractor bundle by smooth subbundles. By construc-
tion, A' 2 T*M and since g/p = g_; we see that A/ A° = TM. We will write
IT : A — TM for the resulting natural projection. Hence the adjoint tractor
bundle has the cotangent bundle as a natural subbundle and the tangent bundle
as a natural quotient.

The Killing form defines a G-invariant, non-degenerate bilinear form on g. It
turns out that g; is the annihilator of p with respect to the Killing form, which
leads to duality with g/p = g_; observed above. On the level of associated bundles,
we obtain a natural non—degenerate bilinear form on the adjoint tractor bundle
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A, which thus can be identified with the dual bundle A*. Under this pairing,
the subbundle A' is the annihilator of A°. The resulting duality between A and
A/ A° is exactly the duality between T*M and T'M.

The adjoint tractor bundle gives rise to a basic natural differential operator
for AHS—structures called fundamental derivative. Let us start with an arbitrary
representation E of P and consider the corresponding natural bundle £ := G xp
E — M for a geometry (p : G — M,w). Then smooth sections of this bundle are in
bijective correspondence with smooth maps f : G — E, which are P—equivariant.
In the special case E = g of the adjoint tractor bundle, we can then use the
trivialization of T'G provided by the Cartan connection w to identify P—equivariant
functions G — g with P—invariant vector fields on G. For a section s € I'(A), we
can form the corresponding vector field £ € X(G) and use it to differentiate the
equivariant function f : G — E corresponding to a section ¢ € T'(E). The result
will again be equivariant, thus defining a smooth section Dsp € I'(E). Hence we
can view the fundamental derivative as an operator D = DF : I'(A) x ['(E) —
['(E). The basic properties of this operator are the following:

Proposition 2.1 Let E be a representation of P and let E = G xp E be the
corresponding natural bundle for an AHS-structure (p : G — M,w). Then we
have:

(i) D : T'(A) x I'(E) — T'(E) is a first order differential operator which is
natural, i.e. intrisic to the AHS-structure on M.

(i1) D is linear over smooth functions in the A-entry, so we can also view
v = Dy as an operator I'(E) — I'A* ® E).

(i) For s € T'(A), ¢ € I'(E), and f € C>®°(M), we have the Leibniz rule
Ds(fe) = (II(s) - f)o + [Dsp, where I1 : T'(A) — I'(T'M) is the natural tensorial
projection.

(iv) For a second natural bundle F = G xp F, a P-equivariant map E — F,
and the corresponding linear bundle map ® : E — F', the fundamental derivatives
on E and F are related by DY (® o ) = doDFyp for all s € T(A) and p € T'(E).

The naturality statement in (iv) justifies denoting the fundamental derivatives
on all natural bundles by the same letter. Since there is no restriction on the
bundle E, the fundamental derivative in the form of part (i) can evidently be
iterated. For ¢ € I'(E) we can form Dy, D@y = D(Dyp) and inductively D® ¢ €
N(@FA* ® E).

The fundamental derivative is the basic tool of invariant theory on AHS struc-
tures. Further we shall need two natural differential operators which can be easily
obtained from D. First, the Killing form on g gives rise to a nondegenerate bilinear
form B on A thus also on A*. Hence composing D® : T'(E) — I'(®Q® A*® E) with
B®id: T(Q* A*® E) — I'(E), we obtain the natural operator C : T'(E) — ['(E)
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called curved Casimir operator. It turns out C is of the first order and acts by
a scalar multiplication on the lowest homogeneity component of ¢ € I'(E). The
value of this scalar follows from the representation theory (which motivates the
terminology) and we refer to [12] for details.

Next, observe the above theorem indicates D has some properties of linear
connections on E. In fact, there exists such a natural connection if E is a tractor
bundle and this will be henceforth our assumption. Then we have the action
e : A® E — F and it turns out that Dsp + s e p € T'(E) depends only on
II(s) € I'(T'M). Thus using Proposition 2.1, we obtain the linear (natural) normal
tractor connection V¥ on E which, for a vector field v € T'(T' M) and any adjoint
tractor s € I'(A) such that v = II(s), is defined by

Vi =D+ sepc(E), ¢cl(E).

2.4 Conformal geometry in the world of AHS structures

Here we present a brief summary, further details may be found in [3, 18]. Let M
be a smooth manifold of dimension n > 3. Recall that a conformal structure of
signature (p,q) on M is a class [g] of metrics on M such that § € [g] if § = ¢*Tg
for a smooth function T on M. Here we use the notation £[w] for density bundles
and our convention for weights w € R means £[—n] = A"T*M. The conformal
class [g] determines the (density valued) conformal metric g € T(S*T*M][2]),
i.e. the parameter in square brackets indicates tensor product with the corres-
ponding density bundle. This yields the identification TM = T*M|2]. For some
calculations we shall need abstract indices in an obvious way, i.e. & = T*M,
E» =TM etc. Given a choice of metric g € [g], we write V for the corresponding
Levi-Civita connection. With these conventions the Laplacian A is given by A =
g®V,V, = V'V,. Here we are raising, lowering and and contracting inidces
using the (inverse) conformal metric. Indices will be raised and lowered in this
way without further comment. Note E[w] is trivialized by a choice of metric g
from the conformal class, and we also write V for the connection corresponding
to this trivialization. The coupled connection V, preserves the conformal metric.

The curvature R,,%; of the Levi-Civita connection V, (the Riemannian cur-
vature) is given by [V, Vi]v¢ = Rypqv? ([, -] indicates the commutator bracket)
for vector field v¢ € I'(€¢). This can be decomposed into the totally trace-free
Weyl curvature W.q and a remaining part described by the symmetric Schouten
tensor P4, according to

Rabcd = Wabcd + 2gc[a Pb]d + 29d[bPa]c7 (2)

where |- - -] indicates antisymmetrisation over the enclosed indices. The Schouten
tensor is a trace modification of the Ricci tensor Ricy, = R.,% and vice versa:
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Rices = (n—2)Pap + Jg,p, where we write J = P,* for the trace of P,,. The Cotton
tensor is defined by Y. 1= 2V,P,,. Via the Bianchi identity this is related to
the divergence of the Weyl tensor, (n — 3)Yae = VIWgqpe.

A conformal transformation means to replace g € [g] by g = €*Tg € [g]. We
recall that, in particular, the Weyl curvature is conformally invariant, i.e. VAVade =
Wapea-  (Analogously, the Cotton-York tensor is invariant, i.e. Yg. = Ygpe for
n = 3). Explicit formulae for the corresponding transformation of the Levi-Civita
connection and its remaining curvature components are given in e.g. [3] in terms

of the 1-form T, := V,Y. For example, V,po = V¢ + w T, for p € E[w] and

Vol = Vafs — Tafs — Tofa+ g X fr,  fo € T(E),

3
Pab - Pab - vaTb + TaTb - %TcTcgab' ( )

We have introduced tractor bundles in Section 2.3. Here we shall do it directly
for the standard tractor bundle over (M, [g]) which corresponds to the standard
representation of the group G = SO(p+1, ¢g+1). It is a vector bundle of rank n + 2
defined, for each g € [g], by [T], = E[1] & E[1] @ E[-1]. If § = €*Tg, we identify
(o, pa, 7) € [T]y With (@, 114, T) € [T by the transformation

a 1 0 0 o}
ﬁa = Ta (Sab 0 12 I (4)
7 —lrre —vt 1) \7

It is straightforward to verify that these identifications are consistent upon chan-
ging to a third metric from the conformal class, and so taking the quotient by
this equivalence relation defines the standard tractor bundle T over the conformal
manifold. Moreover, T is equipped by (invariant) normal tractor connection V7
introduced in Section 2.3 and also an invariant metric h € T'(S*7T™*) of signature
(p+1,q+ 1) such that V5*7"h = 0. That is, 7 = 7* and we extend V7 to the
normal tractor connection on Q)7 by the Leibnitz rule. In fact, the original (and
easier) way is to define h and V7 directly by

0 0 1 « Vet — g
hag= [0 g, O] and V7 |y | = | Vs + gop™ + Parer | - (5)
1 0 T VaT — Pappt?

It is readily verified (using (4) and (5)) that both h and V7 are conformally well-
defined, i.e., independent of the choice of a metric g € [g]. It will be sometimes
convenient to use also abstract tractor indices and we put £4 = 7. Then h and
its inverse allows to raise and lower tractor indices. The curvature Q7 of V7 is
defined by [VI,VIIVC = (QT),,C gVE for VA € T(E4). Note Q7 vanishes if and
only if Wepea = 0 (for n > 4) or Yue = 0 (for n = 3), see [3] for details.

14



Further, given a choice of g € [g], the tractor-D operator or Thomas-D operator
Dy : Elw] = Exlw — 1] = T{w — 1] is defined by

w(n+ 2w — 2)p
Dap:= [ (n+2w—2)Vup (6)
—(A+wl)p

for ¢ € E[w]. This is conformally invariant, as can be checked directly using the
formulae above.

Beside the standard tractor bundle 7 = &4, we shall also need the adjoint
tractor bundle A = A*T = EWMBl Tt follows from components of [T], that
[Aly = &[2] @ (Epg[2] @ E) ® & and one can deduce from (5) that

ayp Vot = 24ty — gV
V:;‘ Hbe | 1% - va,ubc + Pa[bac] + ga[bpc] ’ Vay + ParO/ — Pa (7>
Pb Vapb - 2I:)(/LT,urb + Paby

where a, € I'(&,[2]), par € T'(Eap[2]), v € T(E) and p, € T'(E,). We have A = A*
because T = T*. Further we shall need the conformally invariant fundamental
deriwative D : T'(V) — T'(A* ® V) which we introduced in Section 2.3 for any
natural bundle V. Alternatively, one can define D by an explicit formula which
we shall do only for D acting on I'(QTM @ Q T[w]), w € R. First, for &4 €
['(Ealw]) = T(T(w]) and ¢, € T'(&,) =T(T*M) = T'(TM[-2]) we put

0
Dpc®, =10 ‘ wdy | + hA[B(I)C] S F(E[BC]A[IU]) = F(A* (%9 T[w]),
VP4
0
Dpca = | Gapd | —¢a | € T(EBcra) = T(A"@T*M).
Vb()Oa

Then we extend D to sections of tensor products QTM & @ T|w] using the
Leibnitz rule.

Next we discuss so called strong invariance of differential operators in the sense
of [17]. This can be defined for any AHS structure but we shall need it only in
the conformal case. Let F': I'(V]) — I'(V4) be a differential operator given by
an explicit formula in terms of the Levi-Civita connection V,, its curvature R p.q
and various algebraic operations. Given any tractor bundle 77 C Q) 7, we define
the operator FV : T'(V; ® T') — ['(V, ® T') by replacing every appearance of V
by V7" in the formula for F. Now assume F is conformally invariant; we say F is
strongly invariant if also the operator F'V is conformally invariant for any tractor
bundle 7’. (That is, strong invariance is rather a property of specified formulae
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of differential operators.) In particular, the tractor D-operator D, is strongly
invariant which we shall need later. In this case, we shall write D, instead of
(DA)Y for simplicity. Further examples of strongly invariant operators are the
fundamental derivative D or the conformal Laplacian Ay from Section 1.2.

3 Invariant quantization

Henceforth we assume (G — M,w) is an AHS structure on M and let E and F' be
natural irreducible bundles on M. In this section we shall construct an invariant
quantization for differential operators I'(E) — I['(F) of the order < k and we
denote by Symb” (E, F) the corresponding symbol bundle. Our result will be
generic (but not complete) and to formulate this precisely, we shall consider rather
operators I'(E) — T'(F[0]) with the parameter § € R. That is, we shall discuss
existence of an invariant quantization

Q" : I'(Symb*(E, F[6])) — Diff*(E, F[6]),  symboQF =id (8)

for kth order operators, cf. Section 1.4, depending on . This result, based on [13],
is formulated in Section 3.1 below. Then, following [34], we present a different
invariant quantization specifically designed for conformal densities (see Section
3.2) to obtain a complete classification in this case.

3.1 A generic construction of invariant quantization

Given o € T'(Symb*(E, F[0])) and ¢ € I'(E), the required invariant quantization
QF from (8) gives rise to the bilinear invariant operator (o, ) — OF(0)(yp) €
['(F[0]). We shall construct such operator first (for all §’s) and then discuss for
which 6 € R this actually yields QF satisfying (8). We shall start with two linear
invariant operators (one for o and one for ¢) which we shall combine into a bili-
near operator afterwards. Note our construction is motivated by a (much simpler)
invariant quantization on Riemannian structures where one can simply combine
the symbol o with iterated Levi-Civita connection applied to ¢. Such straight-
forward construction is not possible on AHS structures (as there is no canonical
affine connection) so we replace the Levi-Civita connection by the fundamental
derivative. Thus we need to pass to tractors.

First we define a linear invariant operator L acting on o. As mentioned in
Section 2.3, T'M is a quotient of A. Thus also Symb*(E, F[§]) = S*TM®@ E*® F[0]
is a (completely reducible) quotient of V := S*A @ E* ® F[6]. We denote the
projection by IT : V — Symb*(E, F[§]). Let us write the decomposition of o into
irreducibles as 0 = @@, ;0, € I' (Symbk(E ,F[0])) where I is an index set. Then

iel
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there is an invariant differential operator
L=PC):T(S*TM ® E* ® F[§]) - I'(S*AM ® E* ® F[d])
such that II(L(0)) = @wai )

el
where P(C) denotes a polynomial operator in the curved Casimir C, cf. Section
2.3 and v; = p;i(d,n) for some nontrivial polynomials p;. The upshot of this
construction is that for all weights § € R up to a finite number (when ~;(d,n) = 0
for some i € I) we have II(L(@~; '0i)) = o. In this sense, L is generically
a splitting operator of the projection II.

Next we define a linear invariant operator acting on ¢. This will be simply
the iterated fundamental derivative D®¥) ¢y = D ... Dy for p € T'(E) where D) :
I'(E) = I(Q"A*® E).

These two linear operators are used to build a bilinear operator in the theorem
below. We shall use the obvious pairing

() (RPA® B 2 Fla]) x (QPA*® E) — Fld].

(" Theorem 1 (Theorem 5 and Corollary 6 from [13])
Using the notation as above, the following holds:

(i) The map (o,p) — (L(c), D®)) defines an invariant
bilinear operator I'(Symb*(E, F[8])) x T'(E) — ['(F[d]).

(it) For o = @, 0: € T(S*TM ® E* @ F|4]), the operator
Q(0) : T() = D(F[3]) defined by Q'(0)(¢) := {L(0), DVg)
is of order at most k and has principal symbol @, ; vio:;.

(111) Assume the weight 6 € R is generic in the sense that
vi = pi(n,8) # 0 for all i € I, cf. the discussion below (9).
Then he map QF(o) = @k(@iel v lo;) € Diff*(E, F[6]) de-
fines an invariant quantization for operators I'(E) — T'(F[d])

kof the order k.

J

In fact, the above construction of QF simplifies the construction in [13] where
a bigger set of generic weights was obtained. One can also derive an estimate for
the number of nongeneric weights and an upper bound for these. We refer to [13]
for details.

Let us emphasize that the previous result does not say anything about possible
nonexistence of invariant quantization for nongeneric weights §. Also, there is no
reason to expect uniqueness. Both these questions are of course important and
we shall address them (in a special case) in the next section.
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3.2 Invariant quantization on conformal densities

The full classification of existence and uniqueness of invariant quantization should
be understood primarily in the locally flat case which will be henceforth our as-
sumption. The following crucial result is due to Michel [29] and it is conve-
nient to formulated it for (usually irreducible) subbundle H C Symb*(E, F) :=
S*TM @ E* @ F for k > 0.

Theorem 3.1 ([29]) Let E and F be irreducible natural bundles for the locally
flat AHS structure (G — M, w). Then the invariant quantization Q% for operators
Dift*(E, F) restricted to symbols in H C Symb*(E, F) exists and is unique if and
only if there is no invariant linear differential operator F(H) — F(Symbk_i(E, F))
fori=1,... k.

Roughly speaking, this theorem says that unique existence of invariant quan-
tization is obstructed by existence of linear invariant operators between symbols
(of different order). This is very useful because linear invariant operator on AHS
structures are rare in the sense that, given the bundle E, the space of linear in-
variant operators with the source bundle FE is finite dimensional. Moreover, the
space of conformally invariant linear operators is completely classified [5, 6]. Thus,
we can expect more specific results in this case.

Assume (M, [g]) is a locally flat conformal manifold and put E := E[w] and
F = Ew + ¢]. We say the weight 6 € R is critical if the unique existence
of invariant quantization for operators Diff*(£[w], E[w + 6]) is lost for some (or
equivalently any, cf. Theorem 3.1) weight w € R. Further we say the weight w is
resonant for the critical weight ¢ if invariant quantization for Diff*(€[w], E[w + 4])
(nonuniquely) exists. Note the set of generic weights from Section 3.1 is signifi-
cantly smaller than the set of noncritical weights which can be seen already from
first order quantization on densities. Here there is at most one linear invariant
operator I'(T'M[d]) — T'(£[d]) (i.e. at most one critical weight §, cf. Theorem 3.1)
whereas there are four nongeneric weights 0. (The latter fact follows from the
construction (9) via curved Casimirs as there are four irreducible subquotients of
the conformal adjoint tractor bundle A.)

The main aim of this section is to construct invariant quantization on densities
for all noncritical weights. Details are in [34] in terms of invariant quantization
Q% : T(H) — Diff*(E[w], E[w + 6]) for all irreducible subbundles H of symbols.
We put

H:= SETM[§) C S*TM[5] where k' =k—20, 6 =6+ 20 (10)

where 0 < 2¢ < k and the subscript 0 indicates the trace free part. First we shall
discuss critical weights for H according to Theorem 3.1. For parameters in (10),
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we put

Yp={-(n+K+5-2) 1< <K}, E'% ={j—-1]1<5 </},

1 11
and Z”% = {—§(n+ 2K —25) |1 <5<} 1

and we put Xy = ¥}, , = X}, o = 0. Using this and the classification in [5, 6], the
following display exhausts all linear invariant operators I'(H) — T'(S*=*T'M|d]):

T'(H) — D(SY~'TM[0"]), 8 =—(n+k +i—2) €Sy,
T(H) — T(Sy ™ TM[5 —2j]), & =j—1€Z,, (12)
T(H) = T(SYTM[0' —25]), & =-3(n+2K —2j) € X},

Note the case 0 € X is a divergence type operator of order &' —i+1, 0" € X}, ,
is the generalized conformal Killing operator of order j, cf. Section 4 and ¢’ € X}, ,
yields a power of Laplacian type operator (on symmetric tensor fields) of order
2j. Combining this list with Theorem 3.1, the set of critical weights ¢ is ¥y o :=
Yp UYL U,

It remains to construct Q% for all weights ¢’ & 34, which we shall do in the
general (curved) setting. We shall start with the special case k = k' and § = ¢’
and denote the invariant quantization by QF : I'(SET M) — Diff*(E[w], E[w + )
in this case. A detailed analysis of operators in (12) and Theorem 3.1 reveals that
the set of critical weights § for QF is exactly ¥;. An existence of QF is stated in
the part (i) of the following theorem.

(" Theorem 2 (Theorem 3.1 and Theorem 3.3 from [34]) )
Let (M, [g]) be an arbitrary conformal manifold and consider
the symbol o € T'(H) C I'(Symb"*(E[w], E[w +6])) and param-
eters k, k', §, 0" and £ as in (10). Then

(i) There is an explicit construction of QF : T'(H) —
Diff* (E[w], E[w + &']) for all noncritical weights &' ¢ Sy such
that the formula for ng,/ 18 strongly invariant.

(ii) Using Q% from (i) and o € T'(H), the construction

o DAl ...DAZQ]g:(U)VDAe-"DAl g[lU] _)g[U)‘l’(S]

gives rise to the invariant quantization Q% for anyw € R and
every noncritical weight ' & Xy 4. Here D4 is the tractor D-
operator, cf. (6) and the notation Q% (o)V is explained below.

Recall the notion of strong invariance (together with the notation QF (o)¥)
was introduced at the end of Section 2.4.
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Idea of the proof. 1t is worth to emphasize that whereas the generic construction
in Section 3.1 was based on basic tools of the invariant calculus on AHS structures,
the construction in the theorem is more involved (and it works only for conformal
structures). Indeed, the proof of the part (ii) in [34] is based on a rather long
computation. But at least the part (i) is related to the generic construction of
Q. More precisely, Q¥ is obtained by a careful refinement of Q*. This is based
on the observation that the target spaces of L and D*) used in Theorem 1 (i)
are actually “too big” which induces too many nongeneric weights. It turns out
there is a subbundle A C A with the subquotient A* of A and modifications
L:T(H) = I(A*[¢']) of L and D*) : T'(E[w]) — T'(AJw]) such that Q% (0)(p) =
(L(c), D*)(p)) for ¢ € ['(E[w]). Details are in [34]. O

Finally note that for ¢ critical, resonant weights w are closely related to exis-
tence of linear invariant operators on £[w]. This can be used [34] to construct
invariant quantization Diff*(E[w], E[w + §]) for such pairs of § and w. This is,
however, limited in the curved case since existence of certain linear invariant ope-
rators on E[w] is lost if we pass to the curved setting [18]. These operators are
known as conformal powers of the Laplacian (or GJMS operators [21]). We shall
focus on these operators (in the locally flat case) in the next section.

4 Symmetries of conformal powers of the Lapla-
cian

We discussed the conformal version of the Laplacian Ay in Section 1.2. The
classification [5, 6] of linear conformal operators tells us that also powers of the
Laplacian have conformally invariant analogues

P, = A"+ lot : D(E[-n/2 + 1]) — D(E]-n/2 — 1)) (13)

where lot stands for “lower order terms”. It is however a nontrivial question
whether such operators P, exist also in the curved setting and it turns out this is
generally not true for n even and 2r > n [18].

Similarly as in Section 1.1, we say the operator ¥ : I'(E[—n/2+r]) — T'(E[—n/2+
r]) is a symmetry of P, if

P.YX =%'P, forsome X' :T(E[-n/2—7r]) = T(E][-n/2 —r]). (14)

We would like to describe the algebra HS, := H_Sr/ (P.) where HS, is the algebra
of all symmetries of P, and (P,) C HS, denotes the left ideal of trivial symmetries,
cf. Section 1. The result for the locally flat case is summarized (based on [20]) in
Section 4.1 below. However, such question is far too ambitious in general. In fact,
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it is a complicated problem to understand H.S, (as the vector space) already for
Ay and we present (based on [30]) the answer at least for 2nd order symmetries
in Section 4.2.

4.1 Symmetries of P, in the locally flat case

Henceforth we assume (M, [g]) is locally flat. Given the symbol o € T'(S*T'M), the
invariant quantization for Diff*(£[w], £[w]), w = —n/2+7 is an obvious candidate
for a symmetry ¥ of the order k of P,. Assume for simplicity o € T'(H) C
[(S*T'M) for an irreducible subbundle H. Then observe the corresponding weight
§ = 0 is both generic for QF from Section 3.1 (which follows from properties of
curved Casimirs) and also noncritical for QF from Section 3.2. Using further the
uniqueness in Theorem 3.1, we conclude Q%(c) = Q% (), i.e. both constructions
of invariant quantization coincide.

Of course, not all sections o can appear as symbols of symmetries so we need to
find conditions such symbols must satisfy. As a motivation, consider the commuta-
tor T := P,Q%(0)—Q%(0)P, : T(E[-n/2+7r]) — T'(E[-n/2—r]). Taking the princi-
pal symbol of T, we obtain the operator I'(H) 3 o A symb(T) € T(S¥2TM[-2r])
which is conformally invariant by construction. Clearly if P.Q*(o) = QF(o)P,
then ¢(o) = 0. Now it remains to find out to which of three classes in (12) the
operator 1 belongs.

The precise characterization is actually more complicated as the above consi-
deration does not determine ¢ uniquely. A direct computation in [20] shows the
middle operator in (12) controls symbols of symmetries. More specifically, this is
the linear conformally invariant operator

T(S*TM) D T(SE2TM[20)) = T(H) 5 T(Sk[—2¢ — 2)),

; (15)
gar—2e (B x7(bo | \7bae ya1-ak—2e)o + lot

where 0 < 2¢ < k and we have used abstract indices. That is, H is the subbundle
of the form (10) with 6 = 0, ¥ = k — 2¢ and § = 2¢. Solutions o of ¢ are
known as generalized conformal Killing tensors. Also note v is overdetermined
and conformally invariant also in general curved setting. Such operators will be
studied in Section 5 in detail.

The following theorem describes H S, as the vector space:

Theorem 3 (Theorem 2.4 from [20]) Let r, k, ¢, k' =
k — 20 and H be given as above.

(1) For each non-zero o € I'(H) such that ¢ € {0,1,--- ,r—
1}, a solution of (15), there is canonically associated a non-

21



trivial symmetry ¥ = Qk (o) of P, with the leading term
0_a1...ak/ (val . vak/>Az-

(1) Modulo trivial symmetries, locally any symmetry of
P, is a linear combination of such operators X, for various
solutions o of (15), with £ and r in the range assumed here.

g J

The next step is to describe HS, as a g-module, g = §0,.1 42 Where (p,q) is
the signature. This is based on the bijective correspondence between the space
of solutions of ¥ as given by (15), which we denote by Hfl, and VV-parallel
sections of the tractor bundle V := (K¥A) K (X*7) where X is the Cartan
product, A is the adjoint tractor bundle and 7 is the standard tractor bundle.
(More details concerning this relationship can be found in Section 5.) Recall the
standard and the adjoint tractor bundle are induced by the standard and the
adjoint representation of g, respectively. Using the symbolism of Young diagrams,
the standard and the adjoint representation of g are [(J and H, respectively. Thus,
as a g-module, we have

co r—1 v

HS, =P EPH where Hf = S I I I I (16)

k'=0 £=0

To formulate the algebraic structure of HS, in the theorem below, we shall
further need following projections of the tensor product Uy ®@U; for Uy, Us € g = H:

URU, €4, Uielh €[y, (Ui,Ub)€R and (U, U] €

(" Theorem 4 (Theorem 2.5 from [20]) The algebra HS, is )
isomorphic to the tensor algebra @ g modulo the two sided
1deal generated by

1 (n—2r)(n+2r)
U RU, — _-
U@Us;—U XU, — Uy o Uy 2[U17U2]+4n(n+1)(n+2) (U1, Uy)
kfor Uy,Usy € g and the image of X?'0 in ®@%g. )
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4.2 An inroad to the curved case

Here we briefly discuss 2nd order symmetries of the conformal Laplacian P, =
Ay on a general conformal manifold (M, [g]). Even such a specific question was
understood only recently [30] which illustrates the complexity of the problem for
general curved symmetries of operators P,.. Note first order symmetries are given,
due to the conformal invariance of Ay, by the Lie derivative Ly along conformal
Killing fields X on (M, [g]).

Assume ¥ is a 2nd order symmetry of Ay; then modulo trivial symmetries,
the symbols of X is o € ['(SZTM). These symbols are controlled by the condition
Y (o) = 0 in the locally flat case according to Theorem 3 (i). This is conformal
Killing operator V@t = ( in this case and one can show by the direct com-
putation that this condition is necessary also in the curved case. The problem is
that V(g = 0 is not sufficient, i.e. not all conformal Killing 2-tensors o% give
rise to symmetries of Ay. There is an additional obstruction for symbols % of
symmetries formulated in terms of the 1-form

Obs(0)a = o (W'rsa Vi = 8Yrsa) 0™ € T(E,) = T(T"M) (17)

where W p.q is the Weyl tensor and Y. the Cotton-York tensor, cf. Section 2.4.
One can show (17) is well defined (i.e. conformally invariant). Also note Q*(c) =
Q% (o) for H= S3TM C S*T'M which holds not only in the flat case (cf. the first
paragraph of 4.1) but also in the curved case (which can be shown by a direct
computation.)

(" Theorem 5 (Theorem 4.11 from [30]) Leto € I'(S2TM).)

(1) There is a symmetry 3 of Ay with the principal symbol
o if and only if o is a conformal Killing 2-tensor and Obs(o)
s an exact 1-form.

(1) Assume o satisfies conditions in (i). Then modulo
trivial symmetries and first and zero order symmetries, > has
the form ¥ = Q% (o) + f for a function f € C*(M) satisfying
Obs(c) = —2df.

- J

This characterization of symbols of symmetries deserves a more detailed discus-
sion, however. There are no conformal Killing tensors (or generally no solutions
of overdetermined equations) on generic conformal structures. Thus one might
think that the very existence of such solution o is so restrictive that Obs(o) is
always exact. It is proved in [30] that this is not true. That is, we found a con-
formal manifold (M, [g]) with a conformal Killing 2-tensor ¢ such that Obs(o) is
not exact (actually not closed). Summarizing, exactness of Obs(o) is a nontrivial
condition.
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Finally note, above considerations indicate there are curvature obstructions
for existence of conformal Killing tensors. The conceptual way in this direction
is to study prolongation of the corresponding overdetermined system of PDE’s.
This is studied, in much more general context, in the next section.

5 Prolongation of first BGG operators

We have already used the bijective correspondence between solutions of ¢ on
H C S*T'M from (15) and a parallel sections of the tractor bundle V := (K* A)X
(X*T) in the locally flat case, cf. the discussion below Theorem 3. A theoretical
background of this correspondence is summarized below in Section 5.1, our aim
here is to explain that this is indeed a “prolongation” in the usual sense used in
the study of PDE’s.

The point is that H is a quotient of V' hence we have the (algebraic) projec-
tion Iy : I'(V) — I'(H). The crucial fact is that there is an invariant differential
splitting Lo : T'(H) — I'(V') of Ty, i.e. Ilgo Ly = idy. Then we can use the normal
tractor connection V¥ on V and assuming ¢(0) = 0, we conclude VY Ly(o) = 0.
The latter can be deduced for example from the classification [5, 6] of conformally
invariant operators (since nonvanishing VY Ly(c) would give rise to a conformal
operator on o € I'(H) which cannot exist). Thus Ly(c) is a closed system (com-
posed of o and new variables) in the sense that V¥ Ly(o) is algebraic in components
of Ly(c). Thus Ly(o) with VY is the prolonged system for o and ¢ from (15). Also
note Ly = P(C) for some polynomial P in the curved Casimir C thus operators
Loy and Il are closely related to L and II used in Section 3.1, cf. the discussion
around (9).

In fact, the 1-1 correspondence between solutions of certain invariant operators
and parallel sections of suitable tractor bundles holds for all locally flat AHS
manifold. This follows from the “BGG machinery” which we review in Section
5.1 below. Thus an obvious question arises: is there such 1-1 correspondence also
in the curved case? The answer is positive but not straightforward. The point
is that the normal tractor connection V" does not have desired properties in the
curved case. Our solution is to find a new normalization and consequently a new
tractor connection which we shall denote by V" and call prolongation connection.
Results below are based on articles [23, 24].

5.1 Invariant prolongation connections on AHS manifolds

This construction is parametrised by the choice of the tractor bundle V = G xp
V. Then the normal tractor connection VV extends to the exterior covariant
derivative dv : EP(V) — EPTL(V) where EP(V) denotes the space V-valued p-forms
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on M. (We write dV instead of dv" for simplicity.) Note the lowest homogeneity
(i.e. invariant) component of dV is algebraic, cf. (5) and known as the Kostant
differential 0, : EP(V) — EPTL(V), [27]. Tts adjoint, the Kostant codifferential
Oy EPYU(V) — EP(V) is P-invariant (contrary to d,) and satisfies 9% 0 dy, | = 0.
This defines Lie algebra cohomology bundles H,, := ker 0 /im 0,11 as subquotients
of kerdy C APT*M ® V. (By abuse of notation, we consider J; acting both on
bundles and sections.) The crucial fact here is that the corresponding projection

II, has a unique invariant differential BGG-splitting L, with

I,: EP(V) D ker 9, — I'(H,) and L,: I'(H,)— kerd, C E(V)

18
such that 8;+1(dv(Lp(a))) =0 for every o € I'(H)). (18)

These properties and constructions — usually termed “BGG machinery” — lead
to the sequence (actually complex in the locally flat case) of invariant differential
operators D,

D, :T(H,) = T(Hp1), D,:=1,0d" oL, (19)

Note only the first BGG-operator Dy is overdetermined and we want to find
an invariant prolongation of the systems Dy(c) =0 on o € I'(Hy). (Here Dy = 9
from (15) for the bundle V' as in Section 4.1.) Henceforth we assume p = 0.
Note the prolongation property from the locally flat case (cf. beginning of Section
5) is lost as generally L o Dy # VY o Ly. Thus Dy(c) = 0 does not generally
imply V¥ Ly(o) = 0. In more detail, the left hand side of the inequality is in
the kernel of 93 o dV according to (18) but this does not generally hold for the
right hand side. It gives us a hint, however, as the right hand side leads to
(05 0dY o VY o Ly)(o) = 350V (Lo(c)) where QY is the curvature of VV. This
vanishes in the locally flat case (because Q2" = 0) and requiring this in general — for
a new tractor connection VY with the curvature QV — one finds the construction
below.

Following the approach in [23], we introduce certain class of (nonnormal)
tractor connections on V as modifications of VY. There are two conditions
on such modification maps ® € £EY(End V). First, ® is homogeneous of degree
> 1 with respect to the natural filtrations on T'M and V', for which we write
® € (E'(EndV))'. (This ensures that if V¥ is replaced by V¥ + @ in (19), we re-
cover the original operator Dy.) Second, we require that for any section s € I'(V)
we have that ®(s) € im 95 C EY(V). (This guarantees that if VV is replaced by
VV 4+ @ in (18), the BGG-splitting Ly is unchanged.) The latter condition can
be rewritten as ® € im (95 @ Idy+) C EY(V @ V*) where 05, denotes 95 acting on
E%(V) only. Thus we arrive at a class of admissible tractor connections

C={VV+®|®ecim (0 ®Idy)N (E"(EndV))'}.
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The main theorem of [23] is then

Theorem 6 (Theorem 1.2 from [23]) There ezists a uni-

que tractor connection VV e C on V. characterized by the
property (0 @ Idy+)(QV) = 0 where QV is the curvature of
vV,

This implies %Y o Lo = Ly o Dy because now both sides are in the kernel of
both 97 and 93 o dV (thus both sides are equal according to (18) and uniqueness
of Lgy). Therefore vV gives a prolongation of the first BGG operator Dy in the
sense that IIy and Ly from (18) provide the bijective correspondence

{o €T(Hy) | Do(0) =0} <=5 {s e T(V) | Vs = 0}.

We say that VV is the tractor prolongation connection on V. Finally note there
is an analogue of the equality V¥ o Ly = Ly o Dy for higher operators D, in the
BGG sequence, see [23] for detail.

Above we stated only existence of the prolongation connection VY. In fact,
there is also an iterative construction [23] of the form

0 ~ s 7 1—1
VV=v" VW=V and VV=VV+®,e€C, 1<i<s (20)

i1
where @, = q; (8‘*/ ® Idv*) QVecl, aeR

i.e. ®; is computed from the curvature zQIV of ZVIV. Moreover, the upper bound
for the number of iteration steps s is the number of irreducible subquotients of
V. That is, complexity of the construction of VV grows with the dimension of V.
We shall illustrate the difference between VY and V" on two simple conformal
examples in the next section.

Finally note the curvature Qv essentially captures information about (non)exis-
tence of solutions of Dy. The point is that if Dy(o) = 0 then QY (Lg(c)) = 0 hence
a suitably defined ‘determinant’ of QV must vanish. Overdetermined operators
generically do not have any solutions hence the curvature Qv provides an algebraic
test for (otherwise difficult) problem of existence of solutions of Dy.

5.2 Prolongation connection in conformal geometry

Henceforth we shall consider the conformal manifold (3, [g]). First note that it
easily follows from (20) that V7 = V7 where T is the standard conformal tractor
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bundle and the same is true for the spinor tractor bundle. Moreover, VY differs
from VV for all remaining tractor bundles V. N

Next we put V := A = A%*T. In this case, we obtain VV = VY + & where
®(s) = —3un Y € EYA) for s € T'(A). Here up,s) inserts the vector field
[y(s) € ['(TM) into the curvature Q. This case is known also by [8]. Note
solutions of D are conformal Killing fields in this case.

Our next example is the bundle V' = A3T. The projecting slot is the quotient
Hy = A*T*M][3] of V and solutions of Dy in this case are conformal Killing 2-
forms o € I'(Hp). An invariant prolongation in this case was solved already in
[19] in a slightly different way (for a different splitting operator). The form \A4
in our setting is presented in [24]. This is already rather complicated so we shall
restrict to the dimension n = 4 and the tractor subbundle V. C V' of self-adjoint
tractor 3-forms. (Note dim 7" = 6 for n = 4.) Then o € I'(Hy) = ['(A2T*M|3]) is
a self-adjoint 2-form. Employing abstract index notation, we have %X =V +o,
where, for s € I'(V,), we have

Oglg2 5[a1a2] [3] 0
S =HaOala? | Vol € g[a0a1a2] [3] | ga[]-] ) (I)c(s) = _iwcr[al(ﬂgao]r | _iWcangrs
Pala? g[ala2] [1] /Bala2

where f,142 = %1(4Ycr[a1 UaQ}T+gc[a1YrsaQ]Urs+2Yc[a1TUaQ]r_YalaQTO—cr+2Wc[a1Tsﬂaz]rs"i_
W, p1,42 VT).

The modification ®. simplifies on half-flat conformal four manifolds. In par-
ticular, assuming (M, [g]) is anti-self-adjoint, the result is

0
VVis=VVs+ 0]0

_YC(Pal)Crpa2 + Yc(Pa2)0pa1 + %chalcﬁ Vp

Finally note solutions of first BGG operators often encode additional geomet-
rical structure. For example, self-adjoint conformal Killing 2-forms o,,,, discussed
above correspond to Kéhler metrics in the conformal class [14]. Another impor-
tant case is V' = 7T where nonvanishing solutions of Dy yield Einstein metrics in
the conformal class [3]. Finally, the problem of metrizability of AHS manifolds
(i.e. existence of a metrizable compatible affine connection on M) is also closely
related to solutions of suitable first BGG operators, cf. [28] and the related parts
of [24] for the case of projective structures.
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Abstract

We construct an explicit scheme to associate to any potential symbol an operator acting between sections
of natural bundles (associated to irreducible representations) for a so-called AHS-structure. Outside of a
finite set of critical (or resonant) weights, this procedure gives rise to a quantization, which is intrinsic to
this geometric structure. In particular, this provides projectively and conformally equivariant quantizations
for arbitrary symbols on general (curved) projective and conformal structures.
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1. Introduction

Consider a smooth manifold M, two vector bundles E and F over M and a linear differential
operator D : I'(E) — I'(F), where I' () indicates the space of smooth sections. If D is of order
at most k, then it has a well-defined (kth order) principal symbol op, which can be viewed as
a vector bundle map S¥7*M ® E — F or as a smooth section of the vector bundle ST M ®
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E*® F. Here TM and T*M are the tangent respectively cotangent bundle of M, E* is the
bundle dual to E, and S* denotes the kth symmetric power.

A quantization on M is a right inverse to the principal symbol map. This means that to each
smooth section T of the bundle S*TM ® E* ® F, one has to associate a differential operator
A; : I'(E) — I'(F) of order k with principal symbol t. Note that operators of order O coincide
with their principal symbols, so there is a unique possible quantization in order 0. Given any kth
order operator D with principal symbol 7, the difference D — A; is of order k — 1. Iterating this,
we conclude that, having a quantization in each order < k, one actually obtains an isomorphism
between the space Diﬁ"k(E , F) of differential operators I"'(E) — I'(F) of order at most k and
the space of smooth sections of the bundle @LO S TMQE*®F.

A classical example of a quantization is provided by the Fourier transform for smooth func-
tions on R". However, it is well known that (even for E = F = M x R) there is no canonical
quantization on a general manifold M, but one has to make additional choices. For our purposes,
the most relevant example is to choose linear connections on the vector bundles £ and T M.
Having done this, one obtains induced linear connections on duals and tensor products of these
bundles, and we will denote all these connections by V. For a smooth section s of E, one can
then form the k-fold covariant derivative VXs, which is a section of ®k T*M ® E. Symmetrizing
in the T*M entries, we obtain a section Vs of S¥T*M @ E. Viewing a symbol 7 as a bundle
map SKT*M ® E — F, we can simply put A (s) := t(V®s). Clearly this defines a differential
operator A; of order k and it is well known that its principal symbol is 7, so we have obtained a
quantization in this way.

This provides a link to geometry. Suppose that M is endowed with some geometric structure
which admits a canonical connection. Then one obtains quantizations for all natural bundles
associated to this structure. The classical example of this situation is the case when (M, g) is
a Riemannian manifold. Then the natural bundles are tensor and spinor bundles, and on each
such bundle one has the Levi-Civita connection. Hence the above procedure leads to a natural
quantization (in the sense that it is intrinsic to the Riemannian structure) for any pair £ and F of
natural vector bundles.

At this point there arises the question whether weaker geometric structures, which do not
admit canonical connections, still do admit natural quantizations. This problem has been orig-
inally posed in [15] and has been intensively studied since then. The examples above naturally
lead to the two geometric structures for which this problem has been mainly considered. On
the one hand, one may replace a single linear connection on 7'M by a projective equivalence
class of such connections. Here two connections are considered as equivalent if they have the
same geodesics up to parametrization. On the other hand, the most natural weakening of Rie-
mannian metrics is provided by conformal structures. Here one takes an equivalence class of
(pseudo-)Riemannian metrics which are obtained from each other by multiplication by positive
smooth functions.

Projective and conformal structures fit into the general scheme of so-called AHS-structures.
These are geometric structures which admit an equivalent description by a canonical Cartan
connection modelled on a compact Hermitian symmetric space G/P, where G is semisimple
and P C G is an appropriate parabolic subgroup. These geometries and the more general class
of parabolic geometries have been studied intensively during the last years, and several striking
results have been obtained, see e.g. [8]. In particular, an efficient differential calculus for these
structures based on so-called tractor bundles has been worked out in [4].

This general point of view has shown up in the theory of equivariant quantizations already.
Namely, it turns out that the homogeneous space G/ P always contains a dense open subset (the
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big Schubert-cell) which is naturally diffeomorphic to R". While the G-action on G/ P cannot
be restricted to this subspace, one obtains a realization of the Lie algebra g of G as a Lie algebra
of vector fields on R". For the homogeneous model G/P and geometries locally isomorphic to
it, naturality of a quantization is then equivalent to equivariancy for the action of this Lie al-
gebra of vector fields. In many articles, the question of quantizations naturally associated to a
projective and/or conformal structure is posed in this setting. Also, the algebras corresponding
to general AHS-structures have been studied in this setting under the name “IFFT-equivariant
quantizations”, see [1]. It should be pointed out however, that these methods only apply to ge-
ometries locally isomorphic to G/ P (e.g. to locally conformally flat conformal structures). As it
is well known from the theory of linear invariant differential operators, passing from the locally
flat category to general structures is a very difficult problem.

Most of the work on natural quantizations only applies to operators on sections of line bun-
dles (density bundles). It was only recently that the methods for projective structures have been
extended to general natural vector bundles in [12]. The construction there uses the Thomas—
Whitehead (or ambient) description of projective structures, which is an equivalent encoding of
the canonical Cartan connection for projective structures. This approach is only available in the
projective case, though. As mentioned in [12], there is hope to use the Fefferman—Graham am-
bient metric for conformal structures to find conformally invariant quantizations, but there are
several immediate problems with this approach. For the other AHS-structures, there is no clear
analog of the ambient description.

It should be mentioned that the results for projective structures have also been obtained using
the canonical Cartan connection, see [16]. After this article was essentially completed, we learned
about the recent preprint [17], in which the Cartan approach is extended to prove existence of a
natural quantization for conformal structures and it is claimed that the method further extends to
all AHS-structures.

In this article, we use the recent advances on invariant calculi for parabolic geometries to
develop a scheme for constructing equivariant quantizations. This scheme is explicit and uniform,
it applies to all AHS-structures and to all (irreducible) natural bundles for such structures. As it
is known from the special cases studied so far, equivariant quantizations do not always exist, so
our scheme does not always lead to an equivariant quantization.

To formulate the result more precisely, we need a bit more background. It turns out that for any
AHS-structure there is a family of natural line bundles £[w] parametrized by a real number w,
the so-called density bundles. Any natural bundle E can be twisted by forming tensor products
with density bundles to obtain bundles E[w] := E ® £[w]. (For conformal structures, this free
parameter is known as “conformal weight”.) Doing this to the target bundle of differential opera-
tors, we can view a section 7 € I'(SKTM ® E* @ F Q £[8]) as the potential symbol of an operator
I'(E) — I'(F[8]). We first universally decompose the bundle of symbols into a finite direct sum
of subbundles. On the level of sections, we write this decomposition as 7 = ) _; ;. Given such a
section, our scheme constructs a differential operator A, : I'(E) — I'(F[68]) for any choice of
weight 8. The principal symbol of A; is ) ; y;7; for real numbers y; which only depend on i,
and é (and not on 7 or on the manifold in question). We prove that each y; is non-zero except
for finitely many values of §. Whenever all y; are non-zero, we obtain a natural quantization by
mapping 7 to AZ,- vl

Our method does not only lead to an abstract proof that the set of critical weights (i.e. of
weights 6 for which some y; vanishes) is finite. We also get general information on the number
and size of critical weights. In each concrete example, one can determine the set of critical
weights explicitly, and this needs only finite dimensional representation theory.
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We should mention that the developments in this article are closely related to the results in
the recent thesis [14] of J. Kroeske, in which the author systematically constructs bilinear natural
differential operators for AHS-structures and, more generally, for parabolic geometries.

2. AHS-structures and invariant calculus

In this section we review basic facts on AHS-structures and invariant differential calculus for
these geometries. Our basic references are [18,6,7].

2.1. |1]-graded Lie algebras and first order structures

The starting point for defining an AHS-structure is a real simple Lie algebra g endowed with
a so-called |1|-grading, i.e. a decomposition g = g1 @ go & g1, such that [g;, g;] C g;+;, where
we agree that g, = 0 for £ ¢ {—1, 0, 1}. The classification of such gradings is well known, since
it is equivalent to the classification of Hermitian symmetric spaces. We put p := go & g1 C g. By
the grading property, p is a subalgebra of g and g; is a nilpotent ideal in p.

Given a Lie group G with Lie algebra g, there are natural subgroups Go C P C G corre-
sponding to the Lie subalgebras go C p C g. For P one may take a subgroup lying between
the normalizer Ng(p) of p in G and its connected component of the identity. Then Go C P is
defined as the subgroup of all elements whose adjoint action preserves the grading of g. In par-
ticular, restricting the adjoint action to g_j, one obtains a representation Go — GL(g—1). This
representation is infinitesimally injective, so it makes sense to talk about first order G-structures
with structure group Go on smooth manifolds of dimension dim(g_1).

By definition, such a structure is given by a smooth principal bundle p : Go — M with
structure group Gy, such that the associated bundle Gy x g, g—1 is isomorphic to the tangent
bundle 7 M. It turns out that the Killing form on g induces a Gg-equivariant duality between g_1
and g1, so Go X, 91 = T*M. Using this, one can realize arbitrary tensor bundles on M as asso-
ciated bundles to Go. More generally, any representation of G, via forming associated bundles,
gives rise to a natural vector bundle on manifolds endowed with such a structure. It turns out that
Gy is always reductive with one-dimensional center. Hence finite dimensional representations
of Go on which the center acts diagonalizably (which we will always assume in the sequel) are
completely reducible, i.e. they split into direct sums of irreducible representations.

The one-dimensional center of G leads to a family of natural line bundles. For w € R, we can
define a homomorphism Go — R by mapping g € Gy to |det(Ad_(g))| %, where n = dim(g—_1)
and Ad_(g) : g—1 — g—1 is the restriction of the adjoint action of g. This evidently is a smooth
homomorphism, thus giving rise to a one-dimensional representation R[w] of Gy. It is easy to
see that R[w] is non-trivial for w # 0. (The factor % is included to get the usual normalization in
the case of conformal structures.) The corresponding associated bundle will be denoted by E[w],
and adding the symbol [w] to the name of a natural bundle will always indicate a tensor product
with £[w]. Using the convention that 1-densities are the objects which can be naturally integrated
on non-orientable manifolds, £[w] is by construction the bundle of (— %)—densities. In particular,
all the bundles £[w] are trivial line bundles, but there is no canonical trivialization for w # 0.

2.2. Canonical Cartan connections and AHS-structures

The exponential mapping restricts to a diffeomorphism from g; onto a closed normal Abelian
subgroup P. C P such that P is the semidirect product of Go and P4. Hence Gg can also
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naturally be viewed as a quotient of P. In particular, given a principal P-bundle G — M, the sub-
group P, acts freely on G, and the quotient G/ P is naturally a principal bundle with structure
group Go. Next, suppose that there is a Cartan connection w € £2'(G, g) on the principal bun-
dle G. Then the g_;-component of » descends to a well-defined one-form 6 € 21(G/ Py, g_1),
which is Gg-equivariant and strictly horizontal. This means that (G/ P+ — M, 0) is a first order
structure with structure group Gy. In this sense, any Cartan geometry (p : G — M, w) of type
(G, P) has an underlying first order structure with structure group Go. Conversely, one can talk
about extending a first order structure to a Cartan geometry.

It turns out (see e.g. [7]) that, for almost all choices of (G, P), for any given first order
structure with structure group Gy there is a unique (up to isomorphism) extension to a Cartan
geometry of type (G, P), for which the Cartan connection w satisfies a certain normalization con-
dition. This is usually phrased as saying that such structures admit a canonical Cartan connection.
The main exception is g = gl(n 4+ 1, R) with a |1|-grading such that gg = gl(n, R) and g+ = R".
For an appropriate choice of G, the adjoint action identifies Gy with GL(g—1) = GL(n, R). A first
order structure for this group on a manifold M is just the full linear frame bundle of M and hence
contains no information. In this case, an extension to a normal Cartan geometry of type (G, P)
is equivalent to the choice of a projective equivalence class of torsion-free connections on the
tangent bundle 7'M, i.e. to a classical projective structure.

Normal Cartan geometries of type (G, P) as well as the equivalent underlying structures
(i.e. classical projective structures respectively first order structures with structure group Gg) are
often referred to as AHS-structures. AHS is short for “almost Hermitian symmetric”. To explain
this name, recall that the basic example of a Cartan geometry of type (G, P) is provided by the
natural projection G — G/ P and the left Maurer—Cartan form as the Cartan connection. This
is called the homogeneous model of geometries of type (G, P). Now the homogeneous spaces
G/ P for pairs (G, P) coming from |1|-gradings as described above, are exactly the compact
irreducible Hermitian symmetric spaces.

2.3. Natural bundles and the fundamental derivative

Via forming associated bundles, any representation of the group P gives rise to a natural bun-
dle for Cartan geometries of type (G, P). As we have seen above, P is the semidirect product
of the reductive subgroup G and the normal vector subgroup P, so its representation theory is
fairly complicated. Via the quotient homomorphism P — Gy, any representation of G gives rise
to a representation of P. It turns out that the representations of P obtained in this way are exactly
the completely reducible representations, i.e. the direct sums of irreducible representations. Cor-
respondingly, we will talk about completely reducible and irreducible natural bundles on Cartan
geometries of type (G, P). Consider a Cartan geometry (p : G — M, w) with underlying struc-
ture (po : Go — M, 0) and let V be a representation of G, which we view as a representation
of P via the quotient homomorphism. Then by definition, the subgroup P, C P acts trivially on
V and since Go = G/ P4, we can naturally identify G x p V with Gy x, V. Hence completely
reducible bundles can be easily described in terms of the underlying structure.

There is a second simple source of representations of P, which leads to an important class
of natural bundles. Namely, one may restrict any representation of G to the subgroup P. The
corresponding natural vector bundles are called tractor bundles, their general theory is developed
in [4]. The most important tractor bundle is the adjoint tractor bundle. For a Cartan geometry
(p:G— M, w) itis defined by AM := G X p g, so it is the associated bundle with respect to the
restriction of the adjoint representation of G to P. Now the P-invariant subspaces g1 Cp C g
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give rise to a filtration A'M c A°M c AM of the adjoint tractor bundle by smooth subbundles.
By construction, A'M = T*M and since g/p = g_; we see that AM/A'M = TM. We will
write IT : AM — T M for the resulting natural projection. Hence the adjoint tractor bundle has
the cotangent bundle as a natural subbundle and the tangent bundle as a natural quotient.

The Killing form defines a G-invariant, non-degenerate bilinear form on g. It turns out that g;
is the annihilator of p with respect to the Killing form, which leads to duality with g/p = g_1 as
observed above. On the level of associated bundles, we obtain a natural non-degenerate bilinear
form on the adjoint tractor bundle . AM, which thus can be identified with the dual bundle .A*M.
Under this pairing, the subbundle .A' M is the annihilator of A°M. The resulting duality between
A'M and AM/A°M is exactly the duality between T*M and T M.

The adjoint tractor bundle gives rise to a basic family of natural differential operators for
AHS-structures (and more generally for parabolic geometries). These have been introduced in
[4] under the name “fundamental D-operators”, more recently, the name fundamental derivative
is commonly used. Let us start with an arbitrary representation V of P and consider the cor-
responding natural bundle £ :=G xp V — M for a geometry (p : G — M, w). Then smooth
sections of this bundle are in bijective correspondence with smooth maps f : G — V, which
are P-equivariant. In the special case V = g of the adjoint tractor bundle, we can then use the
trivialization of TG provided by the Cartan connection w to identify P-equivariant functions
G — g with P-invariant vector fields on G. For a section s € I"(AM), we can form the corre-
sponding vector field & € X(G) and use it to differentiate the equivariant function f : G — V
corresponding to a section o € I'(E). The result will again be equivariant, thus defining a
smooth section Dyo € I'(E). Hence we can view the fundamental derivative as an operator
D = D¥ : I'(AM) x I'(E) — I'(E). The basic properties of this operator as proved in Sec-
tion 3 of [4] are:

Proposition 1. Let V be a representation of P and let E = G X p V be the corresponding natural
bundle for an AHS-structure (p : G — M, w). Then we have:

(1) D:T"'(AM) x I'(E) — I'(E) is a first order differential operator which is natural, i.e. in-
trinsic to the AHS-structure on M.

(2) D is linear over smooth functions in the AM-entry, so we can also view o — Do as an
operator '(E) > I'(A*M ® E).

(3) For s e '(AM), o € I'(E), and f € C®°(M,R), we have the Leibniz rule D;(fo) =
(I1(s) - f)o + fDgo, where IT : I'(AM) — I'(T M) is the natural tensorial projection.

(4) For a second natural bundle F = G xp W, a P-equivariant map V — W, and the corre-
sponding bundle map ® : E — F, the fundamental derivatives on E and F are related by
DF(@o0)=® o DEo foralls e I'(AM) and o € I'(E).

The naturality statement in (4) justifies denoting the fundamental derivatives on all natu-
ral bundles by the same letter. Since there is no restriction on the bundle E, the fundamental
derivative in the form of part (2) can evidently be iterated. For o € I'(E) we can form Do,
D26 = D(Do) and inductively D¥o € I'(Q* A*M ® E).

2.4. Curved Casimir operators

Curved Casimir operators form another basic set of natural differential operators defined on
AHS-structures. They have been introduced in [9] in the general context of parabolic geometries.
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That article contains all the facts about curved Casimir operators we will need, as well as the
general construction for splitting operators that we will use below.

As above, we start with a representation V of P and consider the corresponding natural vector
bundle £ =G x p V for an AHS-structure (p : G — M, w). As noticed above, the composition
of two fundamental derivatives defines an operator D?:I'(E) — F((@2 A*M ® E). From 2.3
we know that the Killing form on g induces a non-degenerate bilinear form on AM. Using this
to identify AM with A*M, we also get a natural bilinear form B on .A4*M. This can be used to
define a bundle map B ®id : ®2 A*M ® E — E. Now one defines the curved Casimir operator
C=CE:I'(E)— I'(E) by C(0) := (B®id) o D%o.

Part (4) of Proposition 1 easily implies (compare with Proposition 2 of [9]) that for another
natural vector bundle F and a bundle map @ : E — F coming from a P-equivariant map be-
tween the inducing representations, one gets C/' (@ o o) = & o CF (0). This is the justification
for denoting all curved Casimir operators by the same symbol.

From the construction it is clear that C is a natural differential operator of order at most 2.
However, it turns out that C actually always is of order at most one. Moreover, on sections of
bundles induced by irreducible representations, the operator C acts by a scalar which can be
computed from representation theory data. One can associate to any irreducible representation
of go a highest and a lowest weight by passing to complexifications, see Section 3.4 of [9]. The
weights are functionals on the Cartan subalgebra h of the complexification g¢ of g, which at the
same time is a Cartan subalgebra for (gg)c. Recall that the Killing form of g induces a positive
definite inner product on the real space of functionals on h spanned by possible weights for finite
dimensional representations. Denoting this inner product by (,) and the corresponding norm
by | ||, the following result is proved as Theorem 1 in [9].

Proposition 2. Let V be a representation of P and let E = G X p V be the corresponding natural
vector bundle for an AHS-structure (p : G — M, w). Then:

(1) C:I'(E) — I'(E) is a natural differential operator of order at most one.
(2) If the representation V is irreducible of lowest weight — A, then C acts on I' (E) by multipli-
cation by A%+ 2(x, p), where p is half the sum of all positive roots of gc.

3. The quantization scheme

Throughout this section, we fix a pair (G, P), two irreducible representations V and W of G
with corresponding natural bundles E and F, as well as an order k > 0. Given these data, we try
to construct a quantization for kth order symbols of operators mapping sections of E to sections
of F[§] for 6 € R.

The basic idea for the construction is very simple. The bundle of symbols in this situation is
SKTM ® E* ® F[8]. We know from 2.3 that 7 M naturally is a quotient of the adjoint tractor
bundle AM, so the bundle of symbols is a quotient of S¥* AM ® E* ® F[8]. Using the general
machinery of splitting operators, we can associate to a symbol a section of the latter bundle. But
such a section can be interpreted as a bundle map S* A*M ® E — F[5], so we can apply it to the
values of the symmetrized k-fold fundamental derivative of sections of E.

3.1. Some properties of the fundamental derivative

To carry out this idea, we first have to derive, for some fixed k, some properties of the
iterated fundamental derivative D* and its symmetrization D® . 1 (E) > 'WM), where
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WM = Sk A*M ® E. Recall from 2.3 that AM admits a natural filtration of the form A'M C
A°M c A='M := AM. Since elements of VWM can be interpreted as k-linear, symmetric maps
(AM)* - E, we get an induced filtration of the bundle WM. We first take the natural fil-
tration of S¥.AM, with components indexed from —k to k, and then define WM to be the
annihilator of the filtration component with index —¢ + 1. Explicitly, this means that W'M
consists of all maps ¥ € VWM such that ¥ (sy, ..., sx) = 0 for arbitrary elements s; € AliM,
provided that iy + --- 4+ ix > —£. Then by definition, we get WM < WM for each ¢,
WHKIM =0, and WKM = WM. Moreover, a map @ € W¥M by definition vanishes if at
least one of its entries is from A°M C AM. Hence this factors to a k-linear symmetric map on
copies of AM/A°M = T M, and we get an isomorphism W*M = S¥T*M @ E. We will denote
by ¢ : SKT*M ® E — WM the corresponding natural inclusion.

Proposition 3. (1) The symmetrized k-fold fundamental derivative D® . '(E) > ' OWM) has
values in the space of sections of the subbundle WM.

(2) Consider any principal connection on the bundle Gy — M, denote by V all the induced
connections on associated vector bundles, by V* the k-fold covariant derivative, and by V® its
symmetrization.

Then the operator I' (E) — I"OWVWM) given by ¢ +— Dkgo — L(ngo) has order at most k — 1.
In particular, D® ¢ is the sum of L(V® @) and terms of order at most k — 1 in ¢.

Proof. We will proceed by induction on k. Recall that there is a family of preferred connec-
tions on the bundle Gy which is intrinsic to the AHS-structure, see [6,4]. Any such connection
also determines a splitting of the filtration of the adjoint tractor bundle, i.e. an isomorphism
AM — T*M & Endo(TM) @ T M, where Endy(T M) = Gy X, 9o, which behaves well with
respect to the filtration. In particular, the last component is given by the natural projection
IT: AM — T M, while the first component restricts to the natural isomorphism A'M — T*M.
Fixing one preferred connection, the difference to any other principal connection on Gy is
given by a tensorial operator, so it suffices to prove part (2) for the chosen preferred connec-
tion.

A formula for the action of the fundamental derivative on tensor bundles in terms of V and
this splitting is derived in Section 4.14 of [4]. The argument used there applies to all bundles
constructed from completely reducible subquotients of tractor bundles, and hence to all bundles
associated to Gy. If s € I"'(AM) corresponds to (¥, @, ) in the splitting determined by V (so in
particular & = I1(s)), then Dy@ = Ve — @ o ¢, where o : Endg(T M) x E — E is the tensorial
operation induced by the infinitesimal action gy x V — V. Now s € I'(A' M) if and only if
& =0and @ =0, so Ds¢ =0 in this case. On the other hand, & = I1(s) so (D¢ — t(V@))(s) =
Dsp — V)¢ = P e ¢ is tensorial. Hence we have proved (1) and (2) for k = 1.

Next observe that naturality of the fundamental derivative implies that for sq,...,sx €
I' (AM) we obtain the Leibniz rule

k
(Dk+1g0)(so, ...y 8k) = Dy, (Dk(p(sl, s sk)) — Z(Dkgo)(sl, cos Dgysiy ooy sk), (%)
i=1

compare with Proposition 3.1 of [4]. Assuming inductively that part (2) holds for k, the sec-
ond summand is evidently of order at most k in ¢. Moreover, the first summand is given by
VH(SO>(Vk<p(H(s1), ..., I1(sx))) plus terms of order at most k — 1 in ¢ which immediately im-
plies (2).
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To prove (1), observe Dkgo e TOWM) if and only if Dkgo(sl, ..., 8k) = 0 provided that at
least r of the sections s; have values in A°M and at least k — r + 1 of them even have values in
A'M. We assume this inductively and prove the corresponding property of D¥*!¢. Hence we
take sections so, . . ., sk, and assume that 7’ of them have values in A°M and k — r’ +2 even have
values in A' M.

If so has values in A'M, then Dy, acts trivially on I"(E) as well as on sections of AlM, it
maps sections of AM to sections of A°M and sections of .A°M to sections of A' M. Hence the
first summand of the right-hand side of () vanishes. In the second term of this right-hand side,
only summands in which s; does not have values in A' M can provide a non-zero contribution.
If s; € I'(A°M), then in the corresponding summand we have r’ — 1 sections of A°M, and
k—r'+2=k—(r'—1)+1 of them have values in .A' M, so the corresponding summand vanishes
by inductive hypothesis. If s; is not a section of A°M, then in the corresponding summand we
have ' sections of A°M, and k — r’ 4 1 of them have values in .A! M, so again vanishing follows
by induction.

If s has values in .A°M but not in A' M, then we only need to take into account that, acting
on sections of AM, Dy, preserves sections of each filtration component. This shows that in each
of the summands in the right-hand side of (x), there are ' — 1 sections of A°M inserted into
D, and k —r' +2 =k — (+' — 1) 4 1 of them have values in .A! M. Hence again vanishing of
each summand follows by induction.

Finally, if so does not have values in A’ M, then we again need only that Dy, preserves sections
of each of the filtration components of .AM. This shows that in each summand of the right-
hand side of (%), we have ' sections of A°M and k — r’ + 2 of them have values in A'M.
Thus vanishing of each summand again follows by induction, and the proof of (1) follows by
symmetrization. O

3.2. The splitting operators

According to the idea described in the beginning of Section 3, we should next, for fixed &,
consider the bundle S¥T M ® E* ® F[8] of symbols as a quotient of the bundle VM :=SkAM ®
E* ® F[5]. However, in view of Proposition 3, we can already improve the basic idea. As we
have noted in 3.1, the bundle S¥.AM carries a natural filtration. Taking the tensor product with
E* and F[§], we obtain a filtration of the bundle VM of the form

VMc...cVWMc...cV*M=vm.

As we have observed in the beginning of Section 3, there is a well-defined bilinear pairing VM x
WM — F[§]. By definition of the filtration on YWWM, this factorizes to a bilinear pairing of
VM x WOM — F[8], where VM := VM/V' M. We denote all these pairings by (,). As we
shall see below, replacing the bundle VM by its quotient VM leads to a smaller set of critical
weights §.

For the same reason, it is preferable to take a further decomposition according to irreducible
components of the bundle of symbols as follows. By construction, the filtration on SKAM is
induced by P-invariant subspaces of the representation S¥g, so the filtration of VM comes from
a P-invariant filtration of S¥g ® V* ® W[8]. The quotient of this space by the largest proper
filtration component by construction is S¥(g/p) ® V* ® W[8], which induces the bundle of
symbols. Now if we restrict to the subgroup Gy C P, then g decomposes into the direct sum
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g—1 D go @ g1, and the filtration components are just go b g; and g;. Correspondingly, the filtra-
tions on S¥ g and sk g® V*® W[§], viewed as Go-representations, are induced from direct sum
decompositions.

Since we have assumed that V and W are irreducible representations of P (and hence of Gy),
the tensor product S¥(g/p) ® V* ® W[8] splits into a direct sum @D, R; of irreducible repre-
sentations of Gy. Identifying g/p with g_;, we can view each R; as a subspace in the quotient
of S¥g ® V* ® W by the P-invariant filtration component with index 1. Then for each i, we
can look at the P-module S; generated by R;. Each S; has a P-invariant filtration with com-
pletely reducible subquotients, and the quotient of S; by the largest proper filtration component
is Ri.

Passing to associated bundles, we see that for each i, we can consider G x p R; as a subbundle
of the bundle SKTM ® E* ® F[§] of symbols, and these subbundles form a decomposition
into a direct sum. In particular, any section 7 of the bundle of symbols can be uniquely written
as T = Zi 7; of sections 7; € I'(G x p R;). Likewise, for each i, we can view G xp S; as a
subbundle of VM, so in particular, sections of G x p S; can be viewed as sections of VM.

Now for each i, we denote by ,3? the eigenvalue by which the curved Casimir operator acts on
sections of the irreducible bundle G x p R;, see Proposition 2. Further, by ,Bil, e, ,Bf" we denote
the different Casimir eigenvalues occurring for irreducible components in the other quotients of
consecutive filtration components of S;. Using this, we can now formulate:

Proposition 4. Let IT : VM — SKTM @ E* ® F[8] be the natural projection and denote the in-

duced tensorial operator on sections by the same symbol. For each i define y; 1= ]_[';’: | (,Bio — ﬂij ).
Then there is a natural differential operator

L:I(S*TM ® E* ® F[8]) > I'(VM)
such that IT(L(t)) = )_; yiti for any section Tt =), T; of the bundle of symbols.

Proof. Of course for each i, mapping 7 to 7; € I'(G x p R;) defines a tensorial natural opera-
tor. The construction of splitting operators in Theorem 2 of [9] gives us, for each i, a natural
differential operator L; : I'(G xp R;) = I'(G x p S;). This has the property that denoting by
I1; the tensorial projection in the other direction, we obtain I1; (L(t;)) = y;; for the number y;
defined in the proposition. As we have noted above, we can naturally view sections of G x p S;
as sections of VM, so we can simply define L(t) :=) ; Li(7;). O

It is easy to give an explicit description of L, since the construction of splitting operators in [9]
is explicit. Given 7, we have to choose sections s; € I'(G xp S;) C I'(VM) such that I1(s;) = 1;
for all i. Then we claim that

n;

L)y =Y []€-8)6n.
i j=1

The product for fixed i exactly corresponds to the definition of the splitting operator from [9].

Naturality of the curved Casimir operator thus implies that each of the summands equals L; (7;),

viewed as a section of VM, and the claim follows.
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3.3. The quantization scheme
We are now ready to formulate our first main result.

Theorem 5. The map (t, ¢) — (L(7), D(k)go) defines a natural bilinear operator rST™M @
E*Q® F[8]) x I'(E) — I'(F[8)).

Fort=) 1 € I'(S*TM ® E* ® F[8]), the operator A; : I'(E) — I'(F[38]) defined by
A7 (@) := (L(t), D®g) is of order at most k and has principal symbol > Vit

Proof. Naturality of L, D®, and the pairing (, ) implies naturality of the bilinear operator. Now
fix 7 and consider the operator A;. Choose any principal connection on Gy and denote by V
all the induced linear connections on associated vector bundles. Using Proposition 3 we see that
Az (@) = (L(7), i(V(k)go)) up to terms of order at mots kK — 1 in ¢. Hence A, is of order at most k
and by the properties of the pairing (, ), the principal symbol is obtained as the result of pairing
IT(L(7)) € I'(S*TM @ E* @ F[8]) with V® ¢ € I'(SKT*M ® E). Thus the result follows from
Proposition 4. 0O

Now we define a weight § € R to be crifical if at least one of the y; is zero for the chosen
value of 6. For non-critical weights, our theorem immediately leads to a natural quantization:

Corollary 6. If the weight § is not critical, then the map T +— AZ
tization for the bundles E and F[4§].

sl defines a natural quan-
i/ !

We want to emphasize that the naturality result in the corollary in particular implies that in
the case of the homogeneous model G/P of the AHS-structure in question the quantization
is equivariant (as a bilinear map) under the natural G-action on the spaces of sections of the
bundles in question (which are homogeneous vector bundles in this case). We can restrict the
quantization to the big Schubert cell in G/ P, which is diffeomorphic to R", n = dim(G/P). The
G-equivariancy on G/ P immediately implies that the result is equivariant for the Lie subalgebra
of vector fields on R" formed by the fundamental vector fields for this G-action. Hence our
quantization will specialize to an equivariant quantization in the usual sense.

3.4. The set of critical weights

To complete our results, we have to prove that for any choice of bundles E and F and any
order k, the set of critical weights is finite. Verifying this is a question of finite dimensional
representation theory. In fact, we not only get an abstract proof of finiteness of the set of critical
weights, but a method to determine the set of critical weights for any given example.

In view of Proposition 4 and Theorem 3, it is clear that we have to understand the dependence

of the Casimir eigenvalues, or more precisely of the differences ,Blo — l] ,on §. To get a complete

understanding of the set of critical weights, one has to determine the composition series (i.e. the
structure of the quotients of iterated filtration components), of the P-modules S;. Recall from
3.2 that, as a representation of G, S; is simply the direct sum of all the composition factors,
so essentially we have to determine the decomposition of S; into irreducible components as a
Go-module. From Proposition 2 we know how to determine the numbers 8 from the lowest
weights of these irreducible components. Notice that changing the weight § corresponds to taking
a tensor product with a one-dimensional representation. In particular, this does not influence
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the basic decompositions into irreducible components, apart from the fact that each of these
components is tensorized with that one-dimensional representation. As we shall see, we can get
quite a bit of information without detailed knowledge of the decomposition into irreducibles,
using only structural information on the possible irreducible components. We start by proving a
basic finiteness result.

Theorem 7. Fix an irreducible component R; C S k g_1QV*QWI[S], _consider the corresponding
Casimir eigenvalue /3?, and one of the other Casimir eigenvalues Bij. Then there is exactly one

value of § for which ,319 = ,31.] . Hence there are at most n; many values for & for which y; =0,
and at most )y _; n; critical weights.

Proof. Let us first make a few comments. The Casimir eigenvalues can be computed from low-
est weights, which are defined via complexification of non-complex representations and of the
Lie algebra in question. Since these complexifications do not change the decomposition into
irreducible components, we may work in the setting of complex |1|-graded Lie algebras through-
out the proof. Second, recall that for an irreducible representation of a complex semisimple Lie
algebra, the negative of the lowest weight coincides with the highest weight of the dual represen-
tation. In this way, standard results on highest weights have analogs for the negatives of lowest
weights.

As we have noted in Proposition 2, for a representation with lowest weight —A, the Casimir
eigenvalue on sections of the corresponding induced bundle is given by M2+ 2(h, p) = (X,
A+ 2p). Writing ¢, for this number, the last expression immediately shows that for two weights
A and ', we have

= =20 = a4+ p)+ |V = ()

We have to understand, how this is influenced by changing §. Denoting by p the highest weight
associated to the representation R[1], which induces the bundle £[1], the bundle £[w] corre-
sponds to the weight wu. Moving from § to § 4+ w corresponds to forming a tensor product with
E[w], and hence replacing A by A +wu and A" by A + w . This means that the difference of the
two weights remains unchanged, and Eq. (1) shows that

Covtwp — Crwp = € — cx + 2w — A, ). (2)

Now by definition, the weights of the representation g are exactly the roots of g. Consequently,
any weight of S¥g is a sum of k roots. Further, it is well known that the highest weight of any
irreducible component in a tensor product of two irreducible representations can be written as a
sum of the highest weight of one of the two factors and some weight of the other factor. Passing
to duals, we see that the same statement holds for the negatives of lowest weights. Thus, the
negative of the lowest weight of any irreducible component of S¥g® V* ® W can be written as a
linear combination of the negative of the lowest weight of an irreducible component of V* @ W
and at most k roots.

Now recall (see [18]) that for a complex |1|-graded Lie algebra, one can choose a Cartan
subalgebra ) C g and positive roots in such a way that there is a unique simple root «g for which
the corresponding root space is contained in g;. More precisely, for a root «, the corresponding
root space sits in g; for i = —1,0, 1, where i is the coefficient of ¢ in the expansion of « as
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a linear combination of simple roots. Then the center of gg is generated by the unique element
Hy € b for which ag(Hp) = 1 while all other simple roots vanish on Hy. The orthocomplement
of Hyp in b is a Cartan subalgebra of the semisimple part of gg.

Since the semisimple part of gg acts trivially on R[1], we conclude that u(H) = aB(H, Hp)
for some non-zero number a and all H € b, where B denotes the Killing form of g. Going
through the conventions, it is easy to see that actually a < 0. By definition of the inner product,
this means that for any weight v, we have (i, v) = av(Hp). Since Hy acts by a scalar on any
irreducible representation, it also acts by a scalar on all of S¥g_; ® V* ® W. But this implies
that if —v is the lowest weight of an irreducible component of V* ® W, then v(Hp) = ag for
a fixed number ap. Consequently, if —v is the lowest weight of an irreducible component of
the quotient of two consecutive filtrations components in VM, say the one with index ¢ by the
one with index £ + 1, v(Hp) = ag + £. In particular, if —A is the lowest weight of R;, then
M(Hp) = ag — k. Likewise if —)” is the lowest weight giving rise to ﬂij then A'(Hy) = ao + £ for
some £ > —k. Thus we conclude that (A" — A, u) = a(k + £) < 0, and formula (2) shows that A
and )’ give rise to exactly one critical weight. O

Note that the proof actually leads to an explicit formulae for the critical weights. Suppose that
—X and —1/ are the lowest weights of irreducible components giving rise to ,8? and ,Bij , and that
the irreducible component corresponding to —A” sits in the quotient of the £th by the (¢ + 1)st
filtration component. Then formulae (1) and (2) from the proof show that the critical weight
caused by these two components is given by

200 — A, A A= A|?
5 — ( + o)+ [ 3)
20 — A, @)

where p is the highest weight of the representation R[1]. In particular, we can use this formula
to completely determine the set of all critical weights if we know all the P-representations S;
together with their composition structure.

3.5. Restrictions on critical weights

We can also get some information on the set of critical weights without this detailed knowl-
edge. For any P-module, we can look at the restriction of the P-action to G and the restriction of
the infinitesimal action of p to the abelian subalgebra g;. Since P is the semidirect product of G
and exp(g;), one immediately concludes that any subspace in a representation of P, which is G-
invariant and closed under the infinitesimal action of g; is actually P-invariant. By construction,
the actions of elements of g; on any P-module commute. Hence the iterated action of elements
of g1 (in the P-module Skg ® V*® WI[S]) on R; defines maps Segl ® R; — Skg R V*® WIS].
By construction, the image sits in the filtration component with index £ —k as well as in S;. Hence
we actually obtain a map @?:0 Stq1 ® R; — S;, which is evidently Go-equivariant. In particu-
lar, the image is a Go-invariant subspace of S; and from the construction it follows immediately
that it is also closed under the infinitesimal action of g .

The upshot of this is that any Gg-irreducible component of S; also occurs in @lgzo Stg1 @ R;.

If we determine the set of all weights 6 for which an irreducible component of @lgzl Sta ® R;
corresponds to the same Casimir eigenvalue as R;, then the union of these sets for all i contains
the set of all critical weights.
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We next work out more details on the set of critical weights for some examples in the case of
even-dimensional conformal structures of arbitrary signature (p, ¢). (This is significantly more
complicated than the case of projective structures, which is mainly considered in the literature.)
Hence Gy is the conformal group CO(p, g) and g_ is the standard representation R", n =
p + g of this group, and we assume that n is even. As above, we may work in the complexified
setting, and we will use the notation, conventions and results from [5] for weights. We will fix
representations V and W and determine critical weights starting from S¥g_; ® V*® W (i.e. with
5=0).

Let us assume that Skg_l ® V* ® W contains an irreducible component R; = R[w] for
some w € R. The decomposition of S‘R"* into irreducible components is given by SSR”* <)

Sg_zR”*[—2] ® Sg_4R”*[—4] @ - - -, where the subscript 0 indicates the totally trace-free part.
From 3.5 we thus conclude that in any case all the irreducible components of P-module S; gen-
erated by R; must be of the form SER™[w — 2m] for non-negative integers ¢ and m such that
L4+2m < k.

In particular, for k = 1, the only possibility is R”[w]. In the notation from Section 2.4 of [5],
R[w] corresponds to the weight (w]0, ...) while R"*[w] corresponds to (w — 1|1, 0, ...), which
immediately shows that the corresponding critical weight is § = —w. For k =2, we get S(%R”* [w]
and R[w — 2], which correspond to (w — 2|2, 0, ...) and (w — 2|0, ...) and the critical weights
l-—wand 1 —w— 3.

For a general order k, the possible representations are (w — £|¢ — 2m, 0, ...) for £ < k and
£ —2m > 0 and one easily verifies directly:

Proposition 8. The possible critical weights caused by an irreducible component Rlw] C
Skg_1 ® V* ® W are contained in the set

m2+2m—n)

{—w—l+€—2m+ 7

0< <k, O<2m<£}.

We can derive an effective upper bound, above which there are no critical weights for quan-
tization in any order. This can be viewed as a vast generalization of the results in Section 3.1
of [11] on quantization of operators on functions. Observe first that it may happen that for the
representations V and W inducing E and F, the tensor product V* ® W itself splits into sev-
eral irreducible components. For example, if V = W, then one always has the one-dimensional
invariant subspace spanned by the identity. Given an irreducible component U C V* ® W and
5 € R, we have Skg_l ®U[s] C Skg_l ® V* ® WI[S], so one may talk about symbols of type U
of any order and any weight. Of course, one may apply the constructions from 3.1-3.3 directly
to this subspace. As an irreducible representation of go, U[8] has an associated lowest weight.
Using this, we can now formulate

Theorem 9. Let —\ be the lowest weight of U[S] and assume that § is chosen in such a way
that X is g-dominant. Then for any order k, the weight § is non-critical for symbols of type U. In
particular, this always holds for sufficiently large values of é.

Proof. Let us first assume that A is g-dominant and integral. Then there is a finite dimensional
irreducible representation U of g with lowest weight —A. We can pass to the dual U*, and look
at the p-submodule generated by a highest weight vector. It is well known that this realizes
the irreducible representation of p with highest weight A. Passing back, we see that U[4] can be
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naturally viewed as a quotient of U Consequently, for any k > 0, we can naturally view Skg_1®
U[8] as quotient of the representation S¥g ® U of g. In particular, for any irreducible component
R; C S¥g_1 ® U[8] we obtain a corresponding g-invariant subset S; C S¥g ® U (which can
be taken to be g-irreducible) with p-irreducible quotient R;. It is also evident that applying the
natural map S¥g ® U — S¥g ® U[8] to S; and then factoring by the filtration component of
degree zero, the image has to contain the p-submodule S; generated by R;. In particular, any
go-irreducible component of S; also has to occur in S’,-.

But for the bundles corresponding to irreducible representations of g, the critical weights are
described in Lemma 2 of [9] in terms of the Kostant Laplacian [J and the value ¢y by which
the (algebraic) Casimir operator of g acts on the irreducible representation S;. Now ¢( coincides
with the Casimir eigenvalue ,B? in our sense and hence Lemma 2 of [9] shows that ,Bij — ,Bio
can be computed as twice the eigenvalue of [ on the irreducible component giving rise to ,8;

Now Kostant’s theorem from [13] in particular implies that the kernel of [J on S’i consists of R;
(viewed as a go-invariant subspace) only. This implies the result if A is g-dominant and integral.

More is known about the eigenvalues of [1, however. The lemma in Cartier’s remarks [10]
to Kostant’s article shows that all eigenvalues of [J are non-positive. In the terminology of the
proof of Theorem 7 this means that ¢ — ¢; < 0. There we have also seen that (A’ — A, u) <0,
so formula (2) from that proof shows that ¢4y, — Cigwp <0 for w > 0. Now if —A is the
lowest weight of a finite dimensional irreducible representation of p, then A is p-dominant and
p-integral. But this means that A + wu is g-dominant for sufficiently large values of w and
g-integral for all integral values of w, which implies all the remaining claims. O

3.6. Low order quantizations for even-dimensional conformal structures

Let us move to more complete examples in the setting from above. We will restrict to the
cases that V¥ @ W =R and V* ® W = R”, and to orders at most three in the first case and
at most two in the second case. For V* ® W = R, we get quantizations on density bundles,
which can be compared to available results in the literature. The case V* @ W = R” can be
used to understand operators mapping weighted one-forms to densities and, vice versa, mapping
densities to weighted one-forms.

We have already noted in 3.5 that the decomposition of S¥g_; is given by @K k2 Stq_1[2¢].

First order operators on densities. Here the symbol representation is g_; = R", so this is
irreducible and corresponds to the weight (1]1,0, ...). Likewise, g is an irreducible represen-
tation of g, and there is only one relevant level which may produce critical weights, namely
go = A’R"[2] @ R, which is the quotient of the filtration components of degrees 0 and 1. The
summands correspond to the weights (0|1, 1,0, ...) & (00, ...) and we obtain the critical weights
—n and —2.

Second order operators on densities. The symbol representation splits into two irreducible
components R; and R; corresponding to the weights (2|2,0,...) (trace-free symbols) and
(210, ...) (symbols which are pure trace, i.e. of Laplace type). Also, the representation Sg of g
is not irreducible any more, but splits into four irreducible components. One of them is a trivial
representation (corresponding to the Killing form) and one is isomorphic to A*R"*2. These two
components are entirely contained in the filtration component of degree —1, so they do not con-
tribute to the quotient by the largest filtration component. One of the remaining two irreducible
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components is isomorphic to S(%R””. The quotient of this component by its intersection with
the largest filtration component is exactly Ry, so all of S must be contained in this part. Finally,
there is the highest weight component ®>g C S2g (the Cartan product of two copies of g), whose
quotient by the largest filtration component is Rj. Hence S is contained in this component.

To determine the possible critical weights it thus suffices to analyze the composition structure
of the representations ®*g and S(%R”J“Z. This can be done fairly easily using the description of
representations of g in terms of their p-irreducible quotients from Section 3 of [3], in particular
the result in Lemma 3.1 of this article. One has to use the fact that the Lie algebra cohomology
groups that occur are algorithmically computable using Kostant’s version of the Bott—Borel-Weil
theorem.

This shows that in the language of weights, the two relevant levels of ®2g decompose as

(112,1,0,..) & (1]1,0,...),
012,2,0,...)® (0[2,0,...)® (0]1,1,0,...) ® (00, ...),

and consequently, one obtains the critical weights —3, —2, =2 —n, —1 —n, (-2 —n)/2, and
(-4 —n)/2.

For the case of symbols which are pure trace, the decompositions of the level for the index —1
is irreducible corresponding to the weight (1|1, 0, .. .), while the level for index zero decomposes
as (0/2,0,...) @ (0]0, ...). This gives rise to the critical weights —2, —1 and (—2 —n)/2.

Third order operators on densities. The analysis is closely analogous to the second order case,
we mainly include the results for comparison to [2]. The symbol representation splits into two ir-
reducible components and again these two components correspond to two of the seven irreducible
components in S3g. Namely, trace-free symbols (SSR”) correspond to the highest weight com-
ponent ®>g, while trace symbols (R"[2]) correspond to the Cartan product g ® SSR”H. The
relevant parts of the composition series for these two representations of g can be determined as
in the second order case. From these, one computes the critical weights. In the trace-free case,
one obtains —4, -3, -2, -4 —n, -3 —n, -2 —n, (-7 —n)/2, (-4 —n)/2, (-8 —n)/3,
(=8 —2n)/3, (—6 —n)/3, and (—6 — 2n) /3. For trace-type symbols, we get the critical weights
—1,-2,-4,-5/2,-4/3,(—4—n)/2, (—4—n)/3, (—6—n)/3, and (—4 —2n) /3. These are the
critical weights from [2], plus quite a few additional ones. We’ll comment on that in 3.7 below.

First order operators for V* ® W = R". Here the symbol representation decomposes as
R"®@R" = R; ® Ry ® R; = SSR" @ A’R" @ R[2],

or in weights (212,0,...) & (2|1, 1,0,...) & (2]0,...). There is only one relevant level in the
composition series of g ® R", which can be determined by decomposing the tensor product
go ® R” into irreducibles. In terms of weights, the result is (112, 1,0,...) & (1|1,1,1,0,...) &
2(1]1,0,...), so the last irreducible component occurs with multiplicity two. Decomposing the
tensor products R; ® R", one concludes that S; can only contain the first and a copy of the last
irreducible components, while S3 can only contain one copy of the last irreducible component.
Consequently, there are three critical weights for skew symmetric symbols (which turn out to be
—1, —4, and —n) but only two (namely —3 and —2 — n) for symmetric symbols. For trace-type
symbols we obtain only one critical weight, namely —2, which agrees with the result from 3.5.
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Second order operators for V* ® W = R". Here the symbol representation S’R” ® R" decom-
poses into four irreducible components, in weight notation, it is given by

(313,0,..)® (32, 1,0,...) ®2(3]1,0,...).

Here one of the two copies of R"*[2] is contained in S(%R” ® R”", while the other comes from
the trace part. Let us write this decomposition as Ry & - - - @ R4, with R4 coming from the trace
part. From above, we know that S2g contains the irreducible components ©2g and S(%R"Jrz,
which correspond to S(%R” and R[2] C S?R", respectively. Consequently, we can determine the
relevant composition factors for Sy, S2, and S3 by decomposing the tensor products of the com-
position factors of @2 as listed above with R”, and then checking with of the components may
be contained in each S;. For S4, we proceed similarly with S(%}R”Jr2 replacing ®%g.

For the first relevant level (corresponding to filtration index —1), we first have to decompose
(112, 1,0,...) ® (1]1,0,...) which gives

(2]3,1,0,..0®¢ (2/2,2,0,...)® (212,1,1,0,...) & (2/12,0,...) & (2|1,1,0,...).

Second, (1/1,0,...) ® (1]1,0,...) =(2]2,0,..) & (2|1,1,0,...) & (2]0,...).

Looking at the tensor products R; ® R", we conclude that S; can only contain (2|3, 1,0, ...)
and (2]2,0,...), S3 can only contain (2|2, 0, ...) and (2|1, 1,0, ...), while all components of the
first sum may occur in S>. Hence from this level, we get the critical weights —4 and —4 — n
for Ry. For R,, we obtain the critical weights —1, —3, —5, —1 — n, and —3 — n, while for R3,
the critical weights are —2, —4, and —2 — n.

The second relevant level is dealt with in an analogous way. The result is that for Ry, we get
the additional critical weights —3, —3 — n, (—4 — n)/2, and (=7 — n)/2. For R,, we obtain
-3/2, -7/2, (-1 —n)/2, (=4 —n)/2, (=7 —n)/2, (—3 — 2n)/2. Finally, for R3, we get the
additional critical weights —1, —5/2, and (—4 — n)/2. A direct evaluation shows that for R4 we
get exactly the same critical weights as for R3 (although the bundle involved is different).

3.7. Discussion and remarks

(1) Note that the results in the examples from 3.6 are consistent with Theorem 9, which implies
that in all the cases discussed in 3.6 all critical weights have to be negative.

(2) From the examples of operators on densities discussed in 3.6 it is evident that the sets of
critical weights we obtain with our general procedure are far from being optimal. It is actually
easy to see why this happens, and even to partly improve the procedure, to get smaller sets
of critical weights. The point here is that part (1) of Proposition 3 can be heavily improved
in special cases, and in particular for the fundamental derivative on densities. In the case of
densities, already the values of a single fundamental derivative do not exhaust A°M[w]. On the
contrary, projecting to (AOM/.Al M)[w] = A2T M[w — 2] & E[w], the values always lie in the
density summand only. By naturality of the fundamental derivative, this implies that higher order
fundamental derivatives always will lie in subbundles which are much smaller than the bundle
WOM from Proposition 3.

Knowing this, one can run the analog of the procedure from 3.2 and 3.3 on the quotient by
the annihilator of this subbundle, which will be significantly smaller than the bundle VM we
have used. For this smaller quotient, there will be less irreducible components in the individual
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subquotients and hence less critical weights. In fact, it is easy to see directly that in the examples
discussed in 3.6 most (but not all) of the superfluous critical weights will disappear.

(3) In the case V @ W = R" the set of critical weights we have obtained in 3.6 will be closer to
the optimum than in the case of densities. As we have noted, this case can be used to study both
quantizations for operators mapping sections of £[w] to sections of T M [w + 8] and for operators
mapping sections of T*M[w] = T M[w — 2] to sections of E[w + §]. While these two cases are
completely symmetric from our point of view, this is no more true if one looks at the best possible
sets of critical weights. The point is that in the first case, the value of the splitting operator will be
paired with D(k)f e I'(SkA*M[w]) for f € I'(E[w]), and as discussed above, this has values
in a much smaller subbundle than just the filtration component of degree zero. In the second
interpretation, we will have to pair it with D®« € I'(S*A*M @ T*M[w]) for o« € I'(T*M[w]),
and the values of this operator fill a more substantial part of the filtration component of degree
zero. Hence in the first case, we can remove more superfluous critical weights than in the second
one.

(4) There is a systematic way to derive explicit formulae for the procedures we have devel-
oped in terms of distinguished connections (e.g. the Levi-Civita connections of the metrics in a
conformal class), but this becomes quickly rather tedious. In view of the construction, the main
point is to obtain an explicit formula for the curved Casimir operator on irreducible components
of S¥ AM . This can be done along the lines of Proposition 2.2 of [5] which holds (with obvious
modifications) for general AHS-structures.
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1. Introduction

The notion of quantization originates in physics. Here we view it as quest for a correspondence between
a space of differential operators and the corresponding space of symbols. More specifically, consider the
space Dy of differential operators acting on smooth functions on a smooth manifold M and the space of
symbols Sp. Quantization is a map Qo :Sp — Do such that Symbo Qo = id |s, where Symb: Dy — Sy is the
principal symbol map. If @ € Dy of the order k has the principal symbol o then ®—Qq(0) € Dy has the order
k—1. Tterating this we obtain the isomorphism of vector spaces @?:0 Si = DF where Si = I'((O' TM) C Sy
and Dg C Dy is the space of operators of order at most k. Here Ok is the kth symmetric tensor product.
We shall use the notation Qf := Qo(0).

There is no natural quantization on a smooth manifold M. On the other hand, e.g. a choice of a linear
connection V on M yields a preferred quantization in an obvious way: if ¢ € S¥ and f € C®(M), we
put Q5 (f) = o(V® f) where V¥ f is the symmetrized k-fold covariant derivative. Therefore there is a
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canonical quantization on every pseudo-Riemannian manifold M. Motivated by this observation one can
ask whether there is a natural quantization for less rigid geometrical structures on M.

In this article we study the case when the manifold M is equipped with a conformal structure. This was
initiated by Lecomte et al. [24,13] and we refer to [25] for details about further development and references.
On one hand, existence of conformally invariant quantization is known in many cases, see e.g. [13.4,26,11].
On the other hand, [25] shows the nonexistence for so-called critical weights of symbols. (The terminology
will be explained below.) Here we prove the complementary result, i.e. we provide an explicit construction
of the conformally invariant quantization for all noncritical weights.

The conformal structure on manifold M is a class of pseudo-Riemannian metrics [g] = {fg | f €
C>(M), f > 0} on a manifold M. The homogeneous model is the pseudosphere M = 5P := SP x S
where (p, q) is the signature of g, the product of the standard metrics on SP and S? where one of them has
the opposite sign. This is a homogeneous space for G = SOy (p+1, g+1) acting on SP*? by conformal motions
of [¢g] and we have the isomorphism SP*? 2 G/P where P C G is the Poincaré group of conformal motions
fixing a point, see [8] for details. Then both Sy and Dy are G-modules and the question of conformally
invariant quantization means to construct Qg : Sy — Dy which intertwines these G-actions. If we pass from
SP4 to RP-? (where only the rational action of G is defined) via the stereographic projection, we replace
the G-action by the infinitesimal g-action. The Lie algebra g of G can be realized as a Lie algebra of
(polynomial) vector fields on RP*? and they act by the Lie derivative as infinitesimal conformal symmetries.
The same can be done for every locally conformally flat manifold and the invariance of Qg is given by
this g-action. This setting is often taken as the starting point in the study of invariant (or equivariant)
quantization [13]. It is natural to consider more generally bundles of conformal densities E[w], w € R
(instead just functions) and the space of differential operators I'(E[w:]) — I'(E[ws]) denoted by Dy, a,-
Denoting by DF the space of operators of degree < k, the corresponding bundle of kth degree symbols

w1, w2

is then S¥ = (O TM) @ E[§) = DY, w,/DEL,, Where § = wy — wy. Note this is the notation used in the
conformally invariant calculus; the space of densities can be also defined as F = I'(Q *(| A" T*M|)) where
A" T*M — M is the determinant line bundle, n = dim(M). Then one has the relation I'(E[—nw]) = F,.
Finally note one can also consider complex densities but this would not change results obtained in this
article. (That is, all weights w, which are significant from the point of view of invariant quantization, are
real.)

Summarizing, the question in the conformally flat case is whether for a given § € R there is an isomorphism

of 50,41 q4+1-modules

Q5 : 85 — Dw,w+5 (1)

for all w € R where Ss = ((OTM) ® E[d]. That is, the corresponding bilinear differential operator Qs : S5 %
Ew] — EJw + 0] is conformally invariant. It turns out the answer is positive for generic weights J, i.e. for
all weights up to a certain number (which is finite for symbols of a fixed degree) [13,4,11]. On the other
hand, [25] identifies the set of critical weights 6 for which the nonexistence is proved. Here we extend known
existence results to all noncritical weights §. Note to get such complete answer one needs to study critical
weights for particular irreducible components of S5 (similarly as in [25]). Note also the requirement that (1)
holds for all w € R is essential for our notion of critical weights 6. If we drop this requirement, (1) could
hold also for critical weights ¢, and certain weights w, see below.

Analogous problem can be formulated for all manifolds M with the given conformal class [g]. Then there
are generically no infinitesimal symmetries on (M, [g]) and by invariance of the quantization Qs:Ss —
Duw,wts we mean the corresponding bilinear operator Qs:Ss x E[w] — E[w + 4] is given in terms of a
Levi-Civita connection V from the conformal class, its curvature R and algebraic operations in such a way
that (s does not depend on the choice of V. Using the terminology of conformal geometry, the bilinear
invariant operator ()5 has a curved analogue. Note there is generally no hope for uniqueness of (05 as the
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curvature can modify conformal operators in various ways. Note the general problem of construction of
invariant bilinear operators Vi x Vo — W for conformal (and more generally parabolic) geometries for
irreducible bundles Vi, V5 and W is considered in Kroeske’s thesis [23]. It is however not clear how to obtain
quantization from the machinery developed there.

Our main result is Theorem 3.3 which provides an explicit (and inductive) formula for Qs on all curved
conformal manifolds and all noncritical (in the sense of [25]) weights 6. This is achieved using the conformal
tractor calculus, see [1] for a discussion on its origin and [7,6] for the relation to the Cartan connection. In
Section 4 we comment upon critical weights. First we recall their relation to existence of linear invariant
operators on symbols (cf. [25]) and then we discuss weights w such that Qs :Ss — Dy w+s €xists even when
J is critical, i.e. resonant weights w € R. Details are available in the flat case [25], we shall indicate existence
of curved analogues for some resonant weights in Theorem 4.4.

2. Conformal geometry and tractor calculus
2.1. Notation and background

We present here a brief summary, further details may be found in [5,20]. Let M be a smooth manifold
of dimension n > 3. Recall that a conformal structure of signature (p,q) on M is a smooth ray subbundle
Q C S%*T*M whose fibre over x consists of conformally related signature (p,q) metrics at the point .
Sections of Q are metrics g on M. So we may equivalently view the conformal structure as the equivalence
class [g] of these conformally related metrics. The principal bundle 7: @ — M has structure group R, and
so each representation Ry > x + 2~ /2 € End(R) induces a natural line bundle on (M, [g]) that we term
the conformal density bundle E[w]. We shall write £[w] for the space of sections of this bundle. We write
E® for the space of sections of the tangent bundle T'M and &, for the space of sections of T* M. The indices
here are abstract in the sense of [27] and we follow the usual conventions from that source. So for example
Eap is the space of sections of ) 27T M. Here and throughout, sections, tensors, and functions are always
smooth. When no confusion is likely to arise, we will use the same notation for a bundle and its section
space.

We write g for the conformal metric, that is the tautological section of S2T*M ® E[2] determined by the
conformal structure. This is used to identify TM with T*M|2]. For many calculations we employ abstract
indices in an obvious way. Given a choice of metric g from [g], we write V for the corresponding Levi-Civita
connection. With these conventions the Laplacian A is given by A = g**V,V, = VV,. Here we are raising
indices and contracting using the (inverse) conformal metric. Indices will be raised and lowered in this way
without further comment. Note E[w] is trivialized by a choice of metric g from the conformal class, and we
also write V for the connection corresponding to this trivialization. The coupled connection V, preserves
the conformal metric.

The curvature Ry, of the Levi-Civita connection (the Riemannian curvature) is given by [V, V]v¢ =
Rap¢qv? ([-,] indicates the commutator bracket). This can be decomposed into the totally trace-free Weyl
curvature Cypeq and a remaining part described by the symmetric Schouten tensor Py, according to

Rabca = Cabed + 29 o Prja + 29 41 Paje (2)

where [- - -] indicates antisymmetrization over the enclosed indices. The Schouten tensor is a trace modifica-
tion of the Ricci tensor Ricey = Req% and vice versa: Ricgy, = (n — 2) Py, + Jg,,, where we write J for the
trace P,® of P. The Cotton tensor is defined by Agp. := 2V Pyq- Via the Bianchi identity this is related
to the divergence of the Weyl tensor as follows:

(n = 3)Aape = VCyape- (3)
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Under a conformal transformation we replace a choice of metric g by the metric § = e?Yg, where 7 is a
smooth function. We recall that, in particular, the Weyl curvature is conformally invariant Cupeq = Caped-
With T, := V,7, the Schouten tensor transforms according to

1
Pyp=Py — V10, + 1,1 — ETCTCgab' (4)

Explicit formulae for the corresponding transformation of the Levi-Civita connection and its curvatures
are given in e.g. [1,20]. From these, one can easily compute the transformation for a general valence (i.e.
rank) s section fpe...q € Epe...a[w] using the Leibniz rule:

Vafoed = Vafoea+ W —=5)Vafoed = Vofacoa = = Yafoe-a
+ Tpfp(:u-dgba +- 4+ Tpfb6~~~pgda- (5)
We next define the standard tractor bundle over (M, [g]). It is a vector bundle of rank n + 2 defined, for

each g € [g], by [E4], = E[1]@E[1@E[-1]. If § = e*T g, we identify (a, pq, T) € [E4], With (&, fia, 7) € [E4];
by the transformation

@ 1 0 0 @
fo | = 7., 5> 0 w | - (6)
7 —irre -r* 1 T

It is straightforward to verify that these identifications are consistent upon changing to a third metric from
the conformal class, and so taking the quotient by this equivalence relation defines the standard tractor
bundle £ over the conformal manifold. (Alternatively the standard tractor bundle may be constructed as
a canonical quotient of a certain 2-jet bundle or as an associated bundle to the normal conformal Cartan
bundle [6].) On a conformal structure of signature (p,q), the bundle £4 admits an invariant metric hap
of signature (p + 1,¢ + 1) and an invariant connection, which we shall also denote by V,, preserving hap.
Up to an isomorphism, this is the unique normal conformal tractor connection [7] and it induces a normal
connection on ) £4 that we will also denote by V, and term the (normal) tractor connection. In a conformal
scale g, the metric hap and V, on £4 are given by

0 0 1 « Voo — pig
hap=|{0 g, O and Vg | e | = | Vato + 9,7 + Pare | - (7)
1 0 0 T VT — Pappt

It is readily verified that both of these are conformally well-defined, i.e., independent of the choice of a
metric g € [g]. Note that hap defines a section of E4p = £4 @ Ep, where €4 is the dual bundle of EA. Hence
we may use hap and its inverse h*% to raise or lower indices of £4, £ and their tensor products.

In computations, it is often useful to introduce the ‘projectors’ from €4 to the components E[1], &,[1] and
&[—1] which are determined by a choice of scale. They are respectively denoted by X4 € £4[1], Z4a € Eaall]
and Y € E4]—1], where E44]w] = €4 ® &, ® E[w], etc. Using the metrics hap and g, to raise indices, we
define X4, Z4% Y4, Then we see that

VaX4 =1,  ZnZ% =gy (8)

and all other quadratic combinations that contract the tractor index vanish. In (6) note that & = « and
hence X4 is conformally invariant.

The curvature {2 of the tractor connection is defined on £ by [V,, V]VC = 2,4, gVE. Using (7) and
the decomposition (2) for the Riemannian curvature yields
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Qavce = ZcZrCapee — 2X (0 Z ) Acab- 9)
Given a choice of g € [g], the tractor-D operator D, : E[w] — Eafw — 1] is defined by
DAV = (n+ 2w — 2JwYAV + (n + 2w — 2) Za,VV — X400V, (10)

where OV := AV +wJV. This is conformally invariant, as can be checked directly using the formulae above
(or alternatively there are conformally invariant constructions of D, see e.g. [17]).
The operator D 4 is strongly invariant. That is, it is invariant as an operator

DA ZEB“.E[U)] — gAB~~-E[w — 1}

where now we interpret V in (10) as the coupled Levi-Civita—tractor connection. Note the strong invariance is
a property of a formula, see [18, p. 21] for a more detailed discussion and [14, (2)] for an illustrative example.
We shall say an operator is strongly invariant if it is clear which formula we mean. Note composition of two
strongly invariant operators is strongly invariant.

Beside the standard tractor bundle £4 = &4, we shall also need more details about the structure of
the adjoint tractor bundle & 4041). To simplify the notation, we shall use form indices A = [A°AY] and
a = [a’a']. For a chosen metric g, we have [Ea]y = £% @ E[g001][2] ® € B E,. We can write sections Fa € Ea
as

[FA]g = YaAaa + Zi,u'a + WAV + Xl}&pa

where 0, € £,[2] = €%, ua € &a[2], v € € and p, € &, and we use the notation Y§ = Y[AoZzl], 75 =
Zﬁjnzgl], Wa = X{a0Yar) and X4 = X(40 25,

2.2. Tractor connection and standard tractors

Using the standard tractors Xp, Zf’g and Yp, the tractor connection takes the form

VYo =YpVao + Z%Pyo, o € E[w)

VaZpiy = —Yapta + ZpVapy — XpPo'py, € Ew]

VaXBp = Zpgup + XeVap, p€ E[w] (11)
which follows from (7) (or see e.g. [20]). More accurately, V denotes the coupled tractor—Levi-Civita con-
nection in expressions like in the previous display.

We shall need, more generally, to know how the composition of several applications of the tractor con-

nection acts on standard tractors. In fact, we shall need this only on RP-?. Tt follows from (11) (and can be
verified easily by induction wrt. k > 1) that

V(al . 'Vak)YBU = YBV(al . 'Vak)O' + ct,
V(al cee Vak)Z%,ub = 7/€YB6?alva2 .- 'Vak)ub + Z%V(al cee Vak)ub + ct,

1
Via " VanXpp = —ik(k = 1)YB9(aya;Vas ** Va)p + kZ%gb(a1Va2 Vo p+ XV, Ve )p+ct

where o € E[w], up € &Ew], p € EJw] and “ct” denotes terms which involve curvature and at most k — 2
derivatives. (That is, “ct” vanishes on RP4.) Here and below, (---) denotes symmetrization of the enclosed
indices and the notation (---)o will denote the projection to the symmetric trace-free part. In fact, the
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previous display holds also for k£ = 0 if we consider expressions with k free indices ay - - - ax simply being
absent for k = 0. Henceforth we shall use this convention. It follows from the previous display (or can be
verified by induction directly) that for k£ > 0 we obtain

V(al .. 'vak)OYBU — YBV(al e Vak)og + Ct,
Ve Vano Lot = =kYB0{, Vas - Vayolte + Z5V (ay -+ Vayohts + ct,

Ve VaroXp = kZpGya, Vas - Varyop + X8V (4, -+ Vagyep + ct (12)
and for £ > 0 we have

AZYBO' = YBAEU + Ct,
A ZY = =20V VO ATy + 285 Ay, + ct,
A'Xpp=—ln+20—-2)YpA*1p+ 225 V,Ap+ XpAlp + ct (13)

where o € E[w], pp € E[w], p € Ew].
3. Tractor construction of conformal quantization and critical weights

We assume g% € £laa)[§] =: S5 and f € E[w]. Our aim is to construct a quantization, i.e. a
differential operator Q9 : E{w] — E[w + ¢] with the leading term ¢ "*V, ---V,, . The bundle of symbols
£aar)[§] decomposes into irreducibles as

L5
5(a1"'ak)[§] _ @g(ay-uk-m)o[& + 22‘]’

=0

where |a| denotes the lower integer part of a € R. (Recall that the notation £ (ab)o denotes the symmetric
trace-free part.) We can assume o is irreducible (as Qf is linear in o) so

s (ay-- /
oMk — gl (@ Ih! gk 41042 .gak’+2£—1ak’+25)’ K+ =k

where (U')“l'"a’“’ € glaawo [5’], d=6+2¢

since g% € £%°[-2].
Henceforth we consider the irreducible symbol ¢’ as in the previous display. Our aim is to construct a
differential operator

Q% o E[w] — E[w + 8" —21], Q% o(f) = (") TV 4y - Vo AL+ lot (14)

for some scalar y # 0 which is conformally invariant as the bilinear operator Qs ¢ : £(@ )0 [§] x E[w] —
E[w+ 4§’ —2l]. Here “lot” denotes lower order terms and we have suppressed the parameter ¢’ in the notation
for Q. The reason is that we will define the operator ‘,Z,"é :E[w] = Ew + &' — 2] by a universal tractor
formula for all &’ € R up to a finite number of critical weights. Then we shall discuss these critical weights
§’ in detail.

The construction of Q- is divided into two steps — the cases £ =0 and £ > 0.
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3.1. The quantization Qs o

This case is known, the explicit formula is obtained in [28] or can be deduced from [23]. To keep our
presentation self-contained and also to verify the strong invariance, we present a construction (of a tractor
formula) here.

Theorem 3.1. Let (o/)% % ¢ glaraw)o[§']. There is a tractor formula for the quantization QZ,/O Ew] —
E[w + &'] with the leading term (o')* """V, ---V,,, for every weight 0’ € R satisfying

(—(n+k +i-2)|i=1,....K} K >1,

1
0 E =0. (15)

5/ ¢ E}c/’o where Ek/70 = {

Moreover, Qi o ts strongly conformally invariant in the following sense: if we replace f € E[w] by
feT®Ew] for any tractor bundle T and, in the formula for Q o, we replace the Levi-Civita connection
acting on f by the coupled Levi-Civita—tractor connection then Qo s a conformally invariant bilinear
operator £ )o[§'] x (T @ E[w]) = T @ E[w + §'].

Proof. We shall use certain splitting operators from £[w] and £(@1**%)o[§'] into symmetric tensor products
of the adjoint tractor bundle £4 and their subquotients where we use the form index notation A = [A%A!],
see Section 2.1. These are just abstract indices of the adjoint tractor bundle. We shall use the notation
faB) = %(fAB + fBA), faB € Eap for the symmetrization, the symmetric tensor products of the adjoint
tractor bundle will be denoted by &a,...a,). This notation means symmetrization over adjoint indices (and
not over standard tractor indices), i.e. generally fam) # 0. The completely trace-free component with
respect to AP will be denoted by E(A,--AL)o- Note the latter bundles are generally not irreducible tractor
bundles.

The skew symmetrization with the tractor X o defines bundle maps é:(Al...Ak)O = EAL[AYA]Ay-
The joint kernel of all these maps for i = 1,...,k will be denoted by £a,...a,),- Using the comple-
ment 5@1,_,‘%)0 C EA,--Ay), (via the tractor metric h), we obtain the quotient bundle £, ...a,), =
8(A1~~-Ak)o/5(JA1..'Ak)D~ That is, we have the duality (Ea,..a,)0)* = E(Ar-AL)- One can easily see that
choosing a metric from the conformal class, sections of these have the form

k
F(Al"‘Ak)O = Zxxl .- ~XaAi1WAZ+1 -~WAkf(za1_”ai)o for F(Al"'Ak)O S S(Al'“Ak)07
=0

k
Faay, = ZYXl "’YaAiiWAzH "'WAkf(layuai)o for Fa, A € S(Al'“Ak)O
=0

for some sections f? and fi | . Noteiis not an abstract index here. This describes the composition
(a1 (ay--a;)o

ai)o
series for S(Al,,,Ak)U ami 5(A1.A,Ak)0. (In particular, choosing a metric in the conformal class, both these
bundles decompose to exactly k + 1 irreducible components, e.g. g(Al"'Ak-)U =EDE,, B+ D 5(a1---ak)o-)
Finally, taking the tensor product with density bundles, we obtain S(A1<~»Ak)o [w] and g(Al"'Ak)O [w] for any
w € R.

Further we shall need the curved Casimir operator C introduced in [10]. We refer for the definition of
C to [10]; here we recall crucial properties of C in special cases. (Note also that, more explicitly, one has
C = h*PD? ; where the operator D? 5 is given by [21, (21)].) Consider a subquotient T; of Ea,...a,), (W]
with the filtration {0} =7_1 C Ty C T; € --- C T, such that Tp/T;—1 are irreducible for £ = 0,..., k. This
in particular covers cases of our interest, i.e. T = E(Al,,,Ak)O[w] and T = g(Al"'Ak)O [w]. Then C: Ty, — Ty
has the following properties: it is conformally invariant and of the first order, it preserves subquotients and
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the induced operator on Ty/Ty—1 is multiplication by a scalar which is polynomial in w. We shall denote the
latter scalar by ay. These properties guarantee that the operator

To)To = To) To1 =250 T/ Too,

where the first arrow is an arbitrary (not necessarily conformally invariant) extension, is overall conformally
invariant for £ = 1,... k. Iterating this k& times we obtain the conformally invariant extension P(C) :=
(C—ag—1)o--+0(C—ap):Tr/Tk—1 = T. Moreover, P(C) restricted to Tx/Tr—1 acts by multiplication by
(g —ag—1)o0---o(ar —ap) € R. This is a polynomial in w which we denote by p(w). In particular, degrees
of both polynomials P and p are k. (Note that although ay, ..., ap are quadratic in w, differences oy, — cvp—1
are affine in w).

Henceforth assume &’ > 1 and put k := k’. We shall start with the splitting £[w] — E(Al"'Ak/)()[w] =: Tpr.
Corresponding subquotients are 7¢/Te—1 = E(ay.ap,_,)olw], £ =0,..., k' =1 and Tpr /Ty -1 = E[w]. Assume
f € EJw]. For an arbitrarily chosen metric from the conformal class, we consider the inclusion

DE[w] = Eayoap o], frs Wa, - Wa,, f.

Note the induced map to the subquotient &[w] N Tir = Trr/Trr—1 is just the isomorphism mentioned
above. Now i(f) can be extended to a conformally invariant section Fa,...a,, := P(C)(t(f)a,..a,,) for a
suitable polynomial P(C) in C such that the degree of P is k’. Let us compute the highest order term of
P(C)(Wa, -+ Wa,, f). For this it is sufficient to work on RP? with the standard metric. Then if P’ is a
suitable polynomial of degree 7, 0 < r < k’ such that P/(C)(Wa, ---Wa,, f) is conformally invariant as
in the construction above, then there is a (degree r) polynomial p’ such that P/(C)(Wa, ---Wa,, f) =
Wa, - Wa,, p'(w)f+--+ X‘&] XN Wa, o Wa, ) Ve, - Va,), [ up to a (nonzero) scalar multiple.
This can be easily verified by the induction using the fact that C is of the first order. Putting r := &/, there
is a k’-order polynomial p(w) such that

Fayey = Wa, - Wa, p)f +-- + X%, X% Ve, - Vay!f (16)

up to a nonzero scalar multiple.

The splitting £(@1 o )o[§'] — g(A1-~~Ak/)o [0'] =: Ti is analogous. Corresponding subquotients are now
Te)Tooq =2 E@ado[§’) £ =1,..., k" and To/T_1 = E[§]. Assume (o/)* % € £a1aw)o[§]. As above, we
shall start with the inclusion

prEl O [§]  Eapea [0] ()OS VR YR ()4

for a chosen metric in the conformal class. Then we apply a suitable polynomial operator in the curved
Casimir to obtain a conformally invariant extension Fa,..a,, := P(C)(i(0")a,.-a,,) € g(Al"'Ak’)O [0']. A sim-
ilar reasoning as above shows that P has order &’ and

FAr--Ak/ = YAlal A YAk/ak/ﬁ((;/) (o_/)alu.ak/ 4+ 4 W(A1 .. 'WAk/)v(al - vak/)o (U/)a1"~ak/ (17)

on R for a polynomial p of the order k’. In this case we need to know p(d’) explicitly; following [10] one
computes

k:/
) =T +n+k +i-2)
i=1
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which is non-vanishing by the hypothesis, see (15). In fact, analogues of this splitting are well-known, see
e.g. [23, 6.2.3] or [29, 2.1.4].

In the last step we use the duality between g(Al"'Ak)n and g(Al"'Ak)O' From this it follows that Qg:o(f) =
ﬁﬁ'Al"‘Ak'ﬁAl... A, is a conformally invariant bilinear operator. Considering Qg,’yo as a linear operator
E[w] — Ew + '], it follows from (16) and (17) that

FAI"'Ak/ FAl---Ak/ _ ﬁ(él) (o_l)ar“ak-/ v(al - vak/)of + lot

where “lot” denotes the lower order terms.
It remains to verify the strong invariance of QZ: o(f). But this follows from the fact that the curved
Casimir is a strongly invariant linear differential operator. 0O

3.2. The general case Qs ¢

Recall k',¢ > 0, (o) ¢ glarawlof§] and f € Ew], &',w € R. We shall construct Qx, by
an inductive procedure. The main step is the construction of Qz: 4+ from Qg: - This construction (in the
proposition below) is a specific implementation of the idea known as curved translation principle (see [27,16]
for its origins) which can be formulated as follows. Consider f € £[w]. Then first extend f invariantly into
a tractor field (in our case Dgf), then apply the known invariant operator (in our case Q":7£) and finally
go back to densities (by applying DZ in our case) to obtain the new operator (in our case QZ,/ Y +1)- Overall
this yields the following construction:

Proposition 3.2. Fiz 6’ € R and assume there is an explicit construction of the quantization Qg,/_g :Ew] —
Elw+ 0" =20, k', € > 0 with the leading term g% %'V, --~Vuk,AZ for every w € R. Also assume Qs ¢ is
strongly invariant in the sense of Theorem 3.1. Then the operator

Q% 441 :=DPQY D :Ew] — E[w + 6 — 20 +1)]
has the form
Q% oa(f) == (8 = 0) (n+28" +2(K — £) —2)0™ 'V, -+ Vo, AFf + lot
for every w € R. Here “lot” denotes lower order terms.

The operator Qp g1 :E@ 0§ x Ew] — E[w + & — 2(¢ + 1)] ds a conformally invariant bilin-
ear operator. Moreover, it is strongly invariant in the sense of Theorem 3.1. When well-defined, we put

o’ o 1 QU’
K41 T T 0 (ng 28 12k —0)—2) k' 0+1

Proof. We shall start with the discussion on the invariance. Since Qg ¢ : £(@1 %/ )0[§'] x E[w] — E[w+6" —2/]
is assumed to be strongly invariant (in the sense of Theorem 3.1), it is also invariant as Qp/; : £(@1 @ )o[§'] x
Ep[w] — Eplw + &' — 2£]. Therefore the composition

gla o [§7] x €[] 285 gm0 5] x Eglw — 1] W e [(w—1)+¢ —2/ 25 Efw+6 —20-2]

is a conformally invariant bilinear operator. The strong invariance of Q}c/’l+1 follows from the strong invari-
ance of id x DB, ri’l and DB.

It remains to compute the symbol of Qg,'l 11> we shall do it by a direct computation. The tractor
D-operator is explicitly given by the sum of three terms on the right hand side of (10). Decompos-
ing both Dg and DP in the formula for QZ,’Z 41 accordingly, we obtain overall 9 leading terms. Note
QZ,:ZDBf =[(0")1 % Vy, - Vq,, + 0t]A*Dpf € Eg[w'] where f € E[w] and w' = w+§ — 20— 1.
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Since the tractor D is of the second order and Q‘,:,/,e is of the order k' + 2¢, the leading term of Qg,/_[ﬂ

has the order at most k' + 2¢ + 4. In fact, it turns out this order is &’ + 2¢ 4+ 2 in the generic case (or less
for certain values of ¢"). To show this we will collect all terms of the order at least k' + 2¢ + 2. In fact, we
shall do this in details only for the leading term (¢”)** %'V, -~Vak,AZ of Qg,/_ﬁ. But it will be obvious
from the form of all 9 summands this is sufficient. Below we shall use lot<, to denote terms of the order at

most o and lot., will denotes terms of order smaller than o. To simplify the notation we will henceforth

work with the Euclidean metric. (Terms involving the curvature have necessarily lower degree than 2¢+k'.)
Then all terms on the right hand side of (12) and (13) denoted by “ct” vanish.

I

II.

We shall start with w'(n 4 2w’ — 2)YBQ‘7,'74DBf; decomposing Dpg here according to (10) yields first
three summands.
I.a The first one is
w'(n+ 2w — 2)YBQZ,/$£ [w(n + 2w — 2)Yg f]
=w'(n+2w —2)w(n+2w—2)YE ()" NV, - Vo, AYEf = 0. (18)
The reason is that the tractor Y2 contracts nontrivially only with Xp according to (8) and if we

compute V4, -~-Vak,)0AZYBf according to (12) and (13), Xp always involves curvature.
I.b Analogously we obtain

w'(n—&—Qw’—2)YBQZ:’€[(n+2w—2)Z%be} =0. (19)
I.c Looking at the X g-terms of QZ:,e(fXBAf), we see from (12) and (13) that

W' (n+ 2w —2)YPQY [~ XpAf]
_ 7w/(n + 2 — 2) (O_/)ay“ak/ Val . vaklAZ-Flf + lotgk/+2[+1. (20)

Next we shall compute (n + 2w’ — 2)ZBbeQZ:7€DBf7 we obtain again three summands. They are
produced by contraction of (n + 2w’ — 2)Z% with

vng’/,ZDBf = [(vb (U/)almak/)vtn e vak/ + (OJ) almak/vbvﬂl T v“k’ + lOt<k'} AéDBf’

We need to discuss here only the first two terms in the square bracket and only Z]E'g-terms according
to (8). First, it is easy to see that

(n+ 2w —2)Z5(Vy (o/) " ") Va, -+ Va, A'Dp f = lot<prioei1.

(The component w(n 4+ 2w — 2)Yg of Dg does not contribute to the right hand side of the previous
display at all and the remaining components (n + 2w — 2)Z]’_’3V5 and —XpA contribute by terms of the
order < k' + 2¢ 4 1.) Hence it remains to collect Z%—terms of (¢/) % WV, -V, A'Dgf. Using
the form (10) of Dp, we obtain three more summands which are analogues of La, I.b and I.c above.
A short computation reveals that these are

(n+ 20 —2)Z5(a")" VY4, - Vo, Al fw(n + 2w — 2)Yp f] =0, (21)
(n+ 2w —2) 2% (a")" VLV, - Vi, A (0 + 2w — 2) ZEV5 f]
= (n+ 2w —2)(n+ 2w —2)ZP(o') " N V25V, -V, AV, f
= (n+2w' —2)(n+ 2w — 2)g™ " ATLf, (22)
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(n+ 2w —2) 28",V -V, , A~ XpAf]
= —(n+2w —2) 2P WYV, -V, [2025 VA + XpATY f
— —(n + 2w — 2) ZBb (U')almaklvb [XBVal = -Vak,A”l
+ 25 (200, -+ Vo, VA 4 K gy, Vay -+ Va, AF)] f
= —(n + 2w’ — 2) (2€ + K + n) (or')alma’“'va1 . 'Vak,AHlf- (23)
Beside the fact that Z Bb contracts nontrivially only with Zg, we have used (13) to commute A? with
Z% and Xp, (12) to commute Vg, ---V,,, with Z% and Xp and (11) to commute V; with Z% and Xp.

III. It remains to compute —X? AQ":lDB f. The computation is analogous to previous cases but getting
more tedious. First we observe

—XBAQZ’/jDBf = —XB [(A(U/)al”'ak/)vm .. vak/ + 2(vp (0'/)al“'ak/)vpva1 c.. Vak/
+ (g/)a1...ak/va1 .. 'vak/A + lOtgk/_1]A£DBf.

We shall discuss only the first three terms in the above square bracket. One can compute that
“XE[(A(0) ") Ty Ty, + 2(VP () )TV, Va, |ALD f = loters1oe

so it remains to compute only —X (o) V,, -V, , A1 Dg f. This yields three summands (ana-
logues of La, I.b and I.c above) according to (10). After some computation we obtain
_XB (U,)al”'ak/ Va1 Ce Vak/Al-&-l [w(n + 2w — 2)YBf]
= —w(n+ 2w —2)(c’) B VR Va AtLF, (24)
—XB (o) N gy - Vi, AT (4 20 — 2) 25V f]
= —(n+2w—2)XB(0")" WV, -V, [<200+ )Y EVPALY, + 2LV A
=—(n+2w—2)[-2(0+1) — K] (/)" "' Vg, - Vg, AT, (25)
_XB ((T/)tn...a;c/va1 . Vak,AZH[—XBAf}
= XBoh W, VY, [0+ 1) (n+ 20 VAT £ 2(0 + 1) ZhV AT 4 XA f
= [+ 1)(n+20) =2k (t+1)] (/)" V4, -+ Vo, AT (26)
The last step of the proof is to sum up the right hand sides of 9 relations (18), (19), (20), (21), (22), (23)
and (24), (25), (26) above. That is, we need to compute the scalar
—w'(n+2w —2) + (n+2w —2)(n+2w—2) — (n+ 2w —2)(20+ Kk +1),
—w(n+2w —2) + (n+ 2w —2) (20 + k' +2) — ((+ 1) (n + 2¢ + 2k')
where w’ = w + 0’ — 2¢ — 1. This requires some work, the result is —(6' — ¢)(n + 26’ + 2k’ — 2 — 2) and

the proposition follows. Note the resulting scalar does not depend on w; this is a good verification that
computations above are correct. 0O

Theorem 3.3. Let k', ¢ > 0, (o/) o € £aaw)o[§] and f € E[w], §',w € R. Then

’ ]_ ’
Qfrp = BDBl "'DBk'QZ',oDBk/ - Dp, :E[w] = E[w + & — 2/]
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defines, for a nonzero scalar B, the conformally invariant quantization with the leading term (o’)*t " x
Vay, +*Va, A (up to a sign) for every weight §' satisfying

5/ ¢ Ek/’g = 2]470 U E;C/’e U El,c/’,é (27)

where Xy o is given by (15),
1
Twe={G-1D|ji=1,....¢}, o= {—§(n+2k’—2j) ‘j: 1,...,6} for £ > 1. (28)

We put X}, o = X}, o := 0. Moreover, QZ’/,Z is strongly invariant in the sense of Theorem 3.1.

Proof. The set of critical weights X, (and the choice of §) easily follows (by induction with respect to ¢)
from Proposition 3.2. Since the tractor D and QZ,/ o are strongly invariant, the last claim is obvious. O

4. Remarks on critical weights

We shall discuss the cases ¢’ € Xy 4 from (27) in detail. First, a simple calculation shows

Lemma 4.1.

(1) 20 ¢ Eklyg fO?" all k/,f } 0.
ii) The sets Xy and X, ,U X}, , are disjoint. O
; k.0 ke

The symbols of the quantization E[w] — E[w] (i.e. with zero shift §) are of a special interest [13]. The flat
quantization developed in [13] is never critical for such symbols [13, 3.1], the construction in [11] extends
that to the curved setting. The previous lemma (i) recovers this fact for the quantization QZ,:Z.

The critical weights are closely related to existence of natural linear conformal operators. They are
completely classified in the locally flat case [2,3]. Existence of such operators on symbols is related to
critical weights & as follows:

Theorem 4.2. (See [25].) Consider the quantization QZ’/,Z for symbols
(U,)al-.-ak c glavano [6’] C glarapap 1 ap 200 [(5’ _ %].
If there is a nontrivial linear invariant operator
glarmado[g] - glan) (5 — o], 0<p<K +20—1
then the invariant quantization QZ,/’Z does not exist.

Given k’ and ¢, the set of critical weights 6’ € X} ¢ corresponds exactly to those ¢’ for which there is a
linear invariant operator as in the theorem. In more detail:

Proposition 4.3. Assume the manifold M is conformally flat. If ' € Xy o then there exists a nontrivial
natural linear conformal operator on £@1@)0[§'] as follows

glav-awo[§] — glaamaizo[§] 0 §' = —(n+ K +i—2) € Ty o,

glamawlo[§] — glarawio s —25], & =j-1€ X},

glorano[§] = gler-ano [§ — 2], & = —%(n +2K —2j) € X, O
61



174 J. Silhan / Differential Geometry and its Applications 338 (2014) 162-176

Proof. The classification of invariant linear operators between weighted symmetric powers of the tangent
bundle (which appear in Theorem 4.2) is easy using the classification [2,3] as presented in [15, Introduction].
From this one easily concludes, that every invariant operator between symmetric weighted tensors is (using
the terminology from [15, Introduction]) either the first BGG operator or the last BGG operator or one of
singular /nonstandard operators.

The detailed analysis is performed e.g. in [29]. From this one can see that the case 6’ € Xy o corresponds
to the last BGG operator, the case ¢’ € X}, , corresponds to the first BGG operator and the case ¢’ € X7, ,
to one of singular/nonstandard operators. 0O

Note the terminology of the proof corresponds to the following: the case &’ € Xy ¢ is a divergence type
operator of the order &' —i + 1, ¢’ € X}, , is the generalized conformal Killing operator of the order j and
d e Z,’C’,’ ¢ yields a power of Laplacian type operator of the order 2j. Note the operator in the proposition is
not unique as generally X, , N XY, , # 0.

We have seen that the set Xy o from Theorem 3.3 agrees exactly with nonexistence results in [25]. That is,
Theorem 3.3 together with [25] provides complete classification of critical weights for conformally invariant
quantization on densities.

Also note that invariant operators £(@1@x)o[§/] — garaw)o[§" — 25] from Proposition 4.3 do exist in
the conformally flat case but not necessarily in the curved case [19], i.e. this operator might not have a
curved analogue. That is, Theorem 4.2 would not provide the full set of critical weights in curved cases.

Now assume ¢’ € Xy 4 is critical. Then QZ:,Z : Elw] = E[w + &’ — 2l] cannot exist for all w € R. Such
a quantization can exist, though, for certain w called resonant weights. Their classification and relation to
linear invariant operators on £[w] is discussed in [25] in the flat case. It is unclear whether there is a curved
analogue of Q, o E[w] — E[w + 0" —21] for a resonant weight w. Here we show that such curved analogue
exists at least for some resonant weights (see the theorem below).

First we recall that, assuming ¢’ is critical, resonant weights of QZ,/,E :E[w] = E[w + 6" — 2] are related
to existence of following operators on E[w]:

szg[p - 1] — g(a1~-~ap)o[p - 1}7 LP ZS[—?’L/Q +p] — S[_n/Q _p]a
Sp(f) = V(al .. -Vap)of + lot, Lp(f) = AP f + lot,

for p > 1 (so p is not an abstract index here) and lot stands for “lower order terms”. If n is odd or M is
conformally flat, these operators exist for all p > 1. In the curved case for n even, S}, exists for all p > 1
and L, exists for 1 < p < n, see [9,22,19]. They are strongly invariant (can be given by a strongly invariant
formula) in the flat case; in the curved case, S, is strongly invariant always and L, only for p < n [18].

Theorem 4.4. Let &' € Xy o and f € E[w] and assume the conformally flat setting. Then there is al-
ways a choice of w € R for which there is a quantization QZ:,Z:E[w} — E[w + d] with the leading term
(o)1 Vg, -V, AL f in the flat case. Explicitly, the quantization is given (up to possibly a nonzero
scalar) by formulae

QF oLe:El-n/2+ 0] = E[§' —n/2 €], & € X, U,
DB ... DB"L(U/>S;€/D31 .- ~DB£ '.g[k‘/ + 0 — 1} — 5[5, +k —0— 1}, e Ek/70
where 1(o") is the complete contraction of the image of S, with o'.

In the curved case, the statement is true for n odd or 0’ € Xy o. Assuming further £ < n in the curved
case, the statement is true also for n even and §' € X3, ,U X}, ,.

Proof. The conformal invariance is obvious (recall Sy has the source space £[k'—1] and is strongly invariant).
It remains to verify the displayed operators have the required leading term (up to a nonzero multiple). In
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the case ¢’ € X3, ,U XY, ,, this follows from the leading term of Ly, properties of QZ;,O in Theorem 3.3 and
Lemma 4.1(ii).

Assume ¢' € Xy o and denote by Qz: ¢ the displayed operator for such §’. We need to compute the leading
term of Q‘,z,,é Observe the generic quantization QZ,”Z is constructed in a similar way as _2:’( — only the
subfactor Qz’/,o of QZ,:Z (see the display in Theorem 3.3) is replaced by ¢(0”) Sk in QZ,/Z It is mentioned in
the proof of Proposition 3.2 that only the term (0/)® %' Vg, -+ V, , Af of QZ:’Z contributes to the generic
leading term (0/)® % Vg, «+- Vo AL of QNZ,/W see Proposition 3.2 for the notation. However ¢(o”) Sy has
the leading term (¢o/)* "% Vg, ---V,,, for §' € X o as well as Qg:o for ¢’ ¢ Xy o. It follows that Qg/l,e
has (o)™ %' Vg, - V,,, A" as the leading term for all &' € X oYY 4 Using Lemma 4.1(ii) the theorem
follows. O

Remark 4.5. As one of referees pointed out, nonexistence of operators Ly, : £[—n/24p|] — £[—n/2—p| implies
nonexistence of certain resonant weights. Consider the (2p)th order symbol o € £ C £(@120)[—2p]. The
corresponding quantization Qf , : £[w] — £[w — 2p] does not exist according to Theorem 3.3 and concerning
the possible resonant weights w, we can formulate the following:

(1) If n is even then {—n/2 +1,...,0} is the complete set of resonant weights.
(2) If n is odd or we restrict to conformally flat structures then {—n/2 +1,...,0,...} is the complete set
of resonant weights.

Indeed, if QF ,: E[w] — E[w — 2p] existed, the choice ¢ = 1 (the function identically equal to 1) would
provide the operator Ly, : E[w] — E[w — 2p]. Thus both (1) and (2) follow from (non)existence of operators
L, discussed before Theorem 4.4.

5. Examples

Explicit formulae (in terms of the Levi-Civita connection and its curvature) for the conformally invariant
quantization were computed in [12] for the order < 3, the fourth order case is known explicitly for trace-free
symbols o € £(ebedo[§] [28 23]. Here we show tractor formulae for remaining symbols of the order four.

Beside the trace-free part, there are two possible irreducible fourth order symbols: o’ € £[¢'] where k' =0
and £ = 2 and (¢")? € £(a)0[§'] where k' = 2 and ¢ = 1. In the first case, Proposition 3.2 means that

Q52(f) = DADPo'DDaf = 6 (8" — 1) (n+ 26" —2) (n+ 28" —4)0’ A2 f + lot

where f € E[w]. This yields the invariant quantization Qg:2 for o' ¢ 5 5 ={0,1, =5 +1, =5 + 2}. Further,
using the explicit formula for the invariant quantization for 2nd order trace-free symbols (see e.g. [12]), we
obtain

Q51(f) =DM [(n+5 + 1) (n+8 +2)(¢) Vs
—2(w—=2)(n+4§ +1) (Vaa'/)abvb +(w—1)(w—2) (VaVb6’)“b] Dt

— ' (n+28 +2)(n+06 + 1) (n+8 +2)(5") " VuVsAS + lot.

That is, the previous display provides the invariant quantization ngl for o' ¢ X5, ={0,-5 —1,—(n+1),
—(n+2)}.
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On locally conformally flat manifolds, we describe a construction which maps gen-
eralised conformal Killing tensors to differential operators which may act on any
conformally weighted tensor bundle; the operators in the range have the property
that they are symmetries of any natural conformally invariant differential operator
between such bundles. These are used to construct all symmetries of the conformally
invariant powers of the Laplacian (often called the GIMS operators) on manifolds
of dimension at least 3. In particular, this yields all symmetries of the powers of
the Laplacian A, k € Z > 0, on Euclidean space E". The algebra formed by the
symmetry operators is described explicitly. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3692324]

. INTRODUCTION

Given a differential operator P, say on functions, it is natural to consider smooth differential
operators which locally preserve the solution space of P. A refinement is to seek differential operators
S with the property that P o S = S’ o P, for some other differential operator S'. In this case, we shall say
that S is a symmetry of P. On Euclidean n-space E" with n > 3, the space of first-order symmetries
of the Laplacian A is finite-dimensional with commutator subalgebra isomorphic to so(n + 1, 1),
the Lie algebra of conformal motions of E”. Second-order symmetries have applications in the
problem of separation of variables for the Laplacian, see Ref. 41 and references therein; on E? the
second-order symmetries were classified by Boyer et al.*

Symmetries are closely related to conformal Killing tensors and their generalisations, see
Theorem 2.1 below. Such operators also play a role in physics.**#* Partly motivated by these links,
Eastwood has recently given a complete algebraic description of the symmetry algebra for the
Laplacian on E"23 20 His treatment uses conformal geometry and, in particular, a treatment of the
conformal Laplacian due to Hughston and Hurd® based on the classical model of the conformal
n-sphere as the projective image of an indefinite quadratic variety in R"*2. There are close links to
the Fefferman-Graham ambient metric,”>2* which provides a curved version of this model, and the
ideas of Maldacena’s AdS/CFT correspondence®*3%% (as explained in Ref. 20). Eastwood’s work
was extended in Ref. 21, via similar techniques, where the authors found the symmetry algebra for
A? on E"=3,

Here, the first main result of the article is a simultaneous treatment of all powers of the Laplacian
on pseudo-Euclidean space E** (i.e., R*** equipped with a constant signature (s, s’) metric) with
s + s > 3; we obtain an explicit construction of all symmetries and a description of the algebra
these generate. See Theorems 2.1 and 2.5. (In lower dimensions a corresponding result is not to

®Electronic mail: gover @math.auckland.ac.nz.
b)Electronic mail: silhan@math.muni.cz.
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be expected as, in that case, the space of conformal Killing vectors is infinite-dimensional). As
will shortly be clear, the problem is fundamentally linked to conformal geometry. Thus it is natural
to also formulate and treat analogous questions for the conformally invariant generalisations Py
of the powers A (k € Z-¢) on conformally flat manifolds, and we do this; via Theorem 2.4 and
surrounding discussion we see that the algebra is again described by Theorem 2.5. In dimension
four, the operators Py were discussed in Ref. 36. Conformally curved versions in general dimensions
(n > 2k if even) are due to Paneitz (k = 2) (Ref. 42) and Graham-Jenne-Mason-Sparling,** and have
been the subject of tremendous recent interest in both the mathematics and physics community. % 17-37
For convenience, we refer to these operators as the GJMS operators.

A main point of the current article is to develop a universal approach to the problem
of operator symmetries; the constructions and theory here are designed to be easily adapted
to study the symmetries of other classes of differential operators. Indeed with minor adap-
tion our techniques also apply to the entire class of parabolic geometries. First, rather than
work on a higher dimensional “ambient” manifold (which is an idea well developed only for
conformal geometry and a few other structures), we calculate directly on the n-dimensional
space and use tractor calculus, many tools of which apply simultaneously to all parabolic
geometries.”»!%27 Using this machinery, we construct a map which takes solutions of certain
overdetermined partial differential equations, PDE’s (solutions called generalised conformal Killing
tensors) to differential operators which have the universality property that they are symme-
tries for any conformally invariant operator between irreducible bundles. This is Theorem 5.2.
These universal symmetry operators form an algebra under formal composition; by construction
this is a quotient of the tensor algebra Q) so(s + 1, s’ + 1). On the other hand for the case of GIMS
operators, Theorem 2.4 states that, conversely, all symmetries arise from the operators in this alge-
bra. Determining the algebra of symmetries of a given order 2k GJIMS operator P; then proceeds in
two steps. The order 2k determines the domain (density) bundle (for P; and hence) on which the
universal symmetry operators should act. From the latter we obtain an ideal of identities satisfied
by the universal symmetries; the ideal is specific to the domain. This is the subject of Theorem 7.1.
A further ideal is generated by symmetries that are trivial in a sense to be made precise below,
see Theorem 7.2. The result is an explicit description in Theorem 2.5 of the ideal, the quotient of
X so(s + 1, s" + 1) by which yields the symmetry algebra of Py.

Il. THE MAIN THEOREMS
A. Symmetries and triviality

Throughout we shall restrict to conformally flat pseudo-Riemannian manifolds (M, g) of dimen-
sion n > 3 and signature (s, s'), or the conformal structures (M, [g]) that these determine. In the spirit
of Penrose’s abstract index notation,* we shall denote write £4 as an alternative notation for TM
and &, for the dual bundle 7#M. Thus, for example, &, = ®*T*M. According to the context, we
may also use concrete indices from time to time. That is indices referring to a frame. All manifolds,
structures, functions, and tensor fields will be taken to be smooth (i.e., to infinite order) and all
differential operators will be linear with smooth coefficients. Since our later treatment generalises
easily, we define here the notion of symmetry in greater generality than is strictly needed for our
main results. This also serves to indicate the general context for the developments.

Suppose that P : ¥V — W is a smooth differential operator between (section spaces of) irre-
ducible bundles. (In our notation we shall not distinguish bundles from their smooth section spaces.)
We shall say that linear differential operators S : V — Vand §' : W — W forma (S, S') a symmetry
(pair) of P if the operator compositions PS and S'P satisfy

PS=SP.

An example is the pair (TP, PT), where T is a differential operator 7' : YW — V. However for obvious
reasons such symmetries shall be termed trivial.

Following the treatment of A and A2 of Refs. 20 and 21, we note that there is an algebraic
structure on the symmetries modulo trivial symmetries as follows. First, the symmetries of P form a
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vector space under the obvious operations. Then if (S;, S}) and (S,, S}) are symmetries, then so too
is the composition (85>, S155). So the symmetries of P form an algbera S. Next we say that two
symmetries (S1, S7) and (S,, S}) are equivalent, (S, S7) ~ (S, §5), if and only if (S; — S>, S| — S5)
is a trivial symmetry. It is easily verified that trivial symmetries form a two-sided ideal in the algebra
S and the quotient by this yields an algebra S. For the case that P is a GIMS operator it is this
algebra that we shall study in detail.

To simplify our discussion, we shall often work with just the first operator S : YV — V in a
symmetry pair. That is an operator S : V — V shall be called a symmetry if there exists some
S’ : W — W that makes (S, §') a symmetry as above. (In fact for the main class of operators we
treat it is easily verified that S’ is uniquely determined by S.) Note that with this language, and in
the class of cases satisfying V = W, the composition PS is a trivial symmetry if and only if S is a
symmetry.

B. Symmetries of Ak on ESS

We shall write E** to mean R”, n = s + s, equipped with the standard flat diagonal signature
(s, ') metric g; in the s = n, s’ = 0 case this is n-dimensional Euclidean space. Here and throughout
we shall make the restriction n > 3. In this setting the Levi-Civita connection V is flat and, with
tensors expressed in terms of the standard R” coordinates x/, the action of V; on these agrees with
/0x. We shall use the metric g; and its inverse g/ to lower and raise indices in the usual way. For
example, and capturing also our sign convention for the Laplacian, A = g/V,;V; = ViV;. (We use
the summation convention here and below without further mention.)

Recall that a vector field v is a conformal Killing field (or infinitesimal conformal isometry) if
L,g = pg for some function p. Otherwise written, this equation is

Viv/ + Vivi = pg,
and so, for solutions, p = 2div v/n. Suppose now that ¢ is a symmetric trace-free covariant tensor
satisfying
Vi vl = gl pkm  wwith  |{i, - - -, 1}] an odd integer 8

for some tensor p* ", and where ¢ " indicates the symmetric part of the tensor ¢"*". Then,
following Ref. 20, we shall term ¢ a generalised conformal Killing tensor.
In Sec. V below we shall construct a canonical 1-1 map

@ = (S, S,), )

which takes solutions of (1) to symmetries of A, see Definition 5.1 and Theorem 5.2 (which, in
fact, deal with a far more general setting). Although we defer the construction of (2), let us already
term (S, S‘;) the canonical symmetry corresponding to ¢. Our main classification result is that all

symmetries of A¥ arise this way, and this is established in Theorem 6.4. Putting these results together,
on E** we have the following.

Theorem 2.1: Let us fix k € Z.,. For the Laplacian power A* on E** we have the following.
For each ¢, a solution of (1), there is canonically associated a symmetry (S, S;) for AF with S, and
S(; each having leading term

(palmul,(val . Va,,)Ary

pE€Zlsp,red{0,1,....k — 1}.
Modulo trivial symmetries, any symmetry of A is a linear combination of such pairs (S, S(;),
with various solutions ¢ of (1) as above.

C. Conformal geometry and the GJMS operators

Although the question of symmetries of AX is not phrased in terms of conformal geometry, it
turns out that there is a deep connection. According to Theorem 2.1 above, all symmetries of A arise
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from the solutions of Eq. (1). As we shall explain, these equations are each conformally covariant,
and in fact this class of equations can only be fully understood via consideration of their conformal
properties. First note that we may alternatively write Eq. (1) as

Vi Vh2r¢al“-ap)0 =0,

where we have lowered the indices for convenience, and (... ) indicates the trace-free part over
the enclosed indices. For a given (say symmetric) tensor taking the trace-free part is a conformally
invariant notion. Then, for example, in the case of » = 0 this is the well-known conformal Killing
tensor operator. In that case, if (on any pseudo-Riemannian manifold (M, g) of the dimension n) we
replace the metric g with the conformally related g := e g, where T € C>(M), and replace ¢ with
@ := e?"T g, then

g =~ _2pT
V(b0¢al---ap)n =e” V(bo(pul---ap)()'

One may think of ¢ here as representing a density valued tensor of weight 2p. Recall that
on a smooth manifold, the density bundles £[w] are the bundles associated with the frame bundle
by one-dimensional (real) representations arising as the roots (or powers) of the square of the
determinant representation. These representations and the associated bundles are thus naturally
parametrised by weights w from R. These weights are normalised so that £[—2n] = (A"T*M)?,
and with this normalisation the weights are often called conformal weights. Note that (A"T*M)?
is trivialised by a choice of metric and hence so are all the line bundles £[w]. There is a section
@ of Eyeayo[2P] = Eayay)y ® E[2p] which, in the trivialisation of £[2p] afforded by g, has the
component ¢, while @ has the component ¢ = e?”¢ with respect to the trivialisation from g. Since
the Levi-Civita connection (for any metric g) may be viewed as a connection on the principal frame
bundle it follows immediately that it yields a connection on density weighted tensor bundles. Thus
dropping the tilde, for ¢ € 5@,,.“‘,”)0[217] we have V(*";,()(pal__ap)n = V(hn(pa]...a,,)o- This means that the
operator descends to a well-defined differential operator on a conformal manifold (M, c). Here (M, c)
means a manifold equipped with just an equivalence class of conformally related metrics: if g, g € c,
then g = ¢?Y g for some T € C®(M).

Henceforth, it will be convenient to use the notation and language of conformal densities,
for further details and conventions see, e.g., Refs. 9 or 30. In particular, below we shall use the
conformal metric g, to raise and lower indices. On a conformal manifold, this is a tautological
section of Ep)[2] = Ewupy ® [2] which gives an isomorphism £¢ = £9[0] = &,[2]. In particular, via
the conformal metric, we shall identify &, ~aypl2p +2r]and El@-aph[2r]. Note also that with these
conventions the Laplacian A is given by A = g*V,V,, = V?V, and so this carries a conformal
weight of — 2. (That is, the conformal Laplacian lowers the conformal weight by 2.)

From the partial classification of conformally invariant operators given in Ref. 22 (which uses
heavily the algebraic results of Ref. 3), one easily extracts the following result.

Proposition 2.2: For each pair (p, ), of non-negative integers, there is a conformally invariant
operator

Ear.apol2p +2r]1 = Ewy. byay...apo2p + 27]
goalu.u,, = V(b() et Vbz,vgoalma,,)g + lOt, (3)

where “lot” denotes lower order terms.

In fact, there is a larger class of similar operators, but we shall not need the even order analogues
of the operators above for our current discussion. An algorithm for generating explicit formulas for
these operators is given in Ref. 25 (in dimension four but same formulas hold in all dimensions,?®
see also Refs. 13 and 7). The lower order terms are given by Ricci curvature and its derivatives; in
particular on E**" we recover the operator of (1). On any manifold, we shall term ¢ in the kernel
of (3) a (generalised) conformal (Killing) tensor. (The terminology generalised conformal Killing
tensor was introduced in Ref. 21 for solutions of (3) in the case p = 3. We use the same terminology
for solutions of (3) in the general case.)

69



032301-5 Higher symmetries of the GJMS operators J. Math. Phys. 53, 032301 (2012)

By construction the GIMS operator, Py is conformally invariant.>* This means that it is a natural
operator on pseudo-Riemannian manifolds M that descends to a well-defined differential operator
on conformal structures

P Ek — %] S &k — %].

Recall that we say (M, g) is locally conformally flat, if locally there is a metric g, conformally related
to g, so that on this neighbourhood (M, g) is isometric to E**". If (M, g) is locally conformally flat,
then in all dimensions n > 3 the operators P;, exist for every k > 1.

Definition 2.3: Let us fix a conformal manifold (M, ¢). Suppose that (S, §') is a pair of differential
operators

n n et M oon
S.E[k—i]—ni'[k—i] and S':E&[—k 2]—)5[/( 2]

on the given conformal manifold (M, c). If locally (i.e., in contractable neighbourhoods) on (M, c),
we have agreement of the compositions as follows:

PSS =SP,

as operators on £[k — 7], then we shall say that (S, S’) is a conformal symmetry (pair) of P; on
M, c).

Note that the definition does not require/impose naturality properties of the pair (S, S’). They
are simply required to be well-defined differential operators on the given (M, c).

For a given conformal manifold, and suitable natural number k, we may ask for some description
of all conformal symmetries of P. From Theorem 2.1, we have the following theorem. Here and
below, we use E,(p % as shorthand for the bundle & (@--ap)»[2r] (and its section space). We will often
write ¢f to denote some section of this bundle.

Theorem 2.4: Let (M, ¢) be a (locally) conformally flat manifold of signature (s, s'). For each
nonzero ¢ € Er(p)", p € sy re {0, 1,...,k— I}, a solution of (3), there is canonically associated
a nontrivial conformal symmetry (S,, S;)) for Py, with S, and S;, each having leading term

(/)ralmap(vzn L va,,)Ar-

Modulo trivial symmetries, locally any conformal symmetry of Py is a linear combination of
such pairs (S, S[p), for various solutions ¢ of (3), with p and r in the range assumed here.

The question of conformal symmetries is not a priori the same question as that addressed in
Theorem 2.1. However, using that S, S” and Py are well defined on (M, ¢), we may use any metric g
€ cto calculate. This is a choice similar to choosing coordinates in order to calculate; indeed g gives
a trivialisation of the density bundles. Now, by working locally and choosing a flat metric, the result
here follows immediately from Theorem 2.1, since by the definition of the canonical symmetries
in Definition 5.1 and Theorem 5.2, they are well defined on locally conformally flat conformal
manifolds.

D. Algebraic structure

Let us denote by Ay the algebra of symmetries of AF on E**" modulo trivial symmetries. As
usual we write n = s + §'. It follows from Theorem 7.1, we have the vector space isomorphism

oo k-1

A=PPkKl. )

j=0 i=0

where ICij - Ei(j " is the space of solutions of (3) with r =jand p =i.
Now we turn to the algebra structure of Ay. It is well known,*!* and given explicitly by (23)
below, that the (finite-dimensional) spaces IC{ are isomorphic to irreducible g := §0,41 y+1—modules
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K o ik [T---T1o ®)

in the notation of Young diagrams. (Using the highest weights, expressed as a vector of coefficients
over the Dynkin diagram as in Ref. 2, K/ corresponds to the coefficient 2i over the first node, the
coefficient j over the second one and with remaining coefficients equal to zero. At least this applies
in dimensions at least five, but there is an obvious adjustment in lower dimensions.)

We follow Ref. 21 in the discussion of the algebraic structure of .4;. Decomposing the tensor

product of two copies of g = H, we obtain

|
- R
9@ g O[Tl eRe @70 @H "
| =

where © is the symmetric tensor product. All these components occur with multiplicity one. We
shall need notation for the projections of V; @ V, € g ® g to some of the irreducible components on
the right-hand side of the previous display. In particular, we put

NBVe -, VieVaelllh, (VW) eR and [iVilel,

and we write the same notation for the projections. Here, the X denotes the Cartan product, (,)
the Killing form on g (normalised as in Ref. 21), and [,] is the Lie bracket. These projections are
described explicitly in (41) below. There is also the inclusion

R0 =TT [ Jo—HeHeeHcHsHe ol
* | 2k | | 2k |

see (44) for the explicit form. That is, there is an (obviously unique) irreducible component in @2k g
of the type specified on the left-hand side.
With this notation, we obtain the following generalisation of Theorem 3 Ref. 21:

Theorem 2.5: The algebra Ay is isomorphic to the tensor algebra Q) g modulo the two-sided
ideal generated by

ViVo—ViRV, -V eV 1[V V]+(n—2k)(n 2k)(V Vs) Vi,V € (8)
_ —VieV, — — rO AT T A
1 2 1 2 1 2 > 1, V2 4t + D +2) 1, V2), LV2€g

and the image of X* 0 in @ g.

Note that, from Theorem 2.4, A; is also the algebra of local symmetries of P on any conformally
flat conformal manifold of dimension ».

. CONFORMAL TRACTOR CALCULUS

We first recall the basic elements of tractor calculus following Refs. 9 and 30.
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A. Tractor bundles

Let M be a smooth manifold of dimension n > 3 equipped with a conformal structure (M, c) of
signature (s, s'). Since the Levi-Civita connection is torsion-free, the (Riemannian) curvature R, 4
is given by [V, V;]v¢ = R,,°qv?, where [ -, - ] indicates the commutator bracket. The Riemannian
curvature can be decomposed into the totally trace-free Weyl curvature C,q and a remaining
part described by the symmetric Schouten tensor P, according to Rupcd = Cabca + 28c1a Pria
~+ 28415 Paje, Where [...] indicates antisymmetrisation over the enclosed indices. We shall write
J := P?,. The Cotton tensor is defined by

Aubc = 2V[b Pp]a .

The standard tractor bundle over (M, [g]) is a vector bundle of rank n + 2 defined, for each g
€c, by [E2], = E[1] @ E[1]1 @ E[-1]. If § = *T g (T € C®°(M)), we identify (&, uq, T) € [EA],
with (@, fa, T) € [E4]; by the transformation

a 1 0 0\ [«
ﬁa = Ta Sab 0 Mb s (9)
T —Irere =t o1 T

where Y, := V,T. These identifications are consistent upon changing to a third metric from the
conformal class, and so taking the quotient by this equivalence relation defines the standard tractor
bundle T, or £ in an abstract index notation, over the conformal manifold. The bundle £4 admits
an invariant metric hp of signature (s 4+ 1, s’ + 1) and an invariant connection, which we shall
also denote by V,, preserving hsp. In a conformal scale g, these are given by

0 0 1 o Vit — g
hAB =10 ab 0 | and Va b = Va/’Lb + 8T + Popa | . (10)
1 0 O T V, T — Pyl

It is readily verified that both of these are conformally well-defined, i.e., independent of the choice
of a metric g € [g]. Note that /45 defines a section of 45 = £4 ® Ep, where &, is the dual bundle
of £4. Hence, we may use hp and its inverse #4 to raise or lower indices of £4, £4 and their tensor
products.

In computations, it is often useful to introduce the “projectors” from £4 to the components
E[1], &,[1], and E[—1] which are determined by a choice of scale. They are, respectively, denoted
by X4 € Ealll, Zag € Eaqll], and Yy € E4[—1], where E44[w] = €4 @ &, ® E[w], etc. Using the
metrics /43 and g, to raise indices, we define X4, ZA%, Y. Then we immediately see that

YaX4 =1, ZypZ: = g, an

and that all other quadratic combinations that contract the tractor index vanish. In (9) note that@ = «
and hence X* is conformally invariant. Using this notation the tractor V* given by

o
VA% = | ia
T
may be written
VA =Y+ u'Z4 + XA, (12)

The curvature 2 of the tractor connection is defined by
[Va, VoIV = Qup g VE
for VC € £C. Using (10) and the formulas for the Riemannian curvature yield

Qupce = Zc ZE Capce — 2X ¢ ZE) Acabr- (13)
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In the following, we shall also need two-form tractors, that is A2T, or in abstract indices EaB-
To simplify notation, we shall set the rule that indices labelled sequentially by a superscript are
implicitly skewed over and then denote skew pairs with a bold multi-index. Here, we shall need
this only for valence two forms. This convention does not apply to subscripts. That is, A’A! means
[A°A'] = A but, e.g., the notation A;A,A; does not assume any implicit projection to a tensor part.
The same convention will be used for tensor indices, i.e., [a’a!] means a%a! = a.

With £%[w] denoting the space of k-forms of weight w, the structure of £y = 4041 is Refs. 6
and 31,

Ex=E'21 6 (E 1218 £101) g £'[0]; (14)

this means that in a choice of scale the semidirect sums G- may be replaced by direct sums and
otherwise they indicate the composition series structure arising from the tensor powers of (9).

In a choice of metric g from the conformal class, the projectors (or splitting operators) X, Y, Z
for £4 determine corresponding projectors X, Y, Z, W for £a, These execute the splitting of this
space into four components and are given as follows:

Y =V,,4 =Yzl € £1-2],
Z=15%=242% € E[-2),
W = Wyout = X0Y 41 € EA[O],
X =X ,084 = XpZ4 € 0]

Further, they satisfy X‘zYA” = %8;, ZQZX = 8;:822, and WAW, = —% id, the remaining contrac-
tions are zero. The explicit formula for the tractor connection is then determined by how it acts on

these (cf. Refs. 31 and 6),
VoY 0 = Ppay sl + Py Waoan,

VoL = —269Y 08 — 2P X 104, (15)

1 1
VPWAOA] = _gpaIYAOAaI + Ppa|XA0aA1,

0,1 1
vaA"A‘ = gpa" ;\10?4' —5; WAOAI.

B. Key differential operators

Given a choice of conformal scale, Thomas’ tractor-D operm‘or1 Dy : Ep..plw] = Epp..plw
— 1] is defined by

DsV = (n+2w —2)wYaV + (n 42w — 2)Z4, V'V — X4s(AV + wl)V. (16)

This is conformally invariant, as can be checked directly using the formulas above (or alternatively
there are conformally invariant constructions of D, see, e.g., Ref. 27). Acting on sections of weight
w # 1 — n/2 (16) is a differential splitting operator since there is a bundle homomorphism which
inverts D. In this case, it is a multiple of X4 : E4p..g[w — 1] = Ep..z[w]; XADy4 is a multiple
of the identity on the domain space. This splitting operator is particularly important on £[1], the
densities of weight 1: for non-vanishing o € £[1], g := o~2g is Einstein if and only if Djo is
parallel for the tractor connection. The point is that the tractor connection (10) gives a prolonged
system essentially equivalent to the equation V(, V) 0 + Pp),0 = 0 which controls whether the
metric g € c is Einstein.'

The GIMS operators on conformally flat manifolds can easily be constructed using the tractor
D-operator. It turns out

(=1FX4, ... X4, Pk =Dy, ...Ds, on E[—n/2+k],
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see Ref. 27 for details. Here e, in &,, denotes any system of tractor indices (or so(h) tensor part
thereof).

In addition to the tractor-D operator D4, one has also the conformally invariant double-D
operator Dy and its “square” ]D)f,B = —[D)(AP]D)WB) defined as

Da =2(wWa +X{V,) : E[w] — &, ® E[w], weR,

(17
D2, = —(whap + XaDp)) : EJw] —> Eup @ EJw], w e R.

The operator Dy (but with the opposite sign) was originally defined in Ref. 28. Note that,
2X(p0D g1y = (n 4+ 2w — 2)Da on & [w]. We shall also need the commutation relation on &, [w],

[Da, Xpl = —2Dsp + (n + 2w)hyp (18)

from Ref. 27; alternatively this may be viewed as defining D as (one half of) the skew part of the
left-hand side.

Finally, some points of notation: In the following, we shall sometimes write V¢ to denote the
composition of g applications of V. By context it will be clear that g is not to be interpreted as an
abstract index. Next if V is a tensor bundle, or a tensor product of the standard tractor bundle, then
for F € V we shall write F| to denote the projection of the section F to the Cartan component (with
respect to the co(g) structure, or so(h) tensor structure, respectively) of the bundle V. For example,
on E** equipped with the standard flat diagonal signature (s, s') metric Eq. (3) may be expressed as
[V gllg = 0.

IV. THE DOUBLE-D AND CONFORMALLY INVARIANT OPERATORS

We work on (M, [g]), assumed to be locally conformally flat. We outline a rather general picture
here. The theorem below provides a general technique for the construction of symmetries of any
conformally invariant operator that acts between irreducible natural bundles. Moreover, since the
tools used are general in nature, this result indicates how to deal with symmetries of invariant
operators on a bigger class of structures, the so-called parabolic geometries.'? This will be taken up
elsewhere.

Consider a conformally invariant differential operator P : YV — W between irreducible (or
completely reducible will suffice) natural bundles V and Y. More specifically, we restrict only to
subbundles of (R &,) ® (R £?) ® E[w] which we shall term tensor bundles. The case of spinor
bundles is, however, completely analogous.

Assume for a moment the general (i.e., possibly curved) conformal setting. Following Ref. 10,
the double-D operator D, can be extended to all irreducible bundles (see the discussion on the
fundamental derivative below for details). This extension obeys the Leibniz rule, and since (17)
describes D4 on &,[w], it remains to understand the action of D4 on &, = £[—2]. In this case, we
obtain

Dy fo = —2Wa fo + 2ZPgp0q fir +2Xg Vo fy for fo € &, (19)

where B is a multi-index, following the convention introduced in Sec. III.

Our use of D is linked to the following proposition. For a tangent vector ¢“ € £, we denote
by L, the Lie derivative on sections of natural bundles. Recall £[w] is such a natural bundle, cf. the
definition of E[w] in Sec. 11, as well as £, and E”.

Proposition 4.1: Let M be any conformally flat manifold and assume ¢* € £ is a conformal
Killing vector (i.e., a solution of (3)). Then there is a unique parallel tractor I(;‘ € EA such that
@ = ZXXIQ,“ cf- Ref. (43). Then

IMDa=L, on (X&) (X)E)®Elw].
Proof: 1t is sufficient to verify the theorem on £[w] and £¢ since both operators L, and I, QDA
obey the Leibniz rule and £, = £*[—2]. Using (17) and (43), we have I;}]D)A = @*V, — %(Va %) on
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£[2]. Thus using (19) (and (43) below), we obtain
B b p 1 b
1,;Dg fa = ¢"V fa + (Viape) [~ — ;(wa )Vfa

1 1 .
="V fu— f'Vpa + f”[i(vb% + Vo) = g V]

on f, € £,[2] = £”. The square bracket in the display is the conformal Killing operator, and thus
vanishes. The equality of L, and I(pA]D)A on £[w] is even simpler, and hence the general case
follows. O

Note it obvious from the proof that the proposition does not hold without the assumption that
¢ € £ is a conformal Killing vector.

The conformal invariance of the operator P : V — W (between completely reducible, bundles
V and W) is given by the property L,P = PL, for every conformal Killing field ¢¢ € £¢. That is,
every conformal Killing vector ¢ provides a symmetry of the operator P.

As is well known, conformal invariance can equivalently be verified from a formula for the
operator P. In particular for each conformally invariant operator, and a choice of metric from
the conformal class, there is a formula in terms of the Levi-Civita connection V, its curvature,
and various algebraic projections which express the operator as a natural (pseudo-)Riemmanian
differential operator. The hallmark of conformal invariance is then that this operator is unchanged if
we use the same formula when starting with a different metric form the conformal class. Now, given
such a formula for P : V — W, we have also the (tractor coupled) operator P ViVeE > WRE,
given by the same formula where V is now assumed to be coupled Levi-Civita-tractor connection.
Then PV is also conformally invariant. We shall often write P instead of PV to simplify the notation.

Theorem 4.2: On a conformally flat manifold, let P :V — W be a conformally invariant
operator between completely reducible tensor natural bundles V and WW. Then

PVDAI - Dy =DA| -~~DA,,P YV - EAI»--A,; ® W.

P

Proof: 1t is sufficient to prove the theorem in the (globally) flat case. First assume p = 1 and
consider a conformal Killing field ¢ € £“. Then I, is parallel (see, e.g., Ref. 29 but this follows
here easily from the fact the standard tractor connection is flat). Then [PV, IA] =0 and using
Proposition 4.1 plus the fact that L,P = PL,, from conformal the invariance of P, means that
[;‘ [Da, PY] = 0 for every conformal Killing vector ¢“. The space of conformal Killing fields on
the conformally flat manifolds has the maximal dimension, i.e., the dimension of the bundle &,.
Therefore, [Ds, PY] =DasP — PVD4 = 0 on V. Now it follows from the definition of D that the
formulas for [Da, PV]onV and £, ® V formally coincide. Since [Da, PV] = 0 on V), and the tractor
connection is flat, this formula yields a zero operator on every bundle £, ® V. Using an obvious
induction, the theorem follows. O

Below we shall identify two-form tractor fields Fy = F142 with endomorphism fields of the
standard tractor bundle according to the rule (Fif): = Fp'fp for f5 € Ep. This also defines the
notation . Moreover, we shall define f to be trivial on the bundles £, and £[w], and then extend this
action to tensor products of £4, &,, and E[w] by the Leibniz rule. Note that since F is skew it yields
an (pseudo-)orthogonal action pointwise and hence preserves the SO(p + 1,¢g + 1) decompositions
of tractor bundles.

Theorem 4.2: above is one of the primarily tools for our subsequent construction of symmetries.
However, there are some conceptual gains in linking this to some related results and so we complete
this section with these observations.

The double-D operator discussed above reflects a more general operator called fundamental
derivative from Ref. 10 (where it is called the fundamental-D operator). The specialisation of this to
conformal geometry provides, for any natural bundle V, a conformally invariant differential operator
D:V — A®V, where A = A>T is often called the adjoint tractor bundle (because it is modelled
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ong = 50,41,4+1)- Since there is a natural inclusion A < End &, via ff, we may form (( — 1)-times)
the symmetrisation of the contracted composition, to be denoted by

D?:V — (EndV)® V.

In the abstract index notation, we write D4? (or Dy, using the identification A = E,1 42) for the
fundamental derivative and so D2 ; = —DC (4 Dp)c.

We shall use D only on weighted tensor bundles V € (® &) ® (R ") ® E,[w]. Recall the
fundamental derivative obeys the Leibniz rule and actually Dy = D4 on irreducible bundles. (In
fact, the double-D was defined in such way in Ref. 10.) To show the difference between D and D
and, more generally, the analogue of (17) we shall need certain special tractor sections and their
corresponding algebraic actions on tractor bundles as follows:

Hapg = hpopohaip, HAf = hpopohsip tis,

Happe = hagojhpycohpic, Hapttt = haojhpycohpicitis fic (20)
where, as usual, we skew over the index pairs A’A!, B°B!, and C°C!. Here, the subscript of f
indicates which skew symmetric component is considered as an endomorphism. That is, for example,
(Hatf)c = haoc far for fc € Ec, and this extends to tensor powers of the tractor bundle by the
Leibniz rule. It also indicates the order of applications of these endomorphisms in the case of H.

We need D only up to a (nonzero) scalar multiple and our choice will differ from Ref. 8§ by — 1.
Explicit formulas of D and D? on weighted tractor bundles £,[w] are given by

Dy =2(wWy + XLV, + Hy),
Dip = —(Whap + XaDp) + 4hap0Dpypr i — 4H 4 ptt), 21
where we skew over [B’B'] and #ip indicates the skewed symmetric component which is considered

as an endomorphism. That is, Da = Da + 2Hf.

Corollary 4.3: Assume the locally conformally flat setting. Let P : YV — W be a conformally
invariant operator between irreducible weighted tensor bundles V and V. Then

PYDy, ---Dx, =Da, - -Da,P:V—> Exn, ®W.
Proof: We shall use an induction. The case p = 1 is obvious as Da = D, on V and WW. Assume

the corollary holds for a fixed integer p. Then
Da,Da, -+ Da, = Da,Da, -+ Da, +2Ha, 8Dy, - - Dy

P’

The operator P commutes with the first term on the right-hand side using [P, Da,] = 0 and the
inductive assumption. Since the second term involves only Da, - - - Ds, with some additional trace
factors, P commutes with the second term (using the induction) as well. O

Lemma 4.4: Assume the locally conformally flat setting. Then [Da,Dg]l =00nV ® &, for V
irreducible.

Proof: From (17) and (21), we obtain
[Da, D] = [Da, D] — 2DpHpt + 2Hp#iDa = [Da, Dpl + 4hpoaoDpiar.
Thus contracting arbitrary sections I* € £A, I® € £B into the previous display we get
IATP[Dy, Dg] = IAT®[Da, Dyl + 414 12 D1

We put [/, 7¢ = 41C0P1_pcl. On the one hand, IAT®[D4, Dyl is given in, Proposition, p. 21 of
Ref. 10. On the other hand, a direct computation verifies the statement on &,[w], cf. (40) below.
Therefore by restricting to this case (of £,[w]), it follows that our notation [/, 7] coincides precisely
with {7, I} used in Ref. 10. Thus using, Proposition, p. 21 of Ref. 10 on V ® &,[w], the lemma
follows.

O
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Remark 4.5: There is also a more conceptual proof of the previous corollary (thus also of
Theorem 4.2). Motivated by, Theorem 3.3 of Ref. 10, we note that, at each point x € M, the section

k
DY := (6,Do,D? =DDo.....DYs) e A’V c Ve oVve.. e Q& oV

contains the data of the entire k-jet of o € V. Note although here we assume V is irreducible,
the operator D" is defined also on bundles of the form V ® &,. From the general theory, the

subbundle ,Tl(k)(]/) (defined in the obvious way by the display) is an induced bundle of a principle
H-bundle where HC SO(s + 1, s' + 1) is a parabolic subgroup. It is straightforward to argue
that any conformally invariant k-order operator on V is given by ﬁ(k) followed by a suitable H-
homomorphism @ on this subbundle. We denote this homomorphism by ®p in the case of the
operator P.

Our aim is to commute P = ®p o ﬁ(k) and Dg. More precisely, we put
PV i=(dle, ® Pp) oD : Ex OV — &5 @ W.

Observe the formulas for ﬁ(k) V- j(k)(V) and p® RV > E® ﬁ(k)(V) are formally the
same. (Note the implicit V is interpreted as the coupled Levi-Civita-tractor connection in the latter
case). That means also the formulas for P : V — Wand PV : &g ® V — E ® W are given by the
same formal expression. Hence our definition of P¥ coincides with that given before Theorem 4.2.

Now we are ready to show that DgP = PVDg on V, i.e.,
D)

(®, ®id|g,) o D" Dy = Dy(®, o Vs S @ W.

Clearly Dg®p = (Pp ®id |g,)Dg. Since [Dp, Ds] = 0 from Lemma 4.4 and Dy preserves sub-
bundles (of the space Dg acts on), (Pp @ id|g,)D4, ... Dp ... Dy, is conformally invariant and the
previous display follows.

Henceforth we shall write P instead of P¥ for simplicity. Finally note although we have shown
[Dg, P] =0 only on an irreducible V), the same reasoning shows [Dg, P] = 0 also on bundles
V ® &,. Therefore, this remark offers an alternative proof of the previous corollary (thus also of
Theorem 4.2).

The previous results provide an obvious way to construct symmetries of conformally invariant
operators. Assume the section

JA1-A,B BB, _ cA..A,B B BB

is parallel. Then from Theorem 4.2 and Corollary 4.3 the differential operators
S = [M-ABIBLBBLD ---DA,,Dé,B; ._.D%’ 5 and

S = [A-ABIBLBED, .DA,]]D);Bi ...D} 5 (22)

commute with P. That is § and S are symmetries of the operator P.

JA1-A, B Bl...B,

Proposition 4.6: Assume the tractor B s parallel and irreducible, I = I|g. Then

S =S on&[w].

JA~A, B B]..B

Proof: Consider the parallel and irreducible tractor B, and the symmetry S from

(22). Since Dy = Dp + 2H a4, the difference
DaDa,.--Da Dy gDy —DaDa,...Ds D} ... D
lives in the trace part of 5A..4.A,, B,8,...8,8. [w], cf. (20). Therefore, this difference is killed after

.A,B B|..B,B]

. LA, B! ) . )
contraction with I, ' - Repeating this argument for Dy,, ..., Da,, we obtain

S = 1M ABEBED, Dy DY g DGy Elw] > Elwl.

7



032301-13 Higher symmetries of the GJMS operators J. Math. Phys. 53, 032301 (2012)

2

Now we replace Dél B in the previous display by ID)B] B Note 741451815, B commutes with

B, B|...B,B

Dy, and consider 1414 » contracted with

2 2 2 2 2 2
D, 5;Pp,p; -+ D5y = D3y Doy - - Py

= _(4h(Bl\CO\DB;)CI]iC - 4ﬁ313{ﬂﬁ)pézlgé PPN D%"Br/,

where we have used (21) and (17). The second term in the round brackets on the right-hand side van-
ishes after the contraction (using trace-freeness of I again) so it remains to contract /41451515, 5;
with

2 2 P2 2
4hC0(BlDB{)C1ﬁCD(BzB§ e DB,,B,{) = 4(r — l)h(BzBlDB]’ D|P\B£ .. 'DBrB;)
2 2
—4(}" + l)]D)(BiBz,DB]Bé . "DB,B/,)'

Here, we have used the fact that the indices BB ... B, B, of I are symmetric (because / is irre-
ducible). Now the second term on the right-hand side is zero due to skew symmetry of indices of
Dp; p, and the first term vanishes after contraction with / which is trace-free. Repeating the same
argument for D%l ERREE D%r p» the proposition follows. O

Note an analogous statement to the proposition above holds, where £[w] is replaced by any
irreducible bundle V. This may be proved along the same lines as in the treatment above. However,
since the details are technical and not required here, this proof is omitted.

Finally note the operators given by (22) are also well defined on bundles &,[w]. In this setting,
however, they yield generally different operators £, [w] — E[w].

V. A CONSTRUCTION OF SYMMETRIES

We are now ready to construct canonical symmetries. For a section ¢ " € £@-ah[2r], we
shall define the operators (Sw’ S(;) where S, and S[p have leading term (pf"““” Vo ++ Va, A". To do
this, we use the bijective correspondence between the linear space of solutions of (3) and certain
finite-dimensional g—modules, cf. the discussion around (4). Explicitly, this is given by differential
prolongation in the form of a differential splitting operator £ 4r0[2r] — EAvA BB BB o
There are many ways of constructing this, but for our current purposes the splitting operator can
be conveniently expressed using the fundamental derivative. There is a certain operator C known as
the curved Casimir'> which is given by h45D? . (Properties of the splitting operators coming from
C will be used in Proposition 6.1.) This acts on any natural bundle and, in particular, on weighted
tractor bundles. It can thus be iterated and we shall use operators polynomial in C. In particular, one
gets the splitting operator as

ay...ap

©r = YAla o

/ /o ay..a Y ! !
1 . YApa,, YB] YB1 . YB’YB’(,O,«I P gAlu,A,,BlBlmB,.B,, (23)

where Q is an operator polynomial in C, and hence is polynomial in D, see Refs. 15 and 32. We
shall denote the image by Iﬁl"'A”B'B;”'B’B; € EAv-ApBIBLB B The main point we need is that the
tractor I, is parallel if and only if ¢ is a solution of the operator (3).

Definition 5.1: Given ¢ = (pfa'”'“”)” € £@-ah[2r], r, p > 0, we shall associate a differential
operator S, as follows. Let I, denote the tractor corresponding to ¢, in the sense of the discussion
surrounding (23) above. Then via (22),

S(/J = I$1<<,ApB|B]<..BrBrDA1 L DAPDélB; L ]D)%g . (24)
is a well-defined differential operator S, : V — V, for any weighted tensor-tractor bundle V.

Assume ¢ is a solution of (3), and so the tractor I, is parallel. It follows immediately from
Theorem 4.2, and the fact that [, is parallel, that S, is a universal symmetry operator. That is, using
also that ¢ — I, is a splitting operator, we have the following.
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Theorem 5.2: On a conformally flat manifold, let P : V — W be a conformally invariant oper-
ator between irreducible tensor bundles V and VW, and suppose that ¢ = (pfa]“‘a”)o e Elaraph [2r], r,
p = 0is a solution of (3). Then with S, : V — V and S(; W — W given by (24), the pair (S,, S;)
is symmetry of P. Assuming P is the GIMS operator Py then for ¢ # 0 and r < k, this is a nontrivial
symmetry.

Proof: It remains to prove the last claim. Note that acting on any density bundle, ¢ is the
leading symbol of the operator (24). This follows from the construction of S, and is also shown by
Proposition 6.1 (which we will come to later). Thus the leading term does not have A* as the right
factor for r < k. O

Note that S, and S, are not the same differential operators. The point is that (24) really defines
a family of differential operators parametrised by the space of domain bundles.

We shall henceforth only pursue the case that P is a GIMS operator. As mentioned in the proof
of the theorem, ¢ is then the leading symbol of the operator (24). Also note that in this case the use
of D and D? rather than D and D? (respectively) in (24) yields the same symmetry, as follows from
Proposition 4.6.

Remark: Consider an operator F : E[w] — E[w], of order p > 0, on a smooth conformal
manifold manifold (M, [g]) and its symbol @@ %) e £@ ) Then, via the conformal structure
[g] we may decompose @ into irreducibles. Each irreducible component ¢ of @ can be realised
as @b g £@-ah[2r] where p = p — 2r. Thus we have also the operator S,, constructed
as above except that we here do not require ¢ to solve (3). We may then take the difference
F -8, : E[w] — E[w]. Now the whole procedure can be repeated for the operator FF — §,. It
is clear that after a finite number of steps we obtain the form F = ), ¢ ¢S, for a (finite) index
set U € N. That is, given an operator F : £[w] — E£[w] on a smooth manifold M, any conformal
structure on M yields a decomposition of F as a sum of canonical operators S,.

In the other direction, the operators S, provide the conformally invariant quantisation introduced
in Ref. 18, in particular the special case.'8, 3.1] Also note Sec. IV shows how to rewrite the general
construction'! using an affine connection.

VI. CLASSIFICATION OF LEADING TERMS OF SYMMETRIES

According to the discussion following Theorem 2.4, the problem of conformal symmetries for
the GIMS operators (on locally conformally flat manifolds) is reduced to the setting of Theorem 2.1.
So throughout this section, we work on E** equipped with the standard flat diagonal signature
(s, ') metric g with s + ' =:n > 3.

All linear differential operators L : E[w] — £[w] may be expressed as sums of the form

L= ¢/ (Vo Vo)A, " € ECritiar] = EPP. (25)

p.r=0

We shall describe the right-hand side here as a standard expression for L. Moreover, we shall
typically use the notation ¢/ (®”V)A’ as a shorthand for the operator @y (V,, - - - V., )A" in the
displayed sum (as the details of the internal index contractions are not important for our arguments).

We use the standard expressions as above to analyse the structure of potential symmetries and
their compositions with AX. In particular, we shall use the following properties/descriptions of a
given coefficient ¢} . We shall write o(¢) = p + 2r and term this the formal order of ¢! and £(¢?)
= p + r which will be termed level of ¢f . (These reflect properties of terms (pf“"“"(vﬂ] < Vg, AT
and how they appear naturally in appropriate tractor formulas. However, these quantities are fully
determined by the coefficients (pf , soitis sufficient to consider formal order and level of coefficients.)

We also say [f ] is the type of ¢/ . We shall write o(R) = a and £(R) = b if all terms of a differential

operator R : E[w] — E[w] are of the formal order at most a, respectively, level at most b. Finally,
if L is a symmetry of A*, then we shall say L is a normal symmetry (of A¥) if r < k for all terms in
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the standard expression (25). Modulo trivial symmetries, any symmetry of A¥ may be represented
by a normal symmetry. (More generally, this holds for all operators on functions, cf. the remark
following Proposition 6.1.)

Further, we shall need a suitable ordering of the terms in a standard expression. This will be
defined via the coefficients as follows:

or <yl it L) < Ll or (8! = Lwl)) A (o(el) < oY) (26)

Since the coefficient ¢/ determines a corresponding term in the standard expression completely, we
shall use the ordering <1 for both coefficients and terms of an operator (25).

In the following, we shall use the terminology the greatest term (or coefficient) with respect
to the ordering <, the leading term (i.e., the term of the highest formal order o) and the term of
highest level, which refers to the quantity £ defined above. We would like to emphasise that all these
characteristics of terms are generally different.

First, we shall study the canonical symmetries. Since these are constructed using tractor operators
we need a further weight type measure as follows. In the tractor formulas, we use strings of the
symbols X, ¥, Zand X, Y, Z and W from Sec. III A. We define the homogeneity h(w) of a string
we{X,Y,Z,X,Y,Z, W} by

h(Y)=1,h(Z)=0,h(X)=—1,h(Y) =1, h(Z) = h(W) =0, h(X) = —1, 27
and h(w;w) = h(w;) + h(w,),

where w;w, means a concatenation of the strings w; and w,.
Now we are set to describe properties of the canonical symmetries (and more generally operators
of the form (24)), as follows.

Proposition 4.1: Consider ¢ = ¢f € (0PTM) @ E[2r] and the corresponding operators Sy :
Elw] — Elw] and S(; :E[w'] = E[w'], w, w’ € R given by (24). Then, in the standard expressions
for S, and S, the following properties hold:

i S, and S;, have the same leading term .

(ii) Z(S(;) =U(S,) =r + p = UeP), that is every term  of S, or S(; satisfies L(y) <p + r.
Moreover, the greatest terms of S, and S;, have the coefficient ¢.

(iii) o(S(/p) =0(S,)=p+2r= o(g?l), that is every term of S, or S(; satisfies o(Y) <p + 2r.
Moreover, the equality happens only for Y = ¢.

(iv)  Every term i of type [lr_a] of S, or S(; satisfies r > 7.

Remark: We shall actually use the proposition only in the case [V¥ * l¢]|g = 0, i.e., when
(S,, S,) is the symmetry pair. But note that part (iv) means, in particular, that any operator L on
functions satisfies, modulo trivial symmetries of AX that r < k for all terms in the standard expression

(25) of L.

Proof: First note that because S, and S(; are given by the same operator (24) acting on different

density bundles, it turns out to be sufficient to establish facts only for S,. From (24) S, is defined as
. A,..A,B, B|..B,B, . .

the contraction of the parallel tractor I, , corresponding to ¢, with the operator

~ 2 2

Da,..a,8,5..88 =Da, ...Dy Dy ... Dy g 2 Ew] —> Eaa, A, 8,555 W]

We need some broad facts about the structure of the tractor formulas for I, and D. When working in
a metric scale and using (12), (10), (15), and (17) it follows that terms of these are built, respectively,
from tensor fields and tensor valued differential operators contracted into “projectors”

w e B.

Here, B is a set of fields taking values in the appropriate tractor bundle tensor product with an
irreducible weighted trace-free tensor bundle. Each element w € B is an appropriate projection
(onto the irreducible part with respect to the tensor indices) of a p-fold tensor product of elements
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from {X, Y, Z, W} with a 2r-fold tensor product of elements from {X, ¥, Z}, and we may take B
to be all such. Similarly, the elements of B can be considered as “injectors,” i.e., a mapping going
in the opposite direction. For example, since I, is obtained from ¢ by a splitting operator, it has the
form

A,..A B,B|..B,B, ’ ’
le pP1BLBr B ZwAlA“A,,BIB]mB,,B,, . Fw(w) (28)

weB

where, for each w € B, F,(¢) is the result of a (weighted tensor valued) differential operator F,,
acting on ¢ (a section of (0”?T M) ® £[2r]) and “ - ” indicates a contraction of tensor indices (which
are suppressed); cf. (43) below which shows I, for ¢ € £ explicitly. Note also that we sum over
all strings in B in the previous display, so many of the F,, will be zero. Similarly, it follows from the
definition of D that

DAI,“AI,B]B{“.B,B,’ = E WA,..A,B B BB " Go, (29)
weB

[T 1)

where G, is a (weighted tensor valued) differential operator acting on densities and, again,
denotes contraction of (suppressed) tensor indices. See (17) and (39) for explicit examples. Con-
tracting the last two displays, we obtain the canonical symmetry S, as in (24). Thus, using (11) and
the surrounding observations, we have

Sp = > (Fuo(@)) - Go,
w,w € B,
h(w) + h(@) =0

[T}

where indicates the contraction of suppressed tensor indices. Note pairs (w, @’) not satisfying
h(w) 4+ h(e") = 0 have dropped out of the sum by properties of the tractor metric. (Also note that
the same property implies that if the tensor indices of F,, and G, are not compatible for complete
contraction, then the term (F,,(¢)) - G, is necessarily zero.)

The differential order of F,, (and similarly G,/) is exactly the maximal number of V’s in the
corresponding expression in the splitting operator. (We consider formulas for splitting operators
obtained using the curved Casimir C = hABDi g here.) Denoting the differential order of F,, and
G (in (28) and (29)) by, respectively, o(F,,) and o(G,), we have

h(w)+o(F,)=p+2r and h(@)+0(Gy) =0, ,o €B.

Here, the first equality follows from (23) and the properties of splitting operators. The second follows
from the definition of ID (in particular, from the tractor expressions for D and D? in (17), (10), and
(15). Summing up the equalities in the previous display we see that

Sp = > (Fuo@) - G (30)
w,w € B,
o(F,) +0(Gy) = p +2r

Note that all tractor indices have been eliminated, the formula (30) for S, is expressed using
tensor operators and contractions only. Now consider a summand (F,(¢)) - Gy of S, as in (30).
First, o(F,,) + o(G) = p + 2r implies o(G,/) < p + 2r; moreover, the equality can happen only
if F,, = id (up to a nonzero scalar multiple), since (23) is a differential splitting operator. For the
same reason, this term does occur. In the previous display the term with F,, = id clearly recovers
the highest order term, i.e., the leading term. Therefore (i) follows.

Now by assumption F,(¢) is irreducible. Since S, : E[w] — E[w], it follows from (25) that in
the standard expression (F,(¢)) - Goy = y“ 9V, ... V%AF, p, 7 > 0, where y is symmetric and
trace-free. In fact, it follows from the form of /, and D that Fo(p) = y@7and Gy = Vg, ... Vg, AT,

We denote the type of F,(¢) by [f] From this we get o(G,) = p + 2F and, since F,, takes ¢ of the

type [’r’ ] to a section of the type [’r’] we get o(F,,) > |p — p|. (The point is that each application of
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the Levi-Civita connection may increase or decrease the rank by 1, and this is the only way the rank
may change.) These properties hold for every (irreducible) term (F,,(¢)) - G, in (30). Therefore,

p+2r=0(F,)+0(Guw)=|p—pl+p+2r

using (30). We prove (ii), (iii), and (iv) separately in cases p > p and p < p. If p > p, then the
previous display says p + 2r > p + 27 hence r > 7. This implies p +r > p+7 and p + 2r >
p +2F. If p < p, then the previous display means 2p + 2r > 2p + 27 hence p +r > p + 7. The
latter inequality with p < pyieldsr > 7andso p + 2r > p + 27. This show (iv) and the inequalities
in (ii) and (iii). Now when equality holds in (iii) then p + 2r = p + 27. But then p = p from the
previous display thus also » = 7. This means o(G,/) = p + 2r and o(F,) = 0. Hence F,, = id, up
to a multiple, and so if the term is nontrivial we recover the leading term. It remains to discuss
the greatest term of S,. But since we have already proved the inequality in (ii), according to the
ordering of (26) we need to consider the order of terms of level p + r. The maximal order is then
characterised by (iii). O

Note the part (iii) of the previous proposition means that the canonical symmetry (S, S;,),

¢! € (®”T M) ® E[2r] is nontrivial for Py, k > r. (The statement (iii) is actually stronger: no term
in S, has AX, k > r as the right factor.)

Our strategy for classifying the leading terms of symmetries uses the ordering (26). We shall
start with the greatest term and study what the symmetry condition imposes on its coefficient. We
obtain the following.

Claim: Let ] € 7" is the greatest coefficient of a symmetry T. Then [V2+!¢/]g = 0.

The claim forms the basis for an inductive procedure, as if [V “(pij ]z = 0, then the greatest
termof T — S ol is strictly smaller (with respect to ) than (pl.j , and using Proposition 6.1, we can
replace Tby T — S,;» and apply the previous claim again.

The claim is proved as Proposition 6.3, and then the detailed inductive procedure is in the
proof of Theorem 6.4. The proof of Proposition 6.3 requires a detailed analysis of certain terms. To
demonstrate the technique, let us discuss an example first. Assume that (7, T') is a symmetry of Py
= A*of order p, i.e.,

NMT=TA' T= Y gl@wa,
2itj<pi<é

where we have displayed the standard expression of 7. Note we have not included terms with i > 4
as they may be eliminated by the addition of trivial symmetries of A%, It is useful to write the terms
of T'in a table as follows:

order p : Pl (OPV) + ! O 2V)A + ¢2p_4(®p74V)A2 + ¢§_6(®1’76V)A3 +
orderp—1: @0 (@"'V) + ! (OP VA + ! (OPIVIAY 4+ 0! T (0PTTV)AY +
orderp—2: ¢} H@"2V) + ¢ HOPHVIA! + 0f (@P VA + o) (@AY +
orderp—3: ¢} @7V + ¢ (@ VIA + 0f (@ TTVIA? + ¢l (@ OV)AY +

0rderp—4: g06774(®p—4v)+¢{?76(®p—ﬁv)Al+(p£7*8(®p—8v)A2+¢§7710(®p—lov)A3+

+ : + : + -
Every line shows terms of the same formal order and moreover every antidiagonal shows terms of
the same level. So the ordering (26) in this case means

) -1 —4 -3 -2 -6
e G e S Z S =~
Observe the level £(R) of an operator R is increased by k under composition with A,
UAFR) = U(R) + k.

Moreover, only terms of the highest level in R can contribute to terms of the highest level in A*R.
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The greatest coefficient (with respect to >) is gog. Recall o(T) = p so we can assume £(T)
= p which means £(A*T) = p + 4. Now we consider terms of the level p + 4 of A*T. First, we
commute all covariant derivatives V to the right. In fact, it is sufficient for our purpose to consider
only certain terms. First, we restrict to terms of the level p + 4 without a right factor A* and then
take the candidate for the greatest among these. This is (V! gog )OPTIV)A3. Since this does not have
a right factor A%, it has to vanish since T is a symmetry. Hence (V!¢ )= = 0, which means that ¢}
is a conformal Killing tensor. Now we replace the symmetry T'by T' — S,r; this is also a symmetry.
The greatest coefficient of 7' — S,» is now strictly smaller (with respect to 1>) than the greatest
coefficient of 7. (Here we have adjusted S,» so the leading term is precisely @ (®PV) rather than
some nonzero multiple. We will not comment further when this sort of maneuver is used below.) It
is -2 according to (26). So now we may rename 7' — SgrasT and continue with the argument.

The next step is to assume (pé’ = 0 and study differential conditions imposed on (pf’ 2 Here,
we skip this and several other steps and we assume the greatest coefficient of T'is ¢} . So suppose
that ¢/ = 0 for £(¢!) > p —3 = (¢! ~®). Then £(T) = p — 3 and so £(A*T) = p + 1. We shall
examine those terms of the operator A*T of the (highest) level p + 1 and such that they are without
aright factor A*. To find these it is sufficient to consider

At [¢§’ OPTOVIAY 4+ (P IVIAT + P P V)A + ¢5‘3(@P*3V)] .

We use the Leibniz rule to move A* to the right in the previous display. We need to know the form
of (level p + 1) terms of types [”;2], [”;l], [‘;’], and ["’gl]. The simplest case is the type [”:)rl], we
obtain only the term 24(V*p”~*) ©7*! V. The operator @ * 'V does not arise in any other way, so
the given term must vanish through ¢ - satisfying the obvious equation. In the case of the type [f ],

we similarly get the equation

2Vl TNOPV)A + 27 - 4(VPpf HE"V)A = 0.

Here, 23 - 4 = 23(}) = 23(3): generally we put C*(4) = 2°(}). The types [” ;2] and [* ;1] yield two

more equations which give conditions for the coefficients ¢!, ¢ ™%, ©?™>, and ¢! ~°. Together
these four equations yield the following differential equations for the coefficients ¢; :

type [77] 1 C*AVHRL 0+ 3@V + CH V! + Cl @V g =0

tpe[",']: 0 + @V T+ @V + @V =0
type[f] o+ 0 + VT L @V =0
type ["5'] - 0+ 0 L0 4@V =0

Here, we implicitly consider the symmetric trace-free parts in every equation. Now applying V? to
the first equation, V2 to the second, and V to the third, and then taking the trace-free symmetric
part in all cases, we obtain a linear system in variables [V7<p§'76]g, [V%zp*‘s]g, [VS(pfq]g, and
[V4<pg _3]|g. The matrix of (integer) coefficient is

Cc'4 C'@ '@ '@
0 C'4) C@4 C*
0 0 Cc*4 Cc*@
0 0 0 C*@4)
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This is non-singular. So all the variables must vanish, and in particular [V7(p§7 _G]g = 0, which is
what we wanted to prove.

This was the case with greatest coefficient ¢} oI suggests a route to solving the remaining
cases, as they yield linear systems in the same way. Actually, it turns out that in each of the cases
with the greatest terms between (p{)’ and (pf - (which were skipped above), the matrix of coefficients
includes a square “upper right” submatrix of the matrix above, i.e., a matrix obtained by removing
the first ¢ columns and the last g rows for some choice of ¢, that is sufficient if non-degenerate. That
is it suffices to prove that determinants of these matrices are nonzero. This necessitates analysing
the combinatorial coefficients C°(4) in more detail.

The general case is analogous; in the case of A, k € N we shall need the scalars

C'(k):=2° (k), C*(k) :==0fors > k
s

and matrices
C(k;d) e Mat;,_;, 0<d <k—1, where (€28)
Clk;d)s, = CP7(k), 1 <s,1 <k —d.

The matrices C (k, 0) are upper diagonal with C*(k) on the diagonal; the matrix C (4, 0) appeared in

the previous example. In fact, C(k, d) is obtained from C(k, 0) by removing d first columns and d

last rows. Note also that considering (any) diagonal of C(k, d), all the coefficients are the same.
Clearly, the C(k, 0) are regular.

Theorem 6.2: The matrices C(k,d), k € N, 0 <d <k — I are regular.
The following proof of this theorem is due to J. Kadourek, of Masaryk University.

Proof: First observe that for d = 0, the matrix C is upper triangular with nonzero entries on the
diagonal. Thus, it is regular so it is sufficient to assume 1 <d <k — 1. Also to simplify the notation
weputk; =k — d. Clearly 1 <k; <k — 1.

It turns out to be useful to consider also the closely related matrix

C(k;d) e Mat,, 0 <d <k—1, where
k

Clk; d)s, = (kd e

), 1 <s,t <kq, (32)
where the latter is taken to be 0 if s — ¢ > d. That is, the entries of C and C differ by a power of 2.
Now writing the determinant as a sum (over permutations of {1, ..., k4})) of products of entries of
a matrix, one easily shows that determinants of C and C differ by a power of 2. That is, the matrix
C is regular if and only if Cis regular. We shall prove regularity for the latter.

First recall the well-known relation

q 9 \_ (q+1
(D (4)- () e

Henceforth we fix the values k, d from the allowed range. The proof now consists of several series of
row or column elementary operations which change the determinant by a nonzero multiple. During
certain stages of this process we shall obtain matrices Dy, D,, D3, D4 € Mat, whose determinants
differ from each other only by nonzero multiples. The last of these, D, is upper triangular with
nonzero entries on the diagonal, and so this concludes the proof.

The construction of D; from C consists of k; — 1 steps; in each of these we undertake a series
of elementary column operations, as follows. In the first step, we add the second column to the first
one, then the third column to the second and so on; finally, we add the last column to the last but one.
In the second step, we add the second column to the first one, then the third column to the second
and so on but finish by adding the (k; — 1)th column to the (k; — 2)th column. Continuing in this
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way, in the last step (i.e., the step number k; — 1) we add only the second column to the first one.
Note the determinants of D and C differ by a nonzero multiple.
Overall we obtain the matrix

(34)

Di(s. 1) = (k+kd—l) (k+kyg—1)!

ki+s—t) " Gyts—Dlk—s)

note 1 <k; + s — t <k + k; — t. The reasoning uses (33) in every addition of two binomial
numbers and goes as follows. Consider how the (s, )-entry changes during the procedure described
in the previous paragraph. First observe that after the ith step of elementary column operations, this
entry has the form (kdj’s_ t). That is, the “denominator” of the binomial number on the position (s,
t) does not change during this procedure. This follows from (33). Second, the “numerator” of the
binomial number on the (s, f)-position increases by 1 if we add the (s,  + 1)—entry, see (33). Thus
the “numerator” depends on the number of additions of the (r + 1)st column, as stated in (34).
Now we modify the matrix D; as follows. First, we multiple the 7th column by m, where
we note that k + k; — t > k > 1. Then, we multiply the sth row by (k — s)! where k — s > 1
because s < k; <k — 1. We obtain the matrix D», the determinants of D; and D, differ by a nonzero

multiple. It follows from the fractional form of entries of D, in (35) that

1

Do D= G Tor

(35)

We continue with the following modification of D,. First, we multiply the sth row by (k; + s
— 1)! > 1. Then, we multiply the 7th column by ﬁ t — 1>0(thus (f — 1)! > 1). The result is
a matrix D3, the determinants of D3 and D, differ by nonzero multiple. It follows from (35) that

(kg +s —1)! _(kd+S—1>

Ds(s,t) = =
) = e o= Ny s — 1

(36)

In the last stage we apply the following k; — 1 steps of elementary row transformations to the
matrix Ds3. Observe that the first column of D3 has all its entries equal to 1. In the first step, we
subtract the (k; — 1)-st row from the k;-th row, then we subtract (k; — 2)-nd row from the (k;
— 1)-st row and so on; finally, we subtract the first row from the second one. Thus, the first column
has now 1 as its top entry and O’s below this. In the second step, we subtract the (k; — 1)-st row
from the k;-th row, then we subtract (k; — 2)-nd row from the (k; — 1)-st row and so on, as before
except in this step we finish at the point of subtracting the 2nd row from the 3rd row. Continuing in
this way, in the last step we subtract only (k; — 1)-st row from the k;-th row. We shall denote the
resulting matrix by Djy.

It turns out Dy is upper triangular with all entries on the diagonal equal to 1. To show this note
we use (33) at every step of the above procedure. In fact, the final form of D4 can be foreseen already
from the first step, after which we obtain a matrix that we shall denote O € Mat,. We already know
the first column of O is (1, 0, ..., 0). From this it follows that in the second step we effectively
work only with submatrix of O with entries (s, 1), 2 < s, t < k. Since

kd+S—2

>=D3(s—1,t—l), 2<s5,t<kgy

using (33), we see this submatrix of O is exactly the submatrix of D3 without the last row and the
last column. Applying the second step to the displayed submatrix corresponds to applying the first
step to the corresponding submatrix of Ds (the last row and column clearly have no influence on the
previous ones). These observations yield an inductive procedure which demonstrates the claimed
form of Dy. O

Proposition 6.3: Let (T, T') be a normal symmetry of A and suppose that, in a standard expres-
sion for T, ¢f (®P V) A" is the greatest nonzero term of T with respect to I>. Then [V¥ ¢/ ]|x = 0.
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Proof: The ordering < can be equivalently described as (p;/ < (p;/;/ if and only if eitheri + j <7’
4+ jori+ j=1i 4+ jandi <. Thus

AT =T'A*, T =@l(@"V)A” + > @ (@'V)A!
i<k
i+j<r+p or
(i+j=r+pAGi<r)

Note ¢/ might not be a leading term of T.

Note, £(T) =p + rand £(A*T) =p 4+ r + k. We shall discuss the terms of the highest level
in AKT. For this it is sufficient to apply A* only to level p + r terms of T. That is, we need to
understand the right-hand side of

A [pP @A + @I VAT 4 g (V)] - Pt
= ]fjlr+1(®[’+r+]V)Ak—l + 1'//]f_-%—zr+2(®[’+r+2V)Ak—z .+ 1)Z,67+r-%—k(®p+r+kv) +1It,

where F is a differential operator. Here “lIt” denotes terms of the level at mostp + r + k& — 1 (with

powers of A strictly less than k) and wij is of type [{] Since i < k for every 1//17 on the right-hand
side, imposing the symmetry condition, each of these terms has to vanish. This yields k differential
conditions

YT EPTHIVART = 0, TP RVAR R =0, .yl T e YY) = 0.

Thus W;qurjfﬁ] =0forg € {0, ...,k — 1}. For our purposes it turns out to be sufficient to take ¢
in the (in general smaller) range {0, .. ., r}. So we have r 4 1 differential conditions. Now fix such
a g; we have more explicitly

pHr+g+1 +g+1 +q ,pt] +1,ptr
v = [ag oV @l +ag VO + L+ a, VI T Ik

k—g—1
for some integer coefficients a, ,, ¢’ € {0, .. ., r}. Via the Leibniz rule and a counting argument, it is
straightforward to verify that a, , = C"+979+! (k). Recall x//,f:rqrjlqﬂ = 0 hence the right-hand side

of the previous display vanishes. Finally, let us apply V" ~ ¢ to both sides of the previous display.
Projecting to the Cartan component, we obtain

r—1

[Cr+q+l(k)(V2r+ltprp) + Cr+q(k)(v2r(pp+l) 4.+ Cq+1(k)(vr+1(ﬂg+r)]||g —0.
This is a linear equation in the r + 1 variables (V¥ *o/)g, (V¢ Dlg, ..., (Vg™ )|g.
These variables obviously do not depend on g. That is for every ¢ € {0, ..., r} we obtain one
equation in these variables. Overall we have a system of » 4+ 1 linear equations in r + 1 variables
V7ol s, (Vzrgor”fll)m, oo (V10 ) . The integer coefficients are a, , = C"+1-9+! (k)
= CU+DHa+D-@'+D (k) g, ¢' € {0,. .., r} thus the (r + 1) x (+ + 1) matrix of integer coefficients
is exactly C(k,d) ford =k — r — 1 from (31). (Note r < k hence d € {0, ..., k — 1}.) But
matrices C(k, d) are regular according to Theorem 6.2. Therefore, this linear system has only the
zero solution, i.e.,
(V7 Hol = 0l = 0, V7 (0! Nl = 0., (V"o i = 0.

r—1

In particular (V**+'g?)|g = 0, which is what we wanted to prove. O

Finally, we have the key theorem of this section. By an obvious induction this establishes the
second part of Theorem 2.1.

Theorem 6.4: Let (S, S') be a normal symmetry of A* and suppose that, in a standard expression
forS, of (OPV)A", r < k is a leading term. Then [V¥ '@} |z = 0. This establishes the second part
of Theorem 2.1. Note that using the conformal metric, we can view all p + 2r + 1 abstract indices
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of V¥ +ol as contravariant. Then the projection to the Cartan component in [V*+1pf]|g =0
simply means taking the symmetric trace-free part.

Proof: Consider the coefficients of the maximal level £(S) of S; among them, denote by wij the
term of the highest order. In the other words, 1//ij is the greatest coefficient in S with respect to <.
Now [VZ+! 1//,.j ]l = 0 according to Proposition 6.3 hence 1//[j yields the corresponding canonical
symmetry (S,,, S},) of A¥. Therefore, (S —S,,, §' — §),) is also a symmetry of A¥.

First observe using Proposition 6.1 (iii) that the leading terms of S and S — Sy, can differ only
if ¥/ (®/V)A' is a leading term of S. But in that case we have proved the theorem for v/ (07 V)A'.
Therefore, it is sufficient to prove the theorem for § — S. So we can take S :=S§ — Sy and continue
inductively.

Proposition 6.1: (ii) guarantees that the greatest term of S := S — Sy, is smaller than the greatest
term of S. Hence this induction with respect to < is finite. ]

Vil. ALGEBRA OF SYMMETRIES

Here, we shall prove Theorem 2.5. Recall that the finite-dimensional space of solutions of (3)
may be realised as a standard linear “matrix” representation of g = §0541 ¢4 via the map from
solutions to parallel tractors ¢ — I,,. In the case of conformal Killing vectors (i.e., 3) withp =1, r
= 0) the range space is g, on which g acts by the adjoint representation. Then the identification of
g with differential symmetries is given by the mapping g > I, — S, = Ij]D)A, as a special case of
(24). The mapping S, = I,)D4 extends to

IR g3, ®---® 1, = Sy -+ Sy, m=1, (37

and hence to the full tensor algebra ) g by linearity.

The first step in the proof of Theorem 2.5 is to express the composition S, S, for I, I; € g in
terms of canonical symmetries. This is done , Theorem 5.1 of Ref. 21] and necessarily our results
must agree with those from their construction (as uniqueness of the low order symmetries involved
is easily verified). We present the details here to keep this text self-contained and also because we
derive the formulas for all conformally flat manifolds.

Putting I := I,, I := I;; to simplify the notation, one has
SySp = I*DAT®Dg = 141D, Dp, (38)

on E[w], since [ is parallel. This gives an explicit and key link between the algebraic structure of
symmetries A; and operations on the tensor algebra () g. We shall consider the displayed operator
acting on £[w] for all w € R at this stage.

We need to decompose D Dy into irreducible components. Using the definition of Dy, a direct
computation shows that

DADg f = 4w Wa Wg f — 4wX{Yog, f
+d(w — DXE{WV, f + 4w W, XEV, f +4X5ZP g0 Vi f (39)
+AXEXE(VaVy + wPy) f.

From this, one easily verifies that

1 1 4
5DaDg + DgDy) = Z(DaDg + DDl + —hargoDiyi g,

2

— haophagpDAD,, 40
+(n+1)(n—|—2) 400l 41 1 A (40)

1
E(DADB - DBDA) == 3hA0[A1]D)B] == —2]’1A030DA131.
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Hence, we need the irreducible components and R of IATB, cf. (6). Explicitly,
we put 07 D:I(h

(I,I):= —4nI*I5 € R,

T1A . A'pF Al
LA = AL e )

= ! 4 = !
(IeI)PF .= 51P<BJPB o e T

and we denote by (I X I)AP the trace-free part of the Young projection applied to IATB.

Using this notation, the projection and decomposition of /4 ® I® into its irreducible components in

, R, H and [ | ], is given by

= 1 0 RO 11 =
IAQIB —»(IRI)AB — RY B RA BT T
+ lh,AOBO[L f]AlBl + hAOBO(I ° ]*)AIBl'
n

Using the computation above, we easily recover, Theorem 5.1 of Ref. 21].

Theorem 7.1: Let ¢%, ¢* € £ be conformal Killing fields corresponding to I* = Ij and
A = Ié‘ ing =504 y41. Then
wn + w) -

S,8;f = (I RDAPD,Dgf + (I o )PP D2 f+l[l IPDaf+ ——— (D) f
voP ATB By S T b AT D +2)

for f € E[w], ¢f- (7). The four summands on the right-hand side are canonical symmetries, explicitly

o (IR D*BD,Dg = So for E@N 5 b = plagbl,

© (IeDBFDL, = Se for£[2] 5 ® = 1gg,,

o [I,7]ADy = S for £9 3 & = ¢?V,¢* — @”V,¢0* (the Lie bracket of vector fields),

* R> (I, 1) = —4nI* Iy = —2[¢"V,Vp@” + ¢V Vpp"] + n(Va@?) (V") —
B2(Vap")(Vp@?) — 4n Popp @

In all these cases, the section ® is a solution of the corresponding equation (3).

Proof: The statement puts together the previous computations. Following (38), we need to
decompose 14 BD, Dy into canonical symmetries. This is provided by contracting right-hand sides
of (42) and (40). Using in addition DAD, f = —2w(n 4+ w) f for f € E[w] (which easily follows
from (39)), the right-hand side of S, S in the display above follows.

The components I X I,1 e I,[1, I'],and (I, I) are parallel (and irreducible) thus their projecting
parts & are solutions of the corresponding equation from the family (3). To prove the theorem, it
remains to identify howthese solutions are built from ¢“, ¢* € £¢. Note

1 1 1
M= Y0+ S ZAV " 4 WAV + X VaVig” + Purg'] (43)
and similarly for 743! Now the explicit form of such & for irreducible components of /4 ® I® is
casily obtained from (41) for 7 e I, [1, I], and (I, I). Since 3(I*T® + I®*) has the projecting part

@@, the case I X I follows by irreducibility. O

To finish the proof of Theorem 2.5, observe the following. First, we have an associative algebra
morphism

®g —- A
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determined by (37). That this is surjective and an easy consequence of Theorem 2.4 since the
canonical symmetries Sy of (24) clearly arise in the range of (37). We want to find all corresponding
relations, that is identify the two-sided ideal annihilated by this map. The ideal certainly contains (8),
as follows from Theorem 7.1 with w = —7 + k. That it also contains X% is due to the following
result.

Lemma 7.2: Assume I € ®*square is parallel. Then I = I, for ¢ € E12k] and S, = ¢ Py :
E[-5 + k]l — E[-5 + k]

Proof: I € R*square means [M141MAx g £A1A1-AcAo and [ = [, for ¢ € E[2Kk] is due to the
irreducibility of 7 and the fact that is parallel. Then

_ AT ALy 2
Sy =1y DAIA/I "'DAkA’k-

Now observe D(2CD)0=—X(CDD>0 and X Dp), = DcXp),, cf. (18). On the other
hand D, -+ Dayy = (=1*X(a, -+~ Xap,Pc  On 5[—%+k].27’30 Thus Dfx,A;"'Dz

AA,
= Xa, Xa; - Xa Xa, P, on E[—5 + k]. The rest follows from the relation between ¢ and I,
in (23). =

We have found the generators of the ideal in ) g described in Theorem 2.5; it remains to show
that this ideal large enough to have .4; as the resulting quotient. Essentially, we follow Refs. 20 and
21, where cases k = 1 and k = 2 are studied. We assume k > 1 here. Since we know A, as a vector
space, from (4), it is sufficient to consider the corresponding graded algebra (i.e., the symbol algebra
of Ai.) The corresponding graded ideal contains I; ® I, — I X, — Iy eI, for I, I; € g, cf. (8),
hence it contains g A g. Therefore, we can pass to () g and we write Z for the ideal in -) g which is
the image of the ideal of Theorem 2.5. We claim that as a graded structure A, = @ Ay, where the
Ay, are defined as the submodules satisfying

t
——~—

Ay = {X € s.t. trace(... (trace(X)..)) = 0} - @tg.

The traces are taken via the tractor metric and note that the trace condition arises from Lemma 7.2
above. As a vector space this is the right answer as, by standard representation theory, Ay,
= EBHZI.:, IC;.’, t > 1. To finish the proof, we need to show @t g = Ay, ®Z; (as vector spaces)
where Z, = ZN (' g, t > 1. This is based on the following.

Lemma 7.3: Assume t > 3, k > 1. Then

(H ® Ak,t—l) N (Am—l & H) = jiz — : 7: ;Z

Proof: The case t < 2k follows from, Theorem 2 of Ref. 19 or can be easily checked directly.
Assume 7 > 2k. The inclusion “D” is obvious. To show “C” consider the tensor FA-At in the
left-hand side of the display. Then

FALACALAL  pALALALA

forany 1 <i <j <t. From this it easily follows that the skew symmetrisation over any three indices
of Fis zero. (This and the last display also follow from, Theorem 2 of Ref. 19.) Now any composition
of k traces applied to F affects 2k indices among 2¢ indices A?, Al, ..., A%, A] i.e., at most 2k form
indices among Ay, ..., A,. Thus, there is a free form index A; (as ¢ > 2k) and the inclusion “C”
follows from the symmetry given by the previous display.
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Assume t = 2k. Following the previous case “C,” the difference appears only if a composition
of k traces affects all 2k form indices of F. After taking of such composition of traces we obtain a
tensor in (' [J and one easily sees this tensor is trace-free. On the other hand, for any symmetric

0 0
trace-free tensor G41-4% € X?*J, one has

0 0 1.1
QAT Az p AT Agy c (H ® Ak)t_l) N (Ak,t—l ®H) (44)
which can be easily verified by direct computation. Here, h*14% = p(A143 ... pA%14%) and recall
we implicitly skew over the couples AYA! for 1 <i < 2k. O

The final step is to use that for each s, there is (by standard theory) a projection ©@°g — Ay
and that the induced projections P, : O' g—> 9g® Ay,—yand O, : O' g — Ai—1 ® g have kernel
in, respectively, g ® Z,_; and Z,_; ® g (and hence in both cases in Z;) where for each non-negative
integer s, Z, = Z N (" g. Therefore, by obvious dimensional considerations,

@ﬂ — (im P, Nim Q;) & (ker P + ker Q;), t> 3 (45)

and the claim above and then Theorem 2.5 follow by induction.
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Abstract. Let (M, g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3.
We determine the form of all the conformal symmetries of the conformal (or Yamabe)
Laplacian on (M, g), which are given by differential operators of second order. They are
constructed from conformal Killing 2-tensors satisfying a natural and conformally invariant
condition. As a consequence, we get also the classification of the second order symmetries
of the conformal Laplacian. Our results generalize the ones of Eastwood and Carter, which
hold on conformally flat and Einstein manifolds respectively. We illustrate our results on
two families of examples in dimension three.
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1 Introduction

We work over a pseudo-Riemannian manifold (M,g) of dimension n > 3, with Levi-Civita
connection V and scalar curvature Sc. Our main result is the classification of all the differential
operators D; of second order such that the relation

Ay Di = DyAy (1.1)

holds for some differential operator Dy, where Ay := Vg%V, — 4(’;%218(: is the Yamabe Lapla-
cian. Such operators D; are called conformal symmetries of order 2 of Ay. They preserve the
kernel of Ay, i.e. the solution space of the equation Ayt =0, ¢ € C*°(M). Under a conformal
change of metric, g = €2Tg, T € C>®°(M), the Yamabe Laplacian transforms as

—_ _n42 n—2
Ay=e 2 T0Ayoe 2 T,

so that each conformal symmetry D; of Ay gives rise to one of Z; given by
B\l = efnT_%r oDjo enT_ZT.

This emphasizes the conformal nature of the problem and justify our choice of the Yamabe
Laplacian, rather than the more usual Laplace Beltrami one, A := V,g%V;. Over flat pseudo-
Euclidean space, the classification of conformal symmetries up to second order is due to Boyer,
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2 J.-P. Michel, F. Radoux and J. Silhan

Kalnins and Miller [7], who use it to study the R-separation of variables of the Laplace equa-
tion AW = 0. More generally, Kalnins and Miller provide an intrinsic characterization for
R-separation of this equation on (M,g) in terms of second order conformal symmetries [19].
Thus, classifying those symmetries happens to be a basic problem in the theory of separation
of variables. A new input into the quest of conformal symmetries has been given by the work
of Eastwood [15]. He classified indeed the conformal symmetries of any order over the confor-
mally flat space and exhibited their interesting algebraic structure. This leads to a number of
subsequent works, dealing with other invariant operators [16, 18, 31].

Using principal symbol maps, one can extract two informations from the equation (1.1): the
operators Dy and Ds have the same principal symbol and the latter is a conformal Killing 2-
tensor, i.e. a constant of motion of the geodesic flow, restricted to the null cone. One looks then
for a right inverse to the principal symbol maps, called a quantization map, which associates
with each conformal Killing tensor a conformal symmetry of Ay. For Killing vector fields this
is trivial. If K is a 2-tensor, Carter proves that if the minimal prescription

K — VK%V,

satisfies [Ay, V,K®V,] = 0, then K is Killing. Moreover, he shows that if (M, g) is Einstein,
i.e. if Ric = %ch with Ric the Ricci tensor, the fact that K is Killing is sufficient to ensure
that the minimal prescription above is a symmetry of Ay (for application to the separation
of variables, see [3]). Besides, in [15], Eastwood defines conformally invariant operators on an
arbitrary pseudo-Riemannian manifold, which coincide with the conformal symmetries of Ay
on the flat space. These operators are given by means of the natural and conformally invariant
quantization Qy, », (where Ao = "2;2), developed in [9, 24, 29, 30]. Explicitly, if X is a vector
field and K a symmetric trace-less 2-tensor, Qx, x,(X) and Qx, »,(K) are differential operators
acting between A\g-densities defined in the following way:

n—2

QAO,)\O (X) = XV, + (vaXa)7

n
n+2
4(n+1)

”_i)(vavm”)) -

Ricgy K.
4(n+ 1Cqp

K :Kab " n U.Kab
Qs (K) = KV,¥y - (9K, +

In the conformally flat case, all the conformal symmetries of second order are of the type
Do xo (K + X + ¢), where ¢ € R, X is a conformal Killing vector field and K is a conformal
Killing 2-tensor. Thanks to the conformal covariance of Ay one can show that Qy, x,(X) is still
a conformal symmetry of Ay on an arbitrary pseudo-Riemannian manifold, if X is a conformal
Killing vector field. However, as pointed out by Eastwood in [15], it is unclear whether Qy, »,(K)
is a conformal symmetry when K is a conformal Killing 2-tensor.

Our strategy relies on the properties of the quantization map Q) », and on the classification
of natural and conformally invariant operators acting on prescribed subspaces of symbols. This
method has been developed first on conformally flat manifolds, in [26]. In that case, the
map 9y, i a conformally equivariant quantization [12], and the author proved that it is
precisely the bijective map between conformal Killing tensors and conformal symmetries of Ay,
discovered by Eastwood. The description of conformal symmetries on arbitrary pseudo-Rieman-
nian manifolds is more involved, even at order 2. Namely, there exists a conformal symmetry
with principal symbol K if and only if K is a conformal Killing tensor and Obs(K)” is an exact
one-form. Here, Obs is a natural and conformally invariant operator which reads, in abstract
index notation, as

_2(n—2)

Obs(K)* = ECES]

(Crstavr - 3Asta) KStv
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where C denotes the Weyl tensor and A the Cotton-York tensor. If Obs(K)” is equal to the
exact one-form —2df, with f € C*°(M), then the operators

Q,\O’)\O(K-‘—X-‘rc) + f

are conformal symmetries of Ay for all conformal Killing vector field X and constant ¢ € R. As
a consequence, Qx, x,(K) is a conformal symmetry of Ay if and only if Obs(K) = 0.

We illustrate our results on two examples in dimension three. In the first one, the space R?
is endowed with the most general Riemannian metric admitting a Killing 2-tensor K, which
is diagonal in orthogonal coordinates [28]. Then, Obs(K)’ is a non-trivial exact 1-form and,
up to our knowledge, the symmetry of Ay that we obtain is new. In the second one, we
consider a conformal Stéckel metric g on R? with one ignorable coordinate. Such a metric
admits an irreducible conformal Killing tensor K. Using the generic form of g and K given in
the reference [8], we obtain that Obs(K) is a non-exact 1-form in general. This means there
are no conformal symmetries of Ay with principal symbol K in general.

We detail now the content of the paper.

In Section 2, we introduce the basic spaces: the one of tensor densities Fy(M) of weight
A € R, the one of differential operators Dy , (M) acting between A- and p-densities, the one of
symbols Ss(M) with 6 = p — A. Then, we define the Yamabe Laplacian Ay as an element of
Do o (M), with Ag = =2 and Lo = 42 5o that it becomes a conformally invariant operator.

2n 2n
Finally we introduce our main tool, namely the natural and conformally invariant quantization

Q)\,,u: S,U.*)\(M) - D)\,,LL(M):

and we provide explicit formulas for it.

In Section 3, we classify the natural and conformally invariant operators between some sub-
spaces of symbols. Among the operators we obtain (and which are crucial for understanding
of 2nd order symmetries), one of them, G, is classical, whereas another one, Obs, acting on
symbols of second degree, is new and admits no counterpart on flat space. We obtain also an
analogous classification for higher order trace-free symbols where the situation is much more
complicated. Note that the discovered operators act between source and target spaces of well-
known conformally invariant operators, which appear in the generalized BGG sequence [10]. It
would be interesting to understand better the relations between all these conformal operators.

In Section 4 lies our main result. After defining the spaces of conformal symmetries and of
conformal Killing tensors, we prove that, on symbols K of degree 2, we have

(Qroo) " (Ay Qg rg (K) = Qg i (K)Ay) = 2G(K) + Obs(K).

The kernel of G is precisely the space of conformal Killing tensors, whereas Obs(K) is the
obstruction for a conformal Killing 2-tensor to provide a conformal symmetry of the form
O xo (K). The full description of conformal symmetries of 2nd order of Ay easily follows.
Using that Qxg . (K) = Qg0 (K) for Killing 2-tensors, we deduce also the classification of
second order symmetries of Ay, which satisfy by definition [Ay, Dq] = 0.

In Section 5, we provide two examples illustrating our main result. In the first one, the
Killing tensor K is such that Obs(K)’ is a non-vanishing but exact one-form. In the second
example, we provide several conformal Killing tensors K such that Obs(K)” is a non-exact
one-form. Hence, there is no conformal symmetry with such K as principal symbols.

2 Conformal geometry, differential operators,
and their symbols

Throughout this paper, we employ the abstract index notation from [27]. That is, on a smooth
manifold M, v® denotes a section of the tangent bundle T'M, v, a section of the cotangent bundle
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T*M and e.g. v*, a section of TM @ TM @ T*M. The letters a, b, ¢, d and r, s, t are reserved
for abstract indices. Repetition of an abstract index in the covariant and contravariant position
means contraction, e.g. vgb is a section of TM. In few places we use concrete indices attached
to a coordinate system. This is always explicitly stated and we denote such indices by letters
i, 7, k, I to avoid confusion with abstract indices. We always use the Einstein’s summation
convention for indices, except if stated otherwise.

2.1 Basic objects

Let M be a n-dimensional smooth manifold. If A € R, the vector bundle of \-densities,
F\(M) — M, is a line bundle associated with P'M, the linear frame bundle over M:

F\(M)=P'M x,R,
where the representation p of the group GL(n,R) on R is given by
p(A)e = | det A| e, VA e GL(n,R), VeeR.

We denote by Fy(M) the space of smooth sections of this bundle. Since F)(M) is associated
with P1M, the space Fy(M) is endowed with canonical actions of Diff(M) and Vect(M). If
(z',...,2"™) is a coordinate system on M, we denote by |Dz|* the local A-density equal to
[(Id, 1)], where Id is the identity frame in the coordinates system (x!,..., z").

Actually, a A-density ¢ at a point x € M can be viewed as a map on AT, M with values
in R such that

oleXi N NXy) = |c|’\g0(X1 A ANXy)

for all Xq,...,X, € T,M and c € R. The A-density |Dz|* is then the \-density equal to one on
01N+ A0y, where 91, ..., 0, denotes the canonical basis of T, M corresponding to the coordinate
system (z!,... 2").

If a A-density ¢ reads locally f|Dx|*, where f is a local function, then the Lie derivative of
© in the direction of a vector field X reads locally

Lxe = (X.f + X(0:X") f)| Dz, (2.1)

It is possible to define the multiplication of two densities. If 1 reads locally f|Dxz|* and if @9
reads locally g|Dz|®, then ¢y reads locally fg|Dxz|M0.

On a pseudo-Riemannian manifold (M, g), it is possible to define in a natural way a A-density.
In a coordinate system, this A-density reads

Vol | = | det g|2 | D,

where | det g| denotes the absolute value of the determinant of the matrix representation of g in
the coordinate system.

We shall denote by Dy ,,(M) the space of differential operators from Fy(M) to F,(M). It
is the space of linear maps between Fy(M) and F,(M) that read in trivialization charts as
differential operators. The actions of Vect(M) and Diff(M) on D, ,(M) are induced by the
actions on tensor densities: if Lx D denotes the Lie derivative of the differential operator D in
the direction of the vector field X, we have

LxD=1IL%oD-Dolyk, VYDeEDy,(M) and VX € Vect(M).
¢p-D=¢oDo¢™t, V¥DeDy, (M) and V¢ e Diff(M).
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The space Dy ,(M) is filtered by the order of differential operators. We denote by D’ij(M)
the space of differential operators of order k. It is well-known that this filtration is preserved
by the action of local diffeomorphisms.

On a pseudo-Riemannian manifold (M,g), it is easy to build an isomorphism between
D), (M) and D(M), the space of differential operators acting between functions. Indeed, thanks
to the canonical densities built from |[Volg|, all operators D € Dj (M) can be pulled-back on
functions as follows

Fa(M) 2 Fu(M)
'VOIM T\Volgl" (2.2)
C>(M) C>(M)

[Volg| =0 Do|Volg|*

The space of symbols is the graded space associated with Dy ,(M): it is then equal to

gDy (M @DM (M)/Dy,H(M).
k=0

The canonical projection oy, DkN(M) — Dk (M)/D]; Ml(M) is called the principal symbol

map. As the actions of Diff (M ) and Vect(M ) preserve the filtration of D) (M), they induce
actions of Diff(M) and Vect(M) on the space of symbols.

Let 6 = p — X be the shift of weights. If the sum of the k-order terms of D € D];yu in
a coordinate system (z!,...,2") reads

Dh...ikail . 81

k

and if (2, p;) is the coordinate system on T*M canonically associated with (z!,...,2"), then
we get the following identification:

O'k(D) <—— .Dil'"ikpi1 © o Pig -

Thus, the space of symbols of degree k can be viewed as the space ng(M) := Pol*(T* M) ®coo (M)
Fs(M), where Pol*(T*M) denotes the space of real functions on T*M which are polynomial
functions of degree k in the fibered coordinates of T*M. The algebra S(M) := Pol(T*M) is
clearly isomorphic to the algebra I'(ST M) of symmetric tensors and depending on the context
we will refer to its elements as symbols, functions on T*M or symmetric tensors on M.

Let us recall that, if 57,52 € S(M), then the Poisson bracket of S; and So, denoted by
{S1, S}, is defined in a canonical coordinate system (¢, p;) of T*M in the following way:

{51,552} = (9p,51)(04:52) — (p, S2) (D, Sh). (2.3)

We conclude this subsection by two properties of the principal symbol map linked to the
composition and to the commutator of differential operators. For all k,l € N, we have:

0+1(Ao B) = o(A)oi(B), (2.4)
ok+1-1([A, B]) = {ox(A), ou(B)}, (2.5)

where A and B are elements of D(M) of order k and [ respectively.
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2.2 Pseudo-Riemannian and conformal geometry

Let (M,g) be a pseudo-Riemannian manifold. The isometries ® of (M,g) are the diffeo-
morphisms of M that preserve the metric g, i.e. ®*g = g. Their infinitesimal counterparts
X € Vect(M) are called Killing vector fields, they satisfy Lyg = 0, with Lxg the Lie derivative
of g along X.

Given the Levi-Civita connection V corresponding to the metric g, the Riemannian curvature
tensor, which reads as Ry in abstract index notation, is given by [Vg, Vp]v© = RpSqv? for
a tangent vector field v¢. Then, one gets the Ricci tensor by taking a trace of the Riemann
tensor, which is indicated by repeated indices: Ricyg = Rap®q. By contraction with the metric,
the Ricci tensor leads to the scalar curvature Sc = g Ricg,.

A conformal structure on a smooth manifold M is given by the conformal class [g] of a pseudo-
Riemannian metric g, where two metrics g and § are conformally related if § = e?Tg, for some
function T € C*°(M). The conformal diffeomorphisms ® of (M, [g]) are those which preserve the
conformal structure [g], i.e. there exists T € C*(M) such that ®*g = e?Yg. Their infinitesimal
counterparts X € Vect(M) are called conformal Killing vector fields, they satisfy Lxg = fxg,
for some function fx € C*(M).

Let (2%, p;) be a canonical coordinate system on T*M. If M is endowed with a metric g, we
define the metric symbol and the trace operator by, respectively,

H= gijpipj and Tr = gi;j0p,Op; -

Note that the symbol [Volg|*"H € Sy/n and the operator [Volg| 2" Tr : S5 — Ss5_2/n are
conformally invariant. In consequence, we get a conformally invariant decomposition

S'TM = @ SHTM, (2.6)

0<2s<k

where S € S¥(M) := T'(S**TM) is of the form S = H*Sy with Tr Sy = 0.

2.3 The conformal Laplacian

Starting from a pseudo-Riemannian manifold (M, g) of dimension n, one can define the Yamabe
Laplacian, acting on functions, in the following way:

n—2

AY = Vagabe - m

Sc,

where V denotes the Levi-Civita connection of g and Sc the scalar curvature. For the conformally
related metric § = e2Tg, the associated Yamabe Laplacian is given by

—_ _n+42 n—2
Ay=e 2 ToAyoe z L.

According to the transformation law |Vols| = €"¥|Vol,| and to the diagram (2.2), this translates
into the conformal invariance of Ay viewed as an element of Dy, ,,,(M), for the specific weights

n—2 n+ 2

)\ = =
0 on Ho omn

2
and 0o = o — o = — (2.7)

Thus, the data of a conformal manifold (M, [g]) is enough to define Ay € Dy ,,(M). We write
it below as AAYJ (g) and we refer to it as the Yamabe or conformal Laplacian. One easily gets
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Proposition 2.1. The conformal Laplacian is a natural conformally invariant operator, i.e.

e it satisfies the naturality condition:
AY(2%g) = o (A¥(2)) (2.8)

for all diffeomorphisms ® : N — M and for all pseudo-Riemannian metric g on M,
e it is conformally invariant, AM (e*Tg) = AM (g) for all T € C=(M).

More generally, a natural operator over pseudo-Riemannian manifolds is an operator that acts
between natural bundles, is defined over any pseudo-Riemannian manifold (M, g) and satisfies
an analogue of the naturality condition (2.8). It is said to be conformally invariant if it depends
only on the conformal class of g. For a general study of natural operators in the pseudo-Rie-
mannian setting, see the book [20].

From Proposition 2.1, we deduce that the conformal Laplacian Ay is invariant under the
action of conformal diffeomorphisms, which reads infinitesimally as

LK o Ay = Ay o LYY, (2.9)

for all conformal Killing vector fields X. Here, as introduced in (2.1), L*® and L* denote the
Lie derivatives of \g- and pp-densities. If the manifold (M, [g]) is locally conformally flat, then,
up to multiplication by a scalar, Ay is the unique second order operator acting on densities
which is invariant under the action (2.9) of conformal Killing vector fields.

2.4 Natural and conformally invariant quantization

Recall first the definition of a quantization on a smooth manifold M.

Definition 2.2. Let A\, x € R and § = p — A\. A quantization on M is a linear bijection Qﬁ\wu
from the space of symbols S5(M) to the space of differential operators Dy ,(M) such that

ou(Q),(9)) =S, VSeSH(M), VkeN

On locally conformally flat manifolds (M, [g]), for generic weights A, p, there exists a unique
conformally equivariant quantization [12], i.e. a unique quantization which intertwines the ac-
tions of the conformal Killing vector fields on Ss(M) and on D) ,(M). In the following, we need
an extension of the conformally equivariant quantization to arbitrary conformal manifolds. This
is provided by the notion of natural and conformally invariant quantization. The definition and
the conjecture of the existence of such a quantization were given for the first time in [22].

Definition 2.3. A natural and conformally invariant quantization is the data for every pseudo-
Riemannian manifold (M, g) of a quantization Qﬁ/[#(g)7 which satisfies

e the naturality condition:
QN (27g)(@"9) = ©*(QX(8)(5)), VS e S5(M), (2.10)

for all diffeomorphisms ® : N — M and for all pseudo-Riemannian metric g on M.

e the conformal invariance: Q%H(eﬂg) = QY (g) for all T € C(M).

In the following we refer to a quantization map by Q) ., the dependence in the chosen pseudo-
Riemannian manifold (M, g) being understood. Accordingly, we drop the reference to M in the
spaces of densities Fy, symbols S5 and differential operators Dy .
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The concept of natural and conformally invariant quantization is an extension to quantizations
of the more usual one of natural conformally invariant operator, introduced in the previous
section. Restricting to conformally flat manifolds (M, [g]) and to ® € Diff(M) preserving [g],
the naturality condition (2.10) reads as conformal equivariance of the quantization map Q.
Thus, the problem of the natural and conformally invariant quantization on an arbitrary ma-
nifold generalizes the problem of the conformally equivariant quantization on conformally flat
manifolds.

Remark that the bundles S*T'M are natural bundles over (M, [g]). Hence, one can consider
natural and conformally invariant quantization restricted to the subspaces of symbols Sg“ or
Ségk =6 i<k Sg . In a first step, the proofs of the existence of a natural and conformally invariant
quantization at the second and the third orders were given respectively in [13] and [23], together
with explicit formulas. We provide the one at order 2, which we will need later on.

Theorem 2.4 ([13]). Leté ¢ {%, "TJ;LQ, 1, "TH, "TH} A natural and conformally invariant quanti-

zation Qy , 8632 — D3 , U8 provided, on a pseudo-Riemannian manifold (M, g) of dimension n,
by the formulas

Q)\,,u(f) = .fa
A
Quu(X) = XV + 15 (VaX),
Oy u(S) = SV + B1(VaS™)Vy + Bog™(V, Tr S)V,
+ B3(VaViS®) + B1g™V Vi (Tr S), +85 Ricay ¥ + B Sc(Tr S), (2.11)

where f, X, S are symbols of degrees 0, 1, 2 respectively and TrS = gu;,S%. Moreover the
coefficients (B; entering the last formula are given by

2(nA+1)
fr= 2+n(1—10)
By = n(A+p—1)
2+n(1-20)2=nd)

B nA(nA +1)
fs = (1+n(1—-0)2+n(1—20)
B, = n\ nz,u(Z —A—p)+2(nr+ 1)2 —n(n+1))

LT 0+ =6)2+n(1=06)2+n(l—28))(2—nd)’

B n?\p—1)
fs = (n—2)(1+n(1—-246))
B = n?A(p — 1)(nd — 2) (2.12)

(n—1)(n—-2)1+n(1-2¥8))(2+n(l—20))

In a second step, the proof of the existence of such a quantization, at an arbitrary order and
for generic values of A\, u, was given in [9, 25, 30] in different ways. We provide a slightly refined
statement in the next section.

2.5 Adjoint operation and quantization

For all weights A € R, there exists a non-degenerate symmetric bilinear pairing
]:K X ]:107)\ — R7

) = [ v,
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Second Order Symmetries of the Conformal Laplacian 9

where F¥ is the space of compactly supported A-densities. On a manifold M, this pairing is
Diff(M)-invariant since 1-density is the right object for integration. In consequence, we can
define an adjoint operation * : Dy , — Di_, 1-x by

(0, D*) = (D, ),
for all p € F} and ¢ € F{_,,. We introduce the following subset of R?,

I={ ) €2 1= A 58 10} U (),

where A\g = %2 and pp = %2 are the weights of the conformal Laplacian (see (2.7)). The set

1 is stable under the involutive map (A, p) — (1 — p, 1 — X). Note that
o9(Ay) = [Volg | H,

where dg = pp— Ao and H = g”p;p; in canonical coordinates. The proof of existence of a natural
and conformally invariant quantization Q) , in [30] leads easily to the following statement.

Theorem 2.5. There evists a family (Qx ) pyer of natural and conformally invariant quan-
tizations that satisfies:

e the reality condition:
Aul9) = (-1 Qiu1a(8),  VSES),  V(pel (2.13)
e the factorization property:

Qo0 (|V01g|6OHS) = Qup,x(5) 0 Ay, VS e 5550,
Qoo ([VOlg | HS) = Ay 0 Q0 1, (S), VS eSts, (2.14)

o the restriction of Qy, to 8652 is given by the formulas in (2.11) if (A, p) € T\ {(No, 10)}-

Proof. We prove the theorem in four steps.
In [30, Theorem 4.4], one of us determines that for (A, u) € I there exists a natural and
conformally invariant quantization map QY .

D

From the above family of quantizations (Q')("#)()\me], we define (Q/)/\”u()()\y#)ej by

1
Qi 5 = 5 (S + (DL S)),  VSeS), YAmelL
The maps Qf ,, are again natural and conformally invariant quantizations. Indeed, the adjoint
operation * is natural, does not depend of the choice of metric on M and satisfies

o, (D*) = (=1)Fay(D),

for all differential operators D of order k. The newly defined quantization maps clearly satisfy
the property (2.13) since * is an involution.

For (A, p1) € I\ {(Xo, o), (10, p0) }, we define Q) | := Qf . On the space of traceless symbols
we set Q/Ao,Ao = ')(07)\0 and Q:to,uo = QZ(WO. We extend both maps to the whole symbol space
by the formulas in (2.14). They are clearly still natural and conformally invariant and satisfy
the reality condition (2.13).

For all (A, i) € I\ {(Xo, t0)}, we denote by Q) ,, the natural and conformally invariant quan-
tizations restricted to 5597 given by the formulas (2.11). A direct computation shows that they
satisfy the reality condition (2.13) and the factorization property (2.14). For (A, ) = (Ao, po),
we set Qxg g = Q) o O1 55)2. We extend then the quantizations Q) , (where (A, u) € I) to

the whole symbol space by setting Qy ,, 1= Q/A,u on 8523, for all (\,pu) € I. [ |
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10 J.-P. Michel, F. Radoux and J. Silhan

In the following, the quantization maps Q) , that we will use are always taken from a family
(Qxu) (2 pyer provided by Theorem 2.5. In fact, we will need only four of them, namely: Qx, \,,
Quoo> Qroo> Luo,ho- With such a convention, it is worth noticing that the conformal Laplacian
can be obtained as

Ay = Qg ([Volg | H).

The conformal invariance of the symbol [Vol,|% H translates into the conformal invariance of Ay

3 On particular conformally invariant operators

First, we introduce notation for classical objects of the pseudo-Riemannian and conformal geo-
metries and recall basic facts about natural and conformally invariant operators. Then, we
classify the natural conformally invariant operators between particular subspaces of symbols.

3.1 More on pseudo-Riemannian and conformal geometry

We complete here Section 2.2, and use freely the notation introduced there.
First, we work over a pseudo-Riemannian manifold. The Riemann tensor admits the following
decomposition

Rabcd = Cabcd + Zéf;le]d + di[bpa]ca (31)

where Cg;,°q is the totally trace-free Weyl curvature, Py, = ﬁ (Ricab *ﬁ Sc gab) is the
Schouten tensor, (52 is the Kronecker delta and square brackets denote antisymmetrization of
enclosed indices. The Weyl tensor Cgpeq is zero for the dimension n = 3. Note also that Cgypeq
obeys the same symmetries of indices as Rgpeq does. Further curvature quantities we shall need
are

J=g"Pyp  and  Age=2VPy,

where Agpe is the Cotton—York tensor and J is related to the scalar curvature via J = ﬁ Sc.
Bianchi identities have the from Rjgpgq = 0 and V|iRy 4 = 0 and lead to

(n—3)Agpe = V,.Cpe's  and VP’ = V,J.

Second, we consider a conformal manifold (M, [g]). The Weyl tensor Cg°y is a conformal
invariant, i.e. it does not depend on the choice of the representative metric from [g]. The same is
true for Ay in the dimension 3. Further, a choice of metric provides a canonical trivialization
of the bundle of \-densities F) via the global section [Volg|* (see Section 2.1). According to
the transformation rule [Volz|* = e"*T|Vol,| if § = ¢?Tg, we have the conformally invariant

object gup = Zap ® \Volg|_%, termed conformal metric, with the inverse g? in T'(S?TM) ® Fa/ns
see e.g. [1] for details. (Note that the space of densities [w] in [1] corresponds to F_/,
in our notation.) The conformal metric gives a conformally invariant identification TM =
T*M & F_y/y,. In other words, we can raise and lower indices, with expense of the additional
density, in a conformally invariant way. For example, we get Capea € D(S*(A*T*M)) @ F_y ).
Note also that gq, and g are parallel for any choice of a Levi-Civita connection from the
conformal class.
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Second Order Symmetries of the Conformal Laplacian 11

3.2 Description of natural conformally invariant operators

Now we recall basic facts about natural and conformally invariant operators. Every natural
operator on the Riemannian structure (M,g) between natural bundles V; and V3 is a linear
combination of terms of the form

—1 —1 (il) ('Ls)
g lg g (VIR). (VIIR) V.-V 3.2
g 5 g gl ) NG (3:2)

r1 ) s t

to which one applies a GL(n)-invariant operation
I'(Q " TM @ (R >+ HT* M @ Vi) — T(Va). (3.3)

Here f € T'(V1), g~' stands for the inverse of the metric g, V(%) denotes the 1jth iterated
covariant derivative where i; > 0, abstract indices are omitted, ¢ =41 + --- 445, and V and R
correspond to the choice of the metric g. The existence of a GL(n)-invariant operation (3.3)
gives in general constraints on the possible values of r1, ro, s, t, i. See [20] for details.

A natural operator on (M, g) is conformally invariant if it does not depend on the choice of
metric in the conformal class. Then, it defines a natural operator on the conformal structure

(M, [g]). Tt is convenient to use the conformal metric g instead of g and the inverse g ! instead
of g=1 in (3.2) since they are conformally invariant, namely
-1 -1 (i1) (is)
i (VAR (VR -
g g g gl ) ( ). , f
1 T2 s Y
eT (® it & ® a3 HHTI N @ V] ® F%(Trm)) (3.4)

for f € I'(V4). It is generally a difficult problem to determine which linear combinations of terms
as in (3.2), together with suitable projections as in (3.3), give rise to a conformally invariant
operator. We shall need details only in specific cases.

3.3 Conformally invariant operators on the symbol space

This section concerns existence and uniqueness of natural and conformally invariant operators
of certain type. The first one is well-known and can be obtained as an easy consequence of [17],
or deduced from the general work [10] on curved BGG-sequences. We present a detailed proof to
demonstrate the technique which is used (in much more complicated setting) later in the proof
of Proposition 3.2.

Recall first that T'(S¥9T M) is the space of trace-less symmetric k-tensors. In terms of the
abstract index notation, a section f of ®k T M is denoted by f*%. In the following, we write
flavar] | flarar) and flar-ar)o for the projections of f to D(A*TM), T'(S*TM) and T'(S*°T M),
respectively. Similar notation will be used for covariant indices.

Proposition 3.1. Up to multiplication by a scalar, there exists a unique natural conformally
invariant operator S(’f — S;“/J;l. It is given by the conformal Killing operator G, such that for

all f € Sk,

(G(f))ao...ak _ V(aofal”'ak)o. (35)

Proof. Identifying S and Sé“fnl with corresponding spaces of sections of symmetric tensors,

we consider natural and conformally invariant operators I'(S*TM) — T(S*'TM @ F, /n)- By
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naturality, such operators are linear combinations of terms in (3.2) with V; = SET M, composed
with GL,-invariant maps

® ST @ ® 2ro43stitte v 1 o RN Fa .y — SHITM @ Fyp

Explicitly, those maps may consist of: contracting covariant and contravariant indices, project-
ing the covariant and contravariant tensors on tensors of prescribed symmetry type (given by
a Young diagram) and tensorizing with the density |Volg|‘S for arbitrary 6 € R. The conformal in-
variance does not allow for the last operation, hence r; —r9 = 1. The difference between the num-
ber of covariant and contravariant indices is a constant therefore (2rq1+s+k) —(2ro+3s+i+t) =
k+1,ie 2s+i+t=1. This means s =¢ =0 and t = 1. The sought operators are then first
order (gradient) natural operators and using moreover the conformal invariance, the statement
follows from the classification in [17]. |

The next proposition is a crucial technical tool in the following.

Proposition 3.2. FEvery natural conformally invariant operator Sg’o — S¥1 has its target

2/n
space in 85/_711’0 C 85/_711. The space of natural conformally invariant operators 85’0 — 85/_73’0
on a pseudo-Riemannian manifold (M,g) is at most two-dimensional and depends on k € N as
follows.

(1) This space is trivial for k = 1.
(#) If k = 2 or n = 3, this space is one-dimensional and generated by the operator F such

that, for all f € S&°,

(F(f))al'“ak_l — Crst(al Vrfar‘)'“ak_l)OSt _ (k + 1)Ast(a1 fag...ak_l)ost.

(t3t) If k. = 3 and n > 3, this space is two-dimensional and generated by two operators,
F, and Fy, such that for all f € S(ch,o’

k—2
F a1-ag-1 — (F aj...ap_1 ((1170112S as...ax_1)orst
(F(/) (Bt + 2o, ,

(Fy(f))am-1 = 4C(a1razsvtfa3"'ak71)OT5t + (n+ 2k — 2)(Vrcs(alta2)fa‘q'”'ak’l)omt
+2(n + 2k — 2) A, (@1 faz-ar-vors,

Remark 3.3. Let (2%,p;) be a canonical coordinate system on T*M. We can then write the
operators G and F as follows on S¥

G=Tpo (g"p:;V;) and  F =Tgog"pidy,0p (C*jum Vi — (k + 1)Ajim),  (3.6)

where Il : 85_1 — S; _nl’o is the canonical projection on trace-less symbols. Actually, we will see
in the sequel that the conformal Killing operator G can be used to define the conformal Killing
tensors whereas the operator F occurs in the computation of the obstruction to the existence of
conformal symmetries of Ay-.

Let us note that the proof of Proposition 3.2 is long, technical and interesting rather for
experts in conformal geometry. The reader interested mainly in results about symmetries can
continue the reading in Section 4 (details from the proof will not be needed there).
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Proof. We study natural and conformally invariant operators I'(S¥°TM) —»T(S* ' TM&F, ;).
In the first part of the proof we consider the naturality and in the second part the conformal
invariance.

I. Naturality. We start in a similar way as in the proof of Proposition 3.1. By naturality,
the considered operators are linear combinations of terms in (3.2) composed with GL,-invariant
maps

® rtsTA @ ® 2ra43sHiHt pr o GRS Fg(nfm) — SITM @ Fo/p.

The conformal invariance of the discussed operators leads to r; —ro = 1 and the GL,-invariance
of the maps above imposes (2r1 +s+k) — (2ro+3s+i+t) = k—1, i.e. 2s+i+¢ = 3. This means
either s=i=0,t=30ors=i=1,t=00r s=t=1, i =0. Hence, omitting abstract indices,
the natural operators I'(S*0TM) — T'(S*'TM ® Fy),) are a linear combination of terms

gl -glg-gVVVf, g'-..glg---gRVf, gl..glg.--g(VR)f, (3.7)
r+ T r T T T

where 7 > 0 and f € T'(S*OT'M), each of which is followed by a GL(n)-invariant projection to
I(S*'TM ® F, /n)- Irreducible components of the target bundle Sk=1TM @ F, /n are

SFIOTM @ Fy),, Sk=307 SFROTM @ F_y),, o

but since f is trace-free, one easily verifies from (3.7) that only possible target bundles are
Sk=LOTM @ Fy, and S*=3OT M. In other words, in the expressions (3.7), one can restrict to
r=0.

It remains to describe possible GL(n)-invariant projections of the terms in (3.7) in details.
Using the decomposition (3.1) of R into Weyl and Schouten tensors, they split into five terms:
g lVVVf, g lCVf, g (VC)f, g PV S and g 1 (VP)f.

We shall start with natural operators I'(S¥9T M) — T'(S* 2T M ® Fy/y,). In this situation,
at least one of the two indices above g~! in the expression of the operator has to be contracted
with a covariant index. For an operator of type g 'VVV £, the two resulting operators are (up
to the order of covariant derivatives) respectively

vrvrvsfal...ak,ls7 v(alvsvtfaz...ak,l)ost. (38)

Since the change of the order of covariant derivatives gives rise to curvature operators of the
form g 'RV f and g~!(VR)f, the previous display is sufficient for operators of type g~ 'VVVf.
Using that C is completely trace-free and (n — 3)Agpse = V,rCp'q, the different possibilities of
contraction of indices for the expressions g~!CV f and g~} (VC)f lead to the operators

CT 9t(al vrfa,z..AG,)C_l)ost7 C(alr(lg gvt.}('CLs..ACLk_l)o’r’st7
(Vrcs(altaz)fa3...ak-71)07”5157 Ars(al fag...ak,l)ors_ (39)

Thanks to the decomposition of P into irreducible components and to the equality V,P% = V;J,
we see that the different configurations of indices in the expressions g 'PVf and g~!(VP)f
give rise to the operators

P (), V7 50101 P t)Ogt(U«lv faz-.-ak—l)ors P V(alfaz-uak—l)ors
75)o I s S I s ’
Jvrfal"'ak_lr, (v(rPst)O)gt(al faz...ak_l)ors’ (VTJ>fa1'"ak_1T. (310)

Hence all natural operators I'(S¥9T M) — F(S’“’LOTM(X)FQ/,Z) are linear combinations of terms
in (3.8)-(3.10).
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A similar discussion can be applied to natural operators I'(S¥0T'M) — T(S*=30TM). In
this situation, none of the two indices of g=! is contracted in the expressions (3.7). Reasoning
as above, using the properties of symmetry of C and the fact that C and f are trace-free, we
obtain (since the target bundle is now Sk’B’OTM) a simpler list of possible terms:

V..V vtfal...ak_grst P( ) vtfal...ak_grst (V P t)flll-nllk—S?"St (3 11)
rVs ) rs)o ’ rts ) .
for k > 3. Hence all natural operators I'(S¥9TM) — T'(S¥=39T'M) are linear combinations of
terms in (3.11).

II. Conformal 1nvar1ance We shall denote quantities corresponding to the conformally
related metric § = €2Tg and the corresponding Levi-Civita connection \% by Rabcda Pab, J
and Aabc- (The Weyl tensor is missing here since Cabcd = Cgped-) This transformation is
controlled by the one-form T, = V, YT, see e.g. [1] for details. Explicitly, one can compute that

~ 1
P =P — VT + T, Ty — fTTTrgab, (3.12)

")

=J-V'T, - 2 P22y, and Awse = Awge + rCola (3.13)

and also that

§(a bc)o = V( Pbc)o V(aVbTC)O + 4T(aVbTC)O — 4T(aTch)o — QT(anC)O, (3.14)

Vad = VoJ = VoV T, — (n = 2)Y'V, Yo + 2T, V'Y, — 2000 + (n — 2)T, XY, (3.15)

§(acbdc) €= V(acbdc)oe - 4Y(acbd0)oe + 2TT5(a(dCbe)c)r. (3.16)
0

We shall start with operators T'(S¥OTM) — T(S*10TM ® Fy),). First observe that the
space of such natural and conformally invariant operators is trivial in the flat case [4, 5] hence
the two terms of (3.8) cannot appear. We need to know how remaining terms in (3.9) and (3.10)
transform under the conformal rescaling ¢ = e?Yg. First observe that the rescaling of first order
expressions we need is

S, fO BT — 7, fUGT | (- 2k — 2)T, fO kT
Dl = Vgt 4 (o 1)T gt 4 ( — 1), 600 f ozeon
e porai o, =y pazan o, | oyl paaeen o, 9Y f @ik

+ 20,00 oo,
Vipfoy -t = Vpfo™ 1+ (k-1)Yfe )al"'a’H — (k — 1)l paz-ak-1)y,

g T (k= 1), 8 ) (3.17)

We are interested in linear combinations of terms in (3.9) and (3.10) which are independent on
the rescaling § = e?Tg. Considering formulas (3.12)—(3.17), we observe that the term ViV Yo,
appears only in (3.14) and the term V,V"Y, appears only on the right hand side of (3.15). This
means, terms (V,J)f*%-1" and (V(rPst)O)gt(‘“ fa2-ak-1)075 o not appear in the required
linear combination.

The Weyl tensor appears in the conformal transformation of the terms in (3.9) but not of the
ones in (3.10). Therefore, we look for conformally invariant linear combinations

r (a as...ap_—1)ost a; a asz...ak_—1)orst
21C st( 1Y, f02:-0k 1)o —I—ng( 1,02 Y7, £03.-0k 1)o

+ 3 (VT.CS(GJ a2)fﬂ3--~ﬂk—1) rst + oy A alfag...ak,l)grs (318)
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and
n Jvrfal...ak,lr + y2F7lsv(rfs)a1...ak,1
P17 k0T gy B 0 o, (3.19)
where P, = P(s), denotes the trace-free part of P. In other words, we search for scalars

zi,yj € R such that both (3.18) and (3.19) are invariant independently.
First we discuss (3.18) which is possible only for & > 2 and some terms only for & > 3.
Assuming k£ > 3, conformal transformations of these terms are

Crst(alﬁrfaz...akq)ost _ Crst(m @rfaz...ak_l)ost + (k’ + 1)Trcrst(al fa2~--ak—1)08t
+ (k _ Z)C(alstazTrfag”‘ak*I)OS”,
C(a1razsﬁtfa&..akfl)orst — C(a1Tazsvtfas...akfl)orst _ (n + 2% — Q)C(mTsazfrtfag...ak,l)orst,

(ﬁrcs(altaz)fa3...ak—1)0rst _ (Vrcs(altaz)fa‘q'”'akfl)()mt + 4C(a1ma2 thag,...ak,l)orst
_ QTTCTst(al fag...ak,l)ost’
Krs(alfag...ak,l)grs _ Ars(alfag...ak,l)grs + Trcrst(al faz...ak,l)ost

using (3.17), (3.16) and (3.13). Now, considering where the term Y, C7 (@1 fo2--@5-1)0st appears
in the previous display, we see that (k 4+ 1)x; — 223 + x4 = 0. Considering the other term
Clar a2, fas-ak-1)o7st e conclude that (k=2)z1 — (n+ 2k —2)xo + 423 = 0. Solutions of this
pair of linear equations are generated by (z1,x2, 3, z4) = (n—|—2k—2, k—2,0, —(k+1)(n+2k:—2))
and (z1, 2, T3,24) = (O, 4, n+2k-2, 2(n+2k—2)), therefore the space of corresponding invariant
linear operators is generated by the operators F1 and Fy defined in the following way:

(Fl(f))al...ak,l _ Crst(alvrfag...ak,l)ost _ (k‘ + 1)Ars(a1fa2...ak,1)grs

* %0(“%%svtf“-*"“k*”“”t,

(Fa(f))™ k=1 = 4C(, 2 7, fos—-an-1)orst 4 (4 9k — 2)(V,C,(®192) fos--ak-1)orst
+2(n + 2k — 2) A, (@ fozak-1ors,

This shows that the operators in the statement of the proposition for k > 3 are invariant.
In the case k& = 2 only some terms from (3.18) can appear. Specifically, we study the
conformal invariance of the linear combination

xlcrstavaSt + x4A7‘SafTS (320)

for the section f% in T'(S*°TM). Since Vafte = Vafte 4 27, fbe — 270 fo), 4 25,067, fOr
conformal transformations of terms in the previous display are

Crsta§rf8t = Crstaﬁrf(gt + 3Trcrstaf8t and
K’mafrs _ Arsafrs + frrcrstafst'

By the same reasoning as in the case k > 3, we obtain that the operator given in (3.20) is
invariant if and only if (x1,z4) is a multiple of (1,—3). In the case k = 2, the only invariant
operators are thus the multiples of the operator F defined by

(F(f))a — Crstavast _ SATSafrs.

Now we shall discuss terms (3.19) and we assume k > 2 first. Consider an arbitrary but
fixed point z € M. We can choose the function T such that Y,(z) = 0, V(, Ty (z) = Pap()
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and V'Y, (z) = ¥(x) for any prescribed values of ®,,(z) and ¥(z). Therefore, the conformal
transformation of terms in (3.19) is

j@rf(ll...akfl’!‘ — Jvrfal...ak,lr _ \Ijvrfal...ak,lrj
7Asﬁ(f‘fs)al...ak,l _ Frsv(rfs)al...ak,l _ (I)Tsv(rfs)al...ak,l7
74(01 @Sfazv--akfl)ors _ Fr(al stGQ-uak—l)OTS _ (I)T(al vsfa2~--ak—l)0T57

=) b b

7Asﬁ(al fll2~--(lk-—1)07”5 _ ?Tsv(al fa2--~ak—1)07'5 _ q)rsv(al fa2--»ak—1)0’f5

at the point 2 (which is for simplicity omitted in the previous display). Choosing ¥(z) # 0
and ®,4(x) = 0, the invariance of (3.19) means that y; = 0. Henceforth we assume ¥(z) = 0
and ®,4(z) # 0. To determine y,, y3 and y4, we shall test invariance of (3.19) for foi--%
with specific properties at z. First assume that V° o (z) = V(f01-a)(z), or equivalently
that V0@ (g) = V@ fba2--ak () This in particular implies that V, f¢1-%-17(z) = 0 and the
invariance of (3.19) then means that o +y4 = 0. Second, we assume V( f91--9%) () = 0 or equiv-
alently 2V fO)ar-ar—1 () 4 (k —1)V(@ foz--ar-0)be(g) = (. This also implies V, f@1@%-17(z) = 0
and the invariance of (3.19) now means that —%yg +y4 = 0. Overall, this yields yo = y4 = 0,
and y3 = 0 follows. All scalars in (3.19) are thus equal to zero. This completes the proof of the
part (i7) of the proposition.

If k = 1, (3.19) reduces to the linear combination y;JV, f™® + y2P,s V" f5*. As above, the
choice ¥(z) # 0 and ®,5(z) = 0 shows that y; = 0. Hence yp = 0 and the part (7) follows.

In order to complete the proof of the part (iii), it remains to describe natural and conformally
invariant operators T'(S¥TM) — T'(S*3TM). The space of these operators is also trivial in
the flat case [4, 5], hence the first term in (3.11) cannot appear. Thus the required operator is
a linear combination of the form

xlp(m)ovtfal...ak_grst 4 IQ(VTPSt)falmak_STSt,

where z1,y; € R. Reasoning similarly as above, we observe that V(,V;T,), appears only in the
conformal transformation of the second term in the previous display. Therefore o = 0, hence
also z1 = 0 and the proposition follows. |

4 Classification of second order symmetries of Ay

We start this section with the definition of the algebra A of conformal symmetries of the confor-
mal Laplacian. Afterwards, we provide our main result: a complete description of the space A2
of second order conformal symmetries.

4.1 The algebra of symmetries of the conformal Laplacian

Let (M, [g]) be a conformal manifold of dimension n. Fixing a metric g € [g], we can regard
the conformal Laplacian, Ay = V,g®V, — 4&77_21) Sc, as acting on functions. The symmetries
of Ay are defined as differential operators which commute with Ay. Hence, they preserve
the eigenspaces of Ay. More generally, conformal symmetries Dy are defined by the weaker

algebraic condition
AYODl :DQOAy, (41)
for some differential operator Do, so that they only preserve the kernel of Ay. The operator Ay

can be considered in equation (4.1) as acting between different line bundles and in particular as

an element of Dy ,,,, where A\g = ”2—;2, Lo = "2—22 With this choice, Ay is conformally invariant
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and the space of conformal symmetries depends only on the conformal class of the metric g. It
is stable under linear combinations and compositions.

The operators of the form PAy, i.e. in the left ideal generated by Ay, are obviously con-
formal symmetries. Since they act trivially on the kernel of Ay, they are considered as trivial.
Following [15, 18, 26], this leads to

Definition 4.1. Let (M, [g]) be a conformal manifold with conformal Laplacian Ay € Dy, -
The algebra of conformal symmetries of Ay is defined as

A:={D1 € Dyyn, | 3D2 € Dy o 8-t. D2 0 Ay = Ay 0 D1},
and the subspace of trivial symmetries as
(Ay) :={AAy [A € Dyyx }-

Thus, A is a subalgebra of Dy, », and (Ay) is the left ideal generated by Ay in Dy, ,. The
filtration by the order on D), », induces a filtration on A and we denote by

AF = AN D’;O,)\O

the algebra of conformal symmetries of order k. Obviously, A ~ R is the space of constant
functions, identified with zero order operators on Ag-densities. Moreover, the invariance of Ay
under the action of conformal Killing vector fields, see (2.9), shows that A! is the direct sum
of A% with the space of Lie derivatives Lﬁ(” S D}\O, 2, dlong conformal Killing vector fields X.

Since A is an algebra, A2 contains in particular Lﬁ(" o Li‘}’ for X, Y conformal Killing vector
fields.

4.2 The algebra of symmetries of the null geodesic flow

Let (M, g) be a pseudo-Riemannian manifold and (%, p;) denote a canonical coordinate system
on T*M. The inverse metric g~! pertains to I'(S*TM) and identifies with H := g¥p;p; € S,
where Sy = Pol(T*M) = T'(STM) (see Section 2.1). Along the isomorphism T*M = TM
provided by the metric, the Hamiltonian flow of H corresponds to the geodesic flow of g.

The symmetries of the geodesic flow are given by functions K € Sy which Poisson commute
with H. They coincide with the symmetric Killing tensors. The null geodesic flow, i.e. the
geodesic flow restricted to the level set H = 0, depends only on the conformal class of g. It
admits additional symmetries, namely all the functions K € Sy such that

{H,K} € (H),

where {,-} stands for the canonical Poisson bracket on T*M, defined in (2.3), and (H) for the
ideal spanned by H in Sy. The linearity and Leibniz property of the Poisson bracket ensure that
the space of symmetries of the null geodesic flow is a subalgebra of Sy. Besides, remark that all
the functions in (H) are symmetries which act trivially on the null geodesic flow.

Definition 4.2. Let (M, g) be a pseudo-Riemannian manifold and H € Sp the function asso-

ciated to g. The algebra of symmetries of the null geodesic flow of g is given by the following
subalgebra of Sy,

K:={Ke&|{H,K} e (H)}
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18 J.-P. Michel, F. Radoux and J. Silhan

In particular, the algebra K contains the ideal (H) of trivial symmetries. It inherits the
gradation of Sy by the degree,

KF=KnSk.

The space K is the space of constant functions on T*M. The Hamiltonian flows of functions
in k! coincide with the Hamiltonian lift to 7* M of the conformal Killing vectors on (M, [g]). For
higher degrees, the elements in K are symmetric conformal Killing tensors whose Hamiltonian
flows do not preserve the configuration manifold M. They are symmetries of the whole phase
space but not of the configuration manifold and often named hidden symmetries by physicists.

Proposition 4.3. The elements K € K¥ are symmetric conformal Killing k-tensors. They are
characterized equivalently as:

o symmetric tensors of order k s.t. V(4 Kq,. ay), =0,

e symbols of degree k satisfying {H,K} € (H),

e clements of S¥ in the kernel of the conformal Killing operator G (see (3.5) or (3.6)).

The proof is both classical and straightforward, we let it to the reader. The next proposition
is essential to determine the algebra A of conformal symmetries.

Proposition 4.4. If D; € A* then oy (Dy) € KF. Under the identification grDyy o = So, the
associated graded algebra grA becomes a subalgebra of K and gr(Ay) identifies with (H).

Proof. Suppose that D1 is a conformal symmetry of order k, i.e. satisfies Ay oDy = DyoAy for
some Dy. Working in the algebra Dy, », we deduce that [Ay, Di] € (Ay) and the property (2.5)
leads then to {H,oy(D1)} € (H), i.e. ox(D1) € K*. The inclusion grA < K follows. As
o9(Ay) = H, the property (2.4) of the principal symbol maps implies that gr(Ay) = (H). R

4.3 Second order conformal symmetries

We adapt the strategy used in [26], dealing with conformally flat manifolds. Thanks to a natural
and conformally invariant quantization, we get a first description of the potential obstruction
for a conformal Killing tensor giving rise to a conformal symmetry of Ay-.

Theorem 4.5. Let Q) , be a family of natural and conformally invariant quantizations as in
Theorem 2.5. We get then

Ay 0 Qo 20(S) = Qoo () 0 Ay = Qi 1o (2G(S) + Obs(S)), VS e S5 (4.2)
The operator Obs is the natural and conformally invariant operator defined by
2(n—2)
Obs = —=
s 3n+1)"’

where (F(S))* = C"*V,.S% — 3A,545™ for S € S and we set F(S) =0 for S € Sogl.

Proof. According to (2.6), we have S3 = Sg’o @ Sg’l and S € 83’1 is of the following form
S = (|Volg|® H)Sy with Sy € F_s,. By Theorem 2.5, we have the identities

QAO)\O(S) = Quo)\o(so) oAy and Quo,/to(s) =Ayo Quo)\o(SO)'
Besides, from the expressions of the operators G and F (see e.g. (3.6)), we deduce
G(S)=0 and Obs(S) = 0.

Hence the equality (4.2) holds for all S € Sg’l.
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Second Order Symmetries of the Conformal Laplacian 19

Next, we define a natural and conformally invariant operator QS on Df\o x PY D Ayo
D — D o Ay. Pulling this map back to trace-free symbols via the quantization maps,

Qs

2 3
Dz\o,/\o DAO:HO
Qo 20 T TQAO,MO

<1 2,0 <3
(80 ® SO ) CS 550

this leads to a natural and conformally invariant operator CS on Sogl @Sg 0. Since Ay is formally
self-adjoint and the quantization maps satisfy the reality condition (2.13), we deduce that, for
all § e SF°,

AY o Q)\g,/\g (S) - QHO,NO (S) © AY

is of degree k + 1 and is formally skew-adjoint (resp. self-adjoint) if k is even (resp. odd). As
such, it is of the form Qy, ,,(P), with P € 8§ & S; if S is of degree 2, P € §; & Sy if S is
of degree 1 and P € S(%O if S is of degree 0. We can reduce accordingly the target space of CS
restricted to homogeneous symbols. Applying Proposition 3.1 and Proposition 3.2, we deduce
that CS = aG + bF for some real constants a, b. We have then

Ay 0 Q20 (S) = Qug o () 0 Ay = Qi o (aG(S) +DF(S)), VS € S;>. (4.3)
It is straightforward to prove that a = 2. To prove b = %, we study a specific conformal

symmetry of Ay.

Lemma 4.6. Let 1 be the pseudo-Euclidean flat metric of signature (p,q), h a non-vanishing
function on R? and n = p + q + 2. Let (My,g) be the pseudo-Riemannian manifold (R? x
R"=2 gy x 1), where the metric on R? is determined by (g0)~* = h(z1,x2)p? + p3 in canonical
Cartesian coordinates (z%,p;) on T*R™. Then, K = p? is a Killing tensor on (My,g), and we
have the following relation:

Ay o Q)\O7)\O (K) - Quo,uo (K) oAy = QAU,/LU(ObS(K)) # 0.

Proof. Using the relation that links the coefficients of g and the Christoffel symbols Fék of
the associated Levi-Civita connection, it is obvious that F;k = 0 if at least one of the indices 1,
j, k is greater than or equal to 3. Thus, the only non-vanishing components of the Riemann
tensor and the Ricci tensor associated with g are given by the corresponding components of the
Riemann tensor and the Ricci tensor of gg. In the same way, the scalar curvature of g is equal
to the scalar curvature of gg.

Using these facts and the formula for Qy, \,(K) presented in the proof of Proposition 4.9, it
is easy to see that

1
_ _ 92 -
Q)\O,AQ(K) - QMOMO(K) - 8m5 + 2(7’L _ 1)(71 + 1) Sc.

By a direct computation, we obtain the following relation:
Ay 0 Qxgn (K) — Qoo (K)o Ay

=[Ay, Qoo (K)] = !

=D 1) Do (8”(9; Se)p;) + f,

with f € C®°(M). According to (4.3), the function f vanishes.
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20 J.-P. Michel, F. Radoux and J. Silhan

Besides, we can compute easily the Cotton—York tensor A associated with g. Indeed, if P
denotes the Schouten tensor, we have

2 . 1

Using the peculiar form of K and the remark done previously about the Christoffel symbols and
the curvature tensors of g, it is obvious that

. 1
AjjpKf = — 9,8
ik 2n—1)(n—2)7>°
for all . The conclusion follows immediately. |

By naturality of the map CS defined above, the coefficient b in (4.3) depends only on the
signature of the metric. As b is equal to % in the example presented in the previous lemma,
where the dimension My is of arbitrary dimension n and g of arbitrary signature, we conclude

that b= 33 in (4.3). [

Obviously, we have Obs(S) = 0 if S is a symbol of degree 0 or 1. Thus, we recover that
Al =~ K1 @ K0 and the isomorphism is provided by Q.. Since the symmetric conformal
Killing tensors K satisfy GK = 0, we deduce the following

Corollary 4.7. Let (M,g) be a pseudo-Riemannian manifold of dimension n endowed with
a symmetric conformal Killing 2-tensor K. The operator

n

Qpono (K) = KV, Vy, + m(vawb)vb
n(n - 2) ab n+ 2 . ab
— T (V. VK% — —— K%,
An+2)(n+1) (VaVpKT) A(n+1) Ricap

is a conformal symmetry of Ay if and only if Obs(K) = 0.

Proof. Indeed, the condition is obviously sufficient. Next, the condition is necessary because
if Oz, (K) is a conformal symmetry of Ay, there exists a differential operator D such that

Ay o Q)\O)\O(K) =Do Ay.
We have then successively, using Theorem 4.5:

0=Ayo QAQ,)\O(K) —DoAy
= (AY ° QAQ,Ao(K) - QN[LMO(K) ° AY) + (Qlto,uo(K) oAy —Do AY)
= Qkoyﬂo(Obs(K)) + (Quowo (K) — D)Ay.

The operator Qy, ., (Obs(K)) is of order one but not the operator (Q,,, ., (K) — D)Ay, unless
it vanishes. Hence, both terms Qy, ,,(Obs(K)) and (Q,ue(K) — D)Ay have to vanish and
then Obs(K) = 0. |

In particular, on a conformally flat manifold, all the conformal Killing 2-tensors give rise to con-
formal symmetries of Ay after quantization by Qy, x,, as proved in [26]. We are now in position
to prove our main theorem, which provides a full description of the conformal symmetries of Ay
given by second order differential operators. The isomorphism I'(T'M) = T'(T* M) provided by
the metric is denoted by ”.
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Theorem 4.8. The second order conformal symmetries of Ay are classified as follows:
(i) Al = {LB\(O—i—c\cER and X € K1},
(1) A%2JA' = {K € K?|0bs(K)’ is an exact 1-form}, and if K € K? satisfies Obs(K)’
= —2df, with f € C®(M), the corresponding element in A%/ A is given by

Qoo (K) + f.

Proof. We deduce from Proposition 4.4 that the principal symbol K of a second-order conformal
symmetry Dj is a symmetric conformal Killing 2-tensor. Since quantization maps are bijective,
the operator D; reads as

Dy = Qo (K+ X+ f),
with f and X symbols of degree 0 and 1 respectively. Theorem 4.5 implies that
Ay © D1 = Quuo i (K + X + f) 0 Ay = Qi 11 (2G(X) + Obs(K) + 2G(f)).

Hence Ay o Dy € (Ay) leads to G(X) € (H). By definition of G, this means that G(X) = 0,
ie. X € K'. As the symbols Obs(K) and G(f) are of degree 1, they cannot pertains to (Ay).
Therefore, Ay o D1 € (Ay) is equivalent to X € K! and Obs(K) + 2G(f) = 0.

The items (7) and (#¢) in the statement of the theorem are then easily proved. |

4.4 Second order symmetries

The general formula (2.11) for the natural and conformally invariant quantization on symbols
of degree 2 leads to the following result.

Proposition 4.9. Let (M,g) be a pseudo-Riemannian manifold of dimension n endowed with
a symmetric Killing 2-tensor K. The operator

n—2

Qoo (K) = Qoo (K) = KDV, Vi + (V, KP)V), — il (VaVpK) (4.4)
_ L—’—z 1 ab ; ab
T D e Kt e Ty S (e k),

is a symmetry of Ay, i.e. [Ay, Qx,x (K)] =0, if and only if Obs(K) = 0.

Proof. Let (2%, p;) be a canonical coordinate system on T*M. The Killing equation satisfied
by K reads as g¥p;V;K = 0. Applying the trace operator Tr = 8ijOp; Op; we deduce that

g VL Tr K)V, = —2(V;K)V,  and  g"(ViV, TrK) = -2V, V, K.

Moreover, if A = p and 6 = 0, we have §; — 282 = 1 and 83 — 284 = (sj_)‘l()%, where the j3; are

defined in (2.12). The formula for the quantization Q) ) reduces then, for K a Killing tensor, to

n2A(1—\)

UAEK) = K™V, Y, + (VoK) V, — m(vavbkab)
nPAA-1) o, 2m2\(1 — A) )
“m 2 0 e G D D G )

Since Ag + 1o = 1 we deduce that Qx, 2, (K) = Quoue(K). In consequence, the equality
[Ay, Qa2 (K)] = 0 is equivalent to the fact that Qy, x,(K) is a conformal symmetry of Ay.
By Corollary 4.7, this means that Obs(K) = 0. |
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As a straightforward consequence, we get

Corollary 4.10. Let (M, g) be a conformally flat manifold and K be a Killing 2-tensor. Then,
we have [Qxg.x, (K), Ay] = 0.

This corollary enlights some of the results obtained in [2]. As for conformal symmetries, we
provide a full description of the symmetries of Ay given by second order differential operators.

Theorem 4.11. The second order symmetries of Ay are exactly the operators
QAO,AO(K+X) + f,

where X is a Killing vector field, K is a Killing 2-tensor such that Obs(K)® is an exact one-form
and f € C®(M) is defined up to a constant by Obs(K)" = —2df.

Proof. Let D; be a second order symmetry of Ay. In view of (2.5), we can deduce from
[Ay, D1] = 0 that {H, 02(D1)} = 0. This means that K = 02(D;) has to be a symmetric Killing
2-tensor. Since quantization maps are bijective, the operator D; reads as

D1 = Qoo (K + X + f),
with f and X symbols of degree 0 and 1 respectively. Theorem 4.5 implies that

[Ay, D1] = Qx40 (2G(X) + Obs(K) + 2G(f))
+ (oo (K + X + f) = Qag o (K + X + f)) 0 Ay.

We have shown that Qi o (K) = Qay.0 (K) in Proposition 4.9. Moreover, the general formulas
in Theorem 2.4 prove that Qo (f) = Qagno (f) and Qg o (X) — Qagno (X) = 2V, X7 Hence,
we get

[y, Da) = Qi 1y (2G(X)) + 2(Va XAy + Qg (ObS(K) +2G())
and
o3([Ay, Di]) = 2G(X) + %(VGX“)H.

As S2TM = S?9TM @& S*'TM, each of the two terms in the right hand side of the second
equation are independent. Therefore, [Ay, Di] = 0 is equivalent to G(X) = 0, V,X* = 0 and
Obs(K) + 2G(f) = 0. The equations G(X) = 0 and V,X* = 0 mean that X is a conformal
Killing vector field with vanishing divergence, i.e. X is a Killing vector field. Applying the met-
ric, the equation Obs(K ) +2G(f) = 0 translates into Obs(K)” = —2df. The result follows. B

For comparison, we recall the alternative classification obtained in [3].
Theorem 4.12 ([3]). Let K be a Killing 2-tensor and put 1(K)® = K Ric? — Ric® K?. Then,

we have

[V KV + fLA+V] =0 <= K™(V,V) - %(va(mab) =V,

where A = V,gVy, and f,V € C®(M).

As an advantage of our method, the obtained condition to get a symmetry (namely Obs(K )b
exact one-form) is conformally invariant and obviously vanishes on conformally flat manifolds.
As an advantage of the approach used in [3] and initiated by Carter [11], one recovers easily
that

[Ay, Vo K%®V,] =0,

for all Killing 2-tensors K on an Einstein manifold.
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4.5 Higher order conformal symmetries

Up to now we discussed symbols of order < 2. The more general version (which we shall
state without proof) of Theorem 4.5 is as follows. Assume that Q) , is a family of natural and

conformally invariant quantizations as in Theorem 2.5 and let S be a trace-free symbol S € S(l)c 0,
Then we get

Ay o QA07)\O(S) — QHO,HO(S) (¢} Ay = QAOJJ‘O (2G(S) + LIJFl(S) + yFQ(S) + @(S)), (45)

where operators F1,F : S(]f 0 S(’;O_l’o are defined in Proposition 3.2, scalars z and y have the

value
_ k(k—1)(n+ 2k —6) 4 C k(k—1)(k — 2)(n + 2k)
T3mt2k-2)(n+2k-3) 0 YT 2t 2k—2)(n+2k—3)

and @ is a natural and conformally invariant operator ® : S(lf 0y S(ik_?’. For k£ < 2 this recovers
Theorem 4.5, the general case k > 3 can be shown by a direct (but tedius) computation.

Using (4.5) we can formulate a higher order version of Corollary 4.7: If K € KF is a conformal
Killing k-tensor such that the operator Qy, »,(K) is a conformal symmetry of Ay, then zF; (K)+
yF9(K) = 0. Moreover, the same reasoning as in the proof of Theorem 4.8 yields a higher order
analogue of this theorem, i.e.

AFJ A=Y C UK € KF|2F 1 (K) + yF2(K) = G(K) for some K € Sy~ "°}.

5 Examples in dimension 3

In this section, we consider the space R? endowed successively with two types of metrics: the
conformal Stéckel metrics and the Di Pirro metrics.
The conformal Stéckel metrics are those for which the Hamilton—Jacobi equation

g7 (W) (9;W) = B

admits additive separation in an orthogonal coordinate system for E = 0 (see [8] and references
therein). They are conformally related to the Stéackel metrics, for which the additive separation
of the Hamilton—Jacobi equation holds for all E € R. Moreover, the separating coordinates,
called (conformal) Stéckel coordinates are characterized by two commuting (conformal) Killing
2-tensors.

Except for the Stéckel metrics, every diagonal metric on R® admitting a diagonal Killing

tensor is a Di Pirro metric g (see [28, p. 113]), whose corresponding Hamiltonian is (see e.g. [14])
1

H=g'!= a(xy, z0)ps + b(x1, 22)p3 + pa) 5.1

g 2(7(%171’2)+C($3))( ( ) 1 ( 1 ) 2 3) ( )

where a, b, c and 7 are arbitrary functions and (2%, p;) are canonical coordinates on T*R3.

5.1 An example of second order symmetry

The Di Pirro metrics defined via equation (5.1) admit diagonal Killing tensors K given by
_ 1
Y(21,22) + c(23)

For generic functions a, b, ¢ and ~, the vector space of Killing 2-tensors is generated by H

(c(as)a(zr, z2)pi + c(z3)b(a1, 32)p3 — y(z1, 22)p3) -

and K. However, for some choices of functions, this metric can admit other Killing tensors.
For example, if (r,60) denote the polar coordinates in the plane with coordinates (z1,x2), if the
functions a, b, v depend only on r and if a = b, then the metric is Stdckel and admits pg as
additional Killing tensor.
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Proposition 5.1. On the space R®, endowed with the metric g defined by (5.1), there exists
a symmetry D of Ay whose principal symbol is equal to the Killing tensor K. In terms of the
conformally related metric

1
= 2(y(z1, 32) + c(w)

this symmetry is gien by: D = Qx,x, (K) + %(Sf{-i\cab — S/z:gab)K”b, i.e. by:

PO BPER 1—
D =V,K%®V, — E(vav,,wb) - gRicabK(lb,

where %, Ric and Sc represent respectively the Levi-Civita connection, the Ricci tensor and the
scalar curvature associated with the metric g.

Proof. We use Theorem 4.11. In order to compute the obstruction Obs(K)’, we used a Math-
ematica package called “Riemannian Geometry and Tensor Calculus”, by Bonanos [6].

This obstruction turns out to be an exact one-form equal to d(—%(?)ﬁiab — Scgap) K).
The first expression of the symmetry D follows, the second one is deduced from (4.4), giving

Q>\07>\0 (K) L

5.2 An example of obstructions to symmetries

If written in conformal Stickel coordinates, the conformal Stéckel metrics g on R? admit four
possible normal forms, depending on the numbers of ignorable coordinates (see [8]). A coordi-
nate x is ignorable if 9, is a conformal Killing vector field of the metric.

Thus, if 1 is an ignorable coordinate, the conformal Stickel metrics g read as

g=Q ((dz1)* + (u(z2) +v(23)) ((dz2)* + (dz3)?)) , (5.2)

where @ € C®(R?) is the conformal factor and where u and v are functions depending respec-
tively on the coordinates x2 and z3. Such metrics admit d,, as conformal Killing vector field
and

K = (u(z2) + v(:zg))fl(v(xg)pg - u(:vg)p%) (5.3)
as conformal Killing 2-tensor.

Proposition 5.2. On R3, there exist metrics g as in (5.2) whose conformal Laplacian Ay
admits mo conformal symmetry with principal symbol K.

Proof. Indeed, the obstruction associated with K, Obs(K)b7 is generally not closed. Thanks
to the Mathematica package “Riemannian Geometry and Tensor Calculus”, by Bonanos [6], we
can actually compute that

1
dObs(K)’* = -1 (02, + 02,) O3y Oy log (u(w2) + v(w3))dwa A das,
where the symbol / denotes the derivatives with respect to the coordinates x5 and 3. This

expression does not vanish e.g. for the functions u(zs2) = z9 and v(x3) = x3.
We conclude then using Theorem 4.8. |
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An example of a metric of the form (5.2) is provided by the Minkowski metric on R* reduced
along the Killing vector field X = x30; + t0z, + a(x105, — 205,), @ € R (see [21]). In the
time-like region of X and in appropriate coordinates (r, @, z), the reduced metric is equal to

2 r?2? 2 2
g=dr'+ 5—55d¢" + dz
22 — a®r

and admits 0y as Killing vector field. Moreover, after reduction, the Killing tensor p? Lt p§2 is
equal to

1
K:pg—l—ﬁpi.

Notice that the metric g is a Stéckel metric with one ignorable coordinate. Indeed, the metric
takes the form (5.2), with Q(r,z) = iz u(r) = 1/r? and v(z) = —a?/2%, whereas the

ﬁH can be written as in (5.3). Here, H = g~ is the metric

o
conformal Killing tensor K —
Hamiltonian.

In this situation, there is no conformal symmetry of Ay with principal symbol K if a # 0.
Indeed, the one-form Obs(K )b is then non-exact, as shown by Mathematica computations

S bzéa a’ ! o :
dObs(K) 2(+ )((z+a7“)4 (Z‘”")4>

Remark 5.3. Extending the metric (5.2) to R™ as

dr Ndz.

g = Q ((do1)? + (u(w2) + v(x3)) ((dz2)? + (dx3)2) + (da*)? + -+ (da™)?),

one can check that K, given in (5.3), is again a conformal Killing tensor and that the one-form
Obs(K )b is in general non-exact. Thus, there is no conformal symmetry of Ay with principal
symbol K.
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Abstract. A regular normal parabolic geometry of type G/P on a manifold M gives rise to se-
quences D; of invariant differential operators, known as the curved version of the BGG resolution.
These sequences are constructed from the normal covariant derivative V® on the corresponding
tractor bundle V, where w is the normal Cartan connection. The first operator Dy in the sequence
is overdetermined and it is well known that V¢ yields the prolongation of this operator in the ho-
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1. Introduction

The problem how to find a prolongation of an overdetermined system of PDE’s acting
between sections of vector bundles is classical and has been studied for a long time.
A systematic procedure to solve such problems was developed by D. C. Spencer (see [32])
and his coworkers. One of the tools employed by him was the Spencer resolution of the
system, which is useful for description of many properties of solutions of the system. In
particular, there is a class of systems of finite type whose solutions are determined by
a finite jet at a chosen point. Spencer found a suitable characterization of such systems
in his studies. His general results are quite useful but in specific examples, in particular
for equations arising in a geometric context, a more efficient analysis can be obtained by
employing techniques more adapted to the geometric structure.
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Important examples of overdetermined systems can be found in many areas of geom-
etry. Examples in conformal geometry include, e.g., Killing vectors, conformal Killing
vectors, Killing—Yano forms, equations for Einstein scales, etc. (see [30, 19, 26]). In such
cases, it was possible to get much better results, because the relevant manifolds were
equipped with a rich geometric structure making it possible to use very efficient tools
coming from representation theory. To illustrate this in more detail, let us recall that the
most famous example of a resolution of an overdetermined system is the de Rham se-
quence for differential forms on a general manifold. The overdetermined system in this
case is the gradient of a function. The de Rham differentials d forming the resolution are
distinguished by their invariance with respect to the group of diffeomorphisms acting on
the manifold.

Many more explicit examples of overdetermined systems and their resolutions can
be described in cases where the manifold is equipped with a richer geometric structure.
Typical examples are manifolds with a given projective, conformal, quaternionic, or CR
structure. Homogeneous models of such structures are given by homogeneous spaces
G /P, where G is a semisimple Lie group and P a parabolic subgroup. On such spaces
there exist infinite sequences of resolutions (analogues to the de Rham resolutions), one
for each irreducible G-module. The de Rham resolution is the resolution for the trivial
G-module. A feature of such resolutions is that operators forming the sequence are (typ-
ically) higher order operators (with orders rising with the complexity of the G-module).
They are dual versions of the famous Bernstein—Gel’ fand—Gel’fand resolutions of irre-
ducible G-modules by Verma modules found in the 70’s in representation theory. Follow-
ing ideas of E. Cartan, it is possible to introduce ‘curved versions’ of such homogeneous
models known under the name of parabolic geometries (see [8]). Curved versions of such
resolutions were constructed recently in complete generality in [9, 5]. They are again
formed by invariant differential operators, but their composition is now nontrivial due to
nontrivial curvature of general curved structures.

To be more specific, let us now recall more details on parabolic geometries. Let
G be a (real) semisimple Lie group and P its parabolic subgroup. Following ideas of
E. Cartan, the homogeneous space G/P is a flat model for a curved parabolic geome-
try of type (G, P), which is specified by a couple (G, w), where G — M is a principal
P-bundle and w is a Cartan connection. It is well known that such a geometry can be
characterized by an underlying geometric structure on the manifold M, together with
suitable conditions applied to the Cartan connection needed to remove ambiguities in its
definition. A key condition is a normalization condition expressed using the language
of cohomology of Lie algebras. Cartan connections satisfying this normalization condi-
tion are called normal Cartan connections. To have an equivalence of categories between
the category of parabolic structures (G, w) on M and the underlying geometric structure
on M, it is necessary to add an additional technical condition on w (called regularity).
Full details on this correspondence can be found in [8].

Distinguished examples of this procedure are the normal Cartan connections con-
structed for a conformal structure by E. Cartan and for a CR structure by Chern and
Moser ([10, 12]). Let us consider a regular normal parabolic geometry (G, w) of type
(G, P). For any G-module V, the tractor bundle V over M is (by definition) the vec-
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tor bundle associated to G and the representation V (restricted to P). The normal Cartan
connection w on G then induces the tractor covariant derivative V¢ on V, which is then
used in various problems in analysis and/or geometry on M (e.g., to construct differen-
tial invariants on the corresponding parabolic geometry). For example, it plays the key
role in the construction of Bernstein—Gel’fand—Gel’fand (BGG) sequences of invariant
differential operators (see [9, 5]) and prolongation procedures for first operators in BGG
sequences (see e.g. [4]).

In particular, there is a lot of interest in the study of properties of the first opera-
tors in the BGG sequences, or their semilinear versions. Ideas behind the construction
of these operators by the BGG machinery can be helpful in such problems. The con-
struction uses tractor covariant derivatives acting on tractor bundles and suitable splitting
operators (for details, see Sect. 3). In some simple cases there is a one-to-one correspon-
dence between solutions of the first BGG equation and the kernel of the corresponding
tractor covariant derivative. In other words, the tractor covariant derivative is the pro-
longation of the first BGG operator. But such a simple correspondence is not valid in
general.

A general scheme for prolongation of the first BGG operator for parabolic geometries
with commutative nilpotent radical was introduced in [4]. The authors not only treat the
prolongation for linear overdetermined systems with a particular behavior of the symbol
but they also allow semilinear systems having the same symbol as in the linear case and
allowing general nonlinear behavior of the lower order part of the operator. A generaliza-
tion to contact cases can be found in [16] and an extension to general parabolic geometries
is discussed in [28]. The procedure used in [4] is efficient but not invariant. In quite a few
special cases (see [6, 13, 17, 15, 21, 19]), several authors found an invariant way to com-
pute a deformation of the normal tractor covariant derivative having the property that its
kernel can be identified with solutions of the first BGG sequence.

The new normalization of tractor covariant derivatives developed in this paper is moti-
vated by a wish to extend these examples to a general scheme. We shall study the problem
of a suitable normalization for tractor covariant derivatives for a general parabolic geom-
etry in a systematic way and show that there is a distinguished alternative of the usual
normalization of tractor covariant derivatives on tractor bundles giving directly a canoni-
cal prolongation of the first BGG operator in an invariant way.

The normal tractor covariant derivative is induced from the normal Cartan connection
on the principal bundle G. An important observation is that if we want to find a covariant
derivative on tractor bundles giving an invariant prolongation of the first BGG operator, it
is necessary to adapt (in contrast to V®) the normalization condition to the choice of the
tractor bundle under consideration.

The main results of the paper can be described as follows. Let us consider a regular
normal parabolic geometry of type (G, P) given by the couple (G, w). To any irreducible
G-module V, there is associated the covariant derivative V¥ on the associated vector
bundle V. The space of all covariant derivatives on V is the affine space modeled on
the vector space & 1(End V). We want to find a deformation of V¢ by ® € £ L(End v)
satisfying a new normalization condition (adapted to the choice of V) in such a way that
the resulting covariant derivative will have suitable properties.
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The deformation ® cannot be chosen arbitrarily. Firstly, the construction of the BGG
sequence leads to the requirement of preserving the lowest homogeneous component
of V¢ (having homogeneity zero), hence we shall restrict to ® € £!'(End V)!, where
the superscript 1 indicates that ® should have (total) homogeneity at least one. The desire
to have good properties of the new covariant derivative in the prolongation procedure for
the first BGG operator imposes further restrictions on the choice of ®. They will be ex-
pressed by properties of values of ®(s) € £'(V), where s is a section of V. This leads to
the following class of covariant derivatives on the tractor bundle V.

Definition 1.1. Let w be the regular normal Cartan connection on the principal bundle G
and let V® be the associated covariant derivative on the associated vector bundle V. The
class C of admissible covariant derivatives on V is defined by

C={V=V2+®|decIm® @Idy+), ® € E(End V)'},

where 9}, is the Kostant differential corresponding to homology of g with values in V
(cf. [25]).

The condition & € Im(3;, ® Idy+) is equivalent to ®(s) € Imdj, C EYWV) for all
s € I'(V), where I'(V) denotes the space of sections of V.

The main theorem of the paper is then
Theorem 1.2. There exists a unique covariant derivative V € C such that
@y ® ldy-)(R") =0,

where RY € £2(End V) is the curvature of V. Again, the condition (8"‘; ®Idy+)(RY)=0
can be equivalently expressed as 9y, (RV(s)) = 0 for all sections s of V.

The new covariant derivative V constructed in Theorem 1.2 gives a prolongation of the
first BGG operator, hence we shall call the covariant derivative satisfying this new nor-
malization condition the prolongation covariant derivative. The next main result is the
theorem stating this property.

Theorem 1.3. Let us consider a parabolic geometry (G, w) modeled on a couple (G, P).
There is a one-to-one correspondence between the kernel of the first BGG operator for
a G-module V and the kernel of the prolongation covariant derivative on the associated
bundle V over M.

In Section 4, we extend the previous construction to other operators in the BGG sequence.
In these cases, we have to consider a more general deformation of the exterior derivative
dV by adding a differential term (instead of just an algebraic one, which was sufficient
for the first operator in the BGG sequence).

Finally, we compare the general procedure developed in this paper with particular
results obtained in some special cases and compute some other examples of prolongation
covariant derivatives. They come from projective and Grassmannian geometry.
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2. Normalization of tractor covariant derivatives

2.1. The double filtration on End V

Let G be a semisimple Lie group (real or complex) and P a parabolic subgroup of G. The
choice of P induces a grading g = EB;‘:fk g; on the Lie algebra of G: there is a grading
element E in go acting by i on g;.

Every irreducible module V for G is also graded by the action of E as follows:

V=@PVv. V=V,

acA beA

where A is the set of all eigenvalues of E on V. A similar decomposition of g4 is given
bygr =g1®--- D g

The representation End V >~ V ® V* has the standard ‘diagonal’ grading induced by
the action of E, given by

EndV = PEndV),, (EndV):= H V.oV,
4 a—b={; a,becA

The key point for the iterative process below is to consider the second ‘vertical’ grad-
ing on the product V ® V* by keeping the grading on V and using the trivial grading
on V*. Hence the vertical grading is given by

EndV = @(EndV)a, (EndV), :=V, ® V*.

acA

The gradings are not P-invariant. We shall hence consider filtrations induced by the
gradings above. For the diagonal grading, we shall define the filtration by

(End V)¢ = @(EndV)k.
k>t

In particular, (End V)! always denotes the corresponding component with respect to the
diagonal filtration.
For the vertical grading, the filtration is defined by

(End V)* = D (End V),

b>a

The grading of g, also gives the standard filtration g* C --- C g! = g.

These filtrations (together with the filtration on g ) also induce the filtrations on the
chain spaces A/ (g+) ® EndV for the Lie algebra homology and cohomology complexes.
The differentials in the Lie algebra (co)homology of g_ with values in g-modules W
are the maps dw : A/(g1) @ W — A/Tl(g1) @ W, resp. 35 : Al(g4) @ W —
AN g) @ W. If W = EndV ~ V ® V* for a g-module V, we shall denote the
operators dy ® Idy+, resp. d5; ® Idy+, simply by dy, resp. 85;. This should not lead to any
confusion.
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The definition of dy and 95; implies immediately that they preserve both the vertical
and diagonal gradings on A/ (g4) ® End V. Hence they respect both vertical and diagonal
filtrations on A/(gy) ® EndV. Below we shall use the induced operators between the
graded bundles associated to the vertical filtration and we shall denote them by gr dy,
resp. gr dg;.

2.2. Induced operators on associated graded bundles

The spaces of j-forms on M with values in a bundle W will be denoted by £/(W).
They are isomorphic to the bundle induced by the P-module A/ (g,) ® W. Similarly, the
tangent bundle is isomorphic to the bundle associated to the P-module g/p. All filtra-
tions mentioned above are P-invariant and so they induce the corresponding filtrations on
EJ(End V). We shall need, in particular, the diagonal filtrations £ J(End V)¢, resp. the ver-
tical filtration £/ (End V)¢, induced on £/ (End V). We shall denote by gr, (€ J(End V)),
resp. gr, (€7 (End V)) the associated graded bundles.

The operators grds; and grdy are P-equivariant, hence they induce well defined
maps 95, resp. dy, between the corresponding associated graded bundles.

We shall denote by gr dy, resp. gr dy;, the direct sum of all maps gr,, dy, resp. gr, 9y,
acting on the direct sum gr£/(End V) := D, gr. (€ J(End V)). The operators gr dy and
grd;, then have the usual properties of the Kostant differentials. In particular, they are
dual to each other (with respect to a suitable scalar product), which implies the usual
properties of their kernels and images (Hodge decomposition).

Note also that £/(V) ® V* = &/(End V). Hence the standard filtration on £/ (V)
is transferred (by the tensor product with V*) to the vertical grading on £/(End V). As
an immediate corollary, ¢ € £/(End V)¢ if and only if s € £/(V)? for all sections
s € E0V).

2.3. A choice of normalization

Let us consider a regular parabolic geometry (G, w) over M with the homogeneous model
given by a couple (G, P). For an irreducible G-module V, we shall consider the associ-
ated tractor bundle V on M. The curvature « of the Cartan connection w is a two-form
with values in the adjoint tractor bundle A >~ G X p g. The usual normalization condition
for w, expressed in terms of the Kostant differential 3* corresponding to homology of g_
with values in g, requires the curvature « to be d*-closed. In terms of the associated co-
variant derivative V® on V, the curvature RV" of V is a two-form with values in End V
and the normalization condition can be expressed using the Kostant differential 9* for
EndV as
*(RY") =0.

Given a choice of the bundle V, we are going to change the normalization condition
for a covariant derivative V on V. Let Idy+ denote the identity map on V*. As above in
the algebraic version, we shall consider the operators

aV ® IdV* 5 8;'; ® Idv*
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acting on EJ(End V), forms with values in EndV ~ V ® V*. Abusing the notation, we
shall denote them by dy, resp. d;,. It will always be clear whether the differentials act on
forms with values in V or forms with values in End V.

‘We shall now introduce a new normalization for covariant derivatives on V.

Definition 2.1. We shall call a covariant derivative V € C the prolongation covariant
derivative if

3 (RY) =0,
where RV € £2(End V) is the curvature of V.

The choice of the name should suggest that the new normalization condition gives
better properties to V in the prolongation procedure for the first operator in the BGG
sequence corresponding to the representation V.

We shall need the following property.

Lemma 2.2. If¢ € EY(End V)* and © € EX(V), then
o AT € EXV)ITL,
Proof. Indeed, we can decompose ¢ into homogeneous components

ga:Za",-@v‘,-@w‘,-, ocjeé'l, vi eV, wj e V¥,
J

where the sum of the homogeneities of «; and v; is greater than or equal to a. If we also
decompose T as

T=Zﬂk®uk, Br €& up eV,
X

then the expression

AT =) wiue AP v
K

clearly has summands of homogeneity greater than or equal to a + 1. O

2.4. The main lemma

The key information for the normalization procedure is the following fact concerning the
induced change of curvature.

Lemma 2.3. Let Vi, resp. Vy, be two covariant derivatives from C related to each other
by the deformation ® = V, — V| € &l (End V)1 and let Ry, resp. Ry, be the correspond-
ing curvatures. If ® € EY(End V), then Ry — Ry € E*(End V)¢ and

gra(R2 - Rl) = (gra 3V)(gra (b)
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Proof. Let w be the normal Cartan connection for the chosen parabolic geometry and V
the associated covariant derivative. It is well known that V and dV preserve the standard
filtration on £/ (V') and that the corresponding graded version of V, resp. dV, is equal to
grdy. A shift of V by ® € £!(End V)! does not change this property, the same being
true for 4V+9.

The change in curvature is then
Ry— R =d" @+ [, ].

The result clearly belongs to £2(End V)¢, because the operator d" preserves the filtra-
tions and we can use Lemma 2.2 for the second term.
Then we get, for any s € E0V),

g1, ((@V @ + [®, @))s) = gr, (¥ D)s) = gr,(d" (Ps) — D A (Vs))
= gr, (3 (D(s))) = (gr, dv)(gr, (D(s))). O

2.5. Existence and uniqueness of the prolongation covariant derivative

We now show the main theorem of this article:

Theorem 2.4. For each irreducible G-module V, there exists a unique prolongation co-
variant derivative V € C, i.e., a unique V € C such that

35 (RY) = 0. 1)

Proof. The curvature function of the regular normal connection w for the corresponding
parabolic geometry belongs (by definition of regularity) to £2(A)!, so RV e E2(End V) !,
and 0y, (RV”) € EY(End V). Lemma 2.5 below now shows that we can start with V® and
obtain by induction a unique V € C satisfying (1). O
Lemma 2.5. Suppose that there is a tractor covariant derivative V € C with

35 (RY) € E'End V)! N EY(End V)7,
where a € A is such that a + 1 belongs to A. Then there exists

® € E'End V) NENENd V) NIm(3;, @ Idy+)

such that for V=V+ ®, one has

35(RY) € £'(End V) N &' (Bnd V)*H. 2)

Moreover, ® is unique up to terms of homogeneity a + 1. In particular, Vec satisfy-
ing (2) is unique up to modifications by elements in

E'End V) NIm(3} @ Idy+) N E(End V)*H1,
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Proof. The spaces {E'(End V)! N &' (End V)4) _, give a descending filtration of
E'(End V)!. The filtration is preserved by the maps dy and 97, hence they induce maps
on the associated graded bundle (for simplicity we denote them by the same symbols
as for the full filtration of £!(End V)). The standard Kostant decomposition says that
Ker gr 9}, and Im gr dy are complementary subspaces of the graded bundle gr € Y(End V)!.
In particular, gr dj; restricts to an isomorphism of Im gr dy and Im gr 9y;.

Hence we can define ¢ € gr, (€ LEnd V)1 by
0 =070 (RY),
which then has the property that
(gr dy)((grdv) (@) = gr, (3} (RV)).

Let® € EYEnd V) NENENdV)? N Im (9} ® Idy+) be a preimage of . Then we define
a corrected covariant derivative by V := V — ®.
Due to Lemma 2.3, we get

ar, (35 (RY)) = gr, (05 (RY)) — (r ) (gr, (RY — RV))
= g1, (35 (RY)) — (2r %) ((gr dv) (gr,(®))) = 0.

Hence V has the required properties.

For the uniqueness up to terms of homogeneity higher than a, assume that we have
another ' € £'(End V)! N E'(End V)* N Im(3}; ® Idy+) such that V/ = V + @' sat-
isfies 9, (RV) € EY(End V)**!. Then &' — @ belongs to £1(End V)! N Im a5, and by
assumption gra(Rﬁ/ — Rﬁ) lies in the kernel of gr 9;,. By Lemma 2.3, we have

ar, (R — RY) = (grdy)(gr, (&' — ®)).

But Ker gr 0, NIm gr dy is trivial, hence gra(RV — Rﬁ) = 0. Thus gr, (&' — ®) lies in the
kernel of gr dy, and also in the image of gr d;;, by assumption. Hence gr,(®’ — @) = 0,
and thus

V -V =0 — & e EYEnd V)T, O

Remark. The construction of V as outlined above depends at first on some choices (e.g.,
the choice of the preimage ® of ¢). However, the uniqueness of the prolongation covariant
derivative shows that the result of the construction is independent of all choices. Hence the
prolongation covariant derivative is invariant—it only depends on the data of the chosen
parabolic structure and the bundle V.
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3. Prolongation of the first BGG operator

The BGG complexes are sequences of invariant differential operators on a homogeneous
model for a given parabolic geometry. A curved version of them, i.e., an extension of
operators in the sequence to invariant differential operators on general (nonflat) mani-
folds with a given parabolic structure, was first constructed in [9] and the construction
was simplified and extended in [5]. The first operator in such a sequence always gives
an overdetermined system of invariant differential equations. A prolongation of this op-
erator for the case of 1-graded parabolic geometries was constructed in [4]. However, the
methods used there needed a choice of a Weyl structure, hence the resulting covariant
derivative was not invariant. We are now going to show that the normalization of trac-
tor covariant derivatives described in this paper can be used to obtain invariant (natural)
prolongations.

We begin by introducing the setting and basic operators of the BGG machinery in a
generalized version needed for the next section. Let V be a tractor bundle over M with a
covariant derivative V and the exterior covariant derivative d¥ : £EX(V) — (V). Re-
call from the above that we have a well defined differential 9* = 9, : £ k+lyy > gX(v).
The property 9* o 3* = 0 allows us to define the cohomology Hj as the vector bundle
quotient Hy = Kerd*/Imd*, where Kerd*  &X(V) is the space of cycles and
Imd* C EK(V) is the space of boundaries. The canonical surjection Ker ay C EXWV)
— Hj will be denoted by Iy.

Due to regularity of the parabolic geometry under consideration, the operators d" are
homogeneous of degree zero with respect to the natural filtration of the spaces £¢(V) and
they induce the algebraic differential gr dy : gr(Sk V)) —» gr(€ k+1(v)) on the associated
graded spaces. Thus it is possible to regard d as a natural lift of grdy to a differential
operator from EX(V) to EF1(V).

The main ingredients in the BGG machinery are the differential splitting operators
Ly : Hy — Kerdj, C EX(V) with the property 9* o d¥ o Ly = 0. This allows one to
define the BGG operators Dy : Hy — Hy4 in the obvious way: Dy := Tl o dV o Ly.
The definition is encoded in the diagram

gk(V) *dv>gk+l(v)

] h

Ker 8* Ker 8* 3

LkT lnkﬂ
Dy

Hj ———— H+1

where i denotes inclusion.

We shall introduce the construction of the splitting operators in a more general situ-
ation, where the exterior covariant derivatives d” on EX(V) will be replaced by general
differential operators Ej with suitable properties (see the theorem below). The opera-
tors Dy are defined by the same construction as the BGG operators and they depend, in
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general, on the choice of Ej. The theorem below shows that for certain classes of opera-
tors Ey, the resulting operators L; and Dy do not change.

Theorem 3.1. Let (EX(V))/ denote the filtration on EX(V) and let gr(Sk(V)) denote the
associated graded bundle, and similarly for TV (V). Let Ey be a filtration preserving
differential operator from EX(V) to E¥T1(V) with the property that the associated graded
map coincides with gr 3. Then for every o € Hy, there exists a unique element s € Ker 0*
with the following properties:

(1) TIk(s) = o,
(2) Ei(s) € Kero*.

Moreover; the mapping Ly defined by o — Ly (o) := s is given by a differential operator.
The corresponding operator Dy, is then defined by

Dy :=Tlgy10 Exo Ly : Hi — Hpy1.

Suppose that we change the operator Ey to Ek = E; + O, where & : E (V) —
Er+1(V) is a differential operator with values in Im 0* and preserving the filtration, with
the property that the associated graded map is trivial. Then the construction does not
change the splitting operator Ly and the operator Dy.

Proof. The first part of the proof follows the standard line of argument. The operator
3* o Ey acts on EX(V) and it preserves Im 8*. It preserves the filtration and its graded
version is, by assumption, given by gr(d*)ogr(d), which is invertible on Im 8*. Hence also
9* o Ey is invertible on Im 0* and it is possible to show that its inverse Q is a differential
operator.

We can then define a differential operator ik :=Id — Q o 3* o E}, which restricts
to zero on Im d*. Hence it induces a well-defined differential operator L from Hj to
Ker 8* C £X(V). It is easy to check that the operator L has the properties

ImchKera*, Iy o Ly =1d, a*OEkOLkZO.

To show that Ly is uniquely characterized by these properties, let us consider s1, 52 €
Ker 0* such that E(s;) € Kerd™*, i = 1,2, and I1;(s;) = I1;(s2). Then the difference
s = s1 — s7 belongs to Im 3*. By definition of i,k, the relation 9* o Ex(s) = 0 implies
ik(s) = 5. On the other hand, ik is trivial on Im 9*. Hence ik(.v) =0.

To prove the last statement of the theorem, we shall consider a section s of £ k(V). The
new operator £y preserves the filtration and the induced graded map is still grd. Since
(Ex — Ex)s belongs to Im 355, one has E(s) € Ker 3}, iff Ex(s) € Ker 3}, which shows
that Ly = Ly. Thus, for ¢ € Hy, one has (ExLy — ExL)o € Im 335, but this lies in the
kernel of the projection ITi4 : Ker 0* — Hj1. O

Now we want to discuss the relation between Ker Ej; and Ker Dy. For that, we have to
consider two consecutive operators Ex and Ej at the same time. They define two split-
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ting operators Ly and Li1. We get in this way the diagram

gy —Ee ghri(y)

Li T TLM—I 4
Dy

Hy — > Hyy

which, in general, does not commute but there is a convenient criterion for its commuta-
tivity.

Theorem 3.2. The diagram (4) commutes if and only if 3* o Exy1 o Ex(s) = 0 for all
sections s € Im Ly C EX(V).

Proof. The values of Ly are uniquely characterized by the conditions L (o) € Ker 9* and
EroLy (o) € Kerd*. Similarly, the values of L are characterized by Li4+1(t) € Kerd*
and Ex+10Lgy1(t) € Kerd*. Hence ExoLi(0) = Lyy10Dy(0) iff Exp10EroLi (o) €
Ker 0* for all 0 € Hy. O

If the diagram above is commutative, we immediately get a one-to-one correspondence
between Ker E; N Ker 0* and Ker Dy.

Theorem 3.3. Suppose that the diagram (4) commutes. Then 1y and Ly restrict to in-
verse isomorphisms between Ker E; N Ker 0* and Ker Dy.

Proof. Lets be in Ker ExNKer d*. Then s = L (I (s)) by definition of L, and ITi(s) €
Ker Dy, by definition of Dy.
On the other hand, if Dy (o) = 0, then commutativity of the diagram implies that also

Lit1 0 Di(0) = Ego Lg(0) =0,

hence L (o) € Ker E; N Kerd*.
And by definition of Ly, we have [Ty o Ly = 1d. ]

Now we can return to the properties of the prolongation covariant derivative V on V.
Using the above claims in the special case of the first square and the operators Eg = V
and E; = dV, we see immediately that E; o Eg = RY. Hence we get the following
corollary.

Corollary 3.1. Consider a tractor bundle V and the corresponding prolongation covari-
ant derivative V. Set Eg = V and E\ = d" . Then the square constructed using these
two operators commutes and the covariant derivative V gives a prolongation of the first
BGG operator Dy. In particular, the splitting operator Lo induces a one-to-one corre-
spondence between the space of parallel sections of V with respect to V and the kernel
of the first BGG operator Dy.

Remark. In the case of a 1-graded geometry, it was shown in [4] that the map Lg :
Hy — V induces an isomorphism of J* Hy with V< for every k such that the homol-
ogy of Hi(g—,V) sits in homogeneity > k. Thus, for every operator Do : Hy — H;
which differs from the standard BGG operator Dy by a linear differential operator of
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order < k, there isamap ¥ € & 1 (End V) with values in Ker 8\*, whose induced first
BGG operator coincides with Dy. The mapping ¥ is unique up to maps in ! (End V)
with values in Im 95, and it is thus easy to see that the resulting normalized connection
V =V + W + & does not depend on the choice of W. Thus, natural deformations of Dy
of low enough order can be prolonged naturally as well. We remark that a similar proce-
dure works in the case of general graded parabolic geometries, where one has to use the
filtration of the manifold for a suitable version of jet bundles (cf. [27, 28]).

4. Prolongation covariant derivatives for the whole BGG sequence

In this section we shall treat the problem considered above in the case of other squares
of the BGG sequence. We want to deform the exterior covariant derivative d¥ on k-
forms in such a way that all squares in the generalized BGG construction will commute,
and, at the same time, the BGG operators Dj will not change. In fact, we shall succeed
in keeping both the BGG operators Dy and the splitting operators L; unchanged. The
deformation of d¥ on £¥(V) will have, however, a different character. It will be of the
form E; := dV + ®;, where ®; is a linear differential operator mapping EX(V) to
EX1(V). Hence the deformation ®; will not, in general, be algebraic. Necessary tools
were already prepared in the previous section (Theorems 3.1-3.3). Methods described in
this section can also be applied to the first square but they give a different answer (and
also in this case the deformation ® will not be algebraic in general).

To describe allowed deformations of the exterior derivative d¥, we shall intro-
duce the following notation. There are two different filtrations on the space A :=
Hom(EX(V), EF1(V)). The diagonal filtration A/ is induced by the standard filtration
on E¥(V), which is defined by the condition ®(s) € E¥T1(V)*Hi for all s € EX(V)e.
The other (vertical) filtration A“ is defined by the condition ®(s) € EkHL(V)a for all
s € EK(V). In this section, we shall use the symbols d and 9* for the Kostant differentials
associated to the spaces EX (V). Recall that the class C of admissible covariant derivatives
on V was defined by

C={V=V’+®|decIm® ®Idy+), ® € E'(End V)'}.
We shall consider the following spaces Cy of deformations.
Definition 4.1. The space of allowed deformations will be defined by
Cy = {Ex € Hom(E V), EEH' (V) | Ex =dV + @, d € A', In® C Im9*).

Theorem 4.2. (1) Let V be any covariant derivative from C. Let us consider the BGG
sequence with the splitting operators Ly and the BGG operators Dy induced (via
Theorem 3.1) by the operators Ex = d,

gk(v) i> 8/<+1 (V)

LkT TLk-H ()
Dy

Hy — > Hypy
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Then there exists a collection of differential operators ®; € Cy such that 3* o d¥ o
(dY + @) = 0. Moreover, the collection ®y, with these properties is unique.
(2) As a consequence, the diagrams

v
gk vy L% gkt v

LkT TLHI (6)

He (V) —2= Hipy (V)

commute for all k = 0,1,...,n — 1. Moreover, if V depends only on data of the
chosen parabolic geometry, the same is true for the operators Ey = d> + ®.

Proof. Letuschoosek =0, ..., n—1 and consider the square (6) in the generalized BGG
sequence constructed using operators d ¥, where V is any covariant derivative from C. We
shall first prove the first assertion of the theorem.

The spaces {A! N A%} _, form a decreasing filtration of the space Al with a =
0, ..., r. The filtration is preserved by the maps dy and 93, hence they induce maps on
the associated graded bundle (we denote them for simplicity by the same symbols as
for the full filtration of A). We can consider the Kostant Laplacian [J = grdj, grdy +
grdy grdy. The standard Kostant decomposition says that Ker [J, Im gr 9}, and Im gr dy
are complementary subspaces of the graded bundle gr £ (V)!. In particular, [ is invertible
onImgroy.

Let us consider two consecutive squares with operators E; = d" and Ej41 = d".
We know that the operator G := 8* o E; 1 o E; belongs to A! and that the k-th square is
commutative iff G = 0. If it is not the case, we shall consider the maximal index a = 0
with the property that G € A“.

The map ' = —[0~! gr(G) can be lifted to a linear algebraic map () : (V) —

EM1(V) (e.g., by choosing a Weyl structure) and we shall define the first iteration E ,El) =

d¥ + @1, Note that the lowest homogeneous component of E ,El) remains to be dy and

that the image of E ,E]) is a subset of Im 9*.
Since

Eg10E" — Exy1o0Ep=d¥ oV,

we get

20, (3% 0 Egy1 0 E(M)) = gr, (G + 8" 0 d¥ 0 @)
= gr,(G) — (grd*)(grav) (D~ (gr,(G))) = 0.

Hence the first order differential operator GV := 8* o0 Ex 41 0 E ,El) belongs to A4t
The same procedure will be repeated inductively. If we define

@ = —(gro*! gr,. G
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we can again lift this first order differential operator to a first order differential operator
®@ . g5(V) — £F1(V) and we can define the next iteration by

EP = E" + 0?.
Then we get
21,35 0d¥ 0 EP)) = gr, (G + 8 0d¥ 0 )
= gr,(G'"D) — (gray)(grav)(@ ' (gr,(G))) = 0.

Hence the first order differential operator G2 := oy od VoE ,iz) belongs to A%*+2.

It is clear that after a finite number of iterations, we shall get the existence part of the
theorem.

The proof of the uniqueness part is similar to the procedure employed in Lemma 2.5.
Suppose that we have two differential operators @, and @ satisfying the conditions of
the theorem. Their difference & = <I>;C - dJ;c/ satisfies 9}, (dY o ®) = 0. To show that
® = 0, suppose that @ is nontrivial and consider the largest a such that ®¢ is nontrivial.
Then we know that gr, dv¥ o ®) = (gray)(gr, ®), hence (gray)(gr, @) is at the same
time in Im grdy and Kergrdy,, so it is 0. By definition, gr, ® also belongs to Im 35,
hence gr, ® is trivial and we have a contradiction.

As for the second part of the theorem, let us consider two consecutive squares in
the BGG construction induced by E; = d", containing the operators Dy and Dy . If
@, is the deformation constructed above, then the replacement of E; = dv by Ek =
dV + @ leads to the same splitting operator L. Hence by the first part of the theorem,
the k-th diagram commutes. Note that changing the next operator Ey1 will not change
the splitting operator L1, hence the commutativity of the k-th diagram is preserved.

Finally, during the construction there were several choices made but due to the unique-
ness of the result, the construction depends only on the data of the chosen parabolic ge-
ometry. The same is true for the covariant derivative V. O

5. Examples

In this section we want to illustrate the general results presented above by explicit ex-
amples showing the form of the prolongation covariant derivative in some simple situa-
tions. A more comprehensive set of examples is given in [24].

To calculate the prolongation covariant derivative of the first BGG operator Dy for
some tractor bundle V = G x p V, we employ the theory of Weyl structures [7], [8]. All of
our examples below will be |1|-graded parabolic geometries, g = g—1 @ go P g1. Modding
out Py = g; of the parabolic structure bundle G, one obtains Gy := G/ P4, which is a
Go-principal bundle over M. A splitting o : Go — G of the canonical projection G — Gy
is called a Weyl structure, and for our geometric structures below this can be identified
with the choice of a Weyl connection, which is a linear connection D compatible with the
geometry. Under such a choice, all P-associated bundles reduce to Gg-associated bundles,
and in particular one gets a decomposition of every tractor bundle V which depends on
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the choice of the Weyl structure [8]. In particular, the adjoint tractor bundle AM = Gx pg
decomposes into A_M & A)M & A\ M, with A_M = TM and Ay M = T*M. The Lie
algebraic action of g on V gives rise to an action e of AM on V, which we can restrict to
TM and T*M. The tractor covariant derivative V¢ can be written as V¥ = d 4+ D + Pe:
the mapd : V — Ql(M, V) is obtained by the action of TM — AM on V, and
Pe : V — QY (M, V) is induced by the action of the second slot of the (generalized)
Schouten tensor P € &5, of D, which will be symmetric for our choices of D. Recall that
this decomposition of V® depends on the choice of the Weyl structure o : Gy — G resp.
Weyl connection D.

In our explicit formulas, we employ abstract index notation [29]: £, = Ql(m),
&% = X (M), and multiple indices indicate tensor products. Round brackets denote sym-
metrizations of the indices enclosed, and square brackets denote skew symmetrizations.
A subscript zero indicates taking the trace-free part.

We now prolong an interesting equation in projective geometry which has already
been treated in [17] by different methods. Next we consider three well known overde-
termined equations in conformal geometry, which govern Einstein rescalings, conformal
Killing forms and twistor spinors. Finally we analyse an equation for Grassmannian struc-
tures of type (2,¢),q > 2. For a more detailed exposition of explicit calculations cf.
[22]-[24].

5.1. An example in projective geometry

Let M be an orientable manifold of dimension n endowed with a projective class of
linear, torsion-free connections [D]; here D and D’ are projectively equivalent if there is
aY e &' such that

Dl wp = Dyw — Yawp — Ypay

(see e.g. [14]). For simplicity, we will assume that our chosen representatives D € [D]
preserve a volume form on 7M.

To define projectively invariant operators we need to employ densities, which are
sections of line bundles E[w], w € R, associated to the full GL(n)-frame bundle of T M
via the 1-dimensional representation

C € GL(n) > |detC|*"+D/m ¢ R,

With this parametrization, sections of the bundles E[w] are often called projective densi-
ties. Assume n > 2. We are going to prolong the following projectively invariant operator,
which is written down with respect to a D € [ D], but does not depend on this choice:

1
Do : £ [-2] - £“P[-2], o > Do — o lagaDpo"W. @)
n

Dy projects the Levi-Civita derivative of a symmetric two-tensor o to its trace-free part.
This operator was discussed in [17], where M. Eastwood and V. Matveev showed that this
equation governs the metrizability of a projective class of covariant derivatives.
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5.1.1. The projective structure as a parabolic geometry. It is a classical result that
(M, [D]) is equivalent to a unique Cartan geometry (I',w) of type (G,P) =
(SL(n + 1), P) with P the stabilizer of a ray in R (cf. [11, 31, 8]).

The Lie algebra g = sl(n 4+ 1) is 1-graded, g = g1 ® go D g1 = R" @ gl(n) & (R")*,
where an element X @ («vid+A) @ ¢ € gfora € R, A € sl(n) corresponds to the matrix

S

X  qal,+A)
The actions of gg = gl(n) C gon g_; = R"” and g; = (R")* are the standard representa-
tion and its dual.

The curvature of the Cartan connection form w can be regarded as an element of
EX(AM), with AM =T x p ¢ the adjoint tractor bundle, and is written

0 _Aac C;
K — 1€2
with A the Cotton—York tensor and C the (projectively invariant) Weyl curvature

(cf. [14]).
1-forms and vector fields include into AM as

0 0

£ 0

naeT*Mr—>(8 _3“>6AM, 5“6TM»—><

)eAM.

5.1.2. The operator Dy as the first BGG operator. Let V := T x p S?R"*!. With respect
to a choice of a Weyl connection D € [D], a section s of V can be written

p Va &[-2]
[slp = w el Vi|=]| &@-2 |. ®
odb Vo gb-2]

We will need that on the first chain spaces the Lie algebra differentials 9 and 9* are
explicitly given by

p 0 Pe 0
ol n® | = pdc” , o et | = 28(¢ a,Ocz] )
Uab. Sc(aﬂb) Gcab. 28[01 (a; Mcz]az)
Pc _2,U«pp Peycy 2M6'Pp
| uet | =20, 0| ten” | = | 2007
o.b. 0 Jclczab. 0

As bundles with structure group Go, V2, V) and T*M ® V; are irreducible and are con-
tained in the image of 3*; T* M ® V| decomposes into the trace-free part Im a*NT*M QV;
and the trace part, which lies in the image of d. The Kostant Laplacian [J acts by

pc‘lc‘z _anqcz
O Mclcza —(l’l + l)[.Lch2a
oqcz“b 0
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on V, by multiplication with —2(n — 1) on T*M ® V, and by multiplication with —n on
the trace-free part of 7*M ® V. This is all the algebraic information we need to calculate
the splitting operators and the prolongation.

The tractor covariant derivative V® on V is easily calculated with the above actions
of &, and £ on V together with the formula V¥ = 3 + D + Pe:

P Dep —2Pcqu®
Vel ut | = Dep® — ZPCbUab + pdc
Gab Dco_ab 4 {Sc(aub)

One calculates that the first splitting operator Lg : I'(Hyp) — (V) is given by
1 1
) PICES) Dqulqu + 5, Ppqo ™
a
o = —m D pgl’“

O.ab

and the composition of V¥ o Lo with the projection to the lowest slot is seen to yield the
operator Dy of (7).

5.1.3. Prolongation of Dy. We calculate the action of the curvature K € Q%(M, AM):

0 —2Apcico 0P
Keeyo | 0 | =[-24pcic0" +Cp )’ pﬂp . C)
o 2, ga)p
Therefore we define
0 0 0 0
@, 0 =[do|:=-0"'"|o"|Ke| O = %Ccpaquq
oab 0 oab 0

Now the curvature of the modified connection V¥ + ®; is R = Ke + d¥ ®; since
(d; A D) (&, n) vanishes. For &1, & € X(M) ands € V,
@Y ®1)s(&1, &) = Ve, (P1(82)s) — P1(82) (Vg s) — Ve, (R1(E1)s) + P1(1) (Ve 5)
— @ ([&1, &2D)s. (10)
We may expand (10) and write (d Vd))s as
*

D¢, (1(&2)0) — q31(%‘2)(D5_1<7) — D&, (®1(£1)0) + @1 (£1)(Dg,0)
) - —01(&1, 20 ) , 3D
—®1(52)05,0 + P1(51) 06,0 — D1(52) 0, . + P1(81)05, 10

3, @1(E2)0 — 3, @1 (£1)0

where we do not take care about the top component since it will vanish after an application
of 3*. The lowest component is simply 3(®(0) = —d0~19*(K e o). Thus 3*(Rs) lies
in the top slot (i.e., in homogeneity 1). So our first adjustment had the effect of moving
the expression d*(Rs) one slot up.
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The new connection V¢ + &, has the following terms in the middle slot of the cur-
vature Rg,: From (11) we obtain the terms 2D[L.15102] and (via an application of the
algebraic Bianchi identity for C), CCIC‘; p;u” . By (9), the contribution of K e s to the
middle slotis —2A¢,¢,0 7" + C,, .,",u”. In total, we find that the action of the curvature
Rq>] is

Y *
2
ua“b = | 2 Die,Copyy' o7 = 2Apci 0P +2C, 7 1P
*

The entries (x) are irrelevant: the lowest slot is by construction already in the kernel of
9* and the highest slot always lies in Ker 3*. Now define

P . Y
. —1qx%
o, ue = —-07"9" | Ro, u
aab O.ab

Using D), Cclczp a = (n —2)Aye, ¢, and trace-freeness of C, we calculate

p — 2 Apcqo ™
(o) ue = 0
o4b 0

and find that ® := ®| + &, € ['(T*M ® End(V)) is

0 2 —2Apcq0P4
w == Clyot? ). (12)
b n
o 0

Now, with Rg the curvature of V=ve+ ®, one has by construction 3* o Rp = 0. Thus
V is the prolongation covariant derivative for (Deo)g = 0.

5.2. Examples in conformal geometry

Let M be an n-manifold endowed with a conformal class [g] of (pseudo-)Riemannian
signature (p, g) metrics. The conformal structure (M, [g]) is equivalent to a reduction of
the structure group of the full frame bundle of 7T M to a CO(p, g) = Ry x O(p, g)-bundle
Go — M. To write down conformally invariant differential operators we will employ
conformal density bundles E[w], which are associated to the 1-dimensional CO(p, q)-
representation (¢, C) € CO(p, g¢) — a¥ € R,.

The conformal structure can be equivalently encoded as a parabolic geometry (G, w)
of type (SO(p + 1,49 + 1), P), with P C SO(p + 1, g + 1) the stabilizer of an isotropic
ray in RPT1.4+1 (cf. [10, 8]); the curvature of w is an element k € E2(AM), with AM =
G xpso(p+1, g+ 1), and has to satisfy the normalization condition 3*x = 0. Choosing
a metric g € [g] yields its Levi-Civita connection D on T M, which serves as a Weyl
connection, and we make use of this to get explicit formulas for BGG operators in the
following.
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Since the necessary explicit tractor calculations for the next three equations are avail-
able in [23], and in the case of the conformal Killing form equations rather long, we just
summarize the important properties here and relate the results to our general theory.

5.2.1. Almost Einstein scales. Let now T := G x p RPH1-441 ve the standard tractor
bundle of the conformal structure, which is endowed with its normal tractor covariant
derivative V®. It was already observed in [1] that parallel sections of V® are in one-to-
one correspondence with solutions of Dy,

Dy : E[1] — g(ab)o[l]’ o +— tf(D,Dpo + Pypo), (13)

where tf takes the trace-free part. This is a conformally invariant 21d order PDE, and
its solutions o are Einstein rescalings or almost Einstein scales, [18]: o is nonvanishing
on an open dense subset, and o ~2g is Einstein there. In particular, V¢ is already the
prolongation covariant derivative of this problem: it is also easy to see directly that its
curvature RV satisfies il (RV") =0 [23].

5.2.2. Conformal Killing forms. Let now V := A¥T1T be an exterior power of the con-
formal standard tractor bundle, which is again endowed with the normal tractor connec-
tion V. An explicit tractor computation yields

Dy : g[al-nak][k +1] — gc[aln-ak][k + 1],

k
n—k+1
which is the projection of Do to the highest weight component in E¢[4,...q;1[k + 1]. So-
lutions of Dyo = 0 are the conformal Killing forms on M. The equations governing
conformal Killing forms were first prolonged by U. Semmelmann [30]. In [19] an invari-
ant prolongation was calculated directly. The prolongation covariant derivative V for this
equation is already fairly complicated to compute explicitly, and we refer to [23, 22] for
this.

0 > Dc0g, .. — DiagOay--ar] = 8ela1 8" D\ p0Oglar-ay)s

5.2.3. Twistor spinors. In the case where one has a reduction of the CO(p, ¢)-bundle of
(M, [g]) to a CSpin(p, g) = Ry x Spin(p, g)-bundle Gy one knows that (M, [g]) is a
conformal spin structure. This structure is then equivalently described as a Cartan geome-
try of type (Spin(p+1, g+ 1), P), with P C Spin(p+ 1, ¢ + 1) again the stabilizer of an
isotropic ray in RP+1.4+1 et AP+1.4+] be the Spin(p + 1, ¢ + 1) representation, which
is decomposable in the case where p + ¢ is even. The corresponding associated tractor
bundle is S = G xp APT14F1 Now let AP be the spin representation of Spin(p, ¢),
which we extend trivially to CSpin(p, ¢), and define S := Gy XcSpin(p,q) AP*?. Then the
first BGG operator of S is

Do : T'(S[1/2]) = '€ ® S[1/2]), o — proj(D.o).

This is the twistor operator: it is the composition of D : T'(S) — &:(S) with proj, the
projection to the kernel of Clifford multiplication. It is again well known [2, 3, 23] that
solutions of Dy are already in one-to-one correspondence with parallel sections of the
normal tractor covariant derivative V* on the spin tractor bundle S.
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5.3. An example in Grassmannian geometry

Letg € N, g > 2, and M be an oriented 2¢-dimensional manifold together with a rank 2
bundle &, and a rank ¢ bundle £% . Assume there is an isomorphism of T M with £, QEF’,
which will be fixed. We say that M together with the identification TM = 5[3 is a Grass-
mannian geometry of type (2, q) if there exists a torsion-free linear connection D on T M
which is the product of linear connections (again denoted by D) on &, and £ B (see [20],
[8]). The class of all such connections are the Weyl connections of (M, TM = 55 ).
We are going to prolong the operator
. [ / /] ]/[0(/,3/] ral y ral 2 [Ol/ |)/ /l /]

Dy : P &7 o, uf Dy,u‘”f + ﬂay, D u" Pl (14)

Thus, Dg(u) is the projection of Du to its trace-free part.

5.3.1. Grassmannian structures as parabolic geometries. Let G = SL(n), n = 2 + ¢,
and define P as the stabilizer of a two-plane in (R")*. Regular, normal and torsion-free
parabolic geometries (G, w) of type (G, P) are Grassmannian structures. In the Cartan
picture, &, and £ o are associated to the P-representations (R”)*, resp. RY.
Let S be the standard tractor bundle of (G, w), i.e., the associated bundle to the stan-
dard representation of SL(r). Via any Weyl structure D, S decomposes into £% & e,
The curvature K € E2(AM) = £2(S) of the Cartan connection is of the form

¢
K CCICM _APCICZ
= ’ ;
0 c. ?,
crean

this employs the (generalized) Weyl curvature components C € Q2(M, s[(£%)) and C’ €
&2 (5[(5“/)) and the generalized Cotton—York tensor A € £ 2(EY) (cf. [20]). Normality of

the geometry and torsion-freeness imply that any possible trace of C }}:1;’%5, c’ ;',})?,;/;, and
172 172
A2 vanishes.
VY,

5.3.2. Description of Dy as the first BGG operator. We consider the tractor bundle
V = A2S, which under a choice of a Weyl connection D decomposes according to
glepl
Vip=A*E @) = | £F
gle'p]

On the first chain spaces the Lie algebra differentials 0 and 9* are given as follows (indices
within vertical bars are not included in the skew symmetrization):

veP 0 v;,“ﬁ s 0 o
/ ! / b _ 2/1
alw* | = —65,1)"‘5 o9 J):fxﬂ _ 28y2,v g 28V1,vy2,
u'? 2511 lelB] WE Sl InIBS o dlB Iralfs]
o v Mo v Yyl
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)}:aﬁ _zw[(}wzz]t’ Ug:/;jaﬁ/ Zw}’ll/gtﬂ]f’
a* w]/:)tﬁ/ = ua/f/ﬂ/ s a* w;l,;z,aﬂ = _u}/l/a‘[/lg/
’
u}/f/ﬁ’ rO uVl/ll/zrza’ﬁ’ ybr
14 Y1V,

The Kostant Laplacian [0 = 9 o 3* + 9™ 0 9 acts on [V]p via

vP Qq)vf
Ofw | = (¢ - DHw?
ua/lBI 0

The top slot of EL(V) is Sc[aﬂ 1 _ E;,/,[aﬁ] and coincides with the image of 9*. It is ir-
reducible and the Kostant Laplacian acts by multiplication with 2(2g — 1). The middle
slot of £1(V), which is Eaﬂ decomposes into Im d, which are traces, and the trace-free
part Im9* = Eocﬁ One finds that &)yaﬁ & %/ya]ﬁ ® & (ya)ﬁ and [J acts by ¢ on the
alternating part and by ¢ — 2 on the symmetrlc part.

The tractor covariant derivative on V is

B Dy a/3+2py /wﬂ
v L w | = DJw ‘)‘ﬂ — 8% L PI WP
ua/ﬁ/

VB o5l lvIBT]
Dy,u + 25;/’ w
The first BGG splitting operator Lo : £@#) — (V) is computed to be
P M‘L']TZ/ _ LD[aDﬂ]MT]/TQ/
o7 T— P Py
O{/ﬂ/ _ 1 ' ar
LO(M ) - qu/ur B )
ua/ﬁ’

and the composition of V® o L with the projection to the lowest slot is seen to yield our
operator (14).

5.3.3. Prolongation of Dy. For a section s of V one first computes K os € £2(V), which
is then mapped by 8* into £'(V),

Uaﬂ ZC;//}[als]wmp/_’_ZA[alyl‘ﬂ]ur](p
, l
* | Ko |w = zcmzﬂn u?'n . (15)
/ﬁ/
Ma 0

The first deformation map ®; is defined by ®; = —0~! 0 3* 0 K e,

0 0

_ 12 /nalp’ (p n 2 /(J/la)ls

@ (Sﬁ/ = Cylwn Tz CVph’ '
u 0
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Now we need to calculate 3* of the change in curvature resulting from @1, which is just
9* o dVdy, since one quickly sees that 3* o @y, d,) = 0. Both indices of a section
w®" are contracted into C and the trace taken by 9* vanishes by trace-freeness of C, C’.
Therefore we are only interested in the differential components of ¥ & given by

0
2l 1 pn mep' o'y zl_ 1 DY b’ o'y
(q+q—2) ylcwp”u (q q2) lcywnu
2L ) DO 2L ) D
e 2 1

Applying 3* we obtain the top slot contribution

gLy L\l (L L\ pleesme e )
q q-2 719'n g q-2 D, yie'n

Adding the contributions of the top slot of (15) and (16) (after multiplication by — m)
to the modification map @1, we obtain the full modification map
1 L, _1yp Ayl o'y 1 1 [a Bint u?'m
9B 2q—1 (2(q = 2) prn “ 2(q q—Z) T CV i
1/1 [aﬁ a\yl 11,
ua/ﬂ/ 2C/[Vla]lg o' _|__ 2 C/(Vla)ﬂ o'n
vie'n rne'n

O

V = V + @ is then the prolongation covariant derivative of the system (D)}:,u"‘/ﬁl)o =0.

5.4. The case of infinitesimal automorphisms

Let AM be the adjoint tractor bundle of a regular parabolic geometry (G, ) over M
and V® the adjoint tractor covariant derivative. In [6] it was shown that parallel sections
of the connection

Vs = V% + k(T1(s), ) a7

are in one-to-one correspondence with infinitesimal automorphisms of (G, ), where IT
is the natural projection IT : AM — T M. This shows that it is of interest to consider
the first BGG operator Dy obtained from V. If the parabolic geometry (G, w) is normal,
the curvature of V lies in the kernel of 0%y Therefore, exactly as in Corollary 3.1, one
sees that ITy : AM — Hy and Lo Hy — AM are inverse 1s0m0rph1sms between the
space of parallel sections of V and the kernel of Dy. Thus, the operator Dy describes the
infinitesimal automorphisms of (G, w) and is automatically prolonged by V.

It is shown that if the parabolic geometry is also torsion-free or 1-graded, one has
aleK = 0, i.e., for every s € AM one has ajZ‘MK(H(S), ) = 0. But in the torsion-
free case, the map & — «x (I1(s), &) is evidently homogeneous of degree > 1. Therefore,
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if we know that Hi(g—, g) sits in homogeneity < 0, we see that & +— «(I1(s), &) lies
in Im 3:“4 I
Thus we have:

Theorem 5.1. Let (G — M, w) be a torsion-free, normal parabolic geometry with
Hi(g—, g) concentrated in homogeneity < 0. Then @fmm (17) coincides with the pro-
longation covariant derivative on AM. In particular, the usual first BGG operator Dy
coincides with Dy and thus describes infinitesimal automorphisms.

We note that the homogeneity condition on H;(g—, g) is satisfied for all parabolic geome-
tries of type (G, P) with g simple and (G, P) not corresponding to projective structures
or contact projective structures.
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Abstract  This is the second in a series of articles on a natural modification of the normal
tractor connection on parabolic geometries, which naturally prolongs an underlying overde-
termined system of invariant differential equations. We give a short review of the general
procedure developed in Hammerl et al. (preprint) and then compute the prolongation covariant
derivatives for a number of interesting examples in projective, conformal, and Grassmannian
geometries.
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1 Introduction

In this article, we study certain overdetermined linear systems of PDEs that have a geomet-
ric origin and satisfy strong invariance properties. The goal is to rewrite these systems in a
closed form by prolongation. This is achieved by constructing an extended first order system
that is described by a covariant derivative and which has the property that parallel sections
of that covariant derivative are in one to one correspondence with solutions of the original
equation. We call this derivative the prolongation covariant derivative of the given equation.
A universal construction of this prolongation for a big class of geometric equations that will
be introduced below was obtained in [17].

The equations studied here appear naturally for parabolic geometries-like projective, con-
formal, or Grassmannian structures and include as special instances the equations describing
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the infinitesimal symmetries of geometric structures. Special examples of overdetermined
linear systems of invariant equations coming from parabolic geometries are discussed in,
e.g., [2,10,4,8,14].

The results of [2,17] provide a priori bounds for the solution spaces of the respective
equations. To obtain more subtle information, for instance by analyzing the curvature, one
needs to have formulas for the resulting prolongation covariant derivative. While the universal
procedure presented in [17] is constructive, the explicit form of the resulting prolongation
was so far only known in a small number of cases. The examples in the panorama presented
here were selected according to several criteria: they should be useful and non-elementary,
going beyond the examples scattered in the references; they should be computable by hand,
and at the same time demonstrating the powerful machine developed in [17]. The examples
treated in this article should give the interested reader the ability to recognize the complexity
of the necessary computations both in general and in specific situations of interest.

The invariant overdetermined operators that give rise to the equations studied here appear
in the Bernstein—Gelfand—Gelfand (BGG for short) sequences of natural differential oper-
ators on parabolic geometries that was constructed in [7] and later simplified in [3]. The
prolongation results of [17] make extensive use of tractor calculus for parabolic geometries,
which is also central to the description of the BGG-machinery. In the next sections we briefly
recall the basic technical facts and notations necessary for these constructions. For more
details we refer to the preceding article [17] and references therein.

Throughout the article we work in the smooth category, i.e., all manifolds, vector bundles,
and their sheaves of sections are assumed to be smooth.

1.1 The BGG sequence

Let G be a semi-simple Lie group and P C G a parabolic subgroup. A parabolic geometry
on a manifold M consists of a P-principal bundle G — M together with a Cartan connection
1-form w € 2'(G, g), [6]. Here g denotes the Lie algebra of G. A major development in the
construction of differential invariants of parabolic structure was achieved in [3,7].

Let V be a finite dimensional G-representation. It is well known that the associated trac-
tor bundle V. = G x p V carries the canonical tractor covariant derivative V induced by
the Cartan connection form w, see, e.g., [1]. The connection extends uniquely to an exterior
covariant derivative on the spaces £ k(vy := KM, V) of k-forms with values in the vector
bundle V, denoted by d"V : EX(V) — EFFL(V). All associated vector bundles are graded
with respect to the action of the grading element in the Levi factor G of P, see [17, Section
2.1], leading to the decomposition into homogeneous parts. The lowest homogeneous part
of dV is the Go-equivariant Lie algebraic differential d; : ey > gML(V), termed the
Kostant differential, [18]. Its adjoint, the Kostant codifferential 9]/ is P-equivariant and gives
rise to a complex

B*
gFlvy B ekw), af o9, = 0.

There are Lie algebra cohomology bundles Hy = ker d;/im 9], ; due to the P-equivariant
projection

Iy : ker 8] — Hy.
The basic ingredient of the BGG-machinery are the differential BGG-splitting operators
Lk . Hk — kera,j‘,
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uniquely defined by the property that for every smooth section o € I" (Hy) one has
0f1(d (Li(0))) = 0. (1
In particular, one can form the BGG-operators
Dy : Hy — Hiy1, Dy := i1 0d” o Ly.

It will be usually clear from the context what is the appropriate value for homogeneity k of
the form which is acted upon by any of the operators, i.e., we usually omit this subscript from
the notation.

Let us briefly review the invariant prolongation procedure obtained in [17]:

1.2 Prolongation of the first BGG-operator Dy

The first BGG-operator Dy associated to V is overdetermined, and our aim is the construc-
tion of invariant prolongation of the corresponding systems Dgo = 0 on o € I'(Hp). Let
us recall that the approach of [17] starts by introducing certain class of linear connections
VV + & on V, which are modifications of the tractor covariant derivative V" . The first con-
dition on a modification map @ € £!(End V) is that it is homogeneous of degree > 1 with
respect to the natural filterations on 7 M and V, for which we write @ € (£ '(End V))!. This
insures that basic constructions of the BGG-machinery still work. The next condition is that
for any section s € I"'(V) we have that s € EY(V) has values in im 8*. As a consequence,
the condition (1) is preserved under the modification map @. The latter condition can be
rewritten as @ € Im (9}, ®idy+), thus we arrive at a class of admissible covariant derivatives

C={V=V+®|®eclm@ ®idy) N(E EndV)'}.

Here 07, denotes 9* acting on £ 1(V) (and not on ' (End V)), and the same applies for oy
acting on ek,
The main theorem of [17] is then

Theorem 1.1 There exists a unique covariant derivative V € C characterized by the property
(@) ®idy)(2) =0,

where 2 € E2(V ® V*) is the curvature of V.

This implies V o Ly = L; o D, which in turn yields

Corollary 1.2 Consider a tractor bundle V and the covariant derivative V in Theorem 1.1.
Then V gives a prolongation of the first BGG-operator Dy in the sense that there is an
isomorphism between 6—parallel sections of V and the kernel of Dy acting on I' (Hy). This
isomorphism is given by the projection Iy : I'(V) — I' (Hy) and inverted by the differential
splitting operator Lg : I'(Hy) — I'(V).

We therefore say that V is the prolongation covariant derivative.

The prolongation of the first operator in the BGG sequence obtained by this theorem
can be understood as the construction of a certain commutative square related to the first
BGGe-operator Dy, cf. [17]. We are constructing also examples of commutative squares for
the operators Dy:
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1.3 Commutativity for all Dy

In [17] the authors also obtained the analog of V on &k (V). Here d¥ gives rise to the class
Coi={di=d " +@|®ec A, Im® C Imd*}

where A := Hom(EX(V), E¥71(V)) and A! denote:s homomorphisms homogegeous of the
degree > 1. Then it turns out that there is a unique di € Cy such that 9}, o d¥ od; = 0. This
then implies

dy o Ly = L1 o Dy,

and IT; and L restrict to inverse isomorphisms between Ker d; N Ker 9* and Ker Dy.

1.4 The guideline for computing examples

Here is the manual for treating particular examples, which can be used to derive the explicit
form of the prolongation covariant derivative. In practice, the normalization procedure for
the canonical tractor covariant derivative can be summarized as an algorithm based on the
following list of steps:

(1) Choose a parabolic geometry (G, P, M, w), where G — M is a principal P-bundle on
M and w € Q! (G, g). Choose also a finite dimensional G-module V and its associated
vector bundle V, termed tractor bundle. Let us fix the two consecutive vector bundles
of k, respectively, (k 4+ 1)-forms twisted by V.

(2) Choose a Weyl structure, so that there is a well-defined splitting of the filtered bun-
dle V into a direct sum of homogeneous components. Decompose both spaces of
k, respectively, (k + 1)-forms twisted by V with respect to Go. Then compute the
value of the Laplace-Kostant algebraic operator [J associated to 9* on each irreducible
Go-summand (i.e., Go-graded components associated to P-equivariant filtration) either
by evaluating the action of Casimir operator or from the definition O = 9*9 + 99*.

(3) Now the procedure splits into two cases:

e The computation of the prolongation covariant derivative.
Check if (3}, ®idy+)(£2) is trivial, where 2 is the curvature of V. If this is the case
the procedure ends, and we have computed the prolongation covariant derivative.
If o := (0} ® idy+)(§2) # 0, take the lowest nontrivial homogeneous part «; of &
and define

o=-0"a;; V=V+o.

Then repeat the procedure with V replaced by V'. By construction, the lowest non-
trivial component of « in the next step will have higher degree than in the previous
step, hence the procedure will terminate in a finite number of steps (bounded by the
length of the grading of V).
e The case of the whole sequence of commuting squares.

Here we use another procedure based on the following algorithm: Consider two
consecutive squares containing the exterior covariant derivatives a’kV L ERV)
Ny and dy, |« EFTI(V) > EFF2(V). First check if

@) @idve)(dyy, odyY)
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is trivial. If not, the first step is the same as for the construction of prolongation
covariant derivative above. Consider o := (0* ® idw)(dkV 11 ° dkV ) # 0, take the
lowest non-trivial homogeneous part o of o and define

o =-0'a;; d =d +o.

Ifo = (0*® idv*)(alkv o dy) is trivial, the procedure terminates and we define
dy = d; . If not, take the lowest non-trivial homogeneous part oz;., of ' and define

®' =-0"d); df =d; + .

By construction, the degree j’ will be bigger than j, hence the procedure will ter-
minate in a finite number of steps (bounded again by the length of the grading of
V). Note that the operators @ that occur in this iteration are (in general) differential
operators, and their order rises by one with each iteration.

2 Notation

In this section we review the basic notation and conventions related to the results of our
article.

2.1 Forms, tensors, and tensorial actions

In order to be explicit and efficient in calculations involving bundles of possibly high rank
it is necessary to introduce some further abstract index notation. In the usual abstract index
convention one would write E[4p...¢], Where there are implicitly k-indices skewed over, for the
space £X. To simplify subsequent expressions we use the following conventions: First, indi-
ces labeled with sequential superscripts that are at the same level (i.e., all contravariant or all
covariant) indicate a completely skew set of indices. Formally we set a' - --a* = [a' - - - aX]
and so, for example, &£,1._ is an alternative notation for £¥, while £,1___ -1 and £,>.__x both
denote 1. Next we abbreviate this notation via multi-indices: We will use the form indices

ak:=al~--ak=[al--~ak], k>0,
ak=a? . dh=1d® - d", k=1,
i =a  d = d, k=2,
ak=g*. . .db=[a* - d"), k=3

If, for example, k = 1, then ak simply means the index is absent, whereas if k = 1, then
a means the term containing the index a is absent. For example, a 3-form ¢ can have the
following possible equivalent structures of indices:

3
Yala2a3 = Plala?a3] = Pad = $alad = Pa'ad] = Pala?ad € Ea3 =&

Note that the exterior derivative d on a k-form f, can be written as (df) 0, = V,0 fa for any
torsion-free affine connection V.

Later on we define the standard tractor bundle denoted by £4 and its dual £z. The form
index notation developed above will also be used for skew symmetric powers of these
bundles. For example, the bundle of tractor k-forms & 41... k) will be denoted by Eyi... gk
or Exk.
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The bundle of endomorphisms of £ A(or Ey), EEF, clearly injects &£ E L C End(T) for
any tractor bundle 7 € (® £4) ® (Q Ep). Consider y£r € EEF and f € T. The endo-
morphism y acts on 7 and we denote this action by . That is, yf f € 7. Using the abstract
tractor indices, f is given by the usual tensorial action, i.e., (yfif)4 = y4p fF for f4 € €4
and (ytf)a = —yP afp for fo € £4. One then computes # on the tensor products of £4
and E£p using the Leibniz rule. We further put y 4 to be zero on £¢, &, and density bundles
(which we introduce later) and, using the Leibniz rule, extend y{ to the tensor products of
T with latter three bundles. Finally we remark the action f is denoted e in [6].

2.2 The adjoint tractor bundle and the Laplace-Kostant operator

The bundle A = G xp g is called the adjoint tractor bundle. By definition, A C EAp,
and more generally A < End(7) for any tractor bundle 7. We shall use  to denote
the action of sections of A on 7 as introduced above. Note that the curvature of the nor-
mal tractor covariant derivative V is the section of £,0,1 ® A, and the curvature action is
2(dVV £) 001 = 2V0 V1 f = (28f) 041 € Elap) @ T foreach f € T.

We have identifications £, = G xp p4 and €4 = A/ A', A’ := G x p p, which allow us
to define inclusions ¢ : £, <> Aandi: £ — A/A’, where the latter is just the identity. We
extend these inclusions to

S b
1:& = & ®A and I:é‘aa—0>€aoab;>€aoa®A/A’.

Recall that here and below we use a chosen Weyl structure and the corresponding splittings.

Our aim is to use these tools to express Kostant’s differential 9, co-differential 0*, and in
particular the Laplace-Kostant operator [J (see [18]) in a form suitable for computations in
abstract indices. For any tractor bundle 7 these operators act on associated vector bundles
of forms twisted by 7, £&a ® T, a = a*. Using # they are given by

0 Ea®T <> E0y @ AJA DT 5 €0, 0T,

L ®T < G®ART —> £,® T and
O =00"4+0"0:Ea®T — Ea®T.

Note 9* is invariant but d (and consequently also [J;) depends on the choice of splitting
of the tractor bundles in question, i.e., on the Weyl structure. The Weyl structure allows us
to identify the quotient A/ A’ with G x p p, C A. However, [J;, is invariant on completely
reducible subquotients of £, ® 7 and acts by a scalar multiple on each irreducible component
of such subquotients. That is, we choose a splitting of the tractor bundle £, ® 7 to compute
g but the value of (J; on a given completely reducible subquotient alone is independent of
this choice.

The symbol & denotes the composition P-module structure of representations or vector
bundles.

Finally, note that one can compute [J; from highest weight of bundles concerned, see
[18]. We shall use this less explicit approach in cases where the abstract index computation
is getting too complicated.

Now we are ready to discuss specific geometries. In each case we first summarize the
tractor calculus. In particular, we shall need formulas for the normal tractor covariant deriv-
ative V and Kostant’s differential and co-differential 0 and 0*. Using these we compute the
prolongation covariant derivative V and/or d on certain bundles.
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3 Projective geometry

We follow the notation from [1] here. The projective structure on a smooth manifold M is
given by a class [V] of projectively equivalent torsion-free connections. That is, connections
V € [V] are parametrized by one forms 7, € & = I'(T*M) and have the form

A

Vap = Voo + wTyup, ¢ € &(w),

S b __ b b cob b b

Vo 7 =Vaof "+ Yo f7 + 1 f6,, f €& )
@aa)b =V,op — Yaop — Vpws, g € E,4.

The curvature tensor R,y of a torsion-free V is defined by (V,V, — V,V,) f¢ =
Rup€ p fP and it decomposes according to

Rav’a = Wapa + 281a°Pria + Bav8a.  Bab = —2P[ap).

Here W, is the projectively invariant (and irreducible) Weyl tensor, P is the Schouten
tensor, Pyp = Pap — Vo1 + 14 Yp, and Bap = Bab + 2V[a V). We put Agpe := 2V, Ppc.
Then the Bianchi identity V|, Rbc]d ¢ = 0 implies

VeWap‘a = (n —2)Aapa and Vi, Bea; = 0.

The cohomology class [8] € H>(M,R) is a global invariant of the projective structure.
Moreover, (V,Vy — Vp V)@ = whype for ¢ € E(w).

3.1 Projective tractors

We shall write sections of the standard projective tractor bundle £ A= g-114 g[-1],
respectively, its dual £4 = £[1] & &,[1] using the injectors YA and X4, respectively, Y4 and
X4 as

o A A A : v
=Y 0"+ X"pe&”, respectively, u

P ):YAV—}—Xju,aeEA.
a

Such splittings of £4 and €4 are parametrized by choices of projective connections and we
call them projective splittings. The change of the splitting under a change of the connection
parametrized by 7, € &, is

(o9\ o - 5 A A A 5A A
(,0):(,0 Tcr“)’ ie, Y =Y, + X7, X" =X" and
- a

vy v . o _ ya va __ yd
(ua)_(ua+7"av)’ ie, Ya="Ys—X47,, X4 =X4.

That is, X4 € A[1], X4 € £4[—1] are invariant and Y € E[1], Y4 € Ea[—1] depend
on the choice of the projective scale. We assume the normalization of these is such that
YaXB 4+ XGYE =548 i, YcXC = 1and XLYE = §9,.

The normal covariant derivative is given by

o V.o“—i—p(S.“) (v) ( Ve — e ) .
v, =(_°¢ ¢ and V. = ¢ <), ie,
‘ (:0 ) <ch - Pcpo'p “\Ma Vet + Peqv
VYA = —XAP, VXA =YA and V. ¥4 = X4Pey, Ve X4 = —Y482,
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and its §2 curvature has the form
Qur = YEXIWar® p — XEXT Ay € Ean) ® A.

That is, A = trace-free(£F f) is the projective adjoint tractor bundle where “trace-free”
denotes the trace-free part. Hence the curvature action on Ec is (V,Vp — Vi Vo) Fe =
(R28F)apc = —2ap” c Fp. We shall often write 2,51 Fc instead of (28F)apc to simplify
the notation.

Using the notation developed above, the inclusions ¢ and ¢ defined in 2.2 have the form

YEY, 1 €0 = Epafp and XEXY : &4 > &5 p. Thus
D:Ea®T > far> YoVpfo—> YEV 8 fa € £0,® T and
0 Ea®T 3 far> XEXY fu 55 XEXUtfa e & ® T,
and we can easily compute [J; on &, ® T using the action f as demonstrated by the following

example.

Example 3.1 We shall compute the case 7 = £€ indetail. One has £,¢ = £ [—11 & Ea[—1],
where &, is irreducible and £, € has two irreducible components, which are the trace and trace-
free parts. We shall compute (Jy separately for all three irreducible components.

We start with a (not necessarily irreducible) section 0,¢ € £, [—1]. Then 9 is zero on
fa€ = ¥YC0,¢ and XEX4 £YC0,¢ = XCo,sP = (3*£)sC. Thus 9*f = 0 for trace-
free section 0,¢. Assume 0, = 8;162.1. Then f,€ = YaCISa-‘, @* f)a€ = %Xc@;, thus
(Oe)a = 00*)aC = Y§6,. Finally if fu€ = XCp, then (8*/);€ = 0, (8/)aC =
Y550y and (O f)a® = (8% /)a = 51 X pa.

In summary, [J; acts by zero on the trace-free part of £,[—1] = £ /&a[—1], by "*kﬂ
on the trace part, i.e., on E[—1] C Sac/c‘,’a[—l] and by % on E[—1] C &,€. Note that the
inclusion E[—1] < &, is realized by XC: E[—1] = &C.

3.2 Skew symmetric tractors and tractor forms

The notation for the standard tractor bundle £ C developed above can be easily generalized
to the products /\Z EC = €€ = £°(—0) & £(—1), where C = Ct. Note that /\Z &€ ~
/\”7(ZH Ep, hence these products are isomorphic to tractor forms. We put

c! ct 1. 2 ct
vo=vIS vGlecbw). x¢=xYS . v{ ek,
and write the sections of £€ as

c . . .
(‘;é) =Y +x$0¢ € €€, o et (—0), ptecl(—0),

where ¢ = ¢’. The change of the projective rescaling parametrized by 77, is

/O’_c\ o’c . e C C ~C c
pé = pé_e'rclo.c , le., YCZYC—FKTC]X&, Xé :Xé

and the normal tractor covariant derivative has the form

o€ Vo + pts,c . C C C C
Vb (pc> = (prc _ El;b ]O—C , lL.e., VbYc == _K PbC1Xé7 VhXC = Y[bc]
C
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Example 3.2 We shall compute the sequence for the tractor bundle £€, C = C¢, i.e., EC 4

. 4 EanC. Since the filtration of £C has level 2, it follows immediately from the construc-
tion of d that (dF) 0, = (d" F)0,C + (Ok1)~1(9%dVdY F) 10, for every Fy€ € £ (In
particular, the difference between d Vandd is algebraic in this case.)

Let us compute d in detail. Assume F,€ = Y(C:O'a + XS pa¢. Then

1 1 1 ’

@ dV F),-1,0,C = Esza_laouFaC = Ema_laoc pFatC
1 . .
= EKYEWa—laocpaapc + Xgﬁa—laoac

for some section p which we shall not need explicitly. Therefore

02 - 02 .

(@ dVdvF)aoa ) x¢ X’éQ[raO[QlPlFﬂ]lp‘C] = ) X(é:” raO \ \Oﬁ]lpld
_ 14 Cr_,yp _ 2 pré r . pe

=3k ) el DWor 00a™ + kW0 1” poral].

It remains to apply (C.1)~!. Note that the map 3*dVdY : £C — anac has values in the
(completely reducible) subbundle &,0,(—£) C Saoac, cf. the previous display. The irreduc-

ible components of this subbundle are the bundles tf[&s2-9" " 1(—£), 1 < i < min{€, k+2},
where the notation tf]..] denotes the trace-free part of the enclosed bundle. The Laplace-Ko-
stant operator (1 on tf[Eps 4 1(—0) acts by AL(0) := —n—s — 1+ 1+ (I —)(n —s)].
Note that the computation is rather simple if we consider tf[Eps dt](—é) as the irreducible
invariant subbundle of £P'(1--Ei-1) and then follow 3.1. Also note AL(0) is always nonzero.

This of course follows by general means but can be verified directly since tf[Eps d # {0} if
andonly if s + ¢ < n.

Proposition 3.3 The operatord : £, — 5a0ac for the projective geometry has the form
o min{¢,k+2}
v C ¢]
(AF)0," = (dV F)0,© — > ; m Proj 15 _; X¢ Wyrao | piowm '€

where 0,6 = XEFC.XE = X&) ... X &y and Projl : £ () — l€as'1(0).,i = 0is
the projection. O

The operator d simpliﬁes for the special cases ¢ = 1 and k = 0. First assume £ = 1. Then
(0*dVdY) 10, = 30525 X Waoa1" po,4” has values in the irreducible subbundle €,0,(—¢)

of £,0,¢. We computed (x4 acts by 2= (k+1)
obtain the result

on this subbundle. Inverting this scalar, we

- k
(dF)aoaC = (dVF)aoaC + mxcwaoalr[)o"’ép'

Now assume k = 0. Then (3*dVd" F),€ = —@ngmczaal”é has values in the
trace-free .(thus irreducible) part of the subbundle E,6(—0). Since Ok+1 acts on the trace-free
part of £,¢(—¢) € &,€ by %, the resulting formula is
L —1)
2(n —0)

151

2

(d~F)aC = (dvF)aC XCWprC uo_pré.
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We claim that d actually coincides with the prolongation covariant derivative V. To verify
this, first observe ((V — V)F),C € Im 8* by the construction of d = V. Thus, it remains to
verify (déﬁF)a—laOC € Ker 9*. But since (dv@F)a—la()c € Ker 9* (again by the construc-
tion of d = 6) and a’6 —dv . Eo — kerd* C Ea—lg()c, gf. the last term in the previous
display, the claim follows. Using the matrix notation, V = d has the form

. (o o€ e -1 0
V. 1=V . _— ).
¢ (p) ¢ (p) =0 (Wprfzaof’”)

Finally, note that, using the tractor volume form, £ Cx~ Ep for C = Ctand D = D" ¢+1,
The case £ = n — 1 (i.e., D = D?) was solved in [9], where the prolongation of the cor-
responding BGG-operator £,(2) — Ewp) (explicitly f, + V(4 fp)) is constructed. They
construct the prolongation as the tractor covariant derivative D, : &p2 — E,p2, cf. [17].
Since D, — V, : Epe — im 9* (this follows from the formula for D, on p. 9, [9] after a short
computation) and the curvature of (D,Dp — DpD,) : Ep2 — Ker 8* (this is obvious form
the formula for D, Dy, — Dj, D, on & on the same page) we conclude D, = Vo, cf. 1.1.

Example 3.4 Here we discuss the bundle £A48) = £@)(—2) & £4(-2) & £(-2). Con-
sider a section F,B€ € &,(BO), expanded in the basis of injectors as Fo8¢ = Y(f ch)crabC +
X(B ch)pac + XBXxCy,. Then

1
(@Y dV F) -1,0,5¢ = EQa—laoﬁFaBC =02, 1,08 p ROF

1 _
= Y(EYE)Wa—lao(hpUaC)p + X(BYCC) |:§Wa1aocp,oap — AalaopUan] + XBXCVZl

for some section v. Applying 9* we obtain

@*dVdV F) 0,5 = 2XBY W, 00" | pjoa)”

1
+ xBx¢ [-

5 Wirat" 1p1Pa)” = A[ra°|p|0’a]”’} :

The filtration degree of £A#) is 3 and therefore the construction of d will require (at most)
2 steps. In the first step we put d’ := d¥ + (D,ffl)*la*dvdv &8¢ — anaBC’ where

XY
s

the injector X (& YCC ) EaS(=2) — & BO . Note that this subquotient has two irreducible
components, but we only need the trace-free part since Wy, ,0 | pjoa)'P is trace-free. A short

denotes [y restricted to the subquotient £, (—2) of & B which corresponds to

computation reveals 3*d = [J; acts on the corresponding subquotient of &, BC) by %
Hence

BC VoF. BC By C 1%
= (10 a _k |:2X( YC) [

d'F) @ proa?

a%a ra®

(3
+x8x¢ lVl/ o P_A oal?””
) [ra® |p|Pa] [ra®| p|Pal :
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Further computation reveals

k+2
BC :(dVdVF) BC = |:2Y£Bl YS) W[rao(rlplo_a]c)p

(@ d'F), ala% —

ala
I, .
+ ZX(BYg) <+§5;1 W[raor\lﬂpa]p - SZ*IA[raolﬂo-a]pr
+ V, - W[mo(r|p|0'a]c)p):| + XBXCVa*‘aOa

for some section y,-1,0, € £,-1,0,(—2) and

a%a

1
(8% dVd'F)0,5¢ = — mXBXC [2vsw[mo<r|,,|aaf>1’

1
FomEe (E Wirao" 1pipa” = A[mw"a]prﬂ '

The previous displays shows that (9*dVd'F )aOaB € is the section of the subbundle
E0a(—2) C E,0,5€. Since Ty acts on this subbundle by %, we obtain the result
J.— k+2 \v

d:=d — ma*d d'.

Proposition 3.5 The operator d : ;8¢ — E 0,8 ©) for the projective geometry has the
form a2

(dF)0,"C =V FPC — % [2X(BY9 Wira0" ploal””
- mx’? x€ |:2VS Wieao" | poar”?
—n=h (% [raor‘l’\pa]p - A[ra0|P|OaJpr)]:| ,
where 0, = XgXéFaBC and pa” = ZX};YCFaBC. O

We shall discuss the case k = 0 in more details. Then the formula in Proposition 3.5
simplifies to

~ 2 .
(@F)a"C =V FPC = =X EY O W,y po'?
1 By C pr 1 s rp
+ ;X X 2Arap0 + nTlWra vaO' .

This means that d is not a covariant derivative on €89 as the term W,,* pVs0'P is not
algebraic in FBC ie., d # V in this case. To compute v explicitly assume £ = 0 and put
V' := d’ (this is a covariant derivative on £8)). That is, VL’ZFBC =V,FBC _ %(lP F),BC,
where the homomorphism ¥, : EBO) 5 g,(BO) g given by the formula (3), i.e.,
W F),BC = xByY Wyo€po™? — XBXCA,,,0P". Extending ¥,0 to an endomorphism
Eg B — £,0, B an easy computation shows

3
(WV'F) 0,86 = xBy© [Wmof,,valo’l’ — 5Waoalc,,pl’} + xBx%%
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for some v € £(—2). Therefore (8*11/V/F)fc = —%XBXCWMCPVCO’P, and we finally
obtain (3*d¥ V' F),5€ = (8*dVV'F),5¢ — 2(3*wV'F)EC = 0. Since the left hand side
is the curvature of V' (applied to FEC), this curvature is a map &£ (BC) 5 Ker 8*. Thus we
verified V = V’, cf. Theorem 1.1. Rewriting V in matrix notation, we obtain

obe obe 5 0
Va| p¢ | =Val| 0 | — = Wmcpapr
n pr
v v —Ayapo

Note that V, provides the prolongation of the corresponding (first order) BGG operator
from £%9)(=2) to the totally trace-free part of &, (be) (—2). The same problem was solved
in [10] in terms of the connection defined by (3.6) or the left hand side of (5.2) there. Let
us denote this connection on £BC) by D,. Note that the formula for D, differs from 6,1
in the middle term of the last matrix in the previous display: this term is —%Wmc po P’ for
ﬁa whereas %Wm" po P’ in the case of Dy, cf. [10, (3.6)]. The reason is purely notational,
specifically in the choice of the projectors. If one replaces X8 YCC ) by — %X (By CC )__which
means, e.g., FRP¢ = Y(,f ch)abc + (—%X(B YCC))pC + X B X y—both terms will coincide.
Note also that formulas for V, and the normal covariant derivative defined in the display
preceding to [10, Theorem 5.1] coincide after the change of projectors. This confirms that
the results here coincide with those in [10].

4 Conformal geometry

4.1 Conformal geometry and tractor calculus

We summarize some notation and background. Further details may be found in [12]. Let M be
a smooth manifold of dimension n > 3. Recall that a conformal structure of signature (p, q)
on M is a smooth ray subbundle Q C S?>T*M whose fiber over x consists of conformally
related signature-(p, g¢) metrics at the point x. Sections of Q are metrics g on M. So we
may equivalently view the conformal structure as the equivalence class [g] of conformally
related metrics. The principal bundle 7 : Q — M has structure group R, and so each
representation R > x +— x~%/2 ¢ End(R) induces a natural line bundle on (M, [g]) that
we term the conformal density bundle E[w]. We shall write E[w] for the space of sections of
this bundle. We write £¢ for the space of sections of the tangent bundle 7 M and &, for the
space of sections of 7*M. The indices here are abstract in the sense of [19] and we follow the
usual conventions from that source. So, for example, &, is the space of sections of @>T*M.
Here and throughout, sections, tensors, and functions are always smooth. When no confusion
is likely to arise, we will use the same notation for a bundle and its section space.

We write g for the conformal metric, that is the tautological section of S>T*M ® E[2]
determined by the conformal structure. This is used to identify 7 M with T*M|[2]. For many
calculations we employ abstract indices in an obvious way. Given a choice of metric g from
[g], we write V for the corresponding Levi-Civita connection. With these conventions the
Laplacian A is givenby A = g%V, V,, = V?V,, . Here we are raising indices and contracting
using the (inverse) conformal metric. Indices will be raised and lowered in this way without
further comment. Note that E[w] is trivialized by a choice of metric g from the conformal
class, and we also write V for the connection corresponding to this trivialization. The coupled
covariant derivative V, preserves the conformal metric.
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The curvature R,;€ 4 of the Levi-Civita connection (the Riemannian curvature) is given by
[Va, Vplv¢ = RapCqv? ([, -] indicates the commutator bracket). It can be decomposed into
the totally trace-free Weyl curvature Cyp.q and a remaining part described by the symmetric
Schouten tensor P, according to

Rabcd = Cabcd + zgc[a Pb]d + 2gd[bPa]C7 (4)

where [---] indicates anti-symmetrization over the enclosed indices. The Schouten ten-
sor is a trace modification of the Ricci tensor Ric,, = R., p, and vice versa: Ric,, =
(n —2)Pup + Jg,p, where we write J for the trace P,¢ of P. The Cotton tensor is defined
by Agpe := 2V[4Pp)c. Via the Bianchi identity this is related to the divergence of the Weyl
tensor as follows:

(n —3)Aabe = V*Cacap- (5)
Finally we put
Bap = VpApab + PP Cpaqb € g(ab)o[_z]- (6)

In dimension n = 4 this is the conformally invariant Bach tensor.

Under a conformal transformation we replace a choice of metric g by the metric g = eTg,
where 7" is a smooth function. We recall that, in particular, the Weyl curvature is conformally
invariant 6abcd = Cypeq- With ¥, := V, T, the Schouten tensor transforms according to

isab =Pup = VaTp + 1,7 — %TCTCgab' )

Explicit formulae for the corresponding transformation of the Levi-Civita connection and
its curvatures are given in, e.g., [1, 12]. From these one can easily compute the transformation
for a general valence (i.e., rank) s section fpc...q € Epc...q[w] using the Leibniz rule:

Va foed =Va foed + W = $)Ya foed — Vo facd - — Y frema
+ Y7 fpea8pa+ 17 foc-p8aa-
Next we define the standard tractor bundle over (M, [g]). It is a vector bundle of rank

n + 2 that is defined, for each g € [g], by [E4]; = E[1]1 @ E,[11 D E[—1]. If g = €T g, we
identify (a, pa, 7) € [E1], with (@, [is, T) € [E415 by the transformation

®)

a 1 0 0\ [«
Ha | = T (Sab 0 “o | - ©
T —irre —rt 1)\«

It is straightforward to verify that these identifications are consistent with a change to a
third metric from the conformal class, and so taking the quotient by this equivalence relation
defines the standard tractor bundle £* over the conformal manifold. On a conformal structure
of signature (p, ¢) the bundle £4 admits an invariant metric /4 of signature (p + 1, ¢ + 1)
and an invariant connection, which we shall also denote by V,, that preserves h 4. Up to an
isomorphism this is the unique normal conformal tractor connection and therefore induces
the normal connection on ) EA that will be denoted V, and termed the (normal) tractor
connection. In a conformal scale g the metric 45 and V, on £4 are given by

0 01 o Voo — g
hap= {08, 0] and V, | up | = | Vatts + &upT + Paper | . (10)
100 T Vat — Pyl
155
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It is readily verified that both of these are conformally well-defined, i.e., independent of the
choice of a metric g € [g]. Note that 145 defines a section of E4p = 4 ® Ep, where E4 is
the dual bundle of £4. Hence we may use 4 p and its inverse hA8 to raise or lower indices
of £4,E A and their tensor products.

In computations, it is often useful to introduce the ‘projectors’ from £4 to the compo-
nents E[1], &,[1] and £[—1] which are determined by a choice of scale. They are respectively
denoted by X4 € E4[1], Zaq € Eaqll]and Y € E4[—1], where E44[w] = E4 R E, R E[w],
etc. Using the metrics /1 4 p and g, to raise indices, we define X A 7z4a yA Then we see that
YaXA =1, ZspZA. = 8. and all other quadratic combinations that contract the tractor
index vanish. In (9) note that @ = «, hence X4 is conformally invariant. Reformulating (10),
we obtain

V.Y =Z8Py, V,Z5 =-Y8b —XpP and V, X, =Zbg,,.
Given a choice of g € [g], the tractor-D operator
Dy: Ep..plw] — Eap..elw — 1]
is defined by
DAV :i=(n 42w —2)wYaV 4+ (n+ 2w — 2)Z4, V'V — X4(AV + wdV).  (11)

This is conformally invariant, as can be checked directly using the formula above.
The curvature 2 of the tractor connection is defined on £€ by [V, V] VEe =QuCEVE.
Using (10) and the formulae for the Riemannian curvature yields

QubEF = ZEZI{Cabef - ZX[EZg]Aabf € Elab)iEF] = Elab) ® A, (12)

where A = &£ gp) is the conformal adjoint tractor bundle. We shall write $2,,8Fc or
(28 F)gpc for the curvature action (V,Vy, — Vy Vo) Fe = —RuP c Fp.
Using the notation developed above, the inclusions ¢ and ¢ defined in 2.2 have the form

—2Y(EZp)0 : Ea - Eqvarpr) and —2X[EZ%1] D6 — Eaer)- (The scalar —2 is used for
the sake of compatibility of @ and V, cf. [6].) Thus

D:Ea®T 3 far> —2¥(5Zppuo fa —> Ex0a ® T and
0 Ea®T > far> —2X 5200 fa —> & ®T
and we can easily compute [y on & ® 7 using the tensorial action f.

Example 4.1 We shall compute d on forms twisted by £c. Let a = a* and consider Fc =
Yo0a + Ziphea + Xova € Eac. Then

1 1
(dvdvF)aqaoac = =82,-1,00Fac = E.QaflaocPFap

2
I _.
= EZé[CaqaocpMap + Aa71aocoa] — XcA 10" ap,
hence (9*dVdY F)oac = =5ty Xc[Cavar Pitrap + Aqoqi”0ra]. This is a section of
the subbundle £,0,[—1] S &,0,¢ and one easily computes that L acts on this (irreduc-
ible) subbundle by — ”;_Sl . Therefore (d F) ,05c = V0 Fac — ﬁXc [Caoanrpur;;.p +

Ao, ’(7,5.] forO <k <n-—1,and d=dY fork > n — 1. Finally, note that the prolongation
covariant derivative coincides with the normal one for k =0, i.e., V =Von Ec.
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Example 4.2 The computation of the prolongation covariant derivative is getting rather tech-
nical for more complicated bundles. We shall demonstrate it for the prolongation covariant
derivative V on Ec),- (Note that £ pc), and B0 are isomorphic using the tractor met-
ric.) The computation consists of three steps: we start with V and then define the covariant
derivatives V, V and V. Taking a section Fpc = YpYc)o + Y(BZé'),oC + Z(bB Zé)wbc +
X@BYoyv + X(BZ(@)MC + XBXc)k we get

(dvdvF)aoalBC

1 |
= -5 OalﬁFBC = -

PQ
n“a 2 a%a'BC FPQ

c 1 p b c P 1
= Y(BZC) Ecaoalc PptAL 4.0 +Z(BZC) Caoal(b wC)P+§Aa°al(pr)
1 » o |1 » » 1
_EX(BYC)AaOal IOP+X(BZC) ECaoa1C Mp—AaOal wc’p+§Aa0alcv

—EXBXCAaO,;lples

where Q' P = 22,0, 5P hcy?. Applying 9* to the previous display we
obtain (3*dVdV F),ipc = —ZX(BP’.QW”C)QFPQ, because £2,0,1pp is 0*-closed (i.e.
X 40?2, pa1 = 0). We put W1 507¢ = —2X (37782, 41/c)¢. Equivalently, ¥,150"¢
can be obtained by applying 9* to the Epc-factor of Q; 041 (B C)P Q. This is exactly the
operator 3}, from [17] since the notation therein means V = Epc),, V* = P20, and

therefore SZ;OQIBCPQ € £, @ End(V) is the curvature tensor of V, on V. = &pcy,-
We shall denote the operator 9y, by g+ : E0,1 et @ — &9 here. Thus we have

Wipet? = 105920 5" 9, explicitly

P b P P
Wope’C = — 2,26, [X( Z99C 1 ey + X XQAal(,,c)]
+ X328 |27 2291 ey +2X P 7D 4,41 (13)

+ XX 2P ZDUA 0,

Since %Ca1 ey’ Pp + Agipeyo 1s a section of the Cartan component of the subquotient
€[a1b] ® & of Eal(BC)O and [J; acts on this subquotient by —%, we put V,Fpc =V, Fpc +
% wsctCFp o as the first “approximation” of V. We need to know V0¥ ,1 g¢ PO to compute
the curvature 2 0,1 g "¢ of V. First, it easily follows from ¥,1 372 := —2X (" 2,41/, ¢
that

@) 015 "C = VoW 5P = —2V,0X (57 2ppg1 02
0 1
= —2Z(eB pe g‘aOeOQelal|C)Q+2W(BPQ|aOaI|C)Q—X(BPFV|rQaOal|C)Q,
since V,-182,0,1c0 = 0. Expanding the expressions in the previous display we obtain,

after some computations that use the differential Bianchi identity, in particular the relation
(14, 29)],
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(dvlp)aoalBCPQ

3 , 3
= —EY(BZé)[X(PZQ)"Caoa|Cq +XPX%A,00.]+ EX(BYC)X(PZQ)"A

a%lc aalq

1
+ —XPXQ(VbAaoalc + PbrCaoalrc)

b P
+Z5Z§, [—221’( Z2%8 00,C piateq 5

1
P
+X( ZQ)‘[ (_Zgao[bAq]alc + Evbcaoalcq — gb[cA|aOal\q])

3.k P
+X3Z¢, [ 51/( ZY9C 4100 — XPZPU (VA oa11) + P’ Cladvatsig))

1
P
+zP P 794 (2gao[CAp]a1q - EVpCaoalcq + gp[cA|aoa1|q])

3 1
+XpXc [—EY(PZQ)qAaoalq + zZP“’ZQW (VpAgq1, + P,,Scaoalsq)} .
Now we need to apply 0%, to the previous display. This yields
3 b e
@pcd W) apctl = MEZ(BZCC‘)[X(PZQ)qCal(bc)q + XPXCA 0]

1 1
+XBZE, |:§(n —DZPPZ29C 1 e — EXPXQBalc

+ Xz ((n - A 10 — 3Aa1(q6)):|
1 I
+ XpXc |:§(n —DZPPZYUA L ) + EX(PZQ)"B[M} :

We need to compute Uapct? = 10525079 satisfying W,i50:7%Fpg =
(a*dVVF)algc. Since V,Fpec = V, + %lI/chPQ we have

1— 1 2 4
E‘QaOaIBCPQ = 5 L/zoalBCPQ + g(de)aoalBCPQ + §(W A lIl)aoalBCPQ’

where (lp AN lp)a()alBCPQ = WGOBCRSW(JIRSPQ. Since %(BZC‘Q/)GIBCPQ = WalBCPQ by
definition of ¥, applying 9} to the previous display yields

— 1 —
qjalBCPQ = 5(3§C9)a13cPQ

2 4
=Wapct9 4 g(azchW)alBCPQ + 5@ WA ) pct @

1 :
= -XBZ&[n—HZPPZ2D9C 0 . + 200 = HXPZDIA 1) — XPXOB, ]

3 (pa)e
1 4
+ gXBXC[(n —4ZPPZD9A L + X P ZDUB | + §(agc(w AU et e,
(14)
where

1
(@ AV pcTe = EXBXC[X(PZQMC“] P Corsp + XTXLCH Ay, ]
(15)
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Remark 4.3 The section (3*d¥ ¥),pc '€ is closely related to the conformally invariant cur-
vature quantity

WeF =(n — HZELECap — 2(n — HZEX] Aes
—2(n — HXEZEAge + 4XEX] Boy,
cf. [11], where all the form indices E, F, e, f have the valence 2. In fact, one easily computes
(@*dVW)apctC = =3 ZBX 3 Wey)'P g 9. Since (9%d¥ ¥)apcF€ coincides with ¥, pc P2

up to the terms involving C,1 rs)p Cyrsp and C,1 (r$)q A prs»> cf. (14), conformal invariance of
WEF verifies the invariance of the previous computations.

Looking at the form of Wal scPOF Po, we see that we need the action of [J; on the
subquotient &£,1.), of &, pc (corresponding to the injector X (B Zg)). A short computation

reveals this is —7 hence the next “approximation” of V will be the covariant derivative

— 2 2 2
Vai=Vi+ ;WchPQ =V.+ §WchPQ + ;‘I’chPQ &) = Eu(BO)-

Now we need the curvature anal pct @ of %a and then to apply d% . on %anal el It
follows from the definition of V,, that

1= 1— 2 — 4
EQaOachPQ :igaﬂachPQ + ;VaolpalBCPQ + g‘l’aOBcRS%IRsPQv (16)

Since aaOBcRSaaIRSPQ == WaO_BCRSaalRSPQ == 0_
The next step is to compute t]/achPQ = %(BECQ)alBCPQ. We apply 95 to the three

terms on the right hand side of (16). Firstly recall §(35-$2),1 pc7¢ = W 41 3T < by defini-
tion. Secondly, one gets

_ 1
@ )01 5c"C 252(%25) [(” —4HZP 29 8,0Cot (e

+2(n—4xPz%1g, oA

1 3
+ =X Z§ |:§(n — 4y Pz9ac

P
g@e) — X XngaOBalc]

3
alge = 51— HXPYDA 0,1,

3
+(n— 4z z21 (vaoca‘(pq)c T 2800 Ag)ale) T 2ga‘)cAal(pq))
+2X P29 ((n — HV,0A 410y — (0 = D PP Cot(pgre + 28401 Byjar

2
+ ggcaocal<’S>ch”,,)+x”xQ(—vaoBalc —2(n — D Pl A,

4 !
+§gw0Cul(”)pAp(m)):| + XBXcgoalPQ

for some ¢,1 PO ¢ & PO after some computation. Using the last display, it is not difficult
to verify that

_ n— 2
@5cd W) pcte = _EwalBCPQ — 51 =2)@pc (¥ A W) apc’?

Thirdly, one easily derives ¥ 40 g R5W,1 pgF¢ = — % 050 K501 psTC. Hence we finally
obtain
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1 = 8
WMMfQ=E@EﬁDMMfQ=—§#n—$®aﬂWAWDwaQ (17)

where =& (n —3) = —-(n —2) — 5t (n — 4).
In the last step we need the action of [J; on the subbundle &,1[-2] € &,1(p(), corre-

sponding to the injector X p X . This is the scalar —(n — 1), so by adding ﬁ@alBCPQ to

%a we obtain the resulting prolongation covariant derivative
~ 2 2__ 1 =
Vo=V, + g‘I’chPQ + —WchPQ + leaBCPQ 2&wp) = EaBO)-

Proposition 4.4 The prolongation connecnon V: Emc) = Ease) in the conformal geom-
etry has the form V Fpc =V,Fgc + % llfagc QFpQ, where

lI/aBCPQ = - Z(%Zé) [X(PZQ)qCa(bc)q + XPXQAa(bc)]

4 n—4

+ X(B Zg) [_;ZP(PZQ)CI Capg)e + 2xP 1 (Aa(cq) q(aC))
——xPx2g,.

n

40P 700 L op 04 4 rs)p
+XpXe | = 22O Aupyy +  XTZO (Bug + 505 € o)
4

" xPxQc (py )

+3n(n—1) “ prs

a

Example 4.5 The prolongation covariant derivative V on tractor form bundles £ 404, A = A¥
was computed in [16]. Consider a section Fyo = Y, 0a + k—ilZZgz,uaoa + WAOA +
X 0y Pa € Eqop. Then

1 k—1
Ve Fpopa =VeFyop + ZZAOA [Cc a%a'Opa + Tgcaocal qua}

k(k —1 .
__2;1n__i%wwAJ;[(n 2)Co2 0 pgs — (k —2)Cp2, ozpqa]
(k= D=2)

rq
ok g:a1 Cora3vpga

+ XAOZ |:—Acpalo'pé —

k—1 /n—2k
+ 20—k ( o (VeCou1 2P0 pgis + 8eat AP 20 pgi
- 2Acalpapfl - Aalazpacpii + Ccalpqﬂpﬁlé

nn—k+1)—2k k
+ e Ccpalazl)pﬁ — ;Calazpq,ucpqﬁ):l,

cf. [16, Remark 4.2]. B
The prolongation covariant derivative V simplifies for k = 2 in dimension n = 4. Then
we have (at least locally) the conformal volume form
€c € E[4] suchthat eSec = 4!, ie. e = 418%) 3% 5% 85, (18)

where ¢ = ¢*, e = e*. Recall Ve = 0 for any connection V from the conformal class.

Then the Hodge-star operator * : Ey — &z, k = 0,...,4 has the form (xf) =
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Gakr4_k fya—«. The eigenvalues of * for k = 2 are £2. The induced tractor volume form

Ece = =30 Wézec4 € Eco ylelds analogously the tractor Hodge-star operator * : Ege —
Epo-¢. The eigenvalues of E for £ = 3 are £6.

Henceforth we assume k = 2 and n = 4 and *F = 6F. If not stated otherwise, all form
indices will have valence 2, e.g., A = A? or a = a2. Our normalization of the volume forms
E and € means that

0 =20, *u=-3v, *%v=2u, *p=-2p, (19)
i.e., 0y is self-adjoint. Using this and (18), one easily verifies
8ea0Caor = —2CP 20,00, Ca'pier = —2Cc1 "1 o, (20)

Thus the prolongation covariant derivative V has the form

~ 1_ .04 » 1 4
VL'FAOA :VCFAOA + ZZAOACC aO'paO - ZWAOA

Ceolor
+ %XAOE:&[—4ACPQ10;,“2 + gw1Ara20r — 2Aw1p0pa2
— AaPocp +2C. 1 g2y + Cc”avp].

The connection V simplifies considerably for half-flat structures, i.e., when

€a"Crp + € Car = 41Cap, 1 € {+1, —1}. (21

The self-adjoint structure A = 1 equivalently means C," f; = 0 for every anti-self-adjoint
two form f, and the anti-self-adjoint structure 2 = —1 analogously means Cy" f;, = 0 for
every self-adjoint f,. It follows from (21), (19), and (18) that

CePavp = ACa gy (22)
We shall discuss the anti-self-dual case A = —1 in detail. A short computation reveals

r r
Ca"or =0, Aqor =0 and Ayl0. = 2Aalcp0'a2p,

where the second and the third equally follow by applying va' and V0, respectively, to the
first one and using V,0Car = 2g,0,1A,,2. (Note that the last equality says AP0, = 0.)
From the last display and (22) for A = —1 we finally obtain the following:

Proposition 4.6 Consider an anti-self-dual conformal structure in the dimension 4. Then the

prolongation connection V : S[J;o Al 5:? AOA] A = A? on the bundle of self-dual tractor

3-forms E[:()A] C & 404 has the form

~ 1
VCFAOA = VCFAOA + XAOQZ\ |:_2AL'(pa1)Upa2 + ECCpavp:| .

for Fpop € SF;\OA] where o3 = 3XAO;‘FA0A and v, = —6WAOaAFAoA.
Note that a modification of V on £7,

04 Was also obtained in [8, (2.27)], where spinorial
notation is used.
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5 Commutation of higher projective BGG squares for the tractor forms

Let us denote the normal tractor connection by V. We shall use the notation from Section
2.1 for forms. In particular, all sequentially labeled indexes are implicitly skewed over.

We denote the standard projective tractor bundle by 7. The composition series of (7)* :=
/\k T* is E(k) & &, (k) and the normal tractor covariant derivative V and its curvature §2
take the form

v. (0’@) _ ( Veoa + Uea ) 2ot (o’a) _ ((k — l)WL.oc.lpazdpgi)
“\ta Vepta —kP.j103)° e \ Ua kWo? jipipa +% )
Here a = a*. We shall consider sections fe € E Q@ T'(T *)K, i.e., tractor indices are
suppressed in the notation for f. Here ¢ = c°.

Following Theorem 1.1, we shall start with the sequence E; = dV. Our aim is to find a
suitable modification D : & ® (T*)¥ — E., ® (T*)¥ of dV such that (D o Df).-1,0.) €
Ker 3* C £.-1,0, forevery fe € E ® (T*)*. Specifically, we shall use an algebraic operator
o € & @ End((T%)%) and put (¥ ()00 := (¥ A f).00 € Imd* C E.0, ® End((TH)%),
and we put (Df),0. = (@ f)0e + (O0) "W fe € E0 ® (T*)X. We shall usually write
the endomorphism ¥ as ¥, f, since the notation already requires the skew symmetrization.
Here Oy is a scalar multiple determined by the Kostant’s Laplacian.

Now we shall describe the difference between d¥ and D on & ® End((7*)%). Consider
the section

fe= (Zé) € & ® End((TH)")
and
(dvdvf)c—‘coc =2 108fc = (WC—IC0:a2Ucpéi) € E-1,0¢ ® End((T*)k).

Now we need 9* of the previous display and this will define the endomorphism ¥ . Here we
need it only up to a scalar multiple and a short computation shows

— p .
LW 107 10,24

i} B 0
(T (fNeve = (3728 f)coc = (Walazpcoﬁcpﬁ Pﬁ) .

We use the modification D := d" + och_l ¥ and it remains to determine the operator [y,
i.e., how we need to rescale particular (go-)irreducible components of ¥ ( f).

6 More complicated examples: projective geometry

The standard projective tractor bundle £ A has the composition series £ A—ga—1)& e(-1).
We shall write a section of this bundle as

A o A a A
f4= o =Y 0"+ X%

where X 4 : £(—1) — £4 is invariant. The covariant derivative is then

a
V. FA = (VVC“ ) e, V.¥A= v.x4=.
C
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7 Almost Grassmannian geometry

A complex almost Grassmannian (or AG-) structure on a smooth manifold M is given by
two auxiliary vector bundles £4 and £ and the identification

=cpeet=cs Ntz Neq, (23)

where p is the rank of £4/ and ¢ is the rank of £ A In fact, all results we obtain hold for all

real forms of a given complex geometry, [13]. Motivated by the case p = ¢ = 2, when the

structure is the spin conformal structure, we shall term £4 and £,/ spinor bundles.
Following [13] and Eq. 23, we adopt the convention

Sl-11= Ex0 =¥, e[z e =gy

for line bundles. This isomorphism is given explicitly by the tautological section € p¢ € Eaq[1]
as E[—1] > f + f€aqs € Eaa. A choice of a scale & € £[1] is equivalent to the choice of
spinor volume forms eiq := & leaq € Epq, and analogously for e’

Our conventions for the torsion 7,;¢ and the curvature Ra;,d ¢ of a covariant derivative V,

on T M are given by the equation
2V Vot = Tabdvdvc —+ Rabcdvd.

Summarizing [13, Theorem 2.1], for a scale £ € £[1] on an AG-structure, there are unique
. . . . g’ . .

covariant derivatives on £4 and £, such that the torsion F f g g, of the induced covariant
derivative on T M is totally trace-free, the induced covariant derivative preserves (23), and in
addition £ is parallel. We denote this class of covariant derivatives, parametrized by sections
of £[1], by [V]. Changing the scale § — & = eT€ e &[1] with T a smooth function, the
covariant derivative V changes to V in a way that

@Q/MC = Vg‘/uc + SSTI_{?/MB, for u® e 4,

@f{uc/ = Vg‘/uc/ + Sg:Tf/uB/, forucr € Ecr,

62/1)3 ZVQ/UB —Tg‘/vA, for UB EEB, (24)

@Q/UB/ = Vg‘/vB/ — Tf/vA/, for v®" € €% and also

Vof =Vaf +wYuf, for f e E[w],
where 17, = V,7. From now on we will use a hat sign to denote quantities corresponding
to the changed scale & = ¢? & without further notice.

Given V € [V], we denote all covariant derivatives on tensor products of £ A and £, also
by V. The curvature on spinor bundles is given by

QVia Vi — T Va)v© = Ryp$vP, 2V Vi) — T Va)vp = =R, ve.

. / / /
The curvature of V is Rabf = RangIC), — Rabg,Sg, where Rabg’ and Rabg are trace-free

on the spinor indices displayed. The relations
c C _ CpA'B | CpB'A
Rypp =Uawpp —35Pa Db +34Pp b
c _ c B'pA'C' _ sA'pB'C’
Ry =Uwp +8pPas —0pPpa,
. .. A/B/R_ R/B/A/_ . . .. .
together with the condition Uy 5 4 —U g 5 % = 0 (and the algebraic Bianchi identity) deter-

mine U, bg, U, bg, and the Rho-tensor P ;. In more details, the curvature on the (co)tangent
bundle is

163 @ Springer



142 Ann Glob Anal Geom (2012) 42:121-145

¢ _ 77 ¢, D'<CpB A (D CpA'B | CcApBD _ «CsB pAD
Ripg = Uupg +6c:0,Pp D — 80 85Pu b +0p8cPpa —3p3cPa

whc?re: U, = l/]a/b%(Sg,/ - Uabg,/SIC). In this form the tensor U is determined by U,/ =
U 1’9 g ﬁ -U /If g é/ = 0. (Note that the previous display shows the decomposition U =
R + 0P, where U is 0*-closed, cf. the theory of Weyl structures in [6].) Furthermore,

Uy = —UpS = 2Pppy and  —2(p + @)Plap) = VeTap', (25)

a
where the last identity follows from the algebraic Bianchi identity.

We will mostly be interested in the case p = 2 and ¢ > 2. In this case the only invariants
are the trace-free part of Tfﬁ,g/])g, and the trace-free part of U [&/ g/]cl?, [13]. That is, if these
two vanish, the geometry is locally isomorphic to the homogeneous model. Finally, note that

using the algebraic Bianchi identity, we obtain

R'[A'B'l _ ;[ABIR _ ,R(AB) _ ;7(AB)R _
U(AB)R’ = UR(A B) — U[AB]R’ = UR[A Bl — 0,
URWEB) _ [ WBR _ 1 7 lel B r
(AB)R" — Y R(AB) — 5 r(A B)e: (26)
T Al R/ 2°% 1 ’ /
R'[A'B'] [A’B'IR [A'lel »B'] r
U ,=U =——T .
[A BIR R[A B] g+4 r[A Ble

7.1 Grassmannian tractor calculus

We follow [13] here. The standard tractor bundle is the (spinor tractor) bundle £¢ = £ Ag g4
and we denote its dual by &, = £4 & £4. That is, we use Greek letters for spinor tractor
abstract indices. Using the injectors Yf( € &9, XZ, € EX/, and Y(j‘/ € E(f/, X(‘;‘ € S(f, sections
of £% and &, are written conveniently as

A
o / . / /
(pA/) = Y%A + X%,,oA € &%, respectively, (;}:i‘) =Y o0+ X2 pa €&

Splittings of £* and &, are parametrized by a choice of scale £ € £[1]. The change of the
splitting has the form

(6™ o LD B %
(pA/) N (p/‘/ —_ TA’OB) ;o len YE=Yi+Xp Yy, X3 =Xy and
B

vy var . S A A B rSA A
(MA) = (MA"‘T,?/VA/)’ e, Y, =Y, —X,Tp, X, =X,.

That is, the sections X%, and X 4 are invariant and Y¢ and Y‘f/ depend on the choice of the
scale. They are normalized in such a way that Yng + Yf,Xg, =8, ie, XBYS =845,
B _ s B
and X9, Y, =847 .
The normal covariant tractor derivative is given by

v B\ Vf‘)/O'B + P58 av?(ve
A B = VP/ B PP/B/ B an A
1Y A P° —FPup0 MB

164
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That is,
vhye = —xo P vP x4, = y9sh and

P'vB' _ vBpP'B’ P'vB __ P'oB
vi'yE = xEpl'E' vF'xE = _yP'sE.

Its curvature §2,,% is trace-free on the spinor tractor bundle and has the explicit form

Lusy == YEVS T + YEXP U + XETP Uy

a

+ X“/Xg 0,5 € Elan1p S Elab) ® trace-free(Eg),

where Qupe = —2V[4Ppic + TupPec € Elab)c and trace—free(&’g) = A is the adjoint tractor
bundle. That is, (V,V), — V,V, — Tp¢V,) f* = .Qab‘;fﬁ = (21 ap® = Lupf f in our
notation.

The inclusions ¢ and ¢ from 2.2 are of the form Y, Y;O/ N 5 E0,%p and XZI/Xgl :

Ea > Ea p» where we use the identification € , = 62‘3 ‘and &4’ =& 211,. Therefore
0:EaQT > far> YXOYE‘O/fa _ﬁ> E0,®T and
* o Al g
0" :& QT > far> XAVX,S Jfa— & QT

for any subbundle 7 of ® &, ® @ £ ® E[w]. This does not cover all tractor bundles but
will be sufficient in the examples treated below.
Henceforth we assume p = 2,9 > 2. Note we have the decomposition £2, b% =

9[&/5)/ ]% + .Q([ﬁ/g], )%, where the component Q([ﬁ,g], )% vanishes in the torsion-free case.

7.2 Skew symmetric tractors and tractor forms

We shall also need tractor bundles /\( £% = £% with the notation @ = «* for the multiin-
dex. Since /\K & = /\‘H_z_i Ep (we assume orientability here), these are just tractor forms.
Specifically, the case £ = g + 1 is just the bundle Eg.
It follows from the structure of £ that
g% —gAG eBAG glBCIA gt A=Al 2<t<g.

Of course we have the isomorphism £ [B'CIA SA[—I] using the spinor volume form
€pc € Epcyl—1], but it turns out to be more convenient for the computation to use the
form as in the display.

We put
a _ yla! '] o a _ yle'ya? ] o
A=Y Y, €E) Wo =Xp Y. .Y, €€qi,
o« _ yle!' va? vad atl o«
BCA = Xp XYy ..V € S[B/C/]A’
where Xg/ c'i is invariant and Y¢ and Wg, 4 are scale dependent. Finally, the normal tractor

connection on these section is

Bl
VeY§ = —eWe P

B'[A
oy C’ o« D’
VeWpa =Yeidp — (=D XB'D'[AP\CIAZ]’ and
o _ o C’
VCXB’D’A - 2WB’CA 8py-
165
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Example 7.1 We shall demonstrate the prolongation covariant derivative V for AG-geome-
tries on tractor bundles corresponding to fundamental representations. These are the bundles
/\Z E% for 1 < £ < g+ 1. Since the computation is getting very technical for 1 < £ < g +1,
we later restrict to torsion-free manifolds.

First we discuss the cases £% and £g = /\qul &% Considering F¥ € £% and Gg € &g, a
short computation gives

1 / !
0*dVdV F).2 = Ex‘g,xgslgg F® and

1 -
(*dVdY G)ep = —Exg,xgs’gg G,
where

D'C’ . RAB ABR _ Lo (Al B r L el BT r
SCD_UABR URAB__T

q r(A B)e C]+4 r(A Ble -

Hence we need the action of the Kostant-Laplace operator [J on £ Igc/ =& (g ') ®E [é) <,
The eigenvalues are, respectively, %(q — 1) and %(q + 1). Therefore the prolongation con-
nection V has the form

~ 1 ol 1 Pall
V.F® = V.F®* — X% XD [—15%75) +— ls[é’g]} F® for F" € &%,
q- q

- 1 Weld 1 YWali
_ D (D°C) [D'C’]
VeGg =V.Gg + X‘I")/Xﬁ [QT]SCD + mSCD ] G, forGg e &g.
It remains to cor}sider the bundle§ E* a=alfor2 <¢ =<gq. ansider the s“ection e =
Y§oh +W;,AMB/A +Xl‘;‘/c/A,oB/C/A, where oA € €A, uB'A ¢ B'A and pB'C'A ¢ glB'CTIA
A straightforward computation shows that

1 1 .
(dVdVF)dg = _‘QdeﬁF(x :EE ‘Qde[glFlwla]

2
1 1 A 1 /1A
(A' 10IA A A
— E[YX[ZU@ A P ]]
AZ / A ’ A ’ /A
+ W[ = DULG W ON 00, 800 +U, B
A2 N X o
_ o7, 18 i IA]] +x8 P CA]

for a section (pB/C/A € B'C'A We need to compute 3* on the terms in the previous display.

It turns out the computation is getting too technical in general, so we compute V in the
torsion-free case only. That is, we assume 7, fg = 0 (hence also § glg/ = 0) from now on.
Then we obtain

B'A”€

C'[A3 / !t A 2% /R A
w8 g [0 DU W OREY g 0 G p0m _y Cry 0]

1 , ..
(@°dVd" F)e* =5 (L~ 1) {ew“ U B g leRAl

Since U ‘;‘(g/g =U [& g ]Cl; in the torsion-free case, we conclude that
@*dVdY F),* = 0.
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This yields the surprising result V = V on &% The same is obviously true also for £ = 1
and £ = g + 1. Hence we obtain

Proposition 7.2 The prolongation connection Ve : &% > EX a= ol forl <t <q+1
on torsion-free AG-manifolds is equal to the normal tractor connection, i.e., V.= V.
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