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Abstract

This work summarises the results obtained during the study of physical and chemical
properties (crystallographic structure, magnetism, lattice stability, Gibbs energy, enthalpy)
of solid state phases. In particular, the intermetallic structures with practical impact were
investigated, among them sigma phases found in superaustenitic steels and influencing
mechanical properties of alloys; Laves phases in systems considered as possible hyper-
conducting or hydrogen-storage materials, etc. For such phases, the detailed description
providing information about their behaviour in complex systems under various conditions
such as composition and temperature is desired. This description is not only a collection
of data but it also includes thermodynamic polynomials applicable for predictions of phase
equilibria in high-order systems.

In this survey, different methods had to be applied depending on the scale of studied
issue. To study the relations between electronic structure and crystallographic, mag-
netic and energetic properties, the DFT calculations based on Kohn-Sham equations were
used. These calculations are working on nano-scale level. Nevertheless, sometimes such
a detailed attitude was not necessary. In these cases, the macro-scale modelling is more
effective as it provides the complex description of complicated systems. One of the macro-
scale methods is the semiempirical CALPHAD (Computer Coupling of Phase Diagrams
and Thermochemistry) approach assessing the data from both experiments and theoretical
sources and providing the thermodynamic properties and phase diagrams.

The results obtained were published in several scientific papers which are listed in the
List of author’s publications where the specification of author’s contribution is provided.

In principle, the ab initio modelling should start from characterisation and study of
properties of known structures and than it can proceed to hypothetical structures or ex-
perimentally inaccessible phases. This two steps usually go together especially in case
where the ab initio results are intended to be employed in the subsequent thermodynamic
modelling and phase diagram calculations. The publications [VI, XIII] deal with experi-
mentally well defined intermetallic phases such as PdBi, PdBi2, FePd, FePd3, FePt, FePt3
and provide comparison of the experimentally found energies of formation with theoret-
ical ones. This type of publications, where one type of variable is studied by various
approaches, provide valuable data. In case of disagreement between results from different
methods, the weak aspects of approaches can be revealed and improved. In addition to the
energies of formation, the information about the crystallographic arrangement and possible
magnetic ordering [XIII] are provided.

On the same principle, the studies of Fe-based C14 Laves phases [XVI] and sigma
phases in Cr-Fe and Cr-Co [X] and Ni-Fe [VII] systems are based. In addition, they also
include characterisation of structural configurations that are experimentally inaccessible.
In case of sigma phase study [X], the detailed overview of magnetic behaviour and its



influence on lattice stability is provided over the whole composition region.
Not only pure ab initio calculations can be challenging but also their combinations with

thermodynamic CALPHAD modelling can bring interesting results. The interplay of these
methods was for the first time applied on the sigma phase in Cr-Fe [I] and Co-Cr [II] binary
system. The implementation of the ab initio results into the thermodynamic description of
the sigma phase using the two-sublattice model enabled us to perform the phase diagram
calculations using the parameters having the physical meaning. This approach can be of
course used for many intermetallic phases [IV, IX, XI] and high-order systems [III]. This
procedure is now widely used in the CALPHAD community.

As the thermodynamic modelling is very efficient tool for phase equilibria predictions,
its combination with ab initio calculations pushes its applicability to less and less experi-
mentally explored regions. One of them is the modelling at low temperatures, where phase
transformations also occur and interesting physical (superconductivity) phenomena take
place. The extension of the ordinary used SGTE (Scientific Group Thermodata Europe)
unary data to 0 K temperatures was developed [XIV] and its application to the intermetallic
phases was demonstrated [XVII].
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Introduction

There is no doubt that materials and their development are essential for the evolution of
the society we live in. During the last century, the achievements in electronic science,
computer technology etc. have opened up enormous possibilities for progress in materials
science leading to research and development of more sophisticated materials.

Most, if not all, of properties of solids can be described by theoretical approaches work-
ing on different scale. It is only the question of priority which method is used whether
nano-scale ab initio (first-principles) electronic structure calculations or CALPHAD (Com-
puter Coupling of Phase Diagrams and Thermochemistry) modelling, which works on
macroscopic level, or even some other approaches. Anyway, both of the above mentioned
methods can significantly contribute to understanding and prediction of the physical and
chemical properties of materials. At present, the possibilities are almost unlimited and the
problem of choice of suitable method to study particular problem makes high demands on
author’s experience.

In principle, all properties of material are directly related to the behaviour of electrons
that constitute inter-atomic bonds in solids. The bridge to the macroscopic properties
such as e.g. total energy, crystallographic arrangement, magnetic ordering, mechanical
properties etc. is constituted by the rules of quantum mechanics implemented to ab initio
(first-principles) approaches [1–4]. The theory of electronic structure is not only helpful
in understanding and interpreting experiments, but it also becomes a predictive tool in
the physics and chemistry of condensed matter. The advantage of methods based on
electronic structure calculations consists in their physical transparency and independence
on experimental data and fitting parameters as input values. On the other hand, some
price for this independence has to be paid in the form of high computational demands on
software, hardware and time. For application of ab initio approach in the research, fast
development of computing facilities, numeric methods and their increasing accessibility
(via networks and workstations) in recent decades has been crucial. As an illustration of
the detailed ab initio study of physical and chemical properties of intermetallic phases, the
paper [X] can be mentioned here. In this work, the comprehensive study of magnetism
of sigma phases in Fe-Cr and Co-Cr binary system and its influence on phase stability is
presented.

In spite of the fruitfulness of the ab initio methods, some disadvantages related to
them should be mentioned here. The first one is that these approaches require many
approximations (e.g. adiabatic (Born-Oppenheimer) approximation, approximations of
functional of exchange-correlation energy etc.) which result in lowering the accuracy of
calculation. The other disadvantage is that the ab initio calculations are performed for
0 K temperature which disables their direct usage for phase equilibria studies at higher
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Introduction 2

temperature.
In this case, the material science turns towards a macro-scale method omitting the role

of electrons - the CALPHAD approach [5]. This widely used semiempirical method is
based on the laws of thermodynamics and uses the Gibbs energies of phases as building
stones for description of system. From this reason, the knowledge of the Gibbs energy
dependence on composition and temperature for all structures occurring in the system
(stable and even metastable) is crucial. Unfortunately, this information is for metastable
phases experimentally inaccessible. Nevertheless, the lack of proper data can be bridged
by ab initio calculations of lattice stability [6]. In the field of phase equilibria calculations,
the main advantage of the ab initio methods is the ability to deal with systems far from
equilibrium or with metastable or hypothetical states providing their total energies of
formation with respect to the reference states at T = 0 K [IX, XVII, 7, 8], consequently
applied in the CALPHAD modelling. Such approach can put the thermodynamic data
describing the metastable states on the sound physical basis.

One of the first applications of this combined approach was presented in our work [I] in
2002 and we have continued with further studies of complex phases such as sigma and Laves
phase etc. [III, IV, IX, XVII]. This approach is now being used by many research groups
[7–10] as the combination of both above mentioned different-scale methods becomes very
useful tool for description of multi-component systems with complex intermetallic phases
where experiments seldom provide satisfactory set of thermodynamic or phase data.

In some cases, not only the question of thermodynamic stability should be treated in
phase modelling but also the mechanical stability becomes crucial. This topic can be
studied via the analysis of the elastic constants [XVII, 11] or, more completely, via the
phonon spectra [XVII, 12].

From the point of basic science, the CALPHAD method is currently being developed
by extending the theoretical background into the fields which have not been covered yet.
In [XIV], a method for the extension of SGTE (Scientific Group Thermodata Europe) Gibbs
energy expressions for pure elements [13] to zero Kelvin temperature was presented. It is
based on the Einstein formula for the temperature dependence of heat capacity extended to
provide the temperature dependence of the Gibbs energies below the limiting temperature
of validity of SGTE unary data. The application of this method to low temperature
modelling of intermetallic phases was presented in [XVII].

At present, the knowledge of phase diagrams (or their sections) and relevant thermo-
dynamic properties is crucial in a design of modern materials. However, to obtain the
full understanding of material behaviour and to make reliable predictions, it is crucial to
combine the theoretical methods on one side and experiments on the other because the
quality of theoretical predictions of course increases when more information about the
system is available.

The metallic systems studied in this thesis were chosen not only because of scien-
tific reasons looking for understanding of physical and chemical background of material
behaviour but also according to their applicability in material engineering. The stress was
laid on the systems found in superaustenitic steels containing the sigma phase (Cr-Fe [I,X],
Co-Cr [II, X], Cr-Fe-Ni [III], Co-Mo [IV], Fe-Mo [IV], Cr–Fe–W [VII]) and binary sys-
tems with Laves phases (Cr-Zr [IX], Cr-Hf [XI], Cr-Ti [XI], V-Zr [XVII]) which have
become candidates for some functional as well as structural applications, e.g. hydrogen



Introduction 3

storage materials [14], superconductors [15], and materials with a high strength up to high
temperatures [16]. The list of systems and phases studied is not complete here. Further
examples can be found in List of author’s publications.



Chapter 1

Structures studied

As this thesis concerns the intermetallic phases, the characterisation of those which form
the nub of this work is provided here.

Sigma phase was first observed by Bain [17] in Cr–Fe system in 1923 and, at present,
about 50 binary transition-metal systems exhibiting this phase are known [18], e.g. Fe–Mo,
Co–Mo or Fe–V. The sigma phase has the space group No. 136 (P42/mnm) and its
repeat cell contains thirty atoms accommodated in five crystalographically inequivalent
sublattices (2a, 4f, 8i, 8i’ and 8j) [19–21], see Figure 1.1. If these sublattices are occupied
by studied constituents in various succession, 32 different configurations are formed.

The sigma phase is very crucial in material science and technology because its proper-
ties are very disadvantageous. It is brittle and therefore it can cause a strong degradation
of material (crack nucleation sites). It develops in heat affected zones of welded super-
austenitic stainless steels [22] and it was concluded that it is formed after longer ageing
times in the temperature range of 500–1100 ◦C. It is also known that high concentrations
of Cr and Mo promote precipitation of this phase. From the thermodynamic point of view,
the sigma phase is very stable.

Figure 1.1: The structure of the sigma phase [XIX]. The brightness of atoms in sublattices
is increasing in the order of positions 2a, 4f, 8i, 8i’ and 8j.

Laves phases can be found in metallic systems in three polytypes: cubic C15 (prototype
MgCu2, space group 227, Fd3̄m), hexagonal C14 (prototype MgZn2, space group 194,
P63/mmc) and hexagonal C36 (prototype MgNi2, space group 194 P63/mmc). All three

– 4 –



Chapter 1. Structures studied 5

structures are shown in Figure 1.2. In this thesis, our attention was mainly drawn to the
C14 and C15 Laves phases.

Laves phases have a significant influence on mechanical properties of modern high-Cr
steels. They precipitate mostly on ferrite subgrain boundaries and on prior austenite grain
boundaries. It has been found that the presence of silicon in the steels accelerates the
precipitation of Laves phase and that the phase itself than contains significant amount of
Si [23].

Figure 1.2: The structures of Laves phases [XIX]. Bright and dark spheres correspond to
the A and B atoms in the general formula A2B.



Chapter 2

Ab initio calculations

This part of thesis addresses problems concerning the properties of particular phase such
as equilibrium structure parameters (lattice parameters, angles, atomic positions), mag-
netic ordering, total energies and mechanical properties. In the case of experimentally
accessible phases, the above mentioned values can be compared with experimental data
and can form a strong background for methods using these data as input values. The
mutual interactions between phases can be also investigated for example by means of
lattice stabilities, grain boundary energies, etc., however, these values are usually obtained
from the post-processing of ab initio results than from multi-phase ab initio calculations.
Accordingly, a range of DFT (Density Functional Theory) quantum chemistry approaches
is employed from the LMTO-ASA (Linear Muffin-Tin Orbitals method within the Atomic
Sphere Approximation) method, FLAPW (Full-potential - Linear Augmented Plane Wave)
method to pseudopotential approach within the LDA (Local Density Approximation) and
GGA (Generalised Gradient Approximation) employed for the exchange-correlation term.

2.1 Theory and methodology
The properties of material depend on the electronic structure which is described by the
wave functions calculated from the Schrödinger equation

He,{Rα}Ψ = EΨ , (2.1)

where {Rα} are positions of atomic nuclei, Ψ is wave function, E energy and Hamiltonian
H is defined as

He,{Rα} =−∑
i

∇
2
i +∑

i
Ve,{Rα} (ri)+ ∑

i, j,i 6= j

1∣∣ri− r j
∣∣ . (2.2)

Here, ri and r j are positions of electrons. The first term in Equation (2.2) stands for the
kinetic energy of electrons, the second one is the potential acting on the electron i coming
from surrounding nuclei and the last term describes the interaction between two electrons.
The Ve,{Rα} (ri) potential is defined as

Ve,{Rα} (ri) =−2∑
α

Zα

|r−Rα |
, (2.3)

– 6 –



Chapter 2. Ab initio calculations 7

where Zα are the proton numbers of studied elements. To evaluate the total energy, the
Rydberg atomic units with h̄ = 1, 2me = 1 and Ke2 = 2 are often used, where h̄ = h/2π ,
h stands for the Planck constant, me and e are the electron mass and charge, respectively,
and K is Coulomb law constant (K = 1/(4πε0), where ε0 is permittivity of vacuum).

As there are approximately 1023 interacting particles in one mole of a real solid, it is
impossible to solve the Schrödinger equation for such a huge number of objects. From
this reason various approximations has to be employed resulting in lowering the accuracy
of results.

2.1.1 DFT (Density Functional Theory)
Ab initio results commented in this thesis are based on the DFT [1–4], which simplifies
the many-particle problem. It is based on two theorems published in 1964 by Hohenberg
and Kohn [24] showing the elegant reduction of many-electron problem.

The first theorem (existence theorem) introduces the density of electrons ρ (r) whose
a non-degenerate ground state defines fully the Hamiltonian of the whole system (by means
of determination of external potential). From this Hamiltonian, it is possible to determine
all the basic properties of the studied material (e.g. lattice constants, total energy, etc.).
Thus, all the characteristics of the system in the ground state may be treated as functionals
of one function - electron density ρ (r). The existence theorem induces a huge decrease in
number of degrees of freedom as the electron density is a function of sole three variables.

According to the second theorem (variational principle), the total energy of a system
of electrons E [ρ] reaches its minimum for electron density of the ground state. On the
base of DFT, the electron density is being changed until the minimum of total energy is
obtained, regardless to the number of particles in the system.

Based on these theorems, it can be stated that the equilibrium ground-state electron
density corresponds to the minimum of total energy and vice versa. Furthermore, the
formulation of the above mentioned theorems yielded the introduction of the Kohn-Sham
equations [25]

Hsψi (r) = εiψi (r) =
[
−∇

2 +Ve f f (r)
]

ψi (r) , (2.4)

which are again a single-particle equations. These equations describe the behaviour of
an electron moving in the field evoked by the other electrons and nuclei. Hs is one-
electron Kohn-Sham Hamiltonian. ψi are one-electron wave functions that are solutions of
Kohn-Sham equation. εi are eigenenergies of one-electron states and Ve f f is the effective
potential which is, in general, nonlocal. Ve f f defined as

Ve f f (r) =Vext (r)+VH(r)+Vxc(r) (2.5)

can be constructed on the basis of electron density and includes important effects of
exchange and correlation. The particular potentials - external Vext (r), Hartree VH (r) and
exchange-correlation Vxc (r) potential are characterised as follows:

• External potential describes the effect of nuclei and external fields on electron.
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• Hartree potential

VH(r) =
∫ 2ρ (r′)
|r− r′|

d3r′ (2.6)

corresponds to the classical repulsion of electron with other electrons.

• Exchange-correlation potential

Vxc(r) =
δExc [ρ]

δρ (r)
(2.7)

is functional of so-called exchange-correlation energy Exc and its exact form is not
known, because its determination is equivalent to the solution of many-electron
problem. It contains the non-classical part of the electron-electron interaction and
the difference between the kinetic energy of interacting and non-interacting electron
system [1]. For this term various approximations has to be used.

The one-particle density ρ (r) used in previous equations is defined as the sum over the
occupied one-electron energy states of N-electron system

ρ (r) =
N

∑
i=1
|ψi (r)|2 . (2.8)

The total energy of the system may be calculated according to following formula

E =
N

∑
i=1

εi +
∫ ∫

ρ (r)ρ (r′)
|r− r′|

d3rd3r′−
∫

Vxc (r)ρ (r)d3r+Exc [ρ] . (2.9)

2.1.2 Exchange-correlation potentials
The most often used methods for determination of exchange-correlation energy are LDA
(Local Density Approximation), LSDA (Local Spin Density Approximation) and GGA
(Generalised Gradient Approximation).

The LDA defines the exchange-correlation energy Exc [ρ] as

Exc [ρ] =
∫

ρ (r)εxc [ρ (r)]d3r , (2.10)

where εxc [ρ (r)] is the exchange-correlation energy per particle in a homogeneous system
of density ρ .

Similarly, the exchange-correlation energy in LSDA is

Exc [ρ ↓,ρ ↑] =
∫

ρ (r)εxc [ρ ↓ (r) ,ρ ↑ (r)]d3r . (2.11)

The most frequently employed approximations are due to Hedin and Lundqvist [26],
von Barth and Hedin [27], Janak [28], Ceperley and Alder [29] as parametrised by Perdew
and Zunger [30], Vosko, Wilk and Nusair [31] and Perdew and Wang [32]. As here defined
εxc corresponds to a homogeneous electron gas, the application of L(S)DA is limited to the
systems with slowly varying electron density. In the case of strong gradients, e.g. due to
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the directional bonding, these approximations are less successful. For example, they fail
in reproduction of the ground state of iron.

From this reason, it was necessary to include the magnitude of gradient of the electron
density into the exchange-correlation energy evaluation. This was done by the GGA
where the term εxc [ρ (r)] in Equation (2.10) is substituted by the term εxc [ρ (r) ,∇ρ (r)].

2.1.3 Calculations for periodic solids
Equations (2.4), (2.5) and (2.8) are solved self-consistently until the electron density
ρ (r) and potential Ve f f (r) correspond to each other within certain limits. This process is
significantly simplified by the idea of periodicity of crystal structure, which is characterised
by the translation vector T in crystal lattice. In the periodic systems, the effective potential
has to obey the periodicity condition Ve f f (r+T) =Ve f f (r). This condition results in the
Bloch theorem, according to which the solution of Equation (2.4) can be expressed as

ψk (r) = eik.ruk (r) . (2.12)

Here, k is the reciprocal lattice vector and uk is a periodic function with the same period
as the crystal lattice. Based on this assumptions, it is sufficient to find the wave function
ψk (r) in the primitive cell and the region of k-vectors is constrained to a primitive cell in
the reciprocal space, i.e. to the first Brillouin zone [33, 34].

If we suppose that the electron interaction between the atoms in the solid is quite weak
(i.e. the electrons are mainly localised in the vicinity of atoms) then the wave functions
may be written as a linear combination of orbitals localised at the positions of nuclei. When
solving the Kohn-Sham equation (2.4), the one-electron wave functions are expanded into
a series

ψnk (r) = ∑
i

ci,nkχik (r) . (2.13)

The index n is a counting index (band index), ci,nk are expansion coefficients and χik (r)
are the basis functions (orbitals) that satisfy the Bloch condition - Equation (2.12). For
expansion coefficients ci,nk we obtain

∑
j

⌊
Hi j− εnkOi j

⌋
ci,nk = 0 , (2.14)

where

Hi j =
〈
χik |Hs|χ jk

〉
=
∫

Ω

χik (r)χ
∗
jk (r)d3r (2.15)

are matrix elements of Hamiltonian and

Oi j =
〈
χik|χ jk

〉
=
∫

Ω

χik (r)χ
∗
jk (r)d3r (2.16)

are overlap integrals with the volume of the unit cell Ω. The energies εnk are determined
by the secular equation



Chapter 2. Ab initio calculations 10

det
[
Hi j− εnkOi j

]
= 0 . (2.17)

The Bloch theorem enables us to calculate the electronic wave functions and corre-
sponding electron energies by effective block-diagonalisation of the Hamiltonian matrix,
with each block (corresponding to a particular k) having a manageable size.

The methods used for the electronic structure calculations differ in the type of basis
functions χi which has to be chosen carefully with respect to the problem solved. We
can use the plane waves or their modifications (Plane Wave - PW, Orthogonalised Plane
Wave – OPW, Augmented Plane Wave - APW); Linear Combination of Atomic (LCAO),
Gaussian (LCGO) and Augmented Slater-Type (LASTO) Orbitals; Augmented Spherical
Waves (ASW), Muffin-Tin Orbitals (MTO), Linear Muffin-Tin Orbitals (LMTO), etc. The
Green function of Kohn-Sham equation is used in Korringa-Kohn-Rostoker (KKR) method,
alternatively called Green Function (GF) method. The detailed information about basis
functions can be found in many publications [35–37] . The pseudopotential approach [38]
is also widely used. This method modifies the potential close to the nucleus (i.e. in the
region of electron shell with the lowest energy) to narrow down the basis set.

2.1.4 Methodology of performed calculations
The primary reason for the execution of ab initio calculations was to provide the input data
for the CALPHAD modelling - so called lattice stabilities. The lattice stabilities are the
energies of formation of particular phase which has to be calculated with respect to exactly
defined reference states. In the articles listed in List of author’s publications, the reference
states are structures of the pure constituents that are stable at a temperature T of 298 K
and pressure p of 1 bar, such as FM (ferromagnetic) hcp (hexagonal close packed) Co, FM
bcc (body centered cubic) Fe, AFM (antiferromagnetic) bcc Cr, NM (non-magnetic) bcc
Mo, etc. These phases are denoted SER (Standard Element Reference) states in this thesis.
From this reason, not only intermetallic phases but also SER structures had to be included
in the ab initio calculations.

At the beginning of any study, the suitable method has to be chosen. In the case of
study of phases with the same symmetry, the LMTO-ASA method [4,39,40] implemented
in the code by Krier et al. [41] can be used. This code was employed for calculations of
various sigma phase configurations in: Cr–Fe and Cr–Co binary system [X], Fe-Ni binary
system [III]; and for structure relaxations of sigma phases of pure elements, e.g. Cr, Fe,
Co and Mo [I, II, IV, X]. Here, the exchange-correlation energy was evaluated within the
GGA [42]. The s-p-d basis with the f states incorporated by the down-folding procedure
and with the combined-correction term included [39, 41] was used. This is apparently the
best performance the LMTO-ASA method may provide. For all computational methods
the optimum technical parameters had to be found to get the required precision of total
energy of phase. In case of LMTO-ASA, these parameters were: the number of k-points
in the whole Brillouin zone and the sphere radii, which define the size of non-overlapping
Muffin-Tin spheres with the spherically symmetric potential. Outside the spheres, the
potential was constant. The partitioning of the unit cell into atomic spheres is shown in
Figure 2.1.
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Figure 2.1: Partitioning of the unit cell into atomic spheres (I) and interstitial region (II).

Nevertheless, the LMTO-ASA method does not provide reliable structural energy
differences for structures of different symmetry, although the total energy differences
calculated by this method for the same crystallographic structures are considered to be
quite reliable [43–45]. To calculate the energy differences between the structures of
different symmetry, the FLAPW and pseudopotential methods were employed.

The FLAPW method [38] implemented in the WIEN97 / WIEN2k code [46] /
[47] was used in all works related to the sigma phases [I-IV,VII,X] employing the GGA
[42] for the exchange-correlation term. This method is considered to be one of the
most reliable methods. At the beginning of FLAPW calculations, the optimisations of
technical parameters (the RMT (Radius Muffin-Tin) parameter and number of k-points)
were performed. The optimum values are provided in relevant publications.

The last ab initio approach employed in this thesis is the pseudopotential method [38]
incorporated in the VASP (Vienna Ab initio Simulation Package) [48, 49] and combined
with the PAW–PBE (Projector Augmented Wave–Perdew-Burke–Ernzerhof) pseudopo-
tential [50–52] (i.e. the GGA was employed for the exchange-correlation energy). This
method was employed in the study of magnetism of sigma phases in Fe-Cr and Co-Cr
binary system [X]; and in the investigations of Laves phases in the following systems:
V-Zr [XVII], Cr-Zr [IX], Cr-Hf and Cr-Ti both [XI] and in Fe-based systems [XVI]. Fur-
thermore, the studies of the intermetallics PdBi, PdBi2 [VI] and NiTi, FePd, FePd3, FePt,
FePt3 [XIII] used this method. The optimised technical parameters for this approach are:
the cut-off energy restricting the number of plane waves in the basis set and the number of
k-points.

Except for the above mentioned optimised technical parameters, there are further
parameters employed in the discussed calculations which influenced the obtained results.
Their detailed descriptions are provided in user guides / manuals of particular codes.

As the properties of phases studied are directly related to their crystal structure, the
optimisation of crystallographic arrangement with respect to total energy had to be
performed. In case of LMTO and FLAPW approaches, this optimisation was rather
demanding. It was performed by alternating minimisation of total energy as a function
of lattice parameter a (unit cell volume V ) at a constant c/a ratio and minimisation of
total energy as a function of the c/a ratio at the constant parameter amin (Vmin) from the
previous optimisation. These two steps were repeated until the change of total energy was
small enough (lower than 0.1 mRy/atom). In this way, the equilibrium energies of studied
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phases were found. In comparison with LMTO and FLAPW codes used, the structure
optimisation by VASP is more comfortable as this code automatically calculates the forces
and the stress tensor, which are used to search directions to the equilibrium positions
of atoms. Using the structure optimisation, the equilibrium structure parameters (lattice
constants, angles, atomic positions) corresponding to the minimum energy were obtained.

To find the equilibrium crystal structure and energy of phases studied, their magnetic
arrangement had to be also taken into account as it significantly influences the stability
of particular phases as it had been found in the case of iron [53]. When the spin polarised
calculations are performed [X,XIII], the detailed information about the magnetic moments
of individual atoms is obtained, which is usually not accessible by experimental methods.

After the evaluation of equilibrium total energies, the molar total energies of for-
mation ∆E f m can be calculated. The expression for ∆E f m between two phases of pure
constituent is very simple

∆E ph
f m = E ph

m −ESER
m , (2.18)

where ESER
m (E ph

m ) stands for the molar total energy per atom of SER state (studied phase).
The molar energy of formation of the intermetallic phase (int) is calculated with respect

to the weighted average of the total energies of SER states of pure constituents as

∆E int
f m = E int

m − [xESER1
m +(1− x)ESER2

m ] . (2.19)

Here, the subscripts 1 and 2 following the name of structure denote different pure con-
stituents and x is the molar fraction of constituent 1.

It is also possible to combine the results of two ab initio methods for the evaluation
of the energy of formation of intermetallics. This approach was used for analysis of
energetics of various configurations of sigma phases [X]. In this case, it is necessary to
use the following equation

∆Eσ
f m = ∆E(i)

f m +∆E(ii)
f m =

= {Eσ
m − [xEσ1

m +(1− x)Eσ2
m ]}LMTO or FLAPW or pseudopotential +

+{xEσ1
m +(1− x)Eσ2

m − [xESER1
m +(1− x)ESER2

m ]}FLAPW or pseudopotential .
(2.20)

The ∆Eσ
f m in Equation (2.20) consists of two parts: (i) the energy difference of alloy

sigma phase with respect to weighted average of total energies of pure constituents in the
sigma phase structure, both calculated by means of the LMTO, FLAPW or pseudopotential
method (the LMTO method may be used here as the systems considered have the same type
of structure), and (ii) the energy difference of weighted average of total energies of pure
constituents in the sigma phase and SER states, both calculated by means of the FLAPW
or pseudopotential method (here a more reliable, but also more time consuming method
had to be used as the structures involved have different types of symmetry). Both energy
differences (i) and (ii) may be considered as quite reliable, as the total energies used for
their determination were obtained by the same method on equal footing.

The mechanical stability can be also evaluated when the mechanical properties (bulk
moduli [XIV] and elastic constants [XVII]) are calculated from the total energy depen-
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dencies on structure deformation. For example, when the dependencies of total energy on
volume are expressed in polynomial form of the third order (y = ax3 +bx2 + cx+d), the
bulk modulus (B) can be calculated from its second derivative as

B =Vmin(6aVmin +2b) . (2.21)

To judge the mechanical stability, the elastic constant has to be calculated and the
elastic stability criteria has to be fulfilled. For cubic phase, the elastic stability criteria are
as follows: C11 > 0; C44 > 0; C11 > |C12|; and (C11 +2C12)> 0, where C11, C12 and C44
are elastic constants.

The mechanical stability can be also evaluated on the base of phonon spectra [XVII]
where no negative branches can occur.
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2.2 Results and discussion
As mentioned in section 2.1.4 Methodology of performed calculations, the results obtained
during the ab initio studies are rather complex as they form a logically integrated set of
data related to studied system. However, for greater clarity, they are divided into particular
sections in this thesis. The results obtained are demonstrated on chosen exemplary systems:
Cr-Fe [I,X] for sigma phases and V-Zr [XVII] for Laves phases. The citations of analogous
results are provided and if it is needed the details on studies of further phases are provided
[VI, XIII].

2.2.1 Crystal structure I-IV,VI,VII,IX-XI,XIII,XIV,XVI,XVII

The equilibrium crystallographic data were obtained for all phases commented in this work
and were listed in tables in corresponding publications. In the case of SER states, the
results are summarised in Table 2.1.

The results correspond very well to experimental findings and the deviations from
experimental volume ∆%exp ranges from -5.12 % for NM bcc V to 5.02 % for NM fcc Pd.
However, the deviation for most structures is within ±3%, which is generally acceptable

Structure Method
a

c/a
Vat Ref.

a
c/a

Vat Ref. ∆%exp(nm) (nm3.103) (nm) (nm3.103)
FM hcp Co FLAPW 0.2446 1.6025 10.1496 [II] 0.2506 1.6237 11.0650 [18] -8.27

FLAPW 0.2498 1.6194 10.9342 [IV, X] -1.18
PP 0.2492 1.6190 10.8435 [X] -2.00

AFM bcc Cr FLAPW 0.2866 1 11.7743 [I, II, X] 0.2879 1 11.9281 [54] -1.29
PP 0.2855 1 11.6327 [IX-XI,XVI] 0.2879 1 11.9281 [54] -2.48

FM bcc Fe FLAPW 0.2865 1 11.7603 [I, IV, X] 0.2858 1 11.6669 [54] 0.80
0.2866 1 11.7709 [55] -0.09

PP 0.2836 1 11.4025 [X, XIII, XVI] 0.2858 1 11.6669 [54] -2.27
0.2866 1 11.7709 [55] -3.13

NM hcp Hf PP 0.3195 1.5786 22.2901 [XI] 0.3230 1.5851 23.1300 [18] -3.63
NM bcc Mo FLAPW 0.3160 1 15.7762 [IV] 0.3145 1 15.5553 [18] 1.42

PP 0.3149 1 15.6174 [XVI] 0.40
FM fcc Ni PP 0.3523 1 10.9287 [XIII] 0.3520 1 10.9036 [56] 0.23
NM fcc Pd PP 0.3954 1 15.4543 [XIII] 0.3890 1 14.7160 [18] 5.02
NM fcc Pt PP 0.3977 1 15.7280 [XIII] 0.3923 1 15.0937 [18] 4.20

NM diam. Si PP 0.5469 1 20.4501 [XVI] 0.5431 1 20.0227 [18] 2.13
NM hcp Ti PP 0.2924 1.5818 17.1210 [XI, XIII] 0.2950 1.5866 17.6442 [18] -2.97
NM bcc Ta PP 0.3309 1 18.1159 [XVI] 0.3302 1 17.9996 [18] 0.65
NM bcc V PP 0.2978 1 13.2092 [XVII] 0.3031 1 13.9215 [18] -5.12
NM bcc W PP 0.3171 1 15.9360 [XVI] 0.3165 1 15.8492 [18] 0.55
NM hcp Zr PP 0.3236 1.5977 23.4332 [IX, XVII] 0.3232 1.5930 23.2838 [54] 0.64

Table 2.1: Structural properties of SER states. a and c are the lattice parameters, Vat is the
volume per atom and ∆%exp is the deviation of ab initio results from experimental data in
% of experimental value, PP stands for pseudopotential. The high deviation of ∆%exp =
-8.27 in the third row is caused by old set of calculation parameters for FM hcp Co.
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error. The example of FLAPW calculation of energy dependence on volume for FM bcc
Fe and AFM bcc Cr is shown in Figure 2.2.

Similar investigation was done for hypothetical sigma phases of pure constituents
Fe and Cr [I]. In Figure 2.3(a), there are depicted two energy dependencies on volume
calculated by LMTO and FLAPW method. In Figure 2.3(b) [I], the curves of energy
dependence on volume calculated by FLAPW approach for both Fe and Cr are shown.

Figure 2.2: Volume dependence of total energy of AFM bcc Cr (�) and FM bcc Fe (�)
calculated by FLAPW method [I]. The volume corresponds to two-atom unit cell.

(a) Pure Fe, FLAPW (�) and LMTO (�) optimisa-
tion.

(b) Final FLAPW optimisation for pure Cr (�) and
Fe (♦) sigma phase at constant c/a ratio; c/aFe =
0.5174, c/aCr = 0.5237 [I]. Full symbols represent
the crossing points with previous optimisation of total
energy vs. c/a ratio.

Figure 2.3: Volume dependence of total energy of sigma phases (30 atoms).
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In the case of complex phases, not only lattice parameters but also the atomic positions
were optimised. The easiest way how to perform such an optimisation is to employ
the pseudopotential VASP code with its automatic relaxation. The equilibrium atomic
positions of sigma phases of pure constituents [X] are listed in Table 2.2, columns 6-8.
The internal parameters describing the atomic positions in chosen experimentally studied
sigma phases are given in the same table in columns 3-5. The equilibrium data given in
Table 2.2 reveal only very small scatter and the fully relaxed parameters describing the
positions of atoms correspond well to those determined experimentally for alloy sigma
phases.

The equilibrium lattice parameters of Co, Cr and Fe sigma phases calculated by
LMTO, FLAPW and pseudopotential approaches are summarised in Table 2.3 [X]. In
this case, LMTO method results in the highest values of the lattice parameter a and
atomic volume Vat , the medium values are provided by the VASP code and finally the
lowest numbers are obtained from the WIEN97 calculations. The scatter of the values is
reasonably small, in units of percent. From this point of view, the all methods used can be
considered as equivalent. Analogously the structural parameters of binary sigma phases
can be obtained [X].

Subl. Param.
Cr-Fe a Cr-Co b Co-Mo c Co Cr Fe

Ref. [19] Ref. [20] Ref. [21] [X]
4f x 0.3986 0.3984 0.3973 0.4019 0.3982 0.4030
8i x 0.4635 0.4627 0.4635 0.4613 0.4671 0.4572

y 0.1312 0.1291 0.1283 0.1332 0.1285 0.1315
8i’ x 0.7399 0.7404 0.7450 0.7346 0.7434 0.7366

y 0.0661 0.0654 0.0670 0.0669 0.0594 0.0660
8j x 0.1827 0.1826 0.1820 0.1812 0.1877 0.1821

z 0.2520 0.2500 0.2500 0.2507 0.2553 0.2503

Table 2.2: Experimental (columns 3-5) and by VASP calculated (columns 6-8) equilibrium
values of internal structure parameters of NM sigma phases [X]. a xCr = 0.495, T = 923 K;
b xCr = 0.564 and c xCo = 0.4, T = 1673 K. The symbols xCr and xCo represent the molar
fraction of Cr and Co, respectively. The exact atomic positions can be calculated from
these parameters using simple relations corresponding to the given sublattice and particular
space group.

Elem.
LMTO WIEN97 VASP

a (au) c/a Vat (au3) a (au) c/a Vat (au3) a (au) c/a Vat (au3)
Co 16.1116 0.5161 71.9496 15.8602 0.5197 69.1126 15.9252 0.5289 71.2044
Cr 16.6677 0.5216 80.5088 16.3792 0.5237 76.7078 16.5267 0.5214 78.4528
Fe 16.0465 0.5180 71.3427 15.5987 0.5174 65.4592 15.9325 0.5210 70.2374

Table 2.3: Equilibrium lattice parameters and atomic volumes of NM sigma phase of pure
constituents calculated by LMTO, WIEN97 and VASP codes [X].
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The V-Zr system [XVII] was chosen as an example for modelling of Laves phases.
The dependence of structural parameters on composition can be demonstrated for example
on C14 Laves phase, see Figure 2.4, where the occupation of the 6h and 4 f sublattice is
changing.

(a) a lattice parameter (�), c lattice parameter (�) (b) c/a (�), volume per atom Vat (�)

Figure 2.4: Composition dependence of structural parameters of C14 Laves phase in V-Zr
system [XVII]. The open symbols correspond to experimental values [18].

It was found that the volume per atom Vat decreases with increasing molar fraction of
vanadium. Similarly, the composition dependencies of structural parameters were studied
in Cr-Zr [IX], Cr-Hf and Cr-Ti [XI] and Fe-X (X = Si, Cr, Mo, W, Ta) [XVI] system.
In all the above mentioned systems, the dependence of volume on composition is linear.
There are some deviations from linear dependencies of lattice parameters on composition
in case of Cr6X6 and Cr2X10 configurations in systems where X = Hf, Ti. Their values of
a are higher and values of c are lower than the values from linear approximation. These
deviations compensate in volume calculation.

2.2.2 Energies of formation I-IV,VI,VII,IX-XI,XIII,XIV,XVI,XVII

The energies of formation of studied structures (even of hypothetical phases consisting
of pure constituents or phases with occupation of sublattices which has not been ob-
served experimentally) can be evaluated according to the Equation (2.18), (2.19) or (2.20).
The values obtained for intermetallic phases were compared with experimental data if
available (Table 2.4). Sometimes, the ab initio methods can successfully reproduce the ex-
perimental values as it was found in case of Fe2Ta C14 Laves phase, NiTi, FePt and FePt3.
But there are phases, for which the agreement is worse, e.g. Fe2W, Cr2Hf and FePd3.
This disagreement between theory and experiments is caused by different temperatures at
which the experiments (room temperature or higher) and calculations (0 K) are performed.

In case of sigma phase [X], it was found that some atoms preferentially occupy certain
sublattices which significantly influences the stability of particular configurations of this
phase. Fe and Co (in binary systems with Cr) prefer the 8i’sublattice and Cr the 8i and
8j sublattices. The same findings concerning the site preferences in Cr–Fe system were
reported by Korzhavyi [36] and were confirmed by experimental results [20].
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Phase
∆E int

f ,abinitio Ref.
∆H int

f ,experiment Ref.
(kJ/mol of atoms) (kJ/mol of atoms)

Fe2Ta - C14 Laves phase -18.61 [XVI] -19.27 [57]
Fe2W - C14 Laves phase 0.68 [XVI] -7.61±3.14 [58]
Cr2Hf - C15 Laves phase -10.38 [XI] -4.8±4.3 [59]

NiTi -33.1 [XIII] -32.7±1.0 [XIII]
FePt -23.1 [XIII] -23.0±1.9 [XIII]
FePt3 -19.2 [XIII] -20.7 ± 2.3 [XIII]
FePd3 -10.0 [XIII] -16.0 ± 2.7 [XIII]

Fe-Cr - sigma phase
xCr = 0.4, NM 10.23 [X]

7.7a [60]
xCr = 0.4, FM 6.89 [X]

xCr = 0.533, NM 8.01 [X]
6.5b [61]

xCr = 0.533, FM 7.90 [X]
Cr-Co - sigma phase

xCr = 0.533, NM 11.50 [X]
9.37c [62]

xCr = 0.533, FM 9.98 [X]
xCr = 0.6, NM 9.40 [X] (-2.9;5.1)d [61]
xCr = 0.6, FM 9.04 [X] (2.64;6.77)e [63]

Table 2.4: Ab initio calculated energies of formation and experimental enthalpies of
formation of intermetallic phases.
a xCr = 0.45, b xCr = 0.45, c xCr = 0.6, d xCr = 0.45−0.63 and e xCr = 0.57−0.61.

2.2.3 Magnetic properties X,XIII

Some elements such as Cr, Fe, Co and Ni have tendencies to magnetic ordering in pure
state, which was confirmed by experiments. In this case, their magnetic arrangement has
to be reproduced by ab initio calculations. The overview of magnetic properties of studied
elements in SER states is given in Table 2.5.

When intermetallic phases contain elements listed above, there is a high probability that
the magnetism will play an important role in their behaviour. Sometimes, it is confirmed by
experiment but sometimes the magnetic ordering is important only at very low temperatures
which has to be taken into account when performing ab initio calculations at 0 K. The
detailed study of magnetic properties for all 32 configurations of sigma phases in Fe-Cr
and Co-Cr binary system was performed [X].

It turns out, for example, that elemental iron in the sigma phase structure exhibits
different magnetic moments at different sublattices. At the 4f, 8i and 8j sublattices, the
local magnetic moment of Fe atoms equals to 2.29 µB/atom, 2.00 µB/atom and 1.87
µB/atom, respectively, the highest magnetic moment being at the sublattice 4f possessing
the highest coordination number. Magnetic moments of iron in 8i’ and 2a sublattices
with the lowest coordination numbers are substantially lower: 1.22 µB/atom and 1.10
µB/atom. In case of elemental Co, the magnetic moment decreases from 1.70 µB/atom,
1.67 µB/atom, 1.59 µB/atom to 1.54 µB/atom which corresponds to the sublattices 4f,
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Structure Method
µ

Ref.
µexp Ref.

Bteor Ref.
Bexp [64]

(µB) (µB) (GPa) (GPa)
FM hcp Co FLAPW 1.74 ∗ 1.72 [56] 225.08 ∗ 191.4

PP 1.56 ∗ 210.94 ∗

AFM bcc Cr FLAPW 1.07 ∗ 0.59 [54] 193.32 ∗ 190.1
PP 1.08 ∗ 186 [XVI]

FM bcc Fe FLAPW 2.28 ∗ 2.22 [56] 167.79 ∗ 168.3
PP 2.18 [XIII] 2.12 [54] 194 [XVI]

NM hcp Hf PP 112.68 ∗ 109
NM bcc Mo FLAPW 264.09 ∗ 272.5

PP 271 [XVI]
FM fcc Ni PP 0.6 [XIII] 0.61 [56] 196.97 ∗ 186
NM fcc Pd PP 223.54 ∗ 180.8
NM fcc Pt PP 249.33 ∗ 278.3

NM diam. Si PP 90 [XVI] 98.8
NM hcp Ti PP 117.46 ∗ 105.1
NM bcc Ta PP 201 [XVI] 200
NM bcc V PP 188.5 [XVII] 161.9
NM bcc W PP 315 [XVI] 323.2
NM hcp Zr PP 97.6 [XVII] 83.3

Table 2.5: Magnetic and mechanical properties of SER states. µ is the magnetic moment,
B bulk modulus and PP stands for pseudopotential. * this work.

(8i, 8j), 8i’ and 2a, respectively. Again, the atomic magnetic moment decreases with
decreasing coordination number. On the other hand, the sigma phase of elemental Cr is
nonmagnetic because the magnetic moments found are very close to zero. However, it does
not mean at all that the chromium atoms are nonmagnetic through the whole composition
region. Their magnetic moment calculated by VASP reaches even -1.21 µB/atom (-1.29
µB/atom) in CrCoCoCoCo (CrFeFeFeFe) configuration. In binary sigma phases we can
see that the atomic magnetic moments of all three constituents (i.e. Fe, Co, Cr) mostly
decrease with increasing molar fraction of chromium. Similarly as in elemental Fe and
Co, the highest values of magnetic moments are found at the 4f sublattice with the highest
coordination number. In Cr–Fe system, the Cr atoms exhibit very often antiferromagnetic
behaviour with respect to Fe atoms, i.e. they have the opposite orientation of magnetic
moments. This fact is fully manifested at 8i, 8i’ and 8j sublattices with some exceptions
for higher chromium concentrations. The antiparallel arrangement of magnetic moments
is also found at the 2a and 4f sublattices, again with some exceptions. In sporadic cases
the antiferromagnetic arrangement occurs at Fe atoms in the sublattice 2a for FeCrFeCrFe
configuration and in 8i’ for FeFeCrFeCr and CrCrCrFeCr. In Cr–Co system Cr atoms also
exhibit antiferromagnetic behaviour with respect to Co atoms. However, with increasing
molar fraction of Cr atoms, we observe increasing amount of Cr atoms that behave in
the ferromagnetic way with respect to Co atoms. In contrast to the Cr–Fe system the
occurrence of this arrangement is not fully connected with particular sublattices, but it is
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most frequent at the 2a and 4f sublattices.
Similarly, the magnetism had to be included in study of NiTi, FePd, FePd3, FePt

and FePt3 phases [XIII]. The FePd, FePd3, FePt and FePt3 structures are ferromagnetic
whereas the NiTi intermetallics in both the cubic and the monoclinic arrangement are
nonmagnetic. The comparison of found and experimental magnetic moments (Table 4C
in [XIII]) in FM bcc Fe, FM fcc Ni, FM FePd, FM FePd3 and FM FePt provides an
excellent agreement. In the case of FePt3, the AFM arrangement of the structures is
reported [65]. Nevertheless, the magnetic moments found in the literature agree very well
with the calculated ones.

2.2.4 Mechanical properties XVI,XVII

The values of bulk moduli of SER states were presented in [XVI, XVII] and are listed in
Table 2.5. It shows that the deviations from experiments are higher than those found for
structure parameters but they are usually within ±20 GPa, which is acceptable. This limit
was exceeded for FM hcp Co, FM bcc Fe, NM fcc Pd, NM fcc Pt and NM bcc V.

To judge the mechanical stability of phase, the elastic constants has to be calculated.
This was done for cubic C15 V2Zr Laves phase where three elastic constants C11 =
162.33 GPa, C44 = 6.60 GPa and C12 = 136.62 GPa were evaluated (Table 4 in [XVII]).
This phase was declared to be mechanically stable as the elastic stability criteria: C11 > 0;
C44 > 0; C11 > |C12|; and (C11 +2C12) > 0 were fulfilled. Additionally the stability of
C15 V2Zr Laves phase was confirmed by phonon spectra calculations [XVII].
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CALPHAD modelling

Nowadays, more sophisticated and complex materials with excellent properties are required
in material engineering and technologies. These advanced materials often consist of more
than 10 elements and many of them are used in extreme conditions. Nevertheless, the
tendency to reach thermodynamic equilibrium, either stable or metastable, after long-term
exploitation, is characteristic for most of such materials. Some alloying elements can
significantly improve desired properties, but they can also introduce some unexpected
features (e.g. precipitation of unwanted or new phases, brittleness, degradation processes,
etc.) in long term run that can outweigh their positive influence [66]. In all such cases
the deep knowledge of relevant phase diagrams (or their sections) and thermodynamic
properties is crucial for prediction of structural and material development towards the
equilibrium or metastable state.

The powerful combination of ab initio electronic structure calculations, semiempirical
thermodynamic approach using the CALPHAD method [5, 67] and carefully selected
experimental investigations is employed to model phase diagrams of complex materials
and to construct a consistent thermodynamic database for these systems [I-IV, VII, IX,
XI, XVII]. Furthermore, the extension of the thermodynamic modelling down to 0 K
temperature is presented [XIV, XVII].

3.1 Theory and methodology
The CALPHAD method [5, 67] is based on the modelling of the Gibbs energies of all
phases possibly existing in the system, followed by the minimisation of total Gibbs energy
of the system. The Gibbs energies of relevant phases are obtained by assessing pre-defined
polynomials to the experimental phase equilibrium data (the positions of phase boundaries,
compositions of phases in equilibrium, etc.) and known thermodynamic quantities (e.g.
heat capacities, activities). It means that CALPHAD method is dependent on certain
amount of robust experimental or ab initio data for simpler systems, especially for binary
and ternary ones.

The molar Gibbs energy of the whole system is defined as the sum of molar Gibbs
energies of all included phases G f , multiplied by their molar fraction x f

– 21 –
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Gtot = ∑
f

x f G f , (3.1)

where

G f = ∑
i

yi
0G f

i +Gid +GE +Gmag +Gpres . (3.2)

The molar Gibbs energy of phase G f contains the sum of molar Gibbs energies of pure
constituents i in the phase f multiplied by their lattice fractions

(
∑yi

0G f
i

)
, the terms

describing ideal
(
Gid) and nonideal

(
GE) mixing and, when needed, some special terms

such as magnetic (Gmag) or pressure (Gpres) contributions. For a binary system (A-B), the
terms describing the mixing may be evaluated by relatively simple formulas

Gid = RT (yA ln yA + yB ln yB) (3.3)

and

GE = yAyB

(
L0 (T )+L1 (T )(yAyB)+L2 (T )(yA− yB)

2 + ...
)
, (3.4)

where L0, L1 and L2 are the expansion coefficients of the Redlich-Kister polynomial [68],
T is temperature and R is the universal gas constant. The temperature dependence of
L-parameters is given by an equation of the following type

L0 or 1 or 2 ... = a+bT + c T lnT . (3.5)

In the CALPHAD modelling, various models for 0G f
i can be used [67]. Here, more

details are provided on a sublattice model as this approach was used for intermetallic
phases studied in papers commented in this thesis. In general, the number of sublattices
in sublattice model can change according to the crystallography of phase and the needs of
modelling but, for simplification, the presented description is limited to two sublattices.

In the two-sublattice model, the Gibbs energy of the reference state is

Gre f , f = y1
Ay2

A
0G f

A:A + y1
By2

A
0G f

B:A + y1
Ay2

B
0G f

A:B + y1
By2

B
0G f

B:B (3.6)

with y1
A, y1

B, y2
A and y2

B being lattice fractions of components A and B in sublattices 1 and
2. The Gibbs energies of end-members (0G f

A:A, 0G f
B:A, 0G f

A:B, 0G f
B:B) can be temperature

dependent according to equation of the same type as Equation (3.5). Here, a, b and c
are constants determined from experiments or from optimisation of the thermodynamic
parameters.

In case of intermetallic phases such as Laves or sigma phase, only some of the Gibbs
energies of four end-members in Equation (3.6) can be experimentally determined namely,
the 0GA:B. The quantities 0GA:A and 0GB:B characterise, formally, the Gibbs energies
of pure constituents in the sigma or Laves phase structures, which may be given some
reasonable positive value. In the presented papers [I, II, IV, IX,XI,XVII], the arbitrariness
in choosing the values of the Gibbs energy of these formal end-members is overcome by
determining their total energies with the help of ab initio calculations. The Gibbs energies
of the end-members are then expressed by the following two equations
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0Gint = GSER +∆
0Gint−SER (3.7)

and

∆
0Gint−SER = 0Gint−0 GSER = ∆

0H int−SER−T 0Sint−SER , (3.8)

where H is enthalpy, S is entropy and int stands for intermetallic phase. The difference in
enthalpies ∆0H int−SER is obtained as

∆
0H int−SER = ∆

0E int−SER +
∫

∆Cint−SER
p dT (3.9)

and vibrational contribution to the entropy can be expressed by

∆
0Sint−SER =

∫ (
∆Cint−SER

p /T
)

dT , (3.10)

where Cp is the heat capacity at constant pressure.
At T = 0 K and at the equilibrium volume, ∆0H int−SER = ∆0E int−SER, i.e. the difference

in enthalpies is equal to the total energy difference between the intermetallic phase and the
SER state, which was calculated ab initio in the presented papers. These ab initio values
may be successfully employed in the phase diagram calculations, as it is shown below.

Employing the equations provided in this section, the sets of thermodynamic parameters
describing the behaviour of Gibbs energy with respect to temperature and composition were
obtained [I, II, IV, IX, XI, XVII] and the corresponding phase diagrams were calculated.

3.1.1 Sigma phase modelling I-IV,VII

The Gibbs energy of sigma phase can be in principle described by Equation (3.6) extended
to five sublattices, which corresponds to the number of crystallographic sublattices. How-
ever, the number of parameters used in such model would be too large and their values
would be experimentally inaccessible. Therefore, the situation in sigma phase modelling
required some simplifications.

At the beginning, the Gibbs energy of bcc phase was used in the sublattice model
instead of the Gibbs energy of sigma phase. Later on, the estimations were done using
extrapolation of experimental data [69]. Now, the model of a substitutional structure
(B)8(A)4(A,B)18 or (B)10(A)4(A,B)16 is often applied. Such modelling is performed using
the assumption that the atoms are ordered in two or more sublattices [70–72]. The problem
here consists in the dilemma into which sublattice each element goes and, further, how to
reduce the number of five sublattices in order to restrict the number of model parameters.
The solution was proposed in [71], however, it was not possible to describe the Gibbs
energy of sigma phase close to the regions of pure elements as it is obvious from the
formula (B)10(A)4(A,B)16.

Using the knowledge, that the sigma phase does not behave like rigid stoichiometric
phase, which means that the sublattices in sigma phase are not exclusively occupied by one
kind of atoms (mixing is possible), we have proposed a new physical (1 1) two-sublattice
model [I]. In this solid solution model (analogous to model of fcc or bcc [5]), the label (1 1)
means that the solution phase contains two sublattices, each of them having one lattice site
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(only one atom can be placed here). In this thermodynamic description the five sublattices
found in the X-ray experiments are reduced to two. This reduction gives us the possibility
to describe the sigma phase in the whole composition region which is demonstrated for
Cr-Fe system [I] in the following equation

Gsigma
Cr,Fe = yFe

0Gsigma
Fe + yCr

0Gsigma
Cr +Gid,sigma

Cr,Fe +GE,sigma
Cr,Fe , (3.11)

where 0G is given by Equations (3.7) and (3.8). Similarly, the (1 1) two-sublattice model
was also used in the thermodynamic modelling of sigma phases in Cr-Co [II] and both
Co-Mo and Fe-Mo [IV] binary systems, and Fe–Ni–Cr [III] and Cr–Fe–W [VII] ternary
systems.

3.1.2 Modelling at low temperatures XIV,XVII

To describe the phase equilibria at low temperatures (i.e. below the temperature limit Tlim
used for the SGTE Gibbs energy expressions for pure elements [13]), it is necessary to find
polynomials which

• obey the thermodynamic laws at low temperatures and

• have the same function value and the value of the first derivative at Tlim as the
corresponding SGTE Gibbs energy expressions [13].

Furthermore, the values of SGTE polynomials of Gibbs energy above Tlim should be left
unchanged, because they are based on experiments and are widely used.

In Ref. [XIV], the SGTE polynomials are extended below Tlim using the Einstein
formula for the temperature dependence of the heat capacity. In this first step, magnetic
and pressure contributions to the Gibbs energy and the temperature and concentration
dependence of the Einstein (TE) and Debye (TD) temperature are not considered.

According to [73], the heat capacity of pure nonmagnetic elements at low temperatures
can be represented by equation

Cp,low = 3AR
(

TE

T

)2

+aT +bT 2 + cT 2 , (3.12)

where T is the temperature in K and A = eTE/T

(eTE/T−1)
2 . The first term in Equation (3.12)

represents the contribution of the harmonic lattice vibrations. The second term con-
sists of contributions from electronic excitations and low-order anharmonic corrections
(dilatational and explicitly anharmonic) and the parameter a can be related to a non-
thermodynamic information, e.g., electron density of states at Fermi level. The third term
corresponds to the high-order anharmonic lattice vibrations and it is seldom that one can
find experimental information to validate the parameter b. Parameter c is added for smooth
continuation of Cp through the Tlim.

The low temperature Gibbs energy related to the SER states is evaluated as [73]

Glow (T ) = E0 +
3
2

RTE +3RT ln
(

1− e−TE/T
)
− a

2
T 2− b

20
T 5− c

6
T 3 , (3.13)
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where E0 is the total energy of a nonmagnetic structure of an element at 0 K relative to the
SER state and the second term is the energy of zero-point lattice vibrations [74, 75].

The condition for smooth connecting of the extended Glow(T ) function to the G(T )
in SGTE data [13] at contact temperature Tlim, (usually, but not always 298.15 K) means
that function values and values of first derivative of both functions have to be equal at
Tlim. Similarly, the condition for a smooth connection of heat capacity function below(
Cp,low(T )

)
and above (Cp(T )) Tlim has to be fulfilled. Based on these four conditions,

four equations for Glow(Tlim),
dGlow

dT (Tlim), Cp,low(Tlim) and dCp,low
dT (Tlim) including E0,

a, b and c parameter were obtained and solved. On the left side of these equations,
there are expressions for low-temperature polynomials based on Equations (3.12) and
(3.13)) for Tlim. Here, the Einstein temperature is related to the Debye temperature TD
as TE ∼= 0.77TD [75]. On the right side of equations, there are expressions for the same
variables (at Tlim), however, expressed from polynomials valid above Tlim and provided
in [13]. More details on this approach and values of E0, a, b and c parameters for particular
elements are provided in [XIV].
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3.2 Results and discussion

3.2.1 Binary systems I,II,IV,IX,XI,XVII

The modelling of sigma phase is represented here by the Cr-Fe binary system [I]. The
Gibbs energies and enthalpies for phases found in this system [I] are shown in Figure 3.1.
Here, the differences between the results obtained using the old three-sublattice [72] and
new (1 1) two-sublattice [76] model for description of sigma phase is shown. It is obvious
that the values based on the (1 1) two-sublattice model run through the whole composition
region, which is convenient in modelling of more-components systems.

(a) Gibbs energy (b) Enthalpy

Figure 3.1: Concentration dependence of Gibbs energy (1000 K) and enthalpy in Cr–Fe
system [I]. (1) liquid, (2) bcc phase, (3) fcc phase, (4) sigma phase (new two-sublattice
model), (4a) sigma phase (three-sublattice model).

The phase diagram calculated using the new (1 1) two-sublattice model [76] (Figure
3.2) yields better agreement with experimental data than that obtained by means of an
older three-sublattice model [72].

The thermodynamic modelling of sigma phases based on the same theoretical approach
as described for Cr-Fe binary system [I] was performed in Cr-Co [II] and both Co-Mo and
Fe-Mo [IV] binary systems. The results of modelling in ternary systems are described in
Section 3.2.2 Ternary systems.

In case of Laves phases, mostly, the two-sublattice model (A,B)2(A,B) with four
end-members was employed [IX, XI, XVII] and Cr-Zr binary system [IX] was chosen
as an example. The Gibbs energy of all three Laves phases (C14, C15 and C36) in
Cr-Zr system was modelled with the help of ab initio calculated total energy differences,
presented in Table 3 in Ref. [IX]. The C14 and C36 Laves phases were also modelled
by three-sublattice model (A,B)4(A,B)6A2 employing the total energy differences for the
Cr6Zr6 and Cr2Zr10 configuration.
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Figure 3.2: Phase diagrams of Cr–Fe system [I]. Thick line: calculated by the
new two-sublattice model (for data see Table 4 in Ref. [I]), thin line: calculated by
three-sublattice model (data from [72]), stars: experimental data [77].

In both cases, the Gibbs energy is obtained from Equations (3.7) and (3.8) where
the entropy term, containing also the vibration contribution to the enthalpy, is adjusted
to the experimental data. The L-parameters describing the excess Gibbs energy GE of
non-ideal mixing in Equation (3.4) are obtained in the same way. The thermodynamic
parameters for all other phases (liquid, hcp, bcc, fcc) are based on unary data from [13].
The calculated phase diagram is presented in Figure 3.3, where the equilibria with all
three Laves phases are denoted. It was shown that ab initio calculated structural energy
differences fit well the two-sublattice model of C15 and three-sublattice model of C14 and

Figure 3.3: Phase diagram of Cr-Zr system with experimental data [IX].
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C36 Laves phases. Moreover, a substantially smaller number of adjustable parameters
was necessary for thermodynamic description of Laves phases than in previous attempts
in literature. By analogy, the thermodynamic modelling and phase equilibria calculations
with Laves phases were performed in Cr-Hf [XI] and Cr-Ti [XI] system.

3.2.2 Ternary systems III,VII

As mentioned in Section 3.2.1 Binary systems, the modelling of sigma phases using the (1 1)
two-sublattice model had been performed in several binary systems and it war extended to
more-components systems, i.e. to ternary system Fe–Ni–Cr [III] and Cr–Fe–W [VII].

The calculated phase diagrams of Cr-Fe-Ni system at various temperatures are pre-
sented in Figure 3.4 and it was found that the (1 1) two-sublattice model of the sigma phase
can be also used for a reasonable description of phase equilibria with sigma phase in the
Fe–Cr–W system, although the sigma phase is not stable in two binary subsystems, i.e. in
Fe–W and Cr–W.

(a) T = 1073 K; experimental data: triangles for
bcc/fcc [79], squares for fcc/sigma [80].

(b) T = 1173 K; experimental data: triangles for
bcc/fcc [81], squares for fcc/sigma [80], circles for
fcc [82] .

Figure 3.4: Calculated phase diagram of Fe–Ni–Cr system [III]. Full lines: the
two-sublattice model of sigma phase, dashed lines: the three-sublattice model [72] us-
ing data from [78].

3.2.3 Thermodynamic modelling at low temperatures XIV,XVII

The temperature dependencies of G and Cp for pure elements at low temperatures were
modelled and the results for chosen elements are demonstrated, in Figure 3.5. These
figures show that the knowledge of the Debye (Einstein) temperature makes it possible to
obtain a realistic extension of Gibbs energy function as the temperature falls towards 0 K.

The thermodynamic modelling at low temperatures presented for pure elements [XIV]
can be also applied to complicated intermetallic phases such as C15 Laves phase in V-Zr
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(a) bcc Li, Na, K, Rb, Cs.

(b) hcp Be, Mg; fcc Ca, Sr; bcc Ba.

Figure 3.5: Temperature dependence of Gibbs energy and heat capacity for extended and
SGTE functions [XIV].

system [XVII]. In this system the thermodynamic data above room temperature were
taken from literature [10] and improved for C15 Laves phase and a hcp phase. The new
extension of expression of Gibbs energy of C15 Laves phase and rhombohedral phase to
zero Kelvin compatible with Gibbs energy expressions above 298.15 K [10] and based on
respective values of Debye temperatures [83–85] was provided.

The phase diagram including the phase equilibria at low temperatures is presented in
Figure 3.6. The shape of corresponding molar Gibbs energy G(T ) functions for V2Zr
C15 Laves phase and for V2Zr rhombohedral phase in the temperature region 0–400 K is
designed in Figure 3.7.

The work [XVII] shows that the methodology of calculation of unary data [XIV] at
temperatures below 298.15 K is transferable to more complicated structures.
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Figure 3.6: Phase diagram of V–Zr binary system [XVII] compared with experimental
data: stars [86], crosses [87], square [88] and triangle [89].

Figure 3.7: Temperature dependence of the molar Gibbs energy of V2Zr C15 Laves phase
and of V2Zr rhombohedral phase [XVII]. Blue curve represents the Gibbs energy of the
V2Zr C15 Laves phase according to [10] including its extrapolation below 298.15 K, the
red / green curve show the extension of the Gibbs energy [XIV] of the V2Zr C15 Laves
phase / V2Zr rhombohedral phase based on our new model to zero Kelvin temperature.



Conclusions and main results

In this thesis, the results of ab initio electronic structure calculations and the CALPHAD
modelling were summarised. It was shown that the combination of both approaches
provides a better physical insight into the construction of phase diagrams [I-IV,VII,IX-
XI,XVII]. The advantage of implementation of ab initio calculated lattice stabilities into
CALPHAD modelling is especially crucial when the system studied contains complex
phases such as sigma and Laves phases. The above mentioned theoretical methods are
very important in both basic materials science and practical applications in industrial
laboratories to plan effectively their experimental program from the point of view of
economy and time.

4.1 Ab initio calculations
Our first-principles calculations provide the basic information about the properties of
metallic phases. They validate the efficiency of methods applied when the experimental
data are available for comparison. On the other hand, they also provide new experimentally
inaccessible data, e.g. magnetic moments of particular atoms [X, XIII], preferential occu-
pation of sublattices by particular elements in complex phases [III, VII, X], and energies
of formation of metastable phases [I-IV,VII,IX-XI,XVII]. The ab initio data obtained may
be considered as the first step to determination of both thermodynamic and mechanical
stability of various intermetallic phases influencing the properties of materials.

——————

Detailed conclusions about ab initio calculations
The structural, magnetic and mechanical properties of SER states of pure constituents were
over-viewed and compared with experimental data [I,II,IV,VIII-XI,XIII,XVI,XVII] pro-
viding good agreement. The calculated total energies were subsequently used to evaluate
the lattice stabilities of intermetallic phases.

The detailed ab initio study was accomplished for sigma phases in Cr-Fe and Cr-Co
binary system [X] using the LMTO-ASA, FLAPW and pseudopotential method. The ener-
gies of formation and magnetic ordering were discussed and compared with experimental
data. The inclusion of magnetic ordering stabilises the sigma phase in these systems and
results in the shift of stability region towards the configurations with a higher concentra-
tion of iron or cobalt. We predicted that Cr–Fe and Cr–Co sigma phases are magnetically
ordered at 0 K, which corresponds to experimental findings. Our study reveals that the
largest part of magnetisation is carried by the iron or cobalt atoms and that the chromium
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atoms do not contribute to this effect very much although they induce a decrease of the
total magnetic moment by their AFM behaviour in some sublattices. The magnetic mo-
ments depend on the kind and position of the atom. The influence of the sublattice on
the magnetic moment is the same for both Fe and Co atoms and their magnetic moments
decrease from the sublattices 4 f , 8i, 8 j, 8i′ to 2a. The magnetic moment of Cr in the
sigma phase structure is close to zero. However, it increases with the increasing number
of Fe or Co atoms in the structure. Combining the LMTO-ASA and FLAPW method,
the concentration dependence of the energy of formation of sigma phase in Fe-Ni [III],
Ni-Cr [III], Cr-W [VII] and Fe-W [VII] systems was calculated and compared with the
Gibbs energies of various phases in Fe–Ni and Ni-Cr system and with Gibbs energy of
sigma phase in Cr-W and Fe-W system. Energies of formation of the sigma phase in
Fe–Ni, Fe–W and Cr–W binary systems are mainly positive and they are in agreement
with supposed metastability in mentioned systems.

With the help of ab initio electronic structure calculations, the relations between the
electronic structure, size of the atoms and the thermodynamic as well as structural prop-
erties of C14 Laves phases in Fe-X (X = Si, Cr, Mo, W, Ta) binary systems were
understood [XVI]. It was found that the structure parameters and energies of formations
strongly depend on the molar fraction of iron and that the calculated equilibrium param-
eters correspond very well to the experimental values. Our calculations reveal that the
C14 Laves phase is unstable at zero temperature in both Fe-Mo and Fe-W system which
is in contradiction with experiments. However, the absolute value of the total energy of
formation is very low. We suppose that the instability at higher temperatures is suppressed
by the entropy effects. The Fe2Ta C14 Laves phase is stable at low temperatures. In
Cr-Zr [IX], Cr-Hf [XI], Cr-Ti [XI] and V-Zr [XVII] system, the ab initio calculated
structural parameters and energies of formation of Laves phases correspond reasonably
well to both experimental data where available and to previous theoretical results.

The total energies of formation and magnetism were also studied in NiTi, FePd,
FePd3, FePt and FePt3 [XIII]. The ab initio calculated values were compared with the
experimental enthalpies of formation and with values calculated using the semi-empirical
model of Miedema and co-workers [90]. It was shown that the energies of formation
corresponding to the equilibrium arrangement can significantly contribute to the analysis
of the energetics of intermetallic phases in spite of the fact that they are calculated at
0 K. Ab initio calculated energies of formation of PdBi and PdBi2 intermetallics were
successfully used as a basis for a thermodynamic assessment of the phase diagram of the
Bi–Pd system [VI].

Except for the lattice stabilities, the so called mechanical stabilities can be obtained
from ab initio calculations of elastic constants and phonon spectra. This was demonstrated
in case of V2Zr C15 Laves phase [XVII].

4.2 CALPHAD modelling
We were among the first groups in the world applying the combination of CALPHAD
method and ab initio techniques in phase diagram modelling of systems with complex
intermetallic phases [I,II]. We implemented this approach into the new (1 1) two-sublattice
model for sigma phase [I-IV,VII] defining the Gibbs energy of this phase in the whole
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composition region which is crucial for predictions of phase equilibria in multicomponent
systems. The extensive thermodynamic modelling of phase equilibria with Laves phases
was successfully accomplished [IX, XI, XVII]. Recently, we suggested a method for the
extension of SGTE data for pure elements to zero Kelvin temperature [XIV]. This approach
was extended to intermetallic phases [XVII] which is important for modelling of phase
equilibria in multicomponent systems in materials under extreme conditions.

——————

Detailed conclusions about CALPHAD modelling
A new approach to calculation of phase equilibria with sigma phase using the ab initio
calculated total energies of formation of sigma phase of pure constituents was proposed
[I,II]. The procedure was successfully tested on four binary systems: Cr–Fe [I], Cr-Co [II],
Co-Mo [IV] and Fe-Mo [IV]; and it was extended to two ternary systems: Cr-Fe-Ni [III]
and Cr-Fe-W [VII]. The calculated phase equilibria involving the sigma phase agree well
with the experimental data. In Cr-Fe [I] and Cr-Co [II] binary system, the phase diagrams
constructed using the new (1 1) two-sublattice model [I] yielded better agreement with
experimental data than diagrams obtained by means of an older three-sublattice model [72].
It was found that the (1 1) two-sublattice model of the sigma phase can be also used for
a reasonable description of phase equilibria in the Fe–Cr–W system [VII], although the
sigma phase is not stable in two binary subsystems, i.e. in Fe–W and Cr–W systems.
The approach based on combination of ab initio and CALPHAD modelling provides a
reasonable physical interpretation of the individual terms in the mathematical expression
for the Gibbs energy difference between the sigma phase and SER state of the pure
constituents. The proposed procedure enables us to predict the stability region of sigma
phase in metallic materials.

The ab initio calculated energies of formation also form a solid base for the thermo-
dynamic modelling and phase diagram calculations in systems containing Laves phases.
The total energy differences fit well the two-sublattice model of C15 and three-sublattice
model of C14 and C36 Laves phase in Cr-Zr [IX], Cr-Hf [XI] and Cr-Ti [XI] systems.
The ab initio analysis of relative stability of Laves phase structures confirms the sequence
of decreasing stability C15-C36-C14 and it can be fully utilised in the thermodynamic
modelling of those phases except for Cr-Hf system, which lacks phase equilibrium data
for C36 structure. Phase diagrams in the above mentioned binary systems were calculated
and compared with experimental data.

The extension of the SGTE data to low temperatures was proposed [XIV]. This
extension is based on the knowledge of the Debye (Einstein) temperature and the Einstein
function, which can be used to evaluate the heat capacity, Gibbs energy and their first
derivatives with respect to temperature. The extension method maintains the SGTE unary
data above the limiting temperature Tlim and forces the low temperature extension to have
the same function value and the value of the first derivative at Tlim as the corresponding
SGTE polynomial has. The temperature dependencies of Gibbs energies and heat capacities
of pure elements were presented and some problems were pointed out [XIV]. It was shown
that the methodology of extension of the SGTE data to temperatures below 298.15 K is
transferable to more complicated structures such as V2Zr rhombohedral and C15 Laves



Conclusions 34

phase [XVII]. The phase equilibria with these phases at low temperatures were evaluated
and corresponding phase diagram was constructed.
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pervision of the student’s (K. Chvátalová) calculations, the preparation of part of
manuscript. Part of ab initio calculations (including analysis and interpretation),
related figures and tables, the preparation of part of manuscript by K. Chvátalová.
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[50] Blöchl P.E.: Phys. Rev. B 50 (1994) 17953.

[51] Kresse G., Joubert J.: Phys. Rev. B 59 (1999) 1758.

[52] Perdew J.P., Burke K., Ernzerhof M.: Phys. Rev. Lett. 77 (1996) 3865.
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Abstract

Total energy of pure metals in the sigma-phase structure and in the standard element reference (SER) structure were

calculated by full-potential linear augmented plane waves method in the general gradient approximation at the equili-

brium volume of all phases. Relaxation of lattice parameters of sigma-phase and SER structure were performed. The

difference of total energy of sigma-phase and of standard element phase for pure constituents (D0Er–SER
i ) was used in a

new two-sublattice model of sigma-phase, which was subsequently employed for calculation of phase diagram.

Entropy term of Gibbs energy of elements in sigma-phase structure and excess Gibbs energy of mixing of sigma-

phase have still to be adjusted to the experimental phase equilibrium data. This procedure was tested on the Fe–Cr

system.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Phase equilibria calculations performed by cal-

culations of phase diagrams (CALPHAD) method

are based on the axiom that complete Gibbs en-

ergy vs. composition curves can be constructed for

all the structures exhibited by the elements right

across the whole alloy system. This involves the

extrapolation of GðxÞ curves of many phases into
regions where they are either metastable or un-

stable and, in particular, the relative Gibbs energy

for various crystal structures of the pure elements

of the system must therefore be established [1].

Utilising the results from ab initio electronic

structure calculations may be very useful for de-
scribing thermodynamic properties of complicated

phases in the systems exhibiting slow changes of

Gibbs energy with temperature T and concen-

tration x (molar fraction), such as in sigma-phase,

l-phase, Laves phase etc.

The sigma-phase was first described by Bain [2]

in the Cr–Fe system in 1923. At present, Villars

et al. [3] report on about 110 different intermetallic
phases with sigma-phase structure. This structure

(space group no. 136, P42/mnm) contains 30 atoms

in the repeat cell distributed into five crystallo-

graphically inequivalent sublattices (2a, 4f, 8i, 8i0

and 8j). This structure is very brittle and stable and

its inconvenient properties cause very strong de-

gradation of materials (crack nucleation sites). In

practice, it also develops in heat affected zones of
welded superaustenitic stainless steels [4]; it was
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concluded there that it formed after longer ageing

times in the temperature range of 500–1100 �C and

that its composition was 55 wt.% of Fe, 22 wt.% of

Cr, 11 wt.% of Mo and 5 wt.% of Ni. It is also

known that high concentrations of Cr and Mo

promote precipitation of sigma-phase. Therefore,
it is very important to have more information

about its region of stability.

The ab initio (first-principles) electronic struc-

ture calculations are able to reproduce the differ-

ence of total energy between the standard element

reference (SER) structures and the sigma-phase.

Calculated results may constitute a basis for a new

approach to the determination of phase equilibria
and to the prediction of phase diagrams contain-

ing more complicated phases. The procedure of

choosing equilibrium volume (corresponding to

the minimum on the energy–volume curve) as the

state of reference overcome the uncertainty con-

nected with the use of experimental atomic volume

of sigma-phases for total energy calculation of pure

components in sigma-phase, although this proce-
dure was successfully employed in [5].

The aim of this paper is to test the approach

mentioned above on the Cr–Fe system. A new model

for sigma-phase description [6] using ab initio

calculations results is employed and verified.

It turns out that for description of energetics of

sigma-phase and for construction of phase dia-

gram only structural energy differences D0Er–SER
i

for pure constituents are needed. Therefore, no ab

initio calculations for sigma-phase systems have to

be performed.

2. Calculations

2.1. Calculations of phase diagrams

The CALPHAD in this paper is based on find-

ing the minimum of the total Gibbs energy of the

system at a constant pressure and temperature

respecting the mass conservation law.

Such a calculation is often performed by the

CALPHAD method [1]. This method uses the

structural Gibbs energy difference (the difference
between the Gibbs energy of the phase in question

and the Gibbs energy of SER) for various struc-

tures of pure elements, as e.g. bcc, fcc, hcp, Laves

phase, sigma-phase etc. These Gibbs energy dif-

ferences are functions of pressure, temperature and

volume.

The total Gibbs energy of the system is given by

Gtot ¼
X

f

wfGf ; ð1Þ

i.e. it is equal to the sum of Gibbs energies of all

phases (Gf ) multiplied by their volume fraction

(wf ). The Gibbs energy of a phase of certain

composition is obtained by

Gf ¼
X

i

yi0Gf
i þ Gid þ GE þ Gmag þ � � � ; ð2Þ

where yi is lattice fraction of the component i (the

sum of lattice fractions in each lattice (sublattice)
is equal to 1), 0Gf

i is the Gibbs energy of pure ele-

ment in the phase f, the term Gid describes the

Gibbs energy of ideal mixing, GE is the excess

Gibbs energy describing real mixing and Gmag is

the magnetic contribution to the Gibbs energy.

The Gibbs energy of a certain phase Gf is used as

an input for phase diagram calculations. It is quite

easy to obtain these Gibbs energies for less compli-
cated structures, for example for the fcc or bcc

structures, because they could be determined experi-

mentally or by extrapolation to the pure compo-

nents, and are summarised in various databases

[7]. But it is not the case of the sigma-phase. At the

beginning of sigma-phase studies, the Gibbs en-

ergy of bcc phase was used instead of Gibbs

energy of sigma-phase. Later on, the estimations
were done using extrapolation of experimen-

tal data [8]. Now, one often applies the model

of a substitutional structure (B)8(A)4(A,B)18 or

(B)10(A)4(A,B)16. Such modelling is performed

using the assumption that the atoms are ordered in

two or more sublattices [9–11]. The problem con-

sists in the dilemma into which sublattice each

element goes and, further, how to reduce number
of sublattices in order to restrict the number of

model parameters. For a binary A–B sigma-phase

(A being an element of the VIth group of the

periodical table or lower, B being an element of the

VIIth group or higher), a guideline for reducing

the number of parameters was proposed as fol-

lows [10]:
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(i) Combine all sublattices with the same coordi-

nation number (CN) and similar point sym-

metry into one.

(ii) If more than one remain, combine the two

with the highest CN into one.
(iii) Arrange the reduced set of sublattices in the

order of increasing CN.

(iv) B elements will go preferentially into the first

sublattice but it may dissolve some A.

(v) The next sublattice will be preferentially filled

with A but it may dissolve some B.

(vi) If there is a third sublattice, it will be reserved

for A.

In the Cr(A)–Fe(B) system the CN of sublat-

tices are following [9]:

2a ðCN ¼ 12Þ; 4f ðCN ¼ 15Þ; 8i ðCN ¼ 12Þ;
8i0 ðCN ¼ 14Þ and 8j ðCN ¼ 14Þ:

The first and third sublattice and the fourth and

fifth sublattice are combined according to the

point (i) in order to obtain this preliminary for-

mula 16ð8i0þ8jÞ:4ð4fÞ:10ð2aþ8iÞ. Than the sublattices

are arranged in the order of increasing CN ac-

cording to (iii) and are occupied by atoms in order

to satisfy the points (iv)–(vi) getting 10(AB):

16(AB):4(A). At the end of the procedure of re-
ducing of model parameters it is assumed [9] that

the occupation of the second sublattice by A atoms

is negligible (10(B):16(AB):4(A)) and the sublattice

with mixed occupation is moved to the end of

formula.

Such a way, this procedure yields the formula

(B)10(A)4(A,B)16. The expression for Gibbs energy

of sigma-phase having Fe atoms in the first sub-
lattice and Cr atoms in the second and third sub-

lattices is

0Gr
Fe:Cr:Cr ¼ 100Ghfcc

Fe þ 40Ghbcc
Cr þ 160Ghbcc

Cr þ Cr
CrðT Þ:

ð3Þ

We can obtain a similar equation for the Gibbs
energy of sigma-phase having Fe atoms in the first

and the third sublattices and Cr atoms in the sec-

ond sublattice:

0Gr
Fe:Cr:Fe ¼ 100Ghfcc

Fe þ 40Ghbcc
Cr þ 160Ghbcc

Fe þ Cr
FeðT Þ:

ð4Þ

Here 0Gf
i is Gibbs energy of pure component i (Cr

or Fe) in phase f; hbcc, hfcc are symbols of hypo-

thetical paramagnetic (non-spin-polarised) bcc and

fcc phases, and Cr
i ðT Þ is a temperature-dependent

adjustable parameter. This parameter is defined
by

Cr
i ðT Þ ¼ Ai þ BiTi; ð5Þ

where Ai, Bi are constants that can be adjusted to

the phase equilibrium data.

It is obvious from Eqs. (3) and (4) that it is not

possible to describe the Gibbs energy of sigma-

phase close to the pure elements regions using this
model. The Gibbs energy of sigma-phase is de-

scribed here as empirical combination of Gibbs

energies of some absolutely different structures.

The above mentioned procedure only enables us to

estimate the lattice stability of metastable phase by

means of known Gibbs energies of stable phases of

pure constituents with the same CN. Using this

approach, we are not able to express the Gibbs
energy of pure constituents in sigma-phase struc-

ture, and Gibbs energy of sigma-phase has to be

adjusted to phase equilibrium data. The physical

background of this procedure is, therefore, ques-

tionable. Further, it is known from X-ray studies

[12] that the mixing of the constituents takes place

in all sublattices, which is not respected by the

proposed approach.
Electronic structure calculations could bring a

substantial improvement of that model. Namely,

knowledge of a correct value of the total energy

difference between the sigma-phase and the SER-

phase of pure constituents from first principles

enables us to build up the Gibbs energy of the

sigma-phase of pure elements on a physically

correct energetic basis, and only the entropy term
must be adjusted to phase equilibrium data.

Using this idea and the knowledge that the

sigma-phase does not behave like rigid stoichio-

metric phase (1 1), that means that the sublattices

in sigma-phase are not occupied exclusively by one

kind of atoms (mixing is possible), we have pro-

posed a new physical (two-sublattice) model (1 1).

This is a model of a solid solution, as e.g. fcc or bcc
[1]. The label (1 1) for sigma-phase means that this

solution phase contains two sublattices, each of
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them having one lattice site (the one atom only

could be placed here).

In this thermodynamic description the five sub-

lattices found in the X-ray experiments are re-

duced to two. This is possible because the mixing

occurs in all five sublattices as mentioned above.
This reduction give us the possibility to describe

the sigma-phase in the whole composition region.

In this procedure the results of first-principles

calculations have crucial importance yielding the

correct energetic basis of the model.

The Gibbs energy of sigma-phase in binary

system Cr–Fe of a certain composition in two-

sublattice solution model may be expressed by

Gr
Cr;Fe ¼ yFe

0Gr
Fe þ yCr

0Gr
Cr þ Gid;r

Cr;Fe þ GE;r
Cr;Fe; ð6Þ

where y is lattice fraction of a component and 0Gr
i

is Gibbs energy of hypothetical sigma-phase that

contains only one pure element. These energies are

defined as

0Gr
i ¼ GSER

i þ D0Er–SER
i � Sr

i T ; ð7Þ
where 0GSER

i is Gibbs energy of pure element in

SER state, D0Er–SER
i expresses the total energy

difference of hypothetical sigma-phase and stan-

dard state of a pure metal; this difference may be

obtained from ab initio electronic structure cal-

culations. Further, Sr
i is the entropy term in the

Gibbs energy. It is a constant adjustable to the
experimental data. Gid;r

Cr;Fe is the Gibbs energy of

ideal mixing of metals in sigma-phase and may be

expressed as

Gid;r
Cr;Fe ¼ RT ðyCr ln yCr þ yFe ln yFeÞ; ð8Þ

where R is the gas constant. GE;r
Cr;Fe is excess Gibbs

energy describing real mixing in sigma-phase. We

may write this energy as

GE;r
Cr;Fe ¼ yCryFe½L0ðT Þ þ L1ðT ÞðyCr � yFeÞ þ L2ðT Þ

	 ðyCr � yFeÞ2
; ð9Þ

L0ðT Þ ¼ Dþ ET ; L1ðT Þ ¼ F þ JT

and L1ðT Þ ¼ K þ LT ; ð10Þ

where L0ðT Þ, L1ðT Þ, L2ðT Þ are interaction para-
meters and D, E, F , J , K, L are fitting parameters

adjusted to the phase data.

On the basis of presented equations the new

two-sublattice model (1 1):

(i) is able to describe the Gibbs energy and enth-

alpy dependencies vs. composition in the

whole concentration region,
(ii) has a solid physical background,

(iii) yields a very simple description of sigma-

phase based on ab initio calculated D0Er–SER
i

term for pure constituents.

This model is used in the present paper for

CALPHAD of Cr–Fe system. The Gibbs energies

of phases needed for construction of phase dia-
gram (bcc, fcc, liquid) were taken from recent as-

sessments of thermodynamic data [7,11,13] and

calculations of phase equilibria were performed by

means of THERMO-CALC programme [14].

2.2. Calculations of total energy difference

(D0Er–SER
i )

The structural energy differences between the

SER structure and sigma-phase structure of pure

constituents were calculated by means of the full-

potential linearized augmented plane waves
(FLAPW) method incorporated in the WIEN97

code [15] using the generalized gradient approxi-

mation [16] for the exchange-correlation term. In

all cases, the minima of the total energy as a

function of lattice parameters were found, as de-

scribed in more detail below.

By extensive testing, we have found that the

changes of positions of atoms in the repeat cell of
sigma-phase (within the limits found in literature)

do not have a great effect on the total energy (the

maximum change in energy was DE ¼ 2 mRy/

atom and, in average, we had DE ¼ 0:5 mRy/

atom). Therefore, we were able to keep the internal

parameters constant during the calculations. Using

various sigma-phases containing Fe (e.g. Fe–Cr,

Fe–Mo etc.) and employing their crystal structure
for calculating the total energy of hypothetical Fe

sigma-phase, we have chosen that structure (i.e.

that set of internal parameters) which exhibited

the lowest total energy [17]. The same procedure

was applied for hypothetical Cr sigma-phase; the
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lowest total energy was obtained for the structure

given in [18].

In the case of sigma-phase, preliminary optimi-

sation of unit cell volume and c=a ratio was per-

formed using the LMTO-ASA method [19]. Then

the optimisations of RMT (muffin-tin radius) and
of number of k-points were done. The final

FLAPW optimisation was done in the following

way: at first the optimisation of volume at the

constant c=a ratio was performed. The second step

was the calculation of the dependence of the total

energy vs. c=a ratio when the volume of the repeat

cell (Vmin from the previous step) was kept con-

stant. These two steps were repeated until the total
energy converged to its minimum.

Concerning the SER-phase (ferromagnetic bcc

Fe and antiferromagnetic bcc Cr), the preliminary

optimisation by LMTO-ASA method was not

performed and the RMT parameter was used the

same as in the sigma-phase calculation. We have

used 2 atoms in the unit cell and found the equili-

brium lattice constants corresponding to the min-
imum of total energy as a function of volume.

Then the total energy difference per atom,

D0Er–SER
i ¼ 0Er

i –
0ESER

i , was calculated.

3. Results and discussion

The total energy of sigma-phase of Cr and Fe as

a function of the cell volume in the last step of

optimisation described above is shown in Fig. 1.

The full symbols represent the crossing points with

the previous optimisation curves of c=a ratio at

constant volumes. Because the total energies at the

crossing points differ less than e ¼ 0:2 mRy/atom,

we could stop the optimisation at this level. It
turns out that three optimisation steps are suffi-

cient to obtain the equilibrium lattice parameters

of sigma-phase with the accuracy needed. The

calculated equilibrium values of lattice parameters

and cell volumes are given in Table 1.

The volume dependence of total energy of ferro-

magnetic Fe and antiferromagnetic Cr in bcc

structure is presented in Fig. 2 and the values of
equilibrium lattice parameters are given in Table 2.

Fig. 1. Final FLAPW optimisation of the cell volume of sigma-phase (30 atoms) of pure Cr (�) and Fe (}) at constant c=a ratio

(c=aFe ¼ 0:5174, c=aCr ¼ 0:5237). Full symbols represent the crossing points with previous optimisation of total energy vs. c=a ratio.
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The deviation of the calculated equilibrium lattice
constant from the experimental value is )0.43%

for Cr and 0.27% for Fe.

The total energies of equilibrium hypothetical

sigma-phase and the SER state of Fe and Cr as

well as their differences are given in Table 3 to-

gether with the values obtained for the experi-

mental volumes of Cr–Fe sigma-phase [5]. It turns

out that in case of Cr, the volume optimisation has
somewhat larger effect than in case of Fe.

Recently, we have attempted to apply the re-

sults of first-principles calculations to determine

the phase diagram. In [6], the first-principles

structural energy differences obtained on the basis

of extrapolation of experimental volume of sigma-

phase to the pure components [5] were used. For

the other phases, thermodynamic description of

Cr–Fe system, based on high temperature vapour

pressure measurements results published in [20],

was adopted. In spite of approximations used,

Table 1

Values of equilibrium FLAPW lattice parameters (calculated)

and cell volumes (30 atoms) for hypothetical sigma-phase of

end members in system Cr–Fe

Parameter Cr Fe

Volume (a.u.3) 2301.38 1963.76

a (a.u.) 16.3792 15.5987

c (a.u.) 8.5783 8.0707

Fig. 2. The volume dependence of total energy of antiferromagnetic Cr and ferromagnetic Fe. The volume corresponds to two-atom

unit cell.

Table 2

Values of experimental and equilibrium FLAPW lattice pa-

rameters for SER-phase of antiferromagnetic Cr and ferro-

magnetic Fe

Source Cr (ab initio) Cr [22] Fe (ab initio) Fe [22]

a (a.u.) 5.41653 5.44 5.41438 5.40

Table 3

Values of equilibrium total energies per atom for sigma-phase

and SER-phase of Cr and Fe and their differences

Variable (Ry/atom) Cr (ab initio) Fe (ab initio)

Total energy per atom of

r-phase

)2101.7603 )2545.5597

Total energy per atom of

SER

)2101.7832 )2545.5927

Total energy difference per

atom (r–SER)

0.0229 0.0330

Total energy difference per

atom (r–SER) [5]

0.0154 0.0309
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Ab Initio Calculations of Lattice Stability of Sigma-Phase and Phase Diagram in the Cr-Fe System,

562-569, Copyright (2002), with permission from Elsevier.



calculated phase equilibria with sigma-phase were

reproduced.

The procedure described in this work is based on

the first-principles total energy calculations at

equilibrium atomic volume and on reliably assessed

low-temperature thermodynamic data [11,13]. It
represents a new approach to the calculations of

phase equilibria in systems containing the sigma-

phase. The temperature dependence of excess

Gibbs energy of sigma-phase (entropy term) has

still to be adjusted to phase equilibrium data, fol-

lowing the traditional CALPHAD method. Com-

parison of phase diagrams with sigma-phase in

Cr–Fe system calculated by three-sublattice model
[11] and by new two-sublattice model is shown in

Fig. 3. The values of adjustable parameters em-

ployed in the CALPHAD are given in Table 4.

The agreement of the phase diagram calculated

by means of a new two-sublattice model employ-

ing equilibrium total energy values with experi-

mentally determined phase equilibrium values [21]

is better than for the case of three-sublattice model
[11] or for the case of the two-sublattice model

using the total energy values of pure constituents

determined at the experimental atomic volume of

the Cr–Fe sigma-phase [6].

Composition dependencies of Gibbs energy (at

1000 K) and enthalpy calculated using new two-

sublattice model are shown in Figs. 4 and 5. Here

we also show the differences between the results

obtained using the old (three-sublattices [11]) and

new (two-sublattices [6]) model of description of
sigma-phase. It may be seen that the new two-

sublattice model yields the values of Gibbs energy

and enthalpy of phases in the whole composition

region; the old model gives these quantities only in

a limited range of concentrations.

4. Conclusions

The results of ab initio calculations of total

energy of sigma-phase and SER-phase of pure

Fig. 3. Comparison of phase diagrams of Cr–Fe. Thick line:

calculated by the new two-sublattice model (for data see Table

4), thin line: calculated by three-sublattice model (data from

[11]), stars: experimental data [21].

Table 4

Values of parameters used in the Cr–Fe phase diagram calcu-

lation: parameters of description of r-phase

Parameter Cr Fe

Sr þ0.7 þ0.7

L0 )133 950

L1 þ31 000

L2 )127 000

Fig. 4. Concentration dependence of Gibbs energy of phases at

1000 K in Cr–Fe system: (1) liquid phase, (2) bcc phase, (3) fcc

phase, (4) sigma-phase (new two-sublattice model), (4a) sigma-

phase (three sublattice model).
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constituents performed by FLAPW method were

used in a new model of calculation of phase

equilibria in systems containing the sigma-phase.
The procedure was tested on the Cr–Fe system.

The phase diagram calculated using the new

two-sublattice model (1 1) [6] yields better agree-

ment with experimental data than that obtained by

means of an older three-sublattice model [11].

The proposed procedure has a solid physical

background and enables us to predict the stability

region of sigma-phase in metallic materials.
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Abstract. The calculations of phase equilibria in the Co-Cr system were performed using the CALPHAD 
method on the basis of a new two-sublattices model of sigma phase. This model enables us to utilise the results 
of ab initio calculations of total energy differences between the sigma phase structure and the Standard Element 
Reference (SER) structures of pure metal at the relaxed lattice parameters ( A”EqmSER ). Total energies were 
calculated by Full-Potential Linear Augmented Plane Waves (FLAPW) method in the General Gradient 
Approximation (GGA). The entropy contribution to the Gibbs energy of the pure elements in the sigma phase 
structure, and the excess Gibbs energy of mixing of the sigma phase were adjusted to the experimental phase 
equilibrium data. 0 2003 Elsevier Science Ltd. All rights reserved. 

Introduction 

The sigma phase was first observed by Bain [l] in Cr-Fe system in 1923. However, it obtained its name 
a little bit later. Since its discovery, more than 40 different sigma phases have been found in various binary 
systems of transition metals (e.g. Co-Cr, Fe-MO, Ni-V) [2]. Many material engineers were interested in the 
prediction of regions of stability of the sigma phase because it has very disadvantageous properties. It is well 
known that the sigma phase is extremely brittle and therefore it increases the probability of the formation of 
crack nucleation sites. On the other hand, it is very stable from the thermodynamic point of view. Therefore, the 
knowledge of the regions of stability of sigma phase is very desirable in the Co-Cr system. 

Experimental data on the sigma phase in the Co-Cr system were published in [3-lo]. For the analysis of 
the region of stability of the sigma phase in the Co-Cr system by the CALPHAD method [ 1 l] it is necessary to 
know the dependence of the Gibbs energy on composition for all structures occurring in the system at all 
concentrations, even where these structures are metastable or unstable. The relative Gibbs energies of such 
hypothetical structures (that are unstable or metastable in some composition range) in the pure state are needed 
for this method. 

This gap may be bridged by ab initio electronic-structure calculations of lattice stability in the case of 
complex non-stoichiometric phase such as sigma phase, p phase, Laves phase etc. These calculations enable us 
to get some idea about the thermodynamic properties of those structures in such regions where the experimental 
data are unavailable (e.g. for the hypothetical sigma phase of the pure component). The only input for such 
calculations is the atomic numbers and concentrations of the constituents and the crystallographic data of the 
underlying structures. In the case of the hypothetical sigma phase for the pure elements, the uncertainty 
connected with the use of experimental lattice parameters of binary sigma phase is overcome by choosing the 
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equilibrium state of that phase, corresponding to the minimum of the total energy as a function of the lattice 
parameters. The total energy differences between the sigma phase and the SER structure of the pure constituents 
can be implemented into the new model of description of the sigma-phase [ 121. 

The aim of this paper is to verify this approach in the case of the Co-Cr system. 

Calculation of Phase Diagrams 
The behaviour of the system is 

conditions of pressure and temperature. 

Calculations 

defined by the minimum of the total Gibbs energy G”’ at given 
G’“’ is equal to the sum of the Gibbs energies of all phases (G’) 

multiplied by their volume fraction (w’), i.e. 
G’“‘z xwfG’ (1) 

The G’ is again a function of the thermodynamic conditions considered above, and it is defined as 
G’.= c y , o G f + Gld + GE + Gmag + Gp’““, (2) 

where y, is the lattice fraction of the component i, ‘G r is the Gibbs energy of a pure constituent i in the phase f. 
the term Gld describes the Gibbs energy of ideal mixing, GE is the excess Gibbs energy describing real mixing, 
Gmag is the magnetic contribution and Gpres 1s the pressure contribution to the Gibbs energy. The OGf constitute 
the main input information for phase diagram calculations based on the CALPHAD approach. These values are 
easily available for many structures of the pure elements, e.g. bee, fee, hcp, because they are usually quite well 
measurable. They are summarised in various databases, e.g. [ 13 1. However, there is a problem in the case of the 
sigma phase because it is much more complicated, it is unstable for the pure constituents and its region of 
stability is too narrow for reasonable extrapolation. This experimentally unsolvable problem can be treated 
using ab initio calculations. The ab initio approach allows us to replace methods of construction of the Gibbs 
energy for the sigma phase that use the combination of Gibbs energies of bee and fee structures according to 
similarity in coordination number [ 14,151, or that estimate it using extrapolation of experimental data [ 161. 

The mode1 of a substitutional structure (B)s(A)d(A,B)is or (B)ic(A)4(A,B)i6 is the one of the most widely 
used methods in recent time [14,15] but it has some disadvantages. The first step of description of the sigma 
phase in this model is the reduction of number of sublattices. It is known from X-ray experiments that the sigma 
phase (space group No. 136, P4Jmmn) contains 30 atoms in the unit cell distributed into five 
crystallographically inequivalent sublattices (2a, 4f, 8i, 8i’ and 8j) [17], too many for’s reasonable CALPHAD 
description. Therefore, the number of sublattices should be reduced [ 14,15,18]. In [ 141, some general rules for 
such a reduction in the number of sublattices and for their occupation were formulated: 
(i) All sublattices with the same coordination number (CN) and similar point symmetry are combined into 

one. 
(ii) If more than one sublattice remains, combine the two with the highest CN into one. 
(iii) The reduced set of sublattices must be arranged in the order of increasing CN. 
(iv) B elements will go preferentially into the first sublattice but it may dissolve some A. 
(v) The next sublattice will be preferentially tilled with A but it may dissolve some B. 
(vi) If there is a third sublattice, it will be reserved for A. 
If A is an element of the VIth group of the Periodical Table or lower, and B is an element of the VIIth group or 
higher, then, in the case of a binary sigma phase, the CN of individual sublattices in Co(A)-Cr(B) are, by 
analogy to [18], as follows: 2a (CN=12), 4f (CN=15), 8i (CN=12), 8i’ (CN=14) and 8j (CN=14). The first and 
third sublattice and the fourth and fifth sublattice are combined according to the point (i) above to obtain the 
preliminary formula 16(8i’+8j) 4(4f) 10 (2a+8i). Then the sublattices are arranged in the order of increasing CN 
and are occupied by atoms in order to satisfy the points (iv) - (vi) getting lO(A,B): 16(A,B):4(A). At the end of 
the procedure for reducing the number of model parameters, it is assumed [ 181 that the occupation of the second 
sublattice by A atoms is negligible, i.e. we have lO(B):16(A,B):4(A), and the sublattice with mixed occupation 
is moved to the end of the formula. So the resulting formula is 10(B) 4(A) 16(A,B) or, alternatively, 
(B)Io(A)~(A,B)w 
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The Gibbs energy of the sigma phase depends on occupation of the third sublattice, where the mixing 
occurs, and therefore following two equations are useful: 

OG” Cac~cr = 10’Gp; + 4’G;F + 16’G;p + C;,(T). (3) 
OG” caCeCo = lO’G:F + 4OGkF + 16’G;F + C”,,(T). (4) 

where”Gr is the Gibbs energy of a pure constituent i (Cr or Co) in the phase f, hbcc, hfcc are symbols of 

hypothetical paramagnetic (non-spin-polarised) bee and fee phases, and C:(T) is a temperature-dependent 
adjustable parameter that is defined by 

C;(T)= A, + B,T,, (5) 
with Ai, B, being the constants that can be adjusted to phase equilibrium data. 

The problem of this model is that it does not capture the main idea of the CALPHAD method, i.e. it is 
not based on the lattice stability of the pure constituents. Therefore, it is not able to describe the thermodynamic 
properties of the system in the regions close to the pure constituents (the knowledge of the Gibbs energy in 
those regions is indispensable for computing ternary and higher-order systems). Nevertheless, the most serious 
objection from the physical point of the view is that the Gibbs energy of the sigma phase is described as an 
empirical combination of Gibbs energies of simple structures that are not related to the sigma phase. 

Our new physical two-sublattices model describes the thermodynamic properties of the sigma phase in 
the whole composition range [12]. This is a model of solid solution, similar for example to the fee or bee one 
[ 111. Here the sigma phase is described as a two-sublattices structure where each sublattice contains one atomic 
site per unit cell. The model is capable to use such a strong reduction in the number of sublattices (from five to 
two) because it is known from X-ray experiments [ 191 that the sigma phase behaves more or less like a solution, 
i.e. there is a mixing of atoms in all five sublattices, which was not respected by the previous model. Site 
occupancies of the binary sigma phases were critically reviewed by Ansara et al. [18]. Experimental evidence 
for fully preferentially occupied lattice sites was found in less than one half of studied systems. In particular, for 
Co-Cr system, Algie and Hall [ 191 reported mixing of atoms in all 5 inequivalent lattice sites. 

Within the two-sublattices solution model, the Gibbs energy of the sigma phase in binary Co-Cr system 
is given by 

G&o = yco oG$ + ycr”G:, + GF$, + G$,, (6) 
where y, is the lattice fraction of a component i and o GP is the Gibbs energy of a hypothetical (unstable) sigma 
phase that contains only one pure constituent i. Such energies of pure sigma phases are defined as 

OG; = GYER + AoEp-sER - SPT, (7) 
where o GFER is the Gibbs energy of a pure constituent in the SER state and A”EpesER denotes the total energy 
difference between hypothetical sigma phase and the standard state of that constituent. This total energy 
difference may be obtained from ab initio electronic-structure calculations. Further, Sp is the entropy term in 

the Gibbs energy. It is a constant adjustable to the experimental data. Gz,& is the Gibbs energy of the ideal 
mixing of metals in the sigma phase and may be expressed as 

G ido crCo =RT ( YO In YC~+YG, In YO ), (8) 

where R is the gas constant. GFr’& is the excess Gibbs energy describing real mixing in the sigma phase. It was 
expressed by frequently used Redlich-Kister equation 

G:& = yc,yco(L”(T) + L’(T)(yc,- yco)+ L’(T)(ycr- yd2h (9) 
Lo(T) =D+ET, L’ (T) =F+JTand L’ (T) =K+LT, (IO) 

where Lo(T) ,L’(T) , L’(T) are interaction parameters and D,E,F,J,K,L are fitting parameters adjusted to the 
experimental phase equilibrium data. 

Utilization of ab initio calculations in the determination of the A”EpsER term constitutes a considerable 
improvement of the CALPHAD approach to the phase diagrams. It gives us the opportunity to determine the 
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Gibbs energy of the sigma phase for the pure constituents on a physically correct energy basis. 
Let us note, however, that we are not able to incorporate the contribution from the zero-point motion. It is not 
excluded that, when evaluating the structural energy differences, this contribution may play quite an important 
role. 

There is only one disadvantage in this model. We are not able to calculate the entropy of the system and, 
therefore, it is still adjusted to phase equilibrium data. This model was already successfully used in the case of 
Cr-Fe system [20] and the Co-Cr system is modelled in the present paper using existing assessments for 
remaning phases. 

Calculation Of Total Energy Differences 
The total energies of both structures (SER and sigma phase) at their equilibrium volumes were 

calculated within the Full-Potential Linearized Augmented Plane Waves (FLAPW) method incorporated in the 
WIEN97 code [21] using the Generalised Gradient Approximation (GGA) [22] for the exchange-correlation 
term. 

At the beginning of our calculations, the internal parameters (i.e. the positions of all atoms in the unit 
cell) of the hypothetical sigma phase for pure cobalt were chosen. The total energies of the mentioned structure 
were calculated at constant lattice parameters [23] using various internal parameters of binary sigma-phases that 
contained cobalt (e.g. Co-Cr, CO-MO etc.). We have chosen that set of internal parameters, which exhibited the 
lowest total energy [24]. The same procedure was applied for the choice of the internal parameters of a 
hypothetical Cr in the sigma phase structure. The lowest total energy of Cr sigma phase was found at the lattice 
parameters given in [25] and internal parameters given in [23]. 

In the following calculations, the internal parameters were kept constant because we have found that 
their optimisation does not have any significant influence on the total energy of the sigma phase. The changes in 
total energy caused by changing the internal parameters within the limits found in the literature did not exceed 
the value of 2 mRy/atom and, on average; they amounted to 0.5 mRy/atom. 

Now, to estimate the equilibrium values of the lattice constants of the sigma-phase, we performed 
auxiliary calculations with the Linear Muffin-Tin Orbital method in the Atomic Sphere Approximation (LMTO- 
ASA) [26]. 

Then we continued the FLAPW calculations. The optimal RMT (muffin-tin radius) and number of k- 
points needed for the calculations were chosen. The RMT parameters used in this work are 1.97 a.u. in the case 
of cobalt and 2.1 a.u. in the case of chromium. Concerning the number of k-points in the irreducible zone found 
by preliminary optimisation, the used values are 42 in the case of cobalt and 36 in the case of chromium. 

The process of optimisation of the lattice parameters is very simple. It is based on repeating two steps 
until the change in the total energy is small enough. These steps are the optimisation of the volume at constant 
c/a ratio (constant shape of unit cell) and optimisation of the c/a ratio at constant volume (V,,, from the 
previous step). 

The calculations for the SER-phases (ferromagnetic hcp Co and antiferromagnetic bee Cr) were not so 
time-consuming because the LMTO-ASA calculations had not been performed and the RMT parameters had 
been taken from the sigma phase calculations. The k-points convergence tests resulted in using 320 k-points for 
cobalt and 120 k-points for chromium in all following calculations. The optimisation of the unit cells with two 
atoms had the same theoretical basis as in the sigma phase calculations but the optimisation of the c/a ratio was 
not employed in the case of the cubic structure, and therefore the calculations of the bee structure were finished 
already after the first optimisation step. 

Results And Discussion 

The calculated total energies for the pure constituents in both structures were used for evaluating the 

lattice stability of the sigma phase characterized by the total energy difference A”EpsER = o EP - O EsER 
The profiles of the total energy as a function of volume in the case of both constituents in the sigma 

phase arrangement obtained from the last step of optimisation are shown in Fig. 1. The crossing points with 
previous optimisation curves are represented by full symbols. The difference in total energies obtained in the 
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last two steps was smaller than 0.2 mRy/at, and therefore we could stop the optimisation at this level. The lattice 
parameters of the unit cell corresponding to the minimum of total energy are listed in the Table 1. 

Table 1. FLAPW calculated equilibrium volumes per atom (a.u.3) and lattice parameters (a.u.) of the thirty- 
atom unit cell of hypothetical sigma phase of end members Cr and Co. 

Parameter 
Volume 

a 
C 

Cr 
76.7127 
16.3792 
8.5783 

co 
69.1070 
15.8602 
8.2419 

The optimised total energy profiles for the SER structures (the first one for antiferromagnetic Cr in the 
bee structure and the third one in the case of ferromagnetic Co in the hcp structure) are presented in Fig.2. The 
optimised lattice parameters together with the experimental ones are listed in Table 2. 

Table 2. Values of experimental and FLAPW equilibrium lattice parameters (a.u.) for the SER phase of 
antiferromagnetic Cr and ferromagnetic Co. 

Lattice parameter 

a 
C 

Cr co 
ab-initio experiment [30] ab-initio experiment [2] 

5.41653 5.44 4.62149 4.74 
5.41653 5.44 7.40598 7.69 

The deviation of the calculated equilibrium lattice constant from the experimental values is -0.43% for 
Cr and -2.41% for the a lattice parameter and -3.68% for the c lattice parameter in the case of Co. The 
calculated total energies for the optimised structures and their differences are summarised in Table 3. 

Table 3. Ab initio calculated values of equilibrium total energies per atom (Ry/atom) for sigma phase and SER 
phase of Cr and Co and their differences. 

er atom of SER 

It is well known that the energy difference between the bee and fee structures and fee and hcp structures 
of Cr and Co, predicted by first principles methods [27], are substantially larger than those estimated by the 
CALPHAD approach. So, it is not surprising that the energy differences between the bee and sigma-phase Cr or 
hcp and sigma-phase Co are so large. 

These total energy differences were used in the new two-sublattices model presented in [ 121 for phase 
diagram calculations. The temperature dependence of the excess Gibbs energy ofthe sigma phase (entropy 
term) had still to be adjusted to phase equilibrium data, following the traditional CALPHAD method. 

The calculations of phase diagram and thermodynamic values were performed by means of the 
THERIvIO-CALC program [28]. The recent assessment [29] gave us the Gibbs energies of all phases (bee, fee, 
hcp, and liquid) that exist in the Co-Cr system using data for the pure constituents from [13]. The final 
calculated phase diagram is given in Fig.3 (full lines). The dashed lines represent the phase diagram calculated 
by the old model [29]. There is an important improvement in the position of the line that describes the 
equilibrium between the sigma phase, the pammagnetic hcp, and the ferromagnetic hcp phases at the Co-rich 
side. Our calculated position corresponds better to that reported in [30] which is approximately 610 K. The 
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phase diagram calculated using the new model is in good agreement with experimental data given in [3-lo]. The 
values of the adjustable parameters used in this calculation are summarised in Table 4. 

Table 4. Values of the adjustable parameters for the sigma phase (eqs. (7), (9), and (10)) used in the calculation 
of the phase diagram of Co-Cr. The values of E, J, and L in eq. (10) were set to zero. 

PARAMETER Cr co 

S” + 0.7 +0.75 
LO -11.5 950 
L’ +10800 
L2 - 95 000 

The composition dependences of the Gibbs energy and the enthalpy were calculated for both models at 
1200 K and they are shown in Figs. 4 and 5. We may see that the lines 5 and 5a obtained using the new two- 
sublattices model and the three-sublattices model, respectively, are quite different. Regrettably, available 
experimental values of enthalpy of formation provide no possibility to prefer one of them (see Fig. 5). It is 
worth noting that the description obtained from the old model is constrained to a limited range of concentrations 
while the two-sublattices model [ 121 provides these values in the whole range of composition. 

Conclusions 

The ab initio calculations of lattice stability for various structures performed by FLAPW method provide 
a possibility for improving phase diagram calculations. The results of ab initio calculations may be utilised in a 
new two-sublattices model [12] that yields a better agreement with experimental data than the old three- 
sublattices model [ 151. In the present paper, the procedure was tested on the Co-Cr system. 

Our approach has a solid physical background and enables us to predict the region of stability of the 
sigma phase in metallic materials. 
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Appendix II: Houserová J. et al., CALPHAD 26 (2002) 513 58

Reprinted from CALPHAD, 26, Houserová J., Vřešt’ál J., Friák M., Šob M.,
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Fig. 1. Final FLAPW optimisation of the volume per atom of the sigma phase (30 atoms/cell) for pure Cr 
(squares) and Co (diamonds) at constant c/a ratio (c/ace = 0.5237 c/a cT = 0.5 197, respectively.). Full symbols 
represent the crossing points with previous optimisation profile of total energy (per atom) vs. c/a ratio. 
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Fig. 2. The volume dependence of the total energy (per atom) of antiferromagnetic Cr and ferromagnetic Co. 
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Fig. 3. Comparison of phase diagrams of Co-Cr. Full line: calculated by the new two-sublattices model (this 
work, for the adjustable parameters see Table 4), dashed line: calculated by the three-sublattices model [28], the 
experimental data: @ [3], V [4], ?? [5], + [6], [7], 0 [8], * [9], [lo]. The dotted line represents the 
concentration dependence of the Curie temperature [29], letter f denotes the ferromagnetic phase and p is the 
pammagnetic phase. 
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Fig. 4. Concentration dependence of the Gibbs energy for the Co-Cr system at 1200 K. 1: liquid phase, 2: bee 
phase, 3: hcp phase, 4: fee phase, 5: sigma phase (new two-sublattices model), 5a: sigma phase (three- 
sublattices model). 
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Fig. 5. Same as for Fig. 4 but for the concentration dependence of the enthalpy in the Co-Cr system at 1200 K. 
Available experimental data are denoted as -I- [31], A [32], 0 [33]. 
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Abstract

A combination of full-potential linear augmented plane-wave (FLAPW) electronic structure method (for elemental constituents) with
simpler linear muffin-tin orbital method in the atomic-sphere approximation (LMTO-ASA method, for mixtures) was employed for nickel
systems (Ni–Fe and Ni–Cr) to calculate the energy of formation of sigma phase with respect to standard element reference (SER) struc-
tures of pure constituents. In all cases, the optimisation of the equilibrium volume of sigma phase and of the SER structures was
performed.

Calculated energies of formation of sigma phase with respect to SER state of pure constituents in Ni–Cr and Ni–Fe systems were compared
with the results of thermodynamic modelling. Phase diagram of ternary Fe–Ni–Cr system determined with the help of ab initio calculated
sigma phase parameters in pure elements are in a good agreement with experimental data. Enthalpies of formation of sigma phase in Ni–Cr
and in Fe–Ni systems obtained by thermodynamic modelling agree reasonably well with the energy of formation in these systems, calculated
ab initio.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Transition metals; Sigma phase; First-principles calculations

1. Introduction

The brittle sigma-phase (5 inequivalent lattice sites, 30
atoms per repeat cell, with large concentration range of
stability, similarly as in solutions) was first described by
Bain [1] in Fe–Cr system. Recently, Villars et al.[2] have
reported 110 intermetallic phases with stable sigma-phase
structure.

Energy of formation of sigma phase can be calculated ab
initio for pure constituents and for alloys even in those sys-
tems where a stable sigma phase does not exist. In this case,
experimental verification of calculated values is not possi-
ble. On the other hand, thermodynamic modelling in ternary
systems containing sigma phase yields the optimised val-
ues of enthalpy of formation of sigma phase, which can be
compared with calculated energies of formation. Therefore,
the thermodynamic modelling of sigma phase in Fe–Ni and

∗ Corresponding author. Tel.:+420-541-129-316;
fax: +420-541-211-214.

E-mail address:chvatalova@email.cz (K. Chvátalov́a).

Cr–Ni systems may be performed by CALPHAD (CALcu-
lation of PHAse Diagrams) method based on values of ther-
modynamic functions of phases where ab initio calculated
energy differences for sigma- and standard element reference
(SER) phases for pure constituents are used. The ternary sys-
tem Fe–Ni–Cr, where the sigma phase is stable in the Fe–Cr
basis with addition up to 15 wt.% Ni, enables us to perform
this modelling as a boundary condition. Modelled phase dia-
grams in both binaries and also in ternary Fe–Ni–Cr system
will be confronted with experimental data and the energies
of formation of (hypothetical) sigma phases calculated ab
initio in Ni–Cr and Fe–Ni systems will be compared with
thermodynamically optimised values of enthalpy of forma-
tion.

2. The model of sigma-phase

Knowledge of the value of the total energy difference
between the sigma phase and SER phase of end-members
calculated from first-principles (we use the Full Potential

0925-8388/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jallcom.2003.10.071
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Augmented Plane wave (FLAPW) method, the WIEN97
code[3]) makes it possible to determine the lattice stabil-
ity of pure constituents (Gibbs energy differences) on phys-
ically correct energetic basis. Our model of sigma phase
stems from the two-sublattice model, which is similar to a
model of solid solution phase[4], and the structural energy
differences�Etot,i

sigma-SER between the sigma and SER
phase of pure constituents are obtained from first-principles
electronic structure calculations. The Gibbs energy of the
sigma-phase may be then expressed by means of the follow-
ing relations:

Gm
sigma = �ixi

oGi
sigma− TSm

ideal + GE, (1)

where

oGi
sigma = oGi

SER+ �Etot,i
sigma-SER− TSi

vib,sigma-SER

(2)

Sm
ideal = −R�i(xi ln xi) (3)

GE = xixj(
oL

sigma
i,j + 1L

sigma
i,j (xi − xj) + 2L

sigma
i,j (xi − xj)

2),

(4)

whereL-parameters can be temperature dependent. The en-
tropy term (Eq. (2)) and the excess term (Eq. (4)) have to
be adjusted to phase equilibrium data.

3. Results and discussion

First-principles total energy calculations (FLAPW method
was employed, the energies were optimised at relaxed equi-
librium volume) yield the following structural energy differ-
ences between the sigma and SER phases at 0 K for Fe, Cr
and Ni [3]:

�Etot,Fe
sigma-SER = 43330 J mol−1 = 33.0 mRy at−1,

�Etot,Cr
sigma-SER = 30070 J mol−1 = 22.9 mRy at−1,

�Etot,Ni
sigma-SER = 31950 J mol−1 = 24.3 mRy at−1

(this work).

Total energies of the SER phases were calculated in the
corresponding spin-polarized state (ferromagnetic Fe and Ni,
antiferromagnetic Cr). The values of�Si

vib,sigma-SERfor Fe,
Cr and Ni were adjusted to phase diagram data; they were
found to be 0.7 J K−1 mol−1 in all three elements studied
(for Fe and Cr, see also[3]).

The excess termGE was expressed by Redlich–Kister
polynomial (4), and the parametersL were also adjusted to
phase equilibrium data. The resulting values (in J mol−1)
amount to (LCr:Fe from [5]):

oLCr:Fe = −133950 oLCr:Ni = −104000 oLFe:Ni = −7000
1LCr:Fe = 31000 1LCr:Ni = −14000 1LFe:Ni = −40000
2LCr:Fe = −127000 2LCr:Ni = 80000 2LFe:Ni = −50000

Fig. 1. Calculated phase diagram of Fe–Ni–Cr system at 1073 K according
to the present model of sigma-phase (full lines), compared with the phase
diagram calculated by the three-sublattice model[8] (dashed lines), using
data from[9], and with experimental data: triangles for bcc/fcc from[10],
squares for fcc/sigma from[11].

Fig. 2. Calculated phase diagram of Fe–Ni–Cr system at 1173 K according
to the present model of sigma-phase (full lines), compared with the phase
diagram calculated by the three sublattice model[8] (dashed lines), using
data from[9] and with experimental data: triangles for bcc/fcc from[12],
squares for FCC/sigma from[11], and circles for FCC from[13].
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Fig. 3. Gibbs energy of phases in the Fe–Ni system at 1000 K: (1) liquid,
(2) bcc, (3) fcc, (4) sigma, present model. Thermodynamic optimisation.
No Gibbs energy of sigma phase according to[8,9].

Further, we performed first-principles calculations of to-
tal energies both of pure constituents and mixtures in the
sigma-phase at 0 K by means of a simpler LMTO-ASA
method[6]. In this way, we obtained the concentration de-
pendence of the total energyEtot of sigma-phase in various
systems. Combining LMTO-ASA and FLAPW calculations,
we obtained the energy of formation (Figs. 4 and 6). Detailed

Fig. 4. Comparison of optimized enthalpy of formation (full line, thermo-
dynamic calculations) and ab initio calculated energy of formation (dia-
monds, ab initio calculations) of sigma-phase in the Fe–Ni system with
respect to energies of sigma phases of both constituents. The straight line
denoted by SER shows the weighted average of total energies of SER
states of pure constituents.

Fig. 5. Gibbs energy of phases in the Ni–Cr system at 1000 K: (1) liquid,
(2) bcc, (3) fcc, (4) sigma, present model, (4a) sigma according to[8,9].
Thermodynamic optimisation.

description of this procedure may be found in[7], where
we applied it for Fe–Cr and Co–Cr systems using unrelaxed
volumes of the sigma phase.

As it follows from Figs. 1 and 2, the phase diagram cal-
culation of Fe–Ni–Cr system at 1073 and 1173 K with the
help of the sigma-phase description by means of the present
model and ab initio results yields good agreement with ex-

Fig. 6. Comparison of optimized enthalpy of formation (full line, thermo-
dynamic calculations) and ab initio calculated energy of formation (dia-
monds, ab initio calculations) of sigma-phase in the Ni–Cr system with
respect to energies of sigma phases of both constituents. The straight line
denoted by SER shows the weighted average of total energies of SER
states of pure constituents.
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74 K. Chvátalová et al. / Journal of Alloys and Compounds 378 (2004) 71–74

perimental data and also with calculations based on the
three-sublattice model[8]. Optimised thermodynamic func-
tions describing the Fe–Ni and Ni–Cr systems are shown in
Figs. 3–6.

Figs. 3 and 5display the Gibbs energies of various phases
in Fe–Ni and Ni–Cr systems andFigs. 4 and 6compare the
optimised enthalpies of formation with the energies of for-
mation with respect to energies of sigma phases of both con-
stituents. The diamonds represent the values of energies of
formation of binary sigma phases with various occupancies
of sublattices[7]. Similarity in calculated energies of for-
mation in Fe–Cr[5] and Ni–Cr systems is a strong support
for the existence of sigma-phase in Ni–Cr system reported
in [14] 30 years ago.

From the results presented in our article, it may be con-
cluded that ab initio calculated energy differences between
the sigma and SER structures for pure constituents can be
successfully employed in the CALPHAD method.
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Abstract

We calculate the phase diagrams of Co–Mo and Fe–Mo systems by means of a combination of ab initio electronic structure calculations
and the CALPHAD approach. Ab initio calculations of the total energy differences between the sigma phase and standard element reference
(SER) structures for pure constituents are accomplished by means of the full-potential linearized augmented plane wave (FLAPW) method
in the generalized gradient approximation (GGA). During these calculations the structure relaxation is performed. The results obtained
are employed as a part of the Gibbs energy describing the thermodynamics of the sigma phase. Subsequently, the thermodynamic data
sets describing the sigma phases in the Co–Mo and Fe–Mo systems are optimized using the CALPHAD approach by employing both the
experimental and thermodynamic data extended by ab initio calculations. Description of all other phases is taken from the literature.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Ab initio calculation; Sigma phase; Phase diagram

1. Introduction

Molybdenum plays a controversial role in steel develop-
ment. On one hand, it improves steel corrosion resistivity
and, on the other hand, it increases the probability of for-
mation of the unwelcome sigma phase. A reliable thermo-
dynamic description of the Co–Mo and Fe–Mo systems is
therefore needed to assess the regions of stability of various
phases and may be used for further modelling of ternary sys-
tems containing Fe and Mo, which constitute a basis of some
corrosion-resistant materials.

Information about phase equilibria and thermodynamic
properties in the above-mentioned systems is of fundamental
importance in the design of materials for applications
under extreme conditions. The possibility of predicting
phase equilibria provides a powerful tool for evaluating the
properties and behaviour of materials. Such predictions can
be performed by the CALPHAD (CALculation of PHAse

∗ Corresponding author. Tel.: +420 532290 461; fax: +420 541218 657.
E-mail address: houserova@ipm.cz (J. Houserov´a).

0364-5916/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.calphad.2005.06.002

Diagram) approach [1], which allows one to calculate the
phase diagrams using thermodynamic functions of both pure
constituents and all phases formed from these constituents.

The sigma phase is an intermetallic compound that can
precipitate e.g. at grain boundaries as a secondary phase. It
is extremely brittle and, therefore, it increases the probability
of formation of crack nucleation sites. It also decreases
the resistance of materials to various corrosive media.
This phase can be found in many transition-metal systems
(e.g. Fe–Cr, Co–Cr, Fe–Mo, Ni–V) [2]. It is well known that
molybdenum stabilizes the sigma phase in iron-based alloys.

A full understanding of the behaviour of the sigma phase
relies on the knowledge of the phase equilibria. This is
primarily limited by a correct thermodynamic description of
binary systems where the sigma phase can be treated using
various models. The three-sublattice model [3–8] is one of
the most frequently used ones.

The crystallographic structure of the sigma phase belongs
to the space group No. 136 and is represented by 30 atoms
in the unit cell. These atoms are accommodated in five in-
equivalent sublattices. The above-mentioned three-sublattice
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model (which derives from the regular solution model [1]
and the generalized multiple sublattice model [9]) is a sub-
stantial simplification of the sigma phase description, which
is based on merging the sublattices with the same (or similar)
coordination number to get a lower number of sublattices
than found in the structural analysis. The Gibbs energy of the
sigma phase modelled in this way is defined as a sum of the
Gibbs energies of the bcc and fcc structures in the ratio given
by simplified formula plus a correlation term, which is fit-
ted to phase equilibrium and thermodynamic data. We have
shown that another approach resulting in a two-sublattice
model is sufficient [10–12]. This model describes the sigma
phase as a solid solution with two sublattices (each having
one site). In this case the Gibbs energy of the sigma phase is
based on the Gibbs energies of the sigma phases of the pure
constituents. The mixing of the elements involved occurs in
the first sublattice and it is described by the sum of the Gibbs
energies of the sigma phases of pure constituents weighted
by their molar fractions. The second sublattice can be used
for modelling interstitial phases and in the simplest cases, it
is occupied by vacancies.

The assessment of stability of any structure (character-
ized by its energy of formation) is usually based on the stan-
dard element reference (SER) states, i.e. structures of the
pure constituents that are stable at a temperatureT of 298 K,
and pressurep of 1 bar, such as hcp ferromagnetic Co,
bcc ferromagnetic Fe and bcc non-magnetic Mo. This ap-
proach is very convenient because the thermodynamic func-
tions describing these structures have been summarized in a
published worldwide-accepted database [13] and verified in
many thermodynamic assessments. Total energy differences
between the sigma phase and the SER structure constitute
a part of the Gibbs energy differences, and can be reliably
calculated from first principles, e.g. by the full-potential lin-
earized augmented plane waves (FLAPW) method [14] that
provides high-precision solutions to Kohn–Sham equations
as well as total energies for solid state structures.

The purpose of this work is to improve the thermody-
namic modelling of the more complicated structures, such
as the sigma phase, by employing the results of ab initio
electronic structure calculations. We show that our model
based on a combination of ab initio results and CALPHAD
treatment provides a reliable approach for evaluating phase
equilibria that involve such structures. The paper is orga-
nized as follows. After the introduction, we briefly charac-
terize our thermodynamic model inSection 2. Section 3de-
scribes the ab initio calculations of the total energy differ-
ences, which are used inSection 4for predicting the phase
diagrams. There we provide the values of the fitted parame-
ters and discuss our results.Section 5concludes the paper.

2. Thermodynamic model

Thermodynamic modelling allows one to describe
arbitrary systems under various conditions (i.e. of pressure,
temperature or composition) and enables us to predict the

behaviour of systems which are technologically important
for the improvement of properties and manufacturing of
current materials as well as for the development of new ones.
In contrast to experiments, this treatment not only gives us an
overview of the properties of actually existing structures but
also is capable of characterizing metastable or even unstable
configurations. The main variable used in such modelling
is the molar Gibbs energy of the whole systemGtot, which
is defined as the sum of molar Gibbs energiesG f of all
included phasesf multiplied by their molar fractionsx f :

Gtot =
∑

f

x f G f , (1)

where

G f =
∑

i

yi
0G f

i + G id + GE + Gmag+ Gpres. (2)

As shown in Eq. (2), the molar Gibbs energyG f of phase
f can be further divided in several terms, i.e. into the
sum (

∑
i yi

0G f
i ) of molar Gibbs energies0G f

i of pure
constituentsi in the phasef multiplied by molar fractions
yi of the corresponding element in a given structure, terms
describing ideal(G id) and non-ideal(GE ) mixing and,
when needed, some special terms such as the magnetic
(Gmag) or pressure(Gpres) contribution. The last two terms
are omitted in the case of the sigma phase in our work
because we are modelling a solid metallic structure that is
not very much influenced by pressure in the low-pressure
region and this structure is supposed to be non-magnetic
over the whole composition interval. We cannot exclude
the possibility that the sigma phases of pure constituents
could prefer some magnetic ordering. But the choice of the
non-magnetic sigma phase as the reference state for the
Gibbs energy in construction of the phase diagram could
be justified by the fact that no magnetic sigma phase has
been found in any system. Further, employing this non-
magnetic reference state does not significantly influence
thermodynamic modelling of the sigma phase in regions
where this structure is stable. The terms describing mixing
are evaluated using relatively simple formulas as follows:

G id
i, j = RT (yi ln yi + y j ln y j ), (3)

GE
i, j = yi y j (L0(T ) + L1(T )(yi − y j )

+ L2(T )(yi − y j )
2), (4)

where L0, L1 and L2 are the expansion coefficients of
the Redlich–Kister polynomial [15] and T stands for
temperature.

The molar Gibbs energies of the pure components in
more complicated phases are obtained in some cases with
substantial difficulty, in contrast to the Gibbs energies
of simple structures, such as bcc, fcc, hcp, which are
summarized in various databases, e.g., Ref. [13]. Structures
such as the Laves or sigma phase do not exist in the
pure elemental state and therefore their Gibbs energies are
experimentally inaccessible. In these situations ab initio
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J. Houserová et al. / Computer Coupling of Phase Diagrams and Thermochemistry 29 (2005) 133–139 135

Table 1
FLAPW equilibrium and experimental lattice parameters of the SER structures

Structure This work Experiment

a (a.u.) c/a Vat (a.u.3) a (a.u.) c/a Vat (a.u.3) Ref.

FM hcp Co 4.7211 1.6194 73.7888 4.7357 1.6237 74.6722 [2]

FM bcc Fe 5.4144 1 79.3626
5.40

1
78.7320 [18]

5.4160 79.4339 [19]

NM bcc Mo 5.9714 1 106.4619 5.9434 1 104.9723 [2]

FM stands for ferromagnetic and NM for non-magnetic states;Vat denotes the volume per atom.

methods can help us to get deeper insight into the
thermodynamics of such structures.

The Gibbs energy of the sigma phase of the pure
constituents can be written as

0Gsigma
i = 0GSER

i +�0 Gsigma–SER
i

= 0GSER
i + � 0H sigma–SER

i − � 0Ssigma–SER
i T, (5)

whereH is enthalpy andS entropy.
The enthalpy of the sigma phase expressed with respect

to the SER state,� 0H sigma–SER
i , can be replaced by the

ab initio calculated total energy difference between the
sigma phase and the SER state,� 0Esigma–SER

i , under the
assumption that these two differences are equal. This is
exactly fulfilled at zero temperature. We also suppose that
� 0H sigma–SER

i and� 0Esigma–SER
i do not vary significantly

with increasing temperature. This assumption may be
verified on the basis of a combination of

• the Kirchhoff equation (�H (T1) = �H (T0) +
∫ T 1

T0
�Cp dT , where �H (T0) and �H (T1) are the

reaction enthalpies atT0 and T1, respectively, and
the difference between the heat capacities at constant
pressure is�Cp = Cproducts

p − C reactants
p ) and

• the Neumann–Kopp rule(Cp(An Bm) = nCp(A) +
mCp(B)), which is reasonably valid for metallic
systems.

This combination results in�Cp = Cproducts
p −

C reactants
p = Cp(An Bm) − nCp(A) + mCp(B) = 0 and,

subsequently,�H (T1) = �H (T0) + ∫ T1
T0

0 dT = �H (T0).
Therefore, we can write

0Gsigma
i = 0GSER

i + � 0Gsigma–SER
i

∼= 0GSER
i + � 0Esigma–SER

i − � 0Ssigma–SER
i T . (6)

The entropy term� 0Ssigma–SER
i may be adjusted to

experimental data (seeSection 4). Expression (6) can then
be employed in phase diagram calculations according to
Eq. (2).

This procedure has been successfully used for the
calculation of phase diagrams in other systems containing
the sigma phase, such as Fe–Cr [11] and Co–Cr [12]. In
this paper the Co–Mo and Fe–Mo systems are presented as
further examples.

3. Ab initio calculations of total energies

We used the FLAPW method [14] incorporated into the
WIEN97 code [16] to calculate the total energy differences
between the sigma phase and the SER structure similarly
to our previous studies [11,12]. The exchange–correlation
energy was evaluated in the generalized gradient approxima-
tion (GGA) [17]. We used constant muffin-tin radii (RMT
parameters) during all our calculations (1.97 a.u. for Co,
1.96 a.u. for Fe and 2.30 a.u. for Mo). The optimum num-
bers ofk-points in the irreducible part of the Brillouin zone
providing a sufficient convergence of the total energies of
the SER states were found to be 288 for Co and 120 for
Fe and Mo.

We decided to relax all structures to get reliable reference
states for evaluating the energy differences. The relaxation
is based on the alternating optimization of the volume and
c/a ratio. In the case of the cubic structures only volume
relaxation is sufficient to get the lowest-energy state. The
resulting optimum lattice parameters for the SER states are
listed inTable 1.

The same approach was applied to equilibrium calcu-
lations for the sigma phase. Since the sigma phase of the
pure constituents does not exist we have used the structure
parameters from the binary phases. For this purpose, we
have utilized the lattice parametersa and c from such bi-
nary sigma phases that involve elements with similar atomic
radii to the element chosen, i.e. for Co from the Co–Cr
sigma phase [20], for Fe from the Fe–Cr sigma phase [21]
and for Mo from the Mo–Mn sigma phase [22]. There are
some other parameters besides lattice ones describing the
structure of the sigma phase—so-called internal parame-
ters, which describe the positions of atoms within the unit
cell. We have examined their values from various binary
sigma phases (e.g. the internal parameters for Cr–Fe, Fe–Mo
etc. in the case of Fe) and, employing the linear muffin-tin
orbital method in the atomic sphere approximation (LMTO-
ASA) [23–25] within the GGA [17], we looked for those val-
ues that provided the lowest energies. These were acquired
using the internal structure parameters of Fe–Cr [21] for Fe
and of Co–Mo [26] for Co and Mo. The values of the internal
structure parameters obtained in this way were kept constant
in all subsequent calculations.

Afterwards we employed the FLAPW method again for
the optimization of lattice parametersa andc in the same
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way as was described for the SER structures. Performing
convergence tests, we have found that 42k-points in the
irreducible part of the Brillouin zone were sufficient for all
three constituents. As the sigma phases existing in nature
are not spin-polarized, the calculations for pure constituents
were also performed for a non-spin-polarized state. The
resulting lattice parameters are summarized inTable 2. It
may be shown that the differences in atomic volumes
between the SER and sigma phase related to the equilibrium
atomic volume of the SER state are comparable with the
differences between the values obtained for the bcc, fcc, and
hcp structures [27].

Table 2
FLAPW equilibrium lattice parameters of the sigma phase of pure
constituents

Element in the This work

sigma phase structure a (a.u.) c/a Vat (a.u.3)

Co 15.8602 0.5197 69.1069
Fe 15.5987 0.5174 65.4586
Mo 18.1870 0.5241 105.1003

This procedure provided the total energies of the sigma
phases of pure constituents at the equilibrium volumes and
the justification for the statement that the sigma phase
of pure constituents is stable with respect to the volume
changes and tetragonal deformation. Unfortunately there is
no absolute guarantee of the dynamic stability of this phase
in the pure state. On the other hand, even if the sigma phase
structure of the pure constituent were dynamically unstable,
the total energy difference between this structure and SER
phase at zero temperature has a well-defined value [28,29],
which can be used as an effective value in the procedure
of adjusting the thermodynamic parameters in the phase
equilibrium data calculations. Hence we evaluated the total
energy differences between the sigma phase and SER state
(Table 3).

Table 3
Ab initio calculated total energy differences between the sigma and SER
phases

Element Co Fe Mo

�
0
E

sigma–SER

i

(mRy atom−1) 45.58 33.03 17.77
(kJ mol−1) 59.84 43.36 23.33

The present values for Co are somewhat different in comparison with
those in [12] due to better approximations used in this work. The physical
conclusions in paper [12] are not influenced by this difference.

4. Phase diagram calculations

The thermochemical basis of the CALPHAD method
relies explicitly on the assumption that the composition of
the equilibrium phase arises as a result of minimization of
the Gibbs energy in a closed system at constant external
conditions (temperature and pressure).

For modelling the sigma phase we employed the two-
sublattice model [11,12] because it has a good physical
background, it enables us to describe the sigma phase over
the whole composition range and it should be able to provide
a substantial improvement of the thermodynamic modelling
of more complicated systems. The sigma phase is treated
here as a solid solution (see Eq. (1)) and its Gibbs energy
in the pure state is defined by Eq. (6) where the entropy
term is adjusted to the experimental data. TheL parameters
describing the excess Gibbs energyGE of non-ideal mixing
in Eq. (4) are obtained in the same way. All these parameters
(� 0Ssigma–SER

i andL) are listed inTables 4and5.

Table 4
The adjusted entropy of the transition from the SER state to the sigma phase

Element Co Fe [11] Mo

�
0
S

sigma–SER

i
(J K−1 mol−1) 0.75 0.70 0.75

Table 5
The adjustedL parameters describing the non-ideal mixing

Parameter/System Co–Mo Fe–Mo

L0 −171 500+ 25.0 ∗ T −119 000+ 5.1 ∗ T
L1 (J mol−1) 35 000 −50 000
L2 75 000 −108 400

The complete thermodynamic description of the sigma
phase in the two-sublattice model is given inAppendix. The
thermodynamic parameters for all other phases in Co–Mo
and Fe–Mo systems, namely of the liquid, fcc, hcp, EPS,
Mu, bcc, Laves phase and R phase, were taken from [6]
and [30], respectively. The calculated phase diagrams are
presented inFig. 1.

It is obvious that our approach provides a very good
description of the stability range of Co–Mo and Fe–Mo
sigma phases with quality comparable to that of the
earlier three-sublattice model ([6] and [30], respectively).
Moreover, our model employs a transparent approach to the
modelling of the sigma phase over the whole composition
region that is based on ab initio calculations. It can be
thought of as a reasonable starting point in approaching
otherwise inaccessible regions of unstable sigma phases.
In contrast, the three-sublattice model describes the sigma
phase as a combination of the Gibbs energies of SER
states, which has no relevance in the composition range
close to the pure constituents. Therefore we expect the two-
sublattice model to provide a better understanding when
studying multicomponent systems. Our calculated phase
equilibria also agree very well with the experimental phase
equilibrium data [3,5,31–33] for both systems. It is not the
purpose of this paper to study those regions of the phase
diagram not containing the sigma phase because they cannot
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Fig. 1. Calculated phase diagrams of Co–Mo (a) and Fe–Mo (b). Thick
dashed lines: the two-sublattice model (thermodynamic data are given
in Tables 3–5), thin full lines: the three-sublattice model (thermodynamic
data from [6] and [30]), experimental data according to [5] (�) and [31]
(�) for Co–Mo and [32] (�), [33] (�) and [3] (+) for Fe–Mo. The dashed
line in the left-hand part of the Co–Mo phase diagram divides the region
of the fcc phase into the ferromagnetic (lower) and paramagnetic (upper)
parts.

be influenced by changes in the sigma phase modelling
and, therefore, the corresponding experimental data are not
presented inFig. 1.

The comparison between the Gibbs energy and enthalpy
of the sigma phase calculated within both models and those
for other phases (described using the data from [6,30]) is
shown inFigs. 2and3. From these figures, we conclude that
the two-sublattice model provides the proper composition
dependence for both thermodynamic functions (i.e.G f and
H f ) over the whole composition range in contrast to the
three-sublattice model (see lines 8 and 8a in those figures).

Fig. 2. Concentration dependence of the molar Gibbs energyG f for various
phases in the Co–Mo (a) and Fe–Mo (b) systems at 1700 K: 1—liquid,
2—fcc, 3—bcc, 4—R, 5—Mu, 6—hcp, 7—EPS, 8—sigma (two-sublattice
model), 8a—sigma (three-sublattice model).

This is a great advantage of our method, which will enable
us to extend the calculations to multicomponent systems.

5. Conclusions

Our approach provides a reasonable physical interpreta-
tion of the individual terms in the mathematical expression
for the Gibbs energy difference between the sigma phase
and SER state of the pure constituents. Total energy differ-
ences are reliably evaluated by the ab initio methods, and
can be incorporated into the two-sublattice model [11,12]
which consequently provides a transparent and effective way
for constructing phase diagrams. This model can be used
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Fig. 3. Concentration dependence of the molar enthalpyH f for various
phases in the Co–Mo (a) and Fe–Mo (b) systems at 1700 K. The labelling
of the lines is the same as inFig. 2. The thin dashed straight line denoted
as SER shows the weighted average of the molar enthalpy of the pure
constituents in the SER states. The arrows indicate our predictions of
molar enthalpies of formation of the alloy sigma phases with respect to the
weighted average of molar enthalpies of SER states of pure constituents.

because the inequivalent lattices are not exclusively occu-
pied by one component [7]. Recently, we have shown that
the two-sublattice model can reproduce well the phase equi-
libria in a multicomponent system [34].

This paper illustrates the use of such model in the case
of the Co–Mo and Fe–Mo binary systems. It was shown
that the calculated equilibria involving the sigma phase agree
well with the experimental data ([5,31] for Co–Mo and [3,
32,33] for Fe–Mo). Unlike the previously considered three-
sublattice model, the two-sublattice model employed in this

study provides a description of the molar Gibbs energy
G f and the molar enthalpyH f of the sigma phase over
the whole composition range. Unfortunately, there are no
experimental data which could prove or disprove our results
concerning the enthalpy of the sigma phase in Mo-based
systems. For the Cr-based systems, we have shown that
the calculated enthalpies obtained from the two-sublattice
model agree quite well with the experiments [12].
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Appendix

Summary of sigma phase parameters:
For 298.15< T < 6000:
two sublattices, sites 1:1.
Constituents: Co, Mo, Fe:Va:

0Gsigma
Co:Va = 0GFM–hcp

Co + 59 840− 0.75∗ T .
0Gsigma

Fe:Va = 0GFM–bcc
Fe + 43 360− 0.7 ∗ T .

0Gsigma
Mo:Va = 0GNM–bcc

Mo + 23 300− 0.75∗ T .

0Lsigma
Co,Mo:Va = −171 500+ 25∗ T .

1Lsigma
Co,Mo:Va = +35 000.

2Lsigma
Co,Mo:Va = +75 000.

0Lsigma
Fe,Mo:Va = −119 000+ 5.1 ∗ T .

1Lsigma
Fe,Mo:Va = −50 000.

2Lsigma
Fe,Mo:Va = −108 400.
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Abstract

New experimental DTA, XRD, SEM, solution calorimetry and ab initio calculated results are used together with data from the literature to
assess the thermodynamic parameters of the Bi–Pd system, necessary for calculation of the phase diagram by the CALPHAD method. Samples
were prepared with compositions of 51 and 82 at.% Pd, and their homogeneity checked by SEM/EDX before being employed in DTA studies.
High temperature solution calorimetry was used for the determination of the enthalpies of mixing of liquid Pd and Bi, in the range from 0 up
to 50 at.% Pd at 1028 K. XRD determination of the structures of equilibrated samples after quenching to room temperature provided important
information for the evaluation of structure. Ab initio electronic structure calculations provided information on the energetics of the intermetallic
phases of the system. The calculated phase diagram was compared with new phase equilibrium data and with the data presented in the literature.
c© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The use of bismuth is not only important as a solvent
of uranium in nuclear metallurgy, but also as a component
in lead-free solder materials. In the study of the interaction
of such solder materials with substrates, which often contain
palladium, knowledge of the Bi–Pd phase diagram is of interest.
Phase diagram studies have been carried out by Zhuravlev
and Zhdanov [1], Zhuravlev [2] (without experimental details)
and Brasier and Hume-Rothery [3]. The published liquidus
data were confirmed by Schweitzer and Weeks [4] by the
method of analysis after equilibrating annealing. The third
paper of these [3] is a rich source of accurate phase equilibrium
data, obtained by cooling curve analysis (2–3◦C/min, silica
stirrer, argon atmosphere, recalibrated thermocouple, high
purity metals), suitable for use in the assessment. New
information on the solubility of bismuth in palladium at lower
temperatures has been provided by Oberndorff [5], reporting
no solubility of Bi in Pd at 200◦C and 215◦C following
diffusion couple studies. For prediction of phase equilibria by

∗ Corresponding author. Tel.: +420 549498134; fax: +420 541211214.
E-mail address:vrestal@chemi.muni.cz (J. Vˇrešt’́al).

the CALPHAD (CALculation of PHAse Diagram) method,
the thermodynamic properties of the phases are required.
Unfortunately, no thermodynamic information is available for
this system.

Therefore, the aim of this work is to perform a
thermodynamic assessment of the Bi–Pd system using
new thermodynamic information gained by calorimetric
experiments and first-principles calculations. Complementary
SEM, DTA and XRD measurements have been performed to
confirm the results.

2. Experimental

2.1. Calorimetry

A high temperature SETARAM HT1500 calorimeter was
used for the measurement of the heat of dissolution of
palladium in liquid bismuth at 1028 K by the drop technique;
the apparatus has been described elsewhere [6]. Solid palladium
(Alfa Aesar, 99.99%) was dropped from room temperature into
a liquid bismuth (Alfa Aesar, 99.99%) bath held at 1028 K
in an alumina crucible under a pure argon atmosphere. The
heat flow from the reaction crucible to the reference crucible

0364-5916/$ - see front matterc© 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.calphad.2005.12.001
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Fig. 1. Integral enthalpy of mixing of liquid Bi–Pd alloys (liquid standard
state). Results of three independent runs. 1—Least squares fit of experimental
results by a polynomial of second order. 2—Result of global optimization
of calorimetric and phase equilibrium results, expressed by a polynomial of
second order.

was recorded with respect to time via a thermopile. The
total heat effect was then calculated by integration of the
thermogram, the graphical representation of the output of the
thermopile with respect to time. By subtracting appropriate
amounts for the enthalpy of fusion and enthalpy increment of
palladium (HPd,1023–HPd,298) the partial enthalpy of mixing
can be calculated. By making successive palladium drops
and summing the partial enthalpies, the integral enthalpy of
mixing curve can be derived. The calorimeter was calibrated by
dropping a bismuth sample immediately before the palladium
drops and by dropping an alumina sample at the end of the
run. The resulting integral enthalpies of mixing of Bi–Pd
liquid alloys from three independent runs are shown in the
Fig. 1, where the approximation of experiments to a smooth
curve is also drawn. The value of the enthalpy of mixing at
the compositionxPd = 0.5 is determined to be�H M

BiPd =
−27 kJ mol−1, approximating the concentration dependence
of �H M

BiPd by a quadratic polynomial. The reproducibility of
calorimetric measurements can be estimated to be±1 kJ mol−1

consideringFig. 1, where the results of three independent
runs are displayed, and approximated by a polynomial of
second order by the least squares method. On the other hand,
global optimization of the calorimetric experiment with phase
equilibrium data [1–4] expressed by a polynomial of second
order for the thermodynamic parameters of the liquid phase,
Fig. 1, lead to the small differences from the measured values
of its enthalpy of mixing which may be regarded as acceptable.

2.2. DTA measurements of liquidus temperature

Liquidus temperatures were taken from the literature [1–4],
but two samples of Bi–Pd alloys withxPd = 0.51 and with

xPd = 0.82 were prepared for verification of the published
results.

A sample withxPd = 0.51 was prepared from the elements
of the same purity as given above. Appropriate amounts of
bismuth and palladium were melted together in an evacuated
silica capsule, in a flame.

After solidification, the sample was annealed at 450◦C for
2 h followed by quenching into water. The homogeneity of
the sample was checked by SEM, and two phases were found:
an orthorhombic PdBi intermetallic and very small amount
of a second phase, both of which were confirmed by XRD
analysis (the Pd5Bi3 phase, which was expected considering
the phase diagram, was not confirmed unambiguously, as its
crystallographic structure is not reliably known).

Part of the sample was used in the determination of the
melting temperature of the PdBi intermetallic compound by
differential thermal analysis (DTA). The DTA was performed
under an argon atmosphere, using a Derivatograph (MOM
Budapest) instrument, employing a heating rate of 5◦C/min
and alumina as the reference material. The melting temperature
of PdBi was found to be 624◦C and the eutectic temperature
on the palladium side was 578◦C.

A similar procedure was followed for a sample withxPd =
0.82. SEM/EDS analysis of this sample revealed a two-phase
structure with compositions 0.77(Pd3Bi) and 0.83 of palladium
(FCC), respectively. This structure corresponds to that at the
crystallization temperature and therefore represents a frozen
equilibrium. Air cooling of the sample does not provide a
slow enough cooling rate to give the true equilibrium at low
temperature.

Corresponding DTA analysis revealed endothermic peaks
at 939 ◦C and at 1081◦C, which correspond to the
peritectic temperature and to the temperature of full melting
of the sample. These are in agreement with values in the
literature [1–4] and were used in the optimization procedure.

3. Theoretical calculations

3.1. Ab initio calculated total energies of formation of PdBi2
and PdBi

We have performed ab initio calculations of the total
energies of PdBi (room temperature structure) and PdBi2 (high
temperature structure) intermetallics and of Bi and Pd in their
experimentally observed structures (i.e., RHOMBOHEDRAL
A7 Bi and FCC A1 Pd), which represent the standard element
reference (SER) states.

The structural information for the PdBi and PdBi2
intermetallics was taken from [7] and [8], respectively. Spin
polarization was not included in our calculations as all phases
studied are paramagnetic at ambient temperature. The FLAPW
(Full Potential Augmented Plane Wave) method implemented
in the WIEN 97 code [9] using the generalized gradient
approximation (GGA) [10] for the exchange-correlation term
was employed to evaluate the total energy difference between
PdBi and the SER-phases at 0 K at equilibrium volume
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(i.e., at the minima of the energy/volume curves). The
calculated energy of formation of PdBi is:

�EPdBi
f = −34.13 kJ mol−1 = −26.00 mRy at−1.

This result was checked using the pseudopotential Vienna
Ab initio Simulation Package (VASP) code [11,12] by using
the Projector Augmented Wave (PAW) pseudopotential for
the Local Density Approximation (LDA). These calculations
yielded results similar to the FLAPW case:

�EPdBi
f = −33.16 kJ mol−1 = −25.26 mRy at−1.

For PdBi2, the pseudopotential codes VASP and CASTEP [13]
were employed, with the results (at equilibrium structure
parameters):

�EPdBi2
f = −23.17 kJ mol−1 = −17.65 mRy at−1 (VASP)

�EPdBi2
f = −27.0 kJ mol−1 = −20.6 mRy at−1 (CASTEP).

For thermodynamic considerations, the mean values�EPdBi
f =

−33.6 kJ mol−1 and�EPdBi2
f = −25.1 kJ mol−1 were used,

because we cannot prefer any one of the computational methods
over the rest.

The structure of the Pd3Bi intermetallic compounds is very
complex (Bi4PbPd15 structure type—16 atoms in the repeat cell
with 6 inequivalent lattice sites) [14]. Ab initio calculations of
total energy of this structure were not performed owing to this
complexity.

3.2. Thermodynamic assessment

The main aim of this work is to derive a set of
thermodynamic model parameters, describing the Gibbs energy
of the phases in the system, which then can be used for phase
diagram calculation by the CALPHAD method. This is based
on finding the minimum total Gibbs energy of the closed system
at constant temperature and pressure, yielding the composition
and the amount of phases in equilibrium. The total molar Gibbs
energy(Gtot) is equal to the sum of the molar Gibbs energies
of all phases(G f ) multiplied by their molar fractions(x f ),
i.e.,

Gtot =
∑

f

x f G f . (1)

G f is defined as

G f =
∑

i

y0
i G f

i + Gid + GE + Gmag+ . . . , (2)

whereyi is the molar fraction of the componenti in phasef ,
0G f

i is the molar Gibbs energy of pure component in the phase
f , the termsGid andGE stand for the molar Gibbs energy of
ideal and excess mixing, andGmag is the magnetic contribution
to the Gibbs energy. The excess Gibbs energyGE can be
expressed as an empirical Redlich Kister polynomial [15]:

GE
i j = yi yj (

0L f
i, j + 1L f

i, j (yi − yj ) + 2L f
i, j (yi − yj )

2), (3)

Fig. 2. Phase diagram of the Bi–Pd system calculated using thermodynamic
parameters (seeAppendix) determined in this work (solid lines) compared with
experimental phase equilibrium data (� [1], � [2], � [3], ♦ [4], � [5], • this
work).

whereas Gid can be calculated according the theoretical
relationship:

Gid = −RT
∑

i

(yi ln yi ). (4)

The Gibbs energies of phases,G f , are used as an input for the
phase diagram calculations.

To obtain parameters describing the Gibbs energies of
the individual phases, various models for the excess Gibbs
energy description are proposed. For the liquid phase, a
simple subregular model was used(3), and for the solid
phases, the sublattice model and compound energy formalism
(CEF) [16] were applied. Thermo-calc software [17], and its
module PARROT for optimization of model parameters by the
least squares method, were employed to give the calculated
phase boundaries and thermodynamic properties which gave
the best fit with experimental data within their experimental
uncertainties. The resulting values of these parameters are
presented in theAppendix. The phase diagram calculated using
these parameters is shown in theFig. 2. The experimental
data from the literature and those determined in the present
work are also given. The homogeneity range of Pd5Bi3 is not
described experimentally with any reliability; therefore, it is
denoted in [3] by dotted lines. X-ray studies by Zhuravlev [18]
suggested that the phase has a structure of the AsNi type,
but data describing the mixing of the atoms are missing.
Therefore, a simple two sublattice model was used (Bi,Pd:Va)
and parameters were determined to best reproduce the dotted
line region. Ab initio calculations were not performed.

4. Discussion

The value of the enthalpy of mixing in the liquid phase at
the compositionxPd = 0.5 determined by drop calorimetry
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(�H M = −27 kJ mol−1) is in fair agreement with value
estimated by Miedema’s model,�H M = −21 kJ mol−1,
published in [19], and it was used as the fixed experimental
thermodynamic quantity in this assessment. In the optimisation
of the thermodynamic parameters, the values of the energy
of formation of the PdBi and PdBi2 intermetallics were not
optimized. These values were used to check the reliability of
the thermodynamic parameters resulting from the optimisation
of the Bi–Pd system. Calculated values from first principles at
0 K represent a better choice for the temperature independent
term than any constant value used in many cases previously.
The optimisation of the temperature dependent parameters of
the Gibbs energy of these compounds was used for tuning the
assessment to the experimental phase equilibrium data.

Liquidus data published in the literature [1–4] are in mutual
agreement, so all of these data were used in the assessment.
Phase equilibrium data for Pd5Bi3 were taken from [3],
similarly the data for the peritectic temperature of Pd3Bi
which were verified experimentally in this work. Data for the
solubility of Bi in Pd at 200◦C and 215◦C, published in [5],
complement the data set. It is evident fromFig. 2that the phase
diagram calculated using the parameters in theAppendixis in
very good agreement with the experimentally determined phase
equilibrium data.

5. Conclusions

The experimental thermodynamic enthalpies of mixing
of liquid Bi and Pd measured by drop calorimetry, and
ab initio calculated energies of formation of PdBi and
PdBi2 intermetallics were successfully used as a basis
for a thermodynamic assessment of the phase diagram
of the Bi–Pd system. New phase equilibrium data were
determined by DTA, SEM and XRD methods, and were used
together with phase equilibrium data from the literature in
this thermodynamic assessment. Calculated thermodynamic
parameters are presented that enable reliable calculation of the
phase diagram of Bi–Pd system.
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Appendix

Values of thermodynamic parameters for the Bi–Pd system
(in Joules) for the temperature interval 298–4000 K (Eqs.(2)
and(3)):

oGRHOMBO
Pd:Va = GHSERPD+ 4000

oLRHOMBO
Bi,Pd:Va = −32 000

oLFCC
Bi,Pd:Va = −78 000+ 1T;

oLLiq
Bi,Pd = −107 000+ 24T;

1LLiq
Bi,Pd = 20 000;

oGPdBi2
Bi:Pd = 0.334∗ GHSERPD+ 0.666∗ GHSERBI

−25 100+ 2.5 ∗ T;
oGPdBi

Bi:Pd = 0.5 ∗ GHSERPD+ 0.5 ∗ GHSERBI
−33 600+ 7.65∗ T;

oGPd3Bi
Bi:Pd = 0.75∗ GHSERPD+ 0.25∗ GHSERBI

−22 300+ 0.4 ∗ T;
oGPd5Bi3

Bi:Va = GHSERBI+ 31 000;
oGPd5Bi3

Pd:Va = GHSERPD+ 9000;
oLPd5Bi3

Bi,Pd:Va = −179 000+ 27.3 ∗ T;
1LPd5Bi3

Bi,Pd:Va = 20 000.

Symbols GHSERBI and GHSERPD in the expression for
Gibbs energy of the intermetallic phases represent the Gibbs
energy of the SER state for Bi (RHOMBOHEDRAL A7) and
Pd (FCC A1), respectively. They were taken from [20]. L-
parameters are related to the Redlich–Kister polynomial (Eq.
(3)), and G-parameters express Gibbs energy of phases (Eq.
(2)). Elements occupying the same sublattice are separated by
commas; different sublattices are separated by a colon.
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Assessment of the Thermodynamic Properties and Phase Diagram of the Bi-Pd System,

14-17, Copyright (2006), with permission from Elsevier.



Materials Science and Engineering A 462 (2007) 153–158

First-principles calculations of energetics of sigma phase formation
and thermodynamic modelling in the Cr–Fe–W system
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Abstract

Ab initio total energies of the alloy sigma phase in Cr–W and Fe–W systems were calculated by means of the linear muffin-tin orbital method
in the atomic sphere approximation. Total energies of the pure constituents in the sigma phase and standard element reference (SER) states were
evaluated using the full-potential linear augmented plane wave method. The combination of these results was used for the prediction of the energy
of formation of the sigma phase with respect to both sigma phase of pure constituents and SER states at equilibrium structure parameters. We have
also provided a novel physical approach to the thermodynamic modelling of the sigma phase and a reliable construction of the phase diagram of
the Cr–Fe–W system, using ab initio calculated total energy differences in the calculation of phase diagram (CALPHAD) approach.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Thermodynamic modelling; CALPHAD approach; Sigma phase; First-principles calculations; Chromium; Iron; Tungsten

1. Introduction

The sigma phase (space group 136, P42/mnm) has a relatively
complicated structure. It contains 30 atoms in the repeat cell,
which are distributed among five crystallographically inequiva-
lent sublattices (2a, 4f, 8i, 8i′ and 8j). The sigma phase is very
brittle and stable and its presence causes strong degradation of
materials. Therefore, the reliable and accurate prediction of the
regions of stability of this structure is desirable.

The full-potential electronic structure calculations can reli-
ably determine the total energy difference between the standard
element reference (SER) states and the sigma phase.

This enables us to model thermodynamic functions of the
sigma phase not only in systems where it really exists but also
even in systems, where it is not stable at all. The purpose of this
work is to perform a thermodynamic modelling of the sigma
phase in the Fe–W and Cr–W systems (where this structure is
not stable at 1 bar at any temperature) and, using the calcula-
tion of phase diagram (CALPHAD) approach [1], to construct
the phase diagram of the Cr–Fe–W system, which contains the
sigma phase regions.

∗ Corresponding author. Tel.: +420 541 129 316; fax: +420 541 211 214.
E-mail address: chvatalova@email.cz (K. Chvátalová).

2. Thermodynamic modelling

Phase equilibrium calculations performed by the CALPHAD
method [1] are based on finding the minimum of the total Gibbs
energy of the system at constant pressure, temperature and com-
position.

The total molar Gibbs energy (Gtot) is equal to the sum of
the molar Gibbs energies of all phases (Gf) multiplied by their
molar fractions (xf), i.e.

Gtot =
∑

f

xf Gf . (1)

The Gf is defined as

Gf =
∑

i

yi
0G

f
i + Gid + GE + Gmag + · · ·, (2)

where yi is the molar fraction of the component i in phase f,
0G

f
i is the molar Gibbs energy of pure constituent in the phase

f, the terms Gid and GE stand for the molar Gibbs energy of ideal
and real mixing of components in the phase f and Gmag is the
magnetic contribution to the Gibbs energy. The Gibbs energies
Gf are used as input values for phase diagram calculations.

To overcome the difficulty caused by extrapolations of ther-
modynamic functions of the sigma phase from the concentra-

0921-5093/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.msea.2006.02.474
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tion region of its real existence to regions close to the pure
constituents, a three-sublattice model for the sigma phase was
proposed by Anderson and Sundman [2]. This empirical model
reduces five sigma phase sublattices to three and contains
adjustable parameters in the expression for the Gibbs energy,
which are determined by fitting to all available experimen-
tal data. This procedure was summarised in the guideline for
reducing the number of sublattices in modelling of intermetallic
phases by the compound energy formalism (CEF) [3]. One of
the most significant shortcomings of the CEF is the restriction
of the entropy of mixing to that of an ideal random mixture. This
assumption is contained also in the paper of Pratt and Jones [4],
who used a pair-wise interaction model for the description of the
sigma phase. By the restriction to randomness, the short-range
order (SRO) is ignored and a part of the contribution of SRO to
Gibbs energy is hidden in the “excess term” after the adjustment
of parameters to experimental data. A better description of SRO
can be achieved by the cluster variation method (CVM) for con-
figurational entropy and by the cluster expansion method (CEM)
for the internal energy. The application of these approaches in
the CALPHAD treatment is promising, but not commonly used
yet [5].

Using the three-sublattice model, the Gibbs energy of the
sigma phase is described as an empirical combination of Gibbs
energies of some absolutely different structures, i.e. bcc, fcc, etc.
In this way, we are not able to express the Gibbs energy of pure
constituents in the sigma phase structure and the Gibbs energy
of the sigma phase of the corresponding binary system has to be
adjusted to phase equilibrium data. The physical background of
this procedure is, therefore, questionable. Further, it is known
from X-ray studies [6] that the mixing of the constituents takes
place in all sublattices, which is not respected by the above
mentioned approach.

2.1. Two-sublattice model of sigma phase

Recently, we have extended the application of ab initio cal-
culations of the total energies of complex phases to calculations
of phase diagrams [7–12]. Here, the energy differences between
the SER and the sigma phase structure of pure constituents were
calculated by the full-potential augmented plane wave (FLAPW)
method using the WIEN 97 code [13]. This approach enables us
to utilize full physical information about the sigma phase (based
on X-ray results) for its thermodynamic description. Knowl-
edge of the above mentioned total energy differences from the
first-principles calculations allows us to define the Gibbs energy
difference between the sigma phase and SER structures (lat-
tice stability) on physically correct energetic basis with only the
entropy term adjusted to phase equilibrium data.

Using this idea and the fact that the sigma phase does not
behave like a strictly ordered structure (mixing is possible), we
have employed a new physical two-sublattice [8] model for its
thermodynamic modelling. The molar Gibbs energy of the sigma
phase in this model is based on Eq. (2) and is defined as:

Gsigma =
∑

i

yi
0G

sigma
i − TSid + GE, (3)

where

0G
sigma
i = 0GSER

i + �E
sigma–SER
i − T �0S

sigma–SER
i , (4)

Sid = −R
∑

i

yi ln yi, (5)

GE =
∑

i�=j

GE
ij + Gter, (6)

and

GE
ij = yiyj(0L

sigma
i, j + 1L

sigma
i, j (yi − yj) + 2L

sigma
i, j (yi − yj)2).

(7)

Here R is the gas constant, T is the temperature and �E
sigma–SER
i

denotes the total energy difference between the hypothetical
sigma phase and the standard state of a given constituent. Fur-
ther, Sid expresses the entropy of ideal mixing in the sigma phase.
The parameters L can be temperature-dependent and ternary cor-
rection term Gter is defined by:

Gter = yiyjyk(yi
1Lsigma + yj

2Lsigma + yk
3Lsigma). (8)

This procedure gives a physical meaning to parameters from
the mathematical expression for the Gibbs energy difference
between the sigma phase and SER states of pure constituents.
So, the knowledge of �E

sigma–SER
i can substantially simplify

the physical modelling of the thermodynamic properties of the
sigma phase (and other relevant intermetallic phases) in the
CALPHAD method. This idea is further illustrated in this work,
where the calculations of the phase equilibrium in the Cr–Fe–W
system are performed by means of the THERMO-CALC pro-
gramme [14].

3. Results and discussion

We performed ab initio calculations of the total energy of
Cr, Fe and W in their experimentally observed structure (i.e.
bcc) and in the sigma phase structure using the FLAPW method
implemented in the WIEN 97 code [13] at the equilibrium
lattice parameters, i.e. at the volume corresponding to the mini-
mum total energy. The exchange-correlation term was evaluated
within the generalized gradient approximation (GGA) [15]. Sub-
sequently, we evaluated the total energy differences between the
sigma phase and SER state at 0 K for all studied elements as
follows:

�E
sigma–SER
Cr = 30.07 kJ mol−1 = 22.9 mRy at−1,

from ref. [7],

�E
sigma–SER
Fe = 43.33 kJ mol−1 = 33.0 mRy at−1,

from ref. [7],

�E
sigma–SER
W = 144.62 kJ mol−1 = 110.1 mRy at−1,

this work.
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The magnetic ordering of the SER phases (ferromagnetic bcc
Fe, antiferromagnetic bcc Cr and nonmagnetic bcc W) was taken
into account. The �E

sigma–SER
W difference is very large (in com-

parison with, e.g. �E
sigma–SER
Mo = 17.77 mRy at−1 [12]), which

may be indication of a very high degree of unstability of the W
sigma phase and this issue should be subject of further investi-
gation.

The values of �0S
sigma–SER
i were adjusted only to phase

equilibrium data, supposing the sigma phase structure to be
metastable. In the case of an unstable structure, where entropy is
not defined, the value of �0S

sigma–SER
i adjusted to experimental

phase data could be regarded as an “effective” value. In general,
the �0S

sigma–SER
i values (Eq. (4)) providing the phase diagram

exhibiting the best agreement with experiments are obtained by
optimisation of particular binary systems containing the sigma
phase and, if necessary, by a re-optimization using the ternary
phase equilibrium data. But in our case, the sigma phase is
not stable either in Fe–W or in Cr–W system, so the value of
�0S

sigma–SER
W could not be optimised to experimental binary

data and it was set to the same value as for Cr and Fe taken from
ref. [7].

Values used for �0S
sigma–SER
i (in J K−1 mol−1) are:

�0S
sigma–SER
Cr = 0.7, from ref. [7],

�0S
sigma–SER
Fe = 0.7, from ref. [7],

�0S
sigma–SER
W = 0.7, this work.

The last quantity needed for the evaluation of the 0G
sigma
i

in Eq. (4) is 0GSER
i term and its values for particular con-

stituents were taken from ref. [16]. The GE
ij was expressed by

the Redlich–Kister polynomial, Eq. (7), taking into account the
SRO.

Values of GE in the binary systems Fe–W and Cr–W could be
adjusted only to phase equilibrium in ternary Cr–Fe–W system
by means of the ternary term defined by Eq. (8). Therefore, we
set the starting values of L-parameters in the Fe–W sigma phase
to such values that provided G

sigma
Fe–W not too much higher than

the values of Gibbs energy of other present phases. Further, we
performed optimisation of L-parameters of the sigma phase for
Fe–W and Cr–W (including ternary ones) with respect to ternary
experimental phase equilibrium data [17].

Resulting values of L-parameters (in J mol−1) are:

0LCr:Fe = −133950 0LCr:W = 225661 − 335.883T + 0.06114T 2

1LCr:Fe = 31000 1LCr:W = −999061 + 1083.025T − 0.1964T 2

2LCr:Fe = −127000 2LCr:W = 0

0LFe:W = −390770 + 16.146T + 0.0589T 2 0LCr:Fe:W = 986778 − 829.86T

1LFe:W = 103470 − 10.135T − 0.012T 2 1LCr:Fe:W = 49184.5 − 44.595T

2LFe:W = 63257 + 43.749T − 0.0091T 2 2LCr:Fe:W = 197355 − 172.03T,

where LCr:Fe were taken from ref. [7].

To be able to describe the unstability of the sigma phase in
whole temperature region, the expression for L-parameters of
the Cr–W and Fe–W system are quadratic in temperature.

The values of thermodynamic functions of other phases in
Cr–Fe–W system were taken from ref. [17]. This paper also
presents a lot of reliable experimental phase equilibrium data
(obtained by diffusion couple technique and precisely eval-
uated by SEM–EDX method) describing phase equilibria in
the studied system at six temperatures in range between 1173
and 1673 K. These experiments were applied in our thermo-
dynamic modelling which used the two-sublattice model for
the sigma phase. The same two-sublattice model was employed
also for fcc and bcc phases (including magnetic contribution).
For other intermetallic phases the proper models [17] were
used.

The phase diagrams of the Cr–Fe–W system at 1173 and
1673 K, calculated using the two-sublattice model, are given in
Fig. 1(a and b). They are in reasonable agreement with experi-
mental data taken from ref. [17].

The composition dependencies of the Gibbs energies were
calculated for Cr–W and Fe–W systems at 1473 K. They are
shown in Fig. 2(a and b). We can see that lines 6 and 7 in
Fig. 2(b) obtained using the two- and three-sublattice model
[2], respectively, yield different description of metastability of
the sigma phase in the Fe–W system, which cannot be resolved
experimentally. It is also evident that the two-sublattice model
yields the values of Gibbs energy of the sigma phase in the
whole composition region, whereas the old three-sublattice
model gives this quantity only in a limited range of concen-
trations.

In addition to our FLAPW results for pure constituents, we
have also performed first-principles calculations of total energies
of both pure elements and alloy sigma phase by means of the lin-
ear muffin-tin orbital method in the atomic sphere approximation
(LMTO-ASA), using the code by Krier et al. [18]. In this way, we
obtained the concentration dependence of the total energy Esigma

in Fe–W and Cr–W system. As the LMTO-ASA method does
not provide reliable structural energy differences for structures
of different symmetry, we applied the values of �E

sigma–SER
i

calculated by means of the FLAPW method to obtain the energy
of formation of the sigma phases with respect to SER states in
the whole composition range (Fig. 3(a and b)). These results
suggest that the sigma phase is unstable in the whole concen-
tration range both in the Cr–W and Fe–W systems. Fig. 3(a
and b) also displays the comparison of optimised enthalpy of
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Fig. 1. (a) Calculated phase diagram of Fe–Cr–W system at 1173 K according
to the two-sublattice model of sigma phase (full lines), compared with experi-
mental equilibrium data with sigma phase from ref. [17]: crosses for equilibrium
sigma/bcc, triangles for sigma/chi, squares for bcc/sigma/chi. The greek letters
�x, �, �, �, � are used to denote the bcc, chi, Laves, sigma and mu phases, respec-
tively. (b) Calculated phase diagram of Fe–Cr–W system at 1673 K according
to the two-sublattice model of sigma phase (full lines), compared with experi-
mental equilibrium data with sigma phase from ref. [17]: crosses for equilibrium
sigma/bcc, triangles for bcc/sigma/mu. The greek letters �x, � and � are used
to denote the bcc, sigma and mu phases, respectively.

formation from thermodynamic modelling and energy of for-
mation from ab initio calculations. Thermodynamic modelling
suggests energetic stabilization of sigma phase in Fe–W and par-
tially in Cr–W system. These values are connected with enthalpy,
modelled in Gibbs energy as “effective” value and cannot be
exactly compared with ab initio calculations valid for 0 K.

Fig. 2. (a) Concentration dependence of the Gibbs energy for phases in the Cr–W
system at 1473 K. The notation of the lines: (1) L, (2) �, (6) � (two-sublattice
model). The letters L, � and � are used to denote the liquid, bcc and sigma phases,
respectively. (b) Concentration dependence of the Gibbs energy for phases in
the Fe–W system at 1473 K. The notation of the lines: (2) �, (3) �, (4) �, (5)
R, (6) � (two-sublattice model), (7) � (three-sublattice model) according to ref.
[2]. The letters �, �, �, R and � are used to denote the bcc, fcc, mu, R and sigma
phases, respectively.

The sigma phase in Fe–Cr system is not stable above about
1100 K. However, as we can see by comparison of Fig. 1(a and
b), the addition of tungsten shifts the stability region of the sigma
phase in the Cr–Fe–W system to higher temperature. The large
value of �E

sigma–SER
W suggests that the sigma phase structure

in pure W is not favourable and unstable. Therefore, thermody-
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Fig. 3. (a) Comparison of optimized enthalpy of formation (full line, thermo-
dynamic calculations) and the total energies of formation of sigma phase with
various occupancies of sublattices (diamonds, ab initio calculations) with respect
to energies of sigma phases of both constituents in the Cr–W system. The dia-
monds represent the total energies of all 32 possible occupations of sublattices
calculated at equilibrium volumes. The lower line represents the total energy
of linear combination of total energies of SER structures based on equilibrium
lattice parameters. (b) Comparison of optimized enthalpy of formation (full
line, thermodynamic calculations) and the total energies of formation of sigma
phase with various occupancies of sublattices (diamonds, ab initio calculations)
with respect to energies of sigma phases of both constituents in the Fe–W sys-
tem. The diamonds represent the total energies of all 32 possible occupations
of sublattices calculated at equilibrium volumes. The lower line represents the
total energy of linear combination of total energies of SER structures based on
equilibrium lattice parameters.

namic modelling with “effective” values of entropy and Gibbs
energy of the sigma phase has to be performed. Due to the large
value of �E

sigma–SER
W the thermodynamic modelling also can-

not reproduce ternary phase diagram by only ternary interaction
term without lowering energetic difference �Esigma–SER in both
Fe–W and Cr–W systems in the region of low W concentration
(Fig. 3(a and b)). This large negative energetic term is compen-
sated by the large negative entropy term yielding less negative
Gibbs energy of the sigma phase (Fig. 2(a and b)).

4. Conclusions

It was found that the two-sublattice model of the sigma phase
may be used for a reasonable description of phase equilibrium
with this structure in the Fe–Cr–W system, although the sigma
phase is not stable in two binary subsystems, i.e. in Fe–W and
Cr–W. These good results were obtained in spite of the fact
that the calculated value of �E

sigma–SER
W = 144.62 kJ mol−1 is

very large and should deserve further investigation. It may be
an indication for a high degree of unstability of the sigma phase
in both binary systems Fe–W and Cr–W. From the results pre-
sented in our article, it may be concluded that ab initio calculated
energy differences between the sigma and SER structures for
pure constituents could be successfully employed in the CAL-
PHAD method.

Energy of formation of the sigma phase with respect to SER
states obtained by combining the LMTO-ASA and FLAPW
calculations is mainly positive and in agreement with sup-
posed metastability of this phase in Fe–W and Cr–W binary
systems.

Our first-principles calculations may be considered as the first
step to determine the stability of various structures and to assess
the formation of unwelcome phases devaluating the properties
of materials.
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a b s t r a c t

The total energies of Laves phases with various occupations of inequivalent lattice sites in all three
structural forms C14, C15 and C36 have been calculated ab initio by a pseudopotential VASP code with a
complete relaxation of all structural parameters. The relative stability of Cr2Zr polytypes is discussed. The
calculated values were used in two-sublattice and three-sublattice models for the re-modeling of Gibbs
energies of Laves phases and subsequently for the calculation of phase diagram of the Cr–Zr system by the
CALPHAD method. A comparison of phase diagrams obtained by our model using first-principles results
with previous treatments using an empirical approach as well as with experimental phase equilibrium
data is presented. An application of the structural energy differences (lattice stabilities) calculated ab initio
provides a similarly good description of the phase diagram of the Cr–Zr system as previous studies, but
much fewer adjustable parameters are needed for a thermodynamic description of Laves phases.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Laves phases crystallize in cubic (MgCu2, C15) or hexagonal
(MgZn2, C14 and MgNi2, C36) type structures [1] which differ
only by a different stacking of the same four-layered structural
unit. These structures belong to the class of Frank–Kasper phases
exhibiting topologically close-packed structures. Laves phases
have become candidates for some functional as well as structural
applications, e.g. hydrogen storage materials, such as X2Zr (X =
V,Mn,Ni), and materials with a high strength up to high
temperatures [2]. Copper–chromium based alloys are also used
for latter reasons [3], but at higher temperatures they suffer from
intergranular cavitation. It has been found that the addition of
magnesium or zirconium to copper–chromium alloys improves
their mechanical properties at higher temperatures without
impairing their good electrical and thermal conductivity [3]. It
may be supposed that Cr2Zr precipitates may be responsible for
the enhancement of these technologically useful properties, which
increases interest in Cr–Zr systems.
A rigorous approach for obtaining thermodynamic descrip-

tion of phases in Cr–Zr system was published in [4,5]. The ther-
modynamic assessment of data was carried out using the Wag-
ner–Schottky model [4] and sublattice model [5] for Laves phases

∗ Corresponding author at: Department of Chemistry, Faculty of Science,Masaryk
University, Kotlářská 2, CZ-611 37 Brno, Czech Republic. Tel.: +420 549498134; fax:
+420 541211214.
E-mail address: vrestal@chemi.muni.cz (J. Vřešt’ál).

including a thorough analysis of phase equilibrium data in the lit-
erature [6–12]. Unfortunately, no thermodynamic data were avail-
able at that time and are still lacking.
As a guide for thermodynamic assessment in [4,5], the empirical

rules [13,14] could only be used.
In thiswork,we have calculated the differences of total energies

between all three Laves phase structures (hexagonal C14, C36, and
cubic C15) and Standard Element Reference (SER) structures of
the constituents (antiferromagnetic BCC-Cr and nonmagnetic HCP-
Zr) by ab initio method. These values represent the first available
thermodynamic quantities, which encouraged us to re-assess the
whole Cr–Zr system.

2. Ab initio calculations of total energies

Our electronic structure calculations were carried out within
the Density Functional Theory (DFT). We have used the pseu-
dopotential method [15] incorporated into the Vienna Ab initio
Simulation Package (VASP) code [16,17] combined with the
Projector AugmentedWave-Perdew–Burke–Ernzerhof (PAW-PBE)
pseudopotential [18–20]. This method was applied to evaluate the
total energies of all three Laves phase structures (C14, C15 and C36)
and the SER structures. The cut-off energy restricting the number
of plane waves in the basis set was 295 eV and 201 eV for Cr and
Zr, respectively.
Spin polarization was included in BCC antiferromagnetic Cr.

As to Laves phases, we performed a pilot study for hypothetical
Cr2Cr Laves phase with a C15 structure. It turns out that the

0364-5916/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.calphad.2008.11.003
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Table 1
The calculated and experimental lattice parameters of the SER structures. The symbols a and c stand for lattice constants, V is the atomic volume and1 shows the relative
difference between the calculated and experimental atomic volume (1 A= 100 pm).

SER

Structure a (pm) c (pm) c/a V/atom (107 pm3) 1(%)

BCC Cr Exp. [21] 287.87 287.87 1.0000 1.19281
Antiferromagnetic Relax. 285.48 285.48 1.0000 1.16327 −2.48
HCP Zr Exp. [22] 323.18 514.83 1.5930 2.32835
Nonmagnetic Relax. 323.55 516.95 1.5977 2.34330 +0.64

Table 2
Optimized structural parameters of the C14, C15 and C36 Laves phases found in this work. The symbols a and c stand for lattice constants, x, y and z are the internal structural
parameters, V is the atomic volume. The occupation of sublattices of various Laves phases in the Cr2Zr configuration was as follows: C14: Cr(2a, 6h), Zr(4f), C15: Cr(16d),
Zr(8a), C36: Cr(4f, 6g, 6h), Zr(4e, 4f). (1 A= 100 pm).

Structure C14 C15
a (pm) c (pm) V/atom (107 pm3) 4f–z 6h–x 6h–y a (pm) V/atom (107 pm3)

Exp. Cr2Zr [21] 510.2 827.3 1.5542 0.057 0.829 0.658 720.0 1.5552
Calc. Cr2Zr 508.7 807.4 1.5076 0.060 0.833 0.666 712.4 1.5062
Cr2Cr 464.1 766.3 1.1912 0.046 0.829 0.658 658.0 1.1873
Cr6Zr6 636.3 636.7 1.8601 0.125 0.826 0.651 – –
CrZr2 647.9 674.3 2.0426 0.132 0.814 0.628 781.0 1.9847
Cr2Zr10 617.8 773.9 2.1319 0.071 0.833 0.667 – –
Zr2Zr 575.9 959.8 2.2970 0.060 0.825 0.649 824.9 2.3386

C36
a (pm) c (pm) V/atom (107 pm3) 4e–z 4f–z 4f–z 6h–x 6h–y

Exp. Cr2Zr[21] 510.0 1661.1 1.5592 0.094 0.844 0.125 0.167 0.334
Calc. Cr2Zr 505.6 1633.9 1.5071 0.095 0.844 0.123 0.166 0.332
Cr2Cr 465.1 1523.1 1.1889 0.100 0.849 0.124 0.162 0.325
Cr6Zr6 634.8 1281.4 1.8633 0.062 0.813 0.132 0.157 0.314
CrZr2 646.5 1363.2 2.0557 0.058 0.809 0.129 0.144 0.288
Cr2Zr10 617.8 1544.5 2.1270 0.089 0.838 0.119 0.167 0.333
Zr2Zr 577.1 1922.4 2.3106 0.096 0.846 0.133 0.155 0.311

spin polarized Cr2Cr in the C15 structure is more stable than the
nonmagnetic one by 31.2 meV/at (3.01 kJ mol−1 of atoms) which
means that the magnetism of Laves phases should be considered
at 0 K. However, at ambient temperatures, Laves phases in the
Cr–Zr system are paramagnetic. Therefore, in the present paper,
calculations of total energy differences for comparison of their
relative stability were performed for nonmagnetic states only.
Preliminary calculations of Cr2Cr, Cr2Zr, Zr2Cr, Zr2Zr configu-

rations of C14, C36 and C15 Laves phase structures needed for
two-sublattice models (A, B)2(A, B)1 and also Cr6Zr6 and Cr2Zr10
configurations for C14 and C36 structures needed for three-
sublattice model (A, B)4(A, B)6A2 were accomplished. Calcula-
tions were carried out using the experimentally found lattice
parameters for Cr2Zr configurations published in [21] except for
the C14 and C15 Laves phase of pure chromium,whichwas studied
using the parameters of corresponding Cr2Ta phases [21].
The structural parameters for the SER states of Zr were taken

from [21] and of Cr from [22]. First, we performed convergence
tests of total energies with respect to the number of k-points. The
range of optimum values for the C14 Laves phases extends from
a grid of 15×15×11 points (pure Cr), 21×21×13 points (Cr6Zr6),
21×21×15 points (pure Zr), 23×23×15 points (Cr2Zr10) and
25×25×19 points (Cr2Zr) towards 25×25×17 points (CrZr2). A
similar interval was obtained for the C15 Laves phases which goes
froma grid of 15×15×15 points (pure Cr), 21×21×21 points (pure
Zr and CrZr2) towards 23×23×23 points (Cr2Zr). A smaller range
was obtained for the C36 Laves phases which spreads from a grid
of 15×15×13 points (pure Cr, and CrZr2) and 17×17×13 points
(pure Zr) towards 19×19×13 points (Cr2Zr, Cr6Zr6 and Cr2Zr10).
In the case of SER structures, we used a grid of 13×13×13 and
21×21×15 points for antiferromagnetic BCC Cr and nonmagnetic
HCP Zr, respectively. Cr atoms with up and down spins were
arranged as in B2 (CsCl) structure with a magnetic moment per
atom equal to 1.0754 µB.

After these test calculations, each structure was fully relaxed
which yielded the minimum total energy and the structural
parameters of the corresponding equilibrium structure. To relax all
configurations of Laves phases we have used a conjugate gradient
algorithm. We calculated forces and stress tensors and relaxed
positions of ions, cell shape and volume. After the relaxation
procedure the static calculations were performed by tetrahedron
method including Blöchl corrections [23]. The Cr and Zr SER
structures were optimized using the quest for minima on the
energy/volume or energy/volume and energy/(c/a) curves. The
results obtained are summarized in the following text.
The calculated optimum lattice parameters for the SER struc-

tures are listed in Table 1, those for the cubic C15 structure and
hexagonal C14 and C36 structures in Table 2.
Experimental and calculated structural parameters of Cr2Zr in

C14, C15 and C36 arrangement agree quite well. The calculated
equilibrium atomic volume range from 96.7% Vexp for C36 Cr2Zr,
to 96.8% Vexp for C15 Cr2Zr and 97.0% Vexp for C14 Cr2Zr; here Vexp
is the experimental atomic volume of respective structure of Cr2Zr.
For the sake of thermodynamic modeling, the total energies of the
Cr6Zr6 and Cr2Zr10 occupations for C14 and C36 structure were
calculated.
The total energy differences10EL−SER between the Laves phases

of various types and SER states are then given in Table 3, where
they are compared with the results of recent calculations [24–26].
It may be seen from Table 3 that the stability of Laves phase

configurations of Cr2Zr decreases in the sequence C15, C36 and
C14. This is in agreement with the results of study [26], where
the cutoff energy of 400 eV was chosen. The enthalpies of
formation in [26] are in reasonable agreement with the results
presented here. Recent experimental results of direct reaction
calorimetry [27] suggest that one can estimate the standard
enthalpy of formation of Cr2Zr (presumably in the most stable
C15 structure) to be about −3 kJ mol−1 of atoms. This value is
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Table 3
Energy differences,10EL−SER , between the total energy of Laves phases of various types and the weighted average of total energies of the SER states (BCC antiferromagnetic
Cr, HCP nonmagnetic Zr) calculated in this work and compared with the values available in literature [24–26].

10EL−SER(kJ mol−1 of atoms)
Composition Cr2Cr Cr2Zr Cr6Zr6 CrZr2 Cr2Zr10 Zr2Zr

C14 This work 28.63 −1.22 44.46 66.73 15.21 20.51
Refs. [24–26] 27.80 [24] −3.0 [26] – – – 19.70 [24,25]

C15 This work 27.29 −2.88 – 99.76 – 27.35
Refs. [24–26] 26.40 [24] − 4.8 [26] – – – 26.50 [24,25]

C36 This work 27.75 −2.14 46.25 71.18 15.04 22.80
Ref. [26] – −4.0 [26] – – – –

only an estimate because the reaction in calorimeter was not
fully complete. The value for standard enthalpy of formation
determined in a similar Cr2Hf system [27], which is about
−5 kJ mol−1 of atoms, supports this estimated value. Both of them
are in a reasonable agreement with present calculated results (see
Table 3).
The values of calculated structural energy differences for all

other compositions are positive and about an order of magnitude
higher than those of Cr2Zr. This is a quantitative confirmation
of the fact that the Laves phase structures are energetically
very disadvantageous configurations for these compositions.
Experimental evidence of existence of all three structure types of
Laves phases in Cr2Zr can be found in [11,12].
Ab initio calculated energy differences represent thermody-

namic data which were used for the first time for thermodynamic
assessment of phase diagram in the Cr–Zr system in this paper.

3. Thermodynamic modeling

A two-sublatticemodel (A, B)2(A, B), where A = Cr and B = Zr,
fits precisely to the C15 structure. Here two crystallographically
different positions exist, namely 8a for Zr atoms and 16d for Cr
atoms [28,29]. In the case of hexagonal structures the occupation
of positions is different. It can be described within a three-
sublattice approach. It turns out that the three-sublattice model
(A, B)4(A, B)6A2 corresponds perfectly to the C14 structure [28,
29]: Zr atoms go to the 4f positions and Cr atoms occupy the
positions 2a and 6h but they can mix in 4f and in 6h positions.
In the C36 configuration, the Zr atoms prefer the positions 4e and
4f and Cr atoms go to positions 4f, 6g, and 6h [21] and, therefore,
in the three-sublattice model the 4e and 4f positions for Zr atoms
and 6g and 6h positions for Cr atoms have to bemerged. According
to the crystallographic data [21], there is no mixing of atoms in
the sublattices in the binary system studied. However, the mixing
of atoms in sublattices in ternary Laves phases has already been
investigated [30].
In the two-sublatticemodel, Gibbs energy of the reference state

is:

Gref = y1Ay
2
A
0GA:A + y1By

2
A
0GB:A + y1Ay

2
B
0GA:B + y1By

2
B
0GB:B (1)

with lattice fractions of components A and B in sublattices 1 and 2
being, y1A, y

1
B, y

2
A and. y

2
B. The Gibbs energies of ‘‘end-members’’ can

be temperature dependent:

0Gi:j = ai:j + bi:jT + ci:jT ln(T ). (1a)

Here ai:j, bi:j and ci:j are constants determined from experiment or
from optimization of the thermodynamic parameters.
FromGibbs energies of four ‘‘end-members’’, only one, the 0GA:B

can be experimentally determined in the Cr–Zr system (namely,
that one for the Cr2Zr composition).
Furthermore, the quantities 0GA:A and 0GB:B characterize,

formally, theGibbs energies of pure constituents in the Laves phase
structures which may be given some reasonable positive value
in CALPHAD modeling. In the present paper, the arbitrariness in

choosing the values of the Gibbs energy of these formal ‘‘end-
members’’ is overcome by determining their total energies with
the help of ab initio calculations. Thermodynamic descriptions of
the other phases (liquid, HCP and BCC) were performed with the
help of the subregular solution model.
The molar Gibbs energy of the whole system is defined as the

sum of molar Gibbs energies of all included phases, Gf , multiplied
by their molar fractions, xf :

Gtot =
∑
f

xf Gf , where (2)

Gf =
∑
i

yi 0G
f
i + G

id
+ GE + Gmag + Gpres. (3)

The molar Gibbs energy of phase Gf contains the sum of molar
Gibbs energies of pure constituents i in the phase f multiplied by
their lattice fractions (

∑
yi 0G

f
i ), the terms describing ideal (G

id)
and nonideal (GE) mixing and, when needed, some special terms
such as magnetic (Gmag ) or pressure (Gpres) contributions. For a
binary system (A–B), the terms describing the mixing may be
evaluated by relatively simple formulas as follows:

Gid = RT (yA ln yA + yB ln yB), (4)

GE = yAyB(L0(T )+ L1(T )(yA − yB)+ L2(T )(yA − yB)2 + · · ·), (5)

where L0, L1 and L2 are the expansion coefficients of the
Redlich–Kister polynomial [31] and T is temperature. Temperature
dependence of L-parameters is again given by an equation of type
(1a).
For the liquid phase, we use a standard model (A, B)1, for the

BCC phase we employ the usual (A, B)1(Va)3 model (Va denotes
a vacancy), for the HCP phase we apply the (A, B)1(Va)0.5 model
and for Laves phases we use the (A, B)2(A, B)1 or (A, B)4(A, B)6A2
models. Ideal mixing in two-sublattice model is then described by

Gid = RT [2(y1A ln y
1
A + y

1
B ln y

1
B)+ (y

2
A ln y

2
A + y

2
B ln y

2
B)]. (4a)

Here the superscripts are related to sublattices 1 and 2, where A
and B atoms aremixed. In the case of two-sublatticemodel of Laves
phase [28,29], the sumofmolar Gibbs energies of pure constituents
i in the phase f multiplied by their lattice fractions (

∑
yi 0G

f
i ) is

substituted by Eq. (1). The Gibbs energies of the ‘‘end-members’’
have to be calculated as mentioned below. The difference in Gibbs
energies of the pure constituents in the phase f (L = Laves phase)
and in the SER state (antiferromagnetic BCC Cr and nonmagnetic
HCP Zr) is given by (for simplicity, the subscript i is omitted)

10GL−SER = 0GL − 0GSER = 10HL−SER − T10SL−SER, (6)

where H is enthalpy and S entropy. The difference in enthalpies,
10HL-SER, is obtained as

10HL−SER = 10EL−SER +
∫
1C L−SERp dT , (7)

Appendix IX: Pavlů J. et al., CALPHAD 33 (2009) 382 85

Reprinted from CALPHAD, 33, Pavlů J., Vřešt’ál J., Šob M.,
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Table 4
Optimized thermodynamic parameters for equilibrium phases (liquid, HCP and
BCC) in the Cr–Zr system.

Phase Parameter value (Eq. (5)) in J mol−1 of atoms

BCC L0 = 32000
L1 = 5000

HCP L0 = 25000
L1 = −6500

L0 = −21050+ 12.61 ∗ T
Liquid L1 = −8700+ 6.30 ∗ T

L2 = −9000

and vibrational contribution to the entropy can be expressed by

10SL−SER =
∫
(1C L−SERp /T )dT , (8)

where Cp is the heat capacity at constant pressure.
At the equilibrium volumewemaywrite10HL−SER = 10EL−SER,

i.e. the difference in enthalpies is equal to the total energy
difference between the Laves phase and the SER state at T = 0 K,
whichwe calculate ab initio in the present paper. These valuesmay
be successfully employed in the phase diagram calculations, as we
show below.
Approximating the1C L−SERp by a simplest polynomial1C L−SERp =

a+bT , we obtain by integration in Eqs. (7), (8) and substitution into
(6):

10GL−SER = 10EL−SER + T (a− b− a ln(T ))+ (b/2)T 2. (9)

For metallic systems and in not very extended temperature
intervals, we may assume b = 0 and ignore the temperature
dependence of ln(T ). Then the coefficient at temperature T
in Table 5 represents some average value of the product
1C L−SERp ln(T ), adjusted to experimental data. It follows from the
calculated phase diagrams (Section 4) that this approximation is
quite reasonable.

4. Calculation of phase diagrams

The equilibrium phase composition arises as a result of
minimization of Gibbs energy in a closed system at constant
external conditions (temperature and pressure).
For modeling of the C15 Laves phases we employ the

two-sublattice model (A, B)2(A, B) [28,29]. We describe these

structures as the ordered solid solution phases (see Eq. (1)) with
four ‘‘end-members’’. Their Gibbs energy is modeled with the help
of ab initio total energy differences, presented in Table 3. The
C14 and C36 Laves phases are modeled by three-sublattice model
(A, B)4(A, B)6A2 as described above. In both cases, Gibbs energy
is then obtained from Eq. (6) where the entropy term, containing
also the vibration contribution to the enthalpy, is adjusted to the
experimental data. The L-parameters describing the excess Gibbs
energy GE of non-ideal mixing in Eq. (5) are obtained in the same
way. The thermodynamic parameters for all other phases (liquid,
HCP and BCC) in Cr–Zr system are based on unary data from [32].
For the sake of completeness, they are presented in Table 4.
It may be seen from Table 4 that the enthalpy of mixing in

liquid phase at component ratio 1:1 (−21.05 kJ mol−1 of atoms)
can be compared with the guess of Miedema [13] (−36 kJ mol−1
of atoms) and also the ratio 1HM/1SE in liquid phase (1669 K)
can be related to Tanaka’s recommendation (1064 K) [14]. Both
values differ considerably from the value reported by [4,5],which is
nearly an order of magnitude higher. Miedema’s estimate [13] and
Tanaka’s recommendation [14] are based on statistical evaluation
of corresponding experimental data and their reliability is usually
better than±50%.
Numerical presentation of optimized thermodynamic param-

eters describing the Laves phases C14, C36 and C15 in the Cr–Zr
system is given in Table 5. This optimization is, of course, not the
standard CALPHAD optimization as the ab initio calculated values
shown in boldface in Table 5 are kept fixed.
Let us note here that the values in Table 3 and in Table 5 are

given in kJ or J per mol of atoms. It may be seen that the number of
adjusted parameters is substantially lower (3 parameters for every
Laves phase in this work) than in [4,5] (6 parameters for every
Laves phase using Wagner–Schottky model and 8 parameters for
every Laves phase when using sublattice model). It is evident that
C36 and C14 structures are stabilized by entropy with highest
entropy contribution for C14 structure.
The calculated parts of the phase diagram of Cr–Zr system are

presented in Fig. 1(a)–(c), where they are compared with available
experimental data.
Averaging of the literature data [8–11] used in Fig. 1 yields

the values of invariant temperatures summarized in Table 6. Here
we may see the differences between these invariant temperatures
with those calculated by [4,5] and obtained in this work. It may
be seen that root-mean-square deviation is slightly lower for our
values in comparison with the values found in [4,5].

Table 5
Optimized thermodynamic parameters describing the Laves phases C14, C15 and C36 in Cr–Zr system. Ab initio calculated values shown in boldface were kept fixed during
the CALPHAD optimization and, were taken from Table 3 (see text). Values of standard Gibbs energies were taken from [32].

Structure Parameters G (Eq. (1)) and L (Eq. (5)) in J mol−1 of atoms

G(Cr:Cr:Cr) = 28633+ GHSERCR
G(Cr:Zr:Cr) = −1217.5− 2.996 ∗ T+ 0.6667 ∗ GHSERCR+ 0.3333 ∗ GHSERZR
G(Zr:Cr:Cr) = 44457+ 0.5 ∗ GHSERZR+ 0.5 ∗ GHSERCR

C14 G(Zr:Zr:Cr) = 15214+ 0.8333 ∗ GHSERZR+ 0.1667 ∗ GHSERCR
L(Cr:Cr, Zr:Cr; 0) = −17417
L(Cr, Zr:Zr:Cr; 1) = −5333

G(Cr:Cr) = 27292+ GHSERCR
G(Cr:Zr) = −2875.0− 2.177 ∗ T+ 0.6667 ∗ GHSERCR+ 0.3333 ∗ GHSERZR
G(Zr:Cr) = 99760+ 0.6667 ∗ GHSERZR+ 0.3333 ∗ GHSERCR

C15 G(Zr:Zr) = 27351+ GHSERZR
L(Cr:Cr, Zr; 0) = −14700
L(Cr, Zr:Zr; 0) = −7800

G(Cr:Cr:Cr) = 27752+ GHSERCR
G(Cr:Zr:Cr) = −2140.7− 2.528 ∗ T+ 0.6667 ∗ GHSERCR+ 0.3333 ∗ GHSERZR

C36 G(Zr:Cr:Cr) = 46254+ 0.5 ∗ GHSERZR+ 0.5 ∗ GHSERCR
G(Zr:Zr:Cr) = 15043+ 0.8333 ∗ GHSERZR+ 0.1667 ∗ GHSERCR
L(Cr:Cr, Zr:Cr; 0) = −16108
L(Cr, Zr:Zr:Cr; 0) = −4867
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Fig. 1. Comparison of the phase diagram of Cr–Zr system calculated in this work with corresponding experimental data. (a) Phase diagram Cr–Zr. (b) Region of stability of
Laves phases. (c) The Zr-rich region. Experimental points from various authors are: (a) Liquidus: F [8], ♦ [10],+ [11]; (b) 3 phases: + [11], 2 phases: ♦ [11], C15: ◦ [10],
∇ [11], � [12], C36:× [11],F [12], C14:4 [10]; (c) Solidus:F [6], (BCC-Zr+ C15):1 [6], ◦ [7](HCP-Zr+ C15): ∇ [6] BCC-Zr:♦ [6],× [9].

Table 6
Invariant temperatures and compositions based on literature data: [8–11] (temperatures), [9,11] (compositions), calculated in [4,5], and calculated in this work. (Index m
means congruent melting, E eutectic, P peritectic and e eutectoid reactions.) The quantities xZr give the concentration of Zr in the phases denoted in the 2nd–4th columns.

Type Phases Experiment [8–11] Calculated in [4,5] Calculated-this work
(1) (2) (3) T xZr(1) xZr(2) xZr(3) T xZr(1) xZr(2) xZr(3) T xZr(1) xZr (2) xZr(3)

m Liquid C14 – 1948 0.336 0.336 – 1950 0.332 0.332 – 1952 0.346 0.346 –
P Liquid C36 C14 1895 0.45 0.35 0.35 1898 0.450 0.348 0.349 1898 0.502 0.362 0.363
P Liquid C36 C14 1895 0.20 0.32 0.32 1897 0.225 0.316 0.313 1901 0.231 0.331 0.330
E Liquid BCC C36 1859 0.193 – 0.33 1864 0.172 0.011 0.310 1853 0.193 0.029 0.324
P Liquid C36 C15 1835 0.55 0.36 0.36 1833 0.570 0.355 0.355 1834 0.577 0.369 0.369
e BCC C36 C15 1805 – 0.32 0.32 1818 0.010 0.310 0.311 1812 0.027 0.324 0.325
E Liquid BCC C15 1606 0.78 – 0.36 1605 0.763 0.916 0.378 1597 0.718 0.922 0.383
e BCC HCP C15 1105 0.984 0.986 0.34 1110 0.982 0.995 0.360 1104 0.977 0.991 0.358

It is evident that our approach provides a very good description
of the Cr–Zr Laves phase stability range. Our calculated phase
equilibria agree also very well with the experimental phase
equilibrium data of the Cr–Zr system.
From Fig. 1 it is also evident that the approach employing

the total energy differences calculated ab initio in both the two-
sublattice and three-sublatticemodel of Laves phases describes the
phase diagrams (experimental points) in Cr–Zr system very well.
The number of parameters needed for a satisfactory description
of Laves phases in phase diagrams is substantially smaller in the
case of employing the ab initio calculated parameters than in
previous works of [4,5]. It seems that physically based energy

part of the Gibbs energy surface of Laves phases (i.e. that one
obtained from ab initio calculations) does not require such a
strong entropy correction. On the other hand, as it can be seen
from Table 6, the optimized semiempirical parameters used in [4,
5] also provide a very good description of experimental phase
data. Therefore, the standard CALPHAD optimization procedure
can reproduce phase diagram satisfactorily even when some
parameters describing Gibbs energy do not have any physical
background. However, introducing physically based parameters is
advantageous as it makes the optimization process predictable,
simple, more effective and more reliable. In spite of the progress
in modeling using ab initio values of energies of formation, any
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experimental thermodynamic quantity, describingmixing in Cr–Zr
system, is highly desirable.

5. Conclusions

It was shown that ab initio calculated structural energy
differences fit well the two-sublattice model of C15 and three-
sublattice model of C14 and C36 Laves phases. Moreover, we
need a substantially smaller number of adjustable parameters
necessary for thermodynamic description of Laves phases (Table 5)
than in previous attempts in literature. Also, our results fulfil
empirical rules for the liquid phase [13,14] much better than in
previous assessments [4,5]. Present ab initio analysis of relative
stability of Laves phase structures confirms the sequence of
decreasing stability C15–C36–C14, and it can be fully utilized in
the thermodynamic modeling of those phases.
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a b s t r a c t

First-principles electronic structure calculations of total energy differences between the sigma phase and
Reference States (RS) of pure constituents in Cr–Fe and Cr–Co systems performed by various methods are
presented and compared with enthalpies of formation measured by calorimetry. Both measurements and
calculations provide positive values of enthalpy of formation with respect to the RS. Negative values can
be obtained when the pure constituents in the sigma phase structure are taken as the RS. Total energy
differences of all sigma phase configurations involved are calculated at equilibrium volumes, reproducing
well the experimental energy of formation of the sigma phase. The magnetic configurations in Cr–Fe and
Cr–Co are also investigated and the stabilizing effect of magnetic ordering in sigma phase at 0 K is
demonstrated. It turns out that the magnetic moment depends on the type of the occupied sublattice and
total composition of alloy.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In 1923, Bain [1] observed a new nonmagnetic (NM) phase in
Cr–Fe system. It was named the sigma phase and, at present, about
50 binary transition-metal systems exhibiting this phase are known
[2], e.g. Fe–Mo, Co–Mo, or Fe–V. Twenty years after the sigma phase
detection Cook and Jones [3] described its crystallographic struc-
ture using X-rays. It has the space group No. 136 (P42/mnm) and its
repeat cell contains thirty atoms accommodated in five crystalo-
graphically inequivalent sublattices (2a, 4f, 8i, 8i0 and 8j) [4–6].

The sigma phase is very crucial in material science and tech-
nology because its properties are very disadvantageous. It is brittle
and therefore it can cause a strong degradation of material (crack
nucleation sites). In practice, it develops in heat affected zones of
welded superaustenitic stainless steels [7] and it was concluded
that it is formed after longer ageing times in the temperature range
of 500–1100 �C. It is also known that high concentrations of Cr and
Mo promote precipitation of this phase.

From the thermodynamic point of view, the sigma phase is very
stable and its stability may be theoretically assessed using the
Gibbs energy difference between the sigma phase and Reference
States (RS). In our work, structures of pure constituents which are
stable at Standard Ambient Temperature and Pressure (SATP) were
taken as RS, i.e. ferromagnetic (FM) hcp Co, antiferromagnetic
(AFM) bcc Cr and ferromagnetic bcc Fe. The Gibbs energy of
formation of sigma phase (DGf) is then given by

DGf [ Gs L GRS [ ðHs L HRSÞL ðSs L SRSÞT ;

where T is the thermodynamic temperature, S is the entropy, H is
the enthalpy and the superscripts s and RS associated with G, H and
S refer to the sigma phase and the RS state, respectively.

Unfortunately, it is not possible to measure the values of Gibbs
energies of formation of sigma phase directly. The only possibility
to characterise the process of formation is the measurement of
enthalpy of formation (DHf) by calorimetry. If we want to compare
the measured results with the ab initio values (calculated at
temperature of 0 K), we may take advantage of the fact that, in
metallic systems, the enthalpy of formation changes with temper-
ature only very little because the temperature dependencies of the
heat capacity of alloy sigma phase and RS structures are similar.
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University, Kotlářská 2, CZ-611 37 Brno, Czech Republic.

E-mail addresses: houserova@ipm.cz (J. Pavlů), vrestal@chemi.muni.cz (J. Vřešťál),
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Ab Initio Study of Formation Energy and Magnetism of Sigma Phase in Cr–Fe and Cr–Co Systems,

212-220, Copyright (2010), with permission from Elsevier.



Under such assumption we can extend the region of validity of
the equation DHf¼DEf, where DEf is the ab initio calculated energy
of formation of sigma phase, from T¼ 0 K to higher temperatures.
Subsequently the value of DEf can also be used to evaluate DGf at
finite temperatures. Here the entropy term, DSf, is usually adjusted
to the phase equilibrium data during the phase diagram calcula-
tions. Alternatively, the difference in vibrational entropy may be
calculated with the help of the Debye approximation using phonon
spectra and the difference in configurational entropy may be
obtained by cluster variation method.

Let us note that vast majority of all measured values of enthalpy
of formation reported by various authors [8–11] in Cr–Fe and Cr–Co
systems as well as the calculated values [12,13] is positive. There-
fore, from this point of view we could expect that the sigma phase is
unstable with respect to the RS.

On the other hand, the obvious high stability of sigma phase is
well known from experiments. Consequently, we can suppose that
the configurational and vibrational entropies are responsible for
this stability at higher temperatures.

In our previous paper [12], the calculations of energies of
formation of sigma phase were performed at experimental lattice
volumes of sigma phases, which is the first approximation only.
The aim of this paper is to carry out these calculations on the
physically more appropriate equilibrium volume basis. Further-
more, as Co, Cr and Fe in RS reveal high magnetic moments and
the magnetism of the sigma phase in the Cr–Fe system at low
temperatures was reported by both experimentalists [14,15] and
theoreticians [16–19], we also analyse the stability of magnetic
configurations. It transpires that magnetic ordering can influence
the structure and stability of the sigma phase but, in agreement
with Ref. [15], its importance depends on the composition of the
alloy.

The paper is organized as follows: After introduction, Section 2
gives the details of our calculations. Section 3 contains the discus-
sion of the results, and Section 4 summarizes our conclusions.

2. Calculations of total energies

To explain the experimentally determined heat of formation of
the sigma phase, we have to know which combinations of occu-
pancies of sublattices in the sigma phase structure are the most
stable ones at a given concentration and, therefore, which total
energies should be compared with the calorimetric data. For this
purpose, we performed the first-principles electronic structure
calculations of total energies for all possible 32 configurations
occurring in the sigma phase structure of the systems studied.
However, these configurations must be approached as some
limiting situations as the experimental findings in literature
suggest that there is no exclusive occupancy of any sublattice in
sigma phases studied [20,21].

Total energies of Cr–Fe and Cr–Co compounds as well as of pure
constituents in sigma phase structure were computed by means of
the Linearised Muffin-Tin Orbital method in the Atomic Sphere
Approximation (LMTO-ASA) [22] using the code by Krier et al. [23].
The exchange-correlation energy was evaluated within the Gener-
alised Gradient Approximation (GGA) [24]. We have used the s-p-
d basis with the f states incorporated by the down-folding procedure
and with the combined-correction term included [22,23]. This is
apparently the best performance the LMTO-ASA method may
provide.

As the Cr–Fe and Cr–Co sigma phases existing at ambient
conditions are not spin-polarised, the calculations for pure
constituents were also performed for a non-spin-polarised state
unless stated otherwise.

As it was mentioned above, the sigma phase contains five crys-
talographically inequivalent sublattices. The positions of most
atoms within the unit cell are generally given in terms of three
independent internal structure parameters x, y, z and generally, it
would require an enormous amount of calculations to find the
values of these parameters corresponding to the absolute minimum
of total energy. Therefore, we have tried to find their most likely
values in a different way.

For this purpose, in the case of the sigma phase of pure
constituents we have picked up the lattice parameters a and c from
such a binary sigma phase that involves elements with similar
atomic radii as the element chosen (i.e. for Cr and Fe from the Cr–Fe
sigma phase [4] and for Co from the Cr–Co sigma phase [5]). Then
the total energies of sigma phases of the pure constituents were
analysed with respect to the various sets of independent internal
structure parameters of binary sigma phases that contained the
studied element (e.g. sets of Cr–Fe, Fe–Mo etc. in the case of Fe). For
subsequent calculations we have selected that set of independent
internal structure parameters which exhibited the lowest total
energy. The lowest energies for pure Co, Cr and Fe sigma phases
were obtained using the internal structure parameters of Co–Mo
[6], Co–Cr [5] and Cr–Fe [4] sigma phases, respectively (Table 1,
columns 3–5).

By extensive testing we have verified that slight changes in the
atomic positions in the repeat cell of the sigma phase (within the
limits found in literature) do not have a very large effect on the
total energy (the maximum change in energy was DE¼ 2 mRy/
atom and, in average, we obtained DE¼ 0.5 mRy/atom). Therefore,
we kept the above mentioned values of internal structure
parameters x, y and z constant during our calculations unless
stated otherwise.

After the determination of internal structure parameters, we
optimised the lattice constants a and c. This was performed by
alternating minimisation of total energy as a function of lattice
parameter a at a constant c/a ratio and minimisation of total energy
as a function of the c/a ratio at the constant parameter amin from the
previous optimisation. These two steps were repeated until the
change of total energy was small enough (lower than 0.1 mRy/
atom). In this way, the total energies of the hypothetical sigma
phases of pure constituents at equilibrium volume and their lattice
parameters (Table 2, columns 2–3) were obtained.

Using the alloy internal parameters given in Table 1 and LMTO
equilibrium lattice constants as starting values, we performed
similar structure optimisation employing the Full-Potential Linear
Augmented Plane Wave (FLAPW) method [25] incorporated in the
WIEN97 code [26] within the generalized gradient approximation

Table 1
Experimental (columns 3–5) and by VASP calculated (columns 6–8) equilibrium
values of internal structure parameters of NM sigma phases.

Subl. Param. Cr–Fea

Ref. [4]
Cr–Cob

Ref. [5]
Co–Moc

Ref. [6]
Co Cr Fe

this work – VASP

4f x 0.3986 0.3984 0.3973 0.4019 0.3982 0.4030
8i x 0.4635 0.4627 0.4635 0.4613 0.4671 0.4572

y 0.1312 0.1291 0.1283 0.1332 0.1285 0.1315
8i0 x 0.7399 0.7404 0.7450 0.7346 0.7434 0.7366

y 0.0661 0.0654 0.0670 0.0669 0.0594 0.0660
8j x 0.1827 0.1826 0.1820 0.1812 0.1877 0.1821

z 0.2520 0.2500 0.2500 0.2507 0.2553 0.2503

The symbols xCr and xCo below represent the molar fraction of Cr and Co, respec-
tively. The exact atomic positions can be calculated from the parameters summa-
rized in Table 2 using simple relations corresponding to the given sublattice and
particular space group.

a xCr¼ 0.495, T¼ 923 K.
b xCr¼ 0.564.
c xCo¼ 0.4, T¼ 1673 K.
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(GGA) [24] for the exchange-correlation term. Optimisations of the
Radius Muffin-Tin (RMT) parameters and number of k-points were
done at the beginning of FLAPW calculations. The obtained values
of RMT parameters used in all further FLAPW calculations are 1.97
au for Co, 2.10 au for Cr and 1.96 au for Fe. The convergence tests
have shown that 600 k-points for Co and Fe and 400 k-points for Cr
in the whole Brillouin zone are sufficient to obtain reliable total
energies of sigma phases.

The only difference in the FLAPW optimisation compared to the
LMTO one was that instead of the lattice parameter a the volume of
unit cell was optimised or kept constant during this procedure. It
was found that three optimisation steps were sufficient to reach the
minimum of total energy and the lattice parameters corresponding
to this minimum are listed in Table 2, columns 5–6.

To confirm the reliability of our process of relaxation, we also
applied the pseudopotential method [25] incorporated in the
Vienna Ab initio Simulation Package (VASP) code [27,28]
combined with the Projector Augmented Wave–Perdew-Burke–
Ernzerhof (PAW–PBE) pseudopotential [29–31]. The cut-off
energy restricting the number of plane waves in the basis set was
21.7 Ry, 25.6 Ry and 25.6 Ry for Cr, Co and Fe, respectively. The
convergence tests of total energies with respect to the number of
k-points show that the range of optimum values for the sigma
phase extends from a grid of 9� 9� 9 points (Co and binary sigma
phases) towards 9� 9�11 points (Fe) and 11�11�9 points (Cr).
After these test calculations, each structure of pure constituents
was fully relaxed which yielded the minimum total energy and
the corresponding equilibrium structural parameters (Table 1,
columns 6–8, Table 2, columns 8–9).

The equilibrium data given in Table 1 reveal only very small
scatter and the fully relaxed parameters describing the positions
of atoms correspond well to those determined experimentally for
alloy sigma phases. From the comparison of results shown in Table
2, we can see that the LMTO method provides the highest values
of the lattice parameter a and atomic volume Vat, the intermediate
values are found by the VASP code and finally the lowest numbers
are obtained from the WIEN97 calculations. We can also conclude
that the scatter of the results is reasonably small, in units of
percent. From this point of view we can say that our procedure of
relaxation used in LMTO and WIEN97 calculations (subsequent
optimisation via separate parabolas) provides very good results in
comparison with the full VASP relaxation.

Now, we can look for the minimum energies of all possible 32
configurations of alloy sigma phase. The alloy lattice constants
a and c as well as the internal structure parameters x, y and z of
various compositions were calculated according to the Vegard’s law
(linear change with composition). In the case of LMTO calculations,
the c/a ratios of all 32 configurations were additionally optimised at
the constant volume. In this way the total energies of alloy sigma
phases were obtained and on the basis of these results, the energies
of formation of sigma phase with respect to the weighted average of
total energies of sigma phase of pure constituents were evaluated
(Fig. 1).

Due to enormous time consumption, we performed the WIEN97
calculations only in the case of Cr–Fe system and for comparison

the VASP calculations of Cr–Fe and Cr–Co were carried out. In the
FLAPW and VASP case the effect of magnetism was also considered,
as it may be seen from Fig. 2. These magnetic calculations were
performed to confirm the stabilising influence of the magnetism in
the sigma phase at low temperatures and to study the magnetic
moments of constituents in various sublattices. Further discussion
is presented in Section 3.

To be able to compare our results with experimental data, the
energies of formation must be determined with respect to the RS
states of the pure constituents. However, the LMTO-ASA method
does not provide reliable structural energy differences for
structures of different symmetry, although the total energy
differences calculated by this method for the same crystallo-
graphic structure are considered to be quite reliable [12,32,33].
Thus, we employed the FLAPW and pseudopotential method to
establish the bridge between the LMTO energies of formation of
sigma phase related to the weighted average of energies of sigma
phases of pure constituents on one hand and the RS structures
on the other hand.

The WIEN97 calculations of total energies of the pure constit-
uents in the RS structures were accomplished using two atoms in
the unit cell in the case of both bcc and hcp structure. The starting
lattice parameters of these structures were found in literature [2].
In these calculations, the RMT parameters identical with those used
for sigma phase were employed. The convergence tests have shown
that 5000 k-points for hcp Co and 3500 k-points for bcc Fe and Cr in
the whole Brillouin zone were sufficient to get reliable results. Then
the lattice parameters corresponding to the minimum of total
energy were found. In the case of hcp structure, the procedure of
optimisation was the same as in the case of sigma phase; for the bcc
structure, the minimum of total energy as a function of the single
lattice parameter a was found. The lattice parameters correspond-
ing to the minimum of total energy are listed in Table 3 together
with the experimental values [2,34].

The calculations of total energies of the RS performed by the
pseudopotential VASP code [27,28] were similar to the WIEN97
ones. The optimum numbers of k-points extend from a grid of
9� 9� 9 points (Co,Fe) towards 13�13�13 points (Cr). The
calculated lattice parameters are also given in Table 3. We can see
there that both VASP and WIEN97 calculations slightly underesti-
mate the structural parameters in comparison with experiment
except for the WIEN97 results of bcc Fe. The WIEN97 results are
closer to the experiment and the scatter of deviations of calculated
Vat goes from þ0.80% Vat

exp for bcc Fe (WIEN97) to �2.48% Vat
exp for

bcc Cr (VASP), which are small deviations, largely acceptable for
present-day electronic structure calculations. If we compare the
results obtained for RS and the sigma phase (Tables 2 and 3), we can
conclude that the atomic volume increases in the sequence Fe
sigma phase, Co sigma phase, hcp Co, Cr sigma phase, Fe bcc and
bcc Cr, which is reproduced by both WIEN97 and VASP.

Let us note here that the WIEN97 results concerning the ener-
getics of both sigma and RS phases were recalculated by the latest
version of the FLAPW code (i.e. WIEN2k code [35]) using the same
structural parameters, RMT and number of k-points as obtained in
the WIEN97 calculations.

Table 2
Equilibrium lattice parameters and atomic volumes of NM sigma phase of pure constituents calculated by LMTO, WIEN97 and VASP codes. The parameters obtained by the
WIEN97 code were subsequently used in the WIEN2k calculations.

Element LMTO WIEN97 VASP

a(au) c/a Vat (au3) a(au) c/a Vat (au3) a(au) c/a Vat (au3)

Co 16.1116 0.5161 71.9496 15.8602 0.5197 69.1126 15.9252 0.5289 71.2044
Cr 16.6677 0.5216 80.5088 16.3792 0.5237 76.7078 16.5267 0.5214 78.4528
Fe 16.0465 0.5180 71.3427 15.5987 0.5174 65.4592 15.9325 0.5210 70.2374

J. Pavlů et al. / Intermetallics 18 (2010) 212–220214
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Now the energy of formation of sigma phase at the compositions
similar to the experimental ones with respect to the weighted
average of the total energies of RS of pure constituents may be
calculated. The corresponding formula is

DEf ¼
�

Es � ½xEs1 þ ð1� xÞEs2 �
�

LMTOþ
n

xEs1 þ ð1� xÞEs2

� ½xERS1 þ ð1� xÞERS2 �
o

FLAPW or VASP

¼ DEfðiÞ þ DEfðiiÞ:

The subscripts 1 and 2 following the name of structure denote
different pure constituents.

We can see that the DEf consists of two parts: (i) the energy
difference of alloy sigma phase with respect to weighted average of
total energies of pure constituents in the sigma phase structure,
both calculated by means of the LMTO, FLAPW (WIEN97) and
pseudopotential (VASP) method (the LMTO method may be used
here as the systems considered have the same type of structure),
and (ii) the energy difference of weighted average of total energies
of pure constituents in the sigma phase and RS (Table 4), both
calculated by means of the FLAPW (WIEN2k) or pseudopotential
(VASP) method (here a more reliable, but also more time
consuming method had to be used as the structures involved have

different types of symmetry). Both energy differences (i) and (ii)
may be considered as quite reliable, as the total energies used for
their determination were obtained by the same method on equal
footing.

If we apply the same method (FLAPW or VASP) for all calcula-
tions, the subscripts concerning the method used may be omitted
and the formula is simplified to

DEf ¼ Es �
h
xERS1 þ ð1� xÞERS2

i
:

The results of these calculations are illustrated in Fig. 3 and the
corresponding values of total energies are listed in Tables 4 and 5.

From Table 5, we can see that all methods provide slightly
different values of the energy of formation of the sigma phase with
respect to RS of pure constituents. The differences between our
results might be caused by different level of relaxation included. Let
us note that all values of total energies used in this paper corre-
spond to the equilibrium lattice volumes. The choice of the equi-
librium volumes for the reference states eliminates the
uncertainties connected with the use of experimental volumes of
binary sigma phases for total energy calculation of hypothetical (i.e.
unstable) sigma phase structure of pure constituents as it was used
in Ref. [12].

Fig. 1. Energies of formation of the nonmagnetic sigma phase with various occupancies of sublattices calculated by the LMTO-ASA method: (a) Cr–Fe, (b) Cr–Co. Hypothetical sigma
phase structures of pure constituents are taken as reference states. The full (dashed) line and squares (triangles) correspond to the results from this work (from Ref. [12]). Arrows
mark the energies of formation of the most stable configurations with respect to the sigma phases of pure constituents close to the border of the experimental region of existence of
this structure. The occupation of the sublattices at the open squares is given in the order 2a, 4f, 8i, 8i0 , and 8j. For further discussion see Section 3.

Fig. 2. Energies of formation of the sigma phase with various occupancies of sublattices calculated by the LMTO-ASA, WIEN97 and VASP codes: (a) Cr–Fe, (b) Cr–Co. Hypothetical
sigma phase structures of pure constituents are taken as reference states. The squares correspond to the nonmagnetic LMTO results from this work. Open (full) diamonds show
nonmagnetic (magnetic) results obtained by the WIEN97 code. The dashed (dotted) line and open (full) circles show nonmagnetic (magnetic) results obtained using the VASP code.
The occupation of the sublattices at the open circles on the dashed line is given in the order 2a, 4f, 8i, 8i0 , and 8j.
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3. Results and discussion

Fig. 1(a) and (b) display the LMTO total energies of formation of
the sigma phases at various compositions. The open squares
represent the total energies of all 32 possible occupations of
sublattices in sigma phase structure calculated at equilibrium
volumes. Let us note that for each studied Cr concentration
belonging to the interval C0.267;0.733D we encounter three
different configurations according to the occupation of sublattices
8i, 8i0 and 8j. This corresponds to three different energies at each
of these concentrations in Figs. 1–3 and in Table 6. These three
configurations occurring at the same composition are called
triplets in our article. The full squares in Fig. 1(a) and 1(b) corre-
spond to the boundaries that approximately show the region of
experimentally determined existence of sigma phase. The solid U-
shaped line connects the points with the lowest energies and
therefore the energy of formation may be related to this line. The
descriptions of occupation of sublattices of the most stable
configurations (lying on the line) are also given. The triangles
represent the results of calculations based on experimental lattice
parameters [12] and the dashed U-shaped line has the same
meaning for calculations based on experimental parameters as the
full one for the equilibrium results. The points in parentheses
correspond to the states which are unstable with respect to line
connecting the energies of the most stable configurations. The
solid arrows show the energies of formation of sigma phase
related to the weighted average of total energy of pure sigma
phases calculated at equilibrium volume and the dashed ones
correspond to the experimental lattice parameters [12].

The values of total energy of formation of alloy sigma phase
calculated at equilibrium volume are somewhat smaller for both
Cr–Fe and Cr–Co system in comparison with the results obtained at
experimental volume and constant internal structure parameters
[12]. The decrease in energy at the positions designated by full
squares caused by LMTO relaxation is about 1.5–2 mRy/atom in the
Cr–Fe system and 1 mRy/atom in the case of Cr–Co system. This
effect could be expected because the calculations using the same
experimental volume of an alloy sigma phase of certain composi-
tion in the whole interval of concentrations provide correct results
only for the experimental compositions (no significant decrease in
total energy) but they yield higher (non-equilibrium) values of total

energy for pure element phases and configurations close to them.
Their energies fall down during the relaxation and cause a decrease
of the total energy of formation related to the sigma phase of pure
constituents.

From these figures and on the basis of our LMTO calculations, we
can say that some atoms prefer to occupy certain sublattices, i.e. Fe
and Co (in binary systems with Cr) prefer the sublattice 8i0 and Cr
the sublattices 8i and 8j. The same findings concerning the site
preferences in Cr–Fe were reported by Korzhavyi [36] and were
confirmed by experimental results [20]. This explains why for
compositions xCr> 0.5 only one configuration in the triplet is fav-
oured and the remaining two have higher and similar energies (the
8i0 sublattice can be occupied by Fe or Co only once). On the other
hand, in case of xCr< 0.5 two configurations are more stabilised and
one of them exhibits a higher energy (the 8i0 sublattice can be
occupied by Fe or Co in two cases). These tendencies may be clearly
seen from Table 6, where we present the total energies calculated
by the VASP code.

Fig. 2(a) and (b) summarise all results of sigma phase calcula-
tions obtained in this study. It is obvious that all methods
employed, i.e. LMTO-ASA, FLAPW (WIEN97, WIEN2k) and pseudo-
potentials (VASP) independently exhibit the same trends. In the
case of nonmagnetic configurations (open symbols) the shapes of
the U-curves are quite similar. This reveals that in Cr–Fe system the
sigma phase of the highest stability lies close to the composition
xFe¼ 0.333 (in the NM case) or at xFe¼ 0.6 (in the FM case). On the
other hand, in the Cr–Co system the sigma phase of the highest
stability lies close to the composition xCo¼ 0.6 (in the NM case). For
FM configurations at xCo� 0.667 the trend of the U-curve is
significantly changed, indicating a strong stabilisation of sigma
phase by magnetic ordering. All methods employed also usually
predict the same relative stability of configurations at the same
composition. In general we can say that accommodation of Fe or Co
atoms to sublattices 2a and 8i0 has also a stabilising effect.

Furthermore the influence of the magnetic order is obvious
here. The non-polarised states (WIEN97 and VASP) have higher
energies than the polarised ones. Therefore, according to our
WIEN97 and VASP calculations, the sigma phase in the Cr–Fe and
Cr–Co system should be spin-polarised in most cases at zero
temperature. Stabilisation effects of magnetic ordering were not
found in the following configurations: CrCrCrCrCr (elemental Cr in
the sigma phase structure), FeCrCrCrCr, CrCrCrFeCr and CrCrCoCrCr
by VASP and CrCrCrCrCr with CrFeCrFeCr by WIEN97. However
these configurations either contain too much Cr or their energies of
NM and FM state are too close.

The magnetic order in sigma phases has already been found by
experiments in Cr–Fe system [14,15]. Our stabilisation energies
induced by magnetisation of the most stable configurations at
given composition in Cr–Fe system are �2.36 kJ/mol at xCr¼ 0.4 in
FeCrCrFeFe and�0.26 kJ/mol at xCr¼ 0.533 in FeFeCrFeCr (WIEN97)
and �3.33 kJ/mol at xCr¼ 0.4 in FeCrFeFeCr and �0.11 kJ/mol at
xCr¼ 0.533 in FeFeCrFeCr (VASP).

These values are in rough agreement with �6.36 kJ/mol pub-
lished by A.L. Udovskii for the FeCrFeFeCr configuration (xCr¼ 0.40)
[17]. However, the effect of magnetic ordering in some unstable
configurations is even higher, e.g. for the FeFeFeCrCr configuration

Table 3
WIEN97 and VASP equilibrium lattice parameters of RS structures, compared with experiment. The WIEN97 parameters were also used in the WIEN2k calculations.

Element WIEN97 VASP Experiment

a(au) c/a Vat (au3) a(au) c/a Vat (au3) a(au) c/a Vat (au3)

Co (FM hcp) 4.7211 1.6194 73.7878 4.7084 1.6190 73.1758 4.7357 1.6237 74.6702 Ref.[2]
Cr (AFM bcc) 5.4165 1 79.4559 5.3947 1 78.5004 5.44 1 80.4946 Ref.[34]
Fe (FM bcc) 5.4144 1 79.3635 5.3589 1 76.9479 5.40 1 78.7320 Ref.[34]

Table 4
Energies of formation of NM sigma phases of pure constituents with respect to RS
states.

Element RS DEs�RS¼DEf(ii) (kJ/mol)

WIEN2ka WIEN2kb VASP Ref. [12] Ref. [37] Ref. [16]

Co hcp 40.567 37.457 34.265 34.4 6.07c –
Cr bcc 15.513 14.096 13.394 15.4 13.20 13.3
Fe bcc 32.617 26.512 25.777 30.9 17.60 38.2

a In WIEN2k calculations, the equilibrium lattice parameters obtained by WIEN97
were used.

b In WIEN2k calculations, the equilibrium lattice parameters obtained by VASP
code were used.

c This value was obtained using the energy difference EFM
fcc� EFM

hcp¼ 1.97 kJ/mol
[39], as the value of energy of formation of NM sigma phase in Co obtained in
Ref. [37] was related to FM fcc Co.
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Appendix X: Pavlů J. et al., Intermetallics 18 (2010) 212 93

Reprinted from Intermetallics, 18, Pavlů J., Vřešt’ál J., Šob M.,
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at xCr¼ 0.533 the magnetic stabilisation energy amounts to
�5.38 kJ/mol (VASP).

Similar stabilising effects were found in the Cr–Co system,
where the configuration CoCoCrCoCr at xCr¼ 0.533 is stabilised by
�1.52 kJ/mol and CrCoCrCoCr at xCr¼ 0.6 by �0.36 kJ/mol (VASP).

From analysis of total energies it follows that magnetism does
not influence the order of configurations in triplets at given
composition very much. However, it does change the shape of the
U-curve. The region of the most stable configurations is shifted
towards higher concentrations of iron or cobalt. The stability in the
chromium rich part is not influenced by the magnetic effects.

The above mentioned stabilisation by magnetic effect is
enhanced with increasing number of Fe (Co) atoms in the system
and it can even reach values of �10.67 kJ/mol (VASP) for pure Fe
sigma phase and �27.03 kJ/mol (VASP) for pure Co sigma phase.
This may indicate that only the iron or cobalt atoms carry the
magnetization. In both systems it was found that the stabilisation
effect in triplets increases with average magnetic moment but the
most stable configurations are not those with the highest average
magnetic moment. On the contrary, they are usually the least stable
ones (see Table 6).

Very significant results obtained by the ab initio analysis of
magnetism in the studied systems deal with distribution of the
magnetic moments in dependence on the kind and positions of
atoms (Table 6). It turns out, for example, that elemental iron in the
sigma phase structure exhibits quite different magnetic moments
at different sublattices. At the 4f, 8i and 8j sublattices, the local
magnetic moment of Fe atoms equals to 2.29 mB/atom, 2.00 mB/atom
and 1.87 mB/atom, respectively, the highest magnetic moment being
at the sublattice 4f with the highest coordination number. Magnetic
moments of iron in 8i0 and 2a sublattices with the lowest coordi-
nation numbers are substantially lower: 1.22 mB/atom and 1.10 mB/
atom (see the first line of Table 6).

In case of elemental Co, the magnetic moment decreases from
1.70 mB/atom, 1.67 mB/atom, 1.59 mB/atom to 1.54 mB/atom, which
corresponds to the sublattices 4f, (8i, 8j), 8i0 and 2a, respectively.
Again, the atomic magnetic moment decreases with decreasing
coordination number. On the other hand, the sigma phase of
elemental Cr is nonmagnetic because the magnetic moments found

Table 5
Energies of formation of sigma phase with respect to RS states, comparison with
experiments.

System xCr DEf (kJ/mol)

NM LMTO
þWIEN2k

NM LMTO
þVASP

VASP Ref. [12]
NM

Exp.

NM FM

Cr–Fe 0.400 16.16 11.21 10.23 6.89 20.28 7.7a

0.533 13.66 9.34 8.01 7.90 16.78 6.5b

Cr–Co 0.533 15.22 11.15 11.50 9.98 17.56 9.37c

(�2.9; 5.1)d

(2.64; 6.77)e
0.600 12.47 8.68 9.40 9.04 15.32

a xCr¼ 0.45, Ref. [8].
b xCr¼ 0.45, Ref. [11].
c xCr¼ 0.6, Ref. [9].
d xCr¼ 0.45�0.63, Ref. [11].
e xCr¼ 0.57�0.61, Ref. [10].

Table 6
Magnetic moments per atom (VASP) at particular sublattices with corresponding energies of formation of the FM configuration (DEf(i)) related to the energies of elemental NM
sigma phases (Es1;NM , Es2;NM ) as reference states. The numbers in parentheses give the coordination number of atom in the corresponding sublattice. Bold-face numbers mark the
sublattices occupied by Cr. m denotes average magnetic moment per atom.

xCr Cr–Fe Cr–Co

Magnetic moment (mB/atom) m DEf(i)

(kJ/mol)
Magnetic moment (mB/atom) m DEf(i) (kJ/mol)

2a 4f 8i 8i0 8j 2a 4f 8i 8i0 8j
(12) (15) (14) (12) (14) (12) (15) (14) (12) (14)

0 1.10 2.29 2.00 1.22 1.87 1.75 �8.130 1.54 1.70 1.67 1.59 1.67 1.64 �20.587
0.067 L1.29 2.14 2.11 1.34 1.84 1.63 �8.721 L1.21 1.49 1.69 1.38 1.54 1.34 �16.993
0.133 0.47 L0.92 1.98 1.27 1.76 1.26 �9.527 1.11 L0.55 1.47 1.46 1.60 1.20 �15.378
0.2 L0.69 L0.68 1.99 1.14 1.72 1.17 �8.560 0.01 L0.33 1.52 1.27 1.49 1.09 �13.456
0.267 1.49 2.05 L0.83 0.82 1.78 0.85 �10.132 1.55 1.32 L0.10 0.95 1.36 0.86 �12.424

0.94 2.04 1.75 L1.10 1.78 1.00 �8.847 0.57 1.44 0.86 L0.44 1.14 0.64 �10.224
1.03 2.05 1.68 1.06 L0.61 0.92 �10.113 1.10 1.53 1.47 1.17 L0.28 0.90 �13.203

0.333 L0.84 1.93 L0.64 0.83 1.76 0.73 �10.277 L0.70 1.12 0.00 0.56 1.21 0.58 �11.497
0.08 1.79 1.78 L0.88 1.75 0.96 �6.714 0.08 1.18 0.88 L0.22 1.11 0.63 �8.308

L0.29 1.22 1.50 0.99 L0.16 0.76 �12.074
0.4 0.88 0.30 L0.28 0.53 1.66 0.62 �8.930 1.20 0.41 L0.35 0.47 1.12 0.46 �10.340

�0.19 L0.37 1.56 L0.74 1.66 0.61 �7.385 0.36 0.61 0.63 L0.16 1.17 0.54 �9.203
0.87 L0.44 1.70 1.01 L0.37 0.63 �10.612 �0.06 L0.58 1.18 0.75 0.06 0.45 �12.674

0.467 L0.45 0.41 L0.30 0.51 1.63 0.52 �8.570 0.01 0.29 L0.30 �0.01 0.96 0.21 �9.940
0.25 L0.10 1.65 L0.65 1.68 0.73 �5.312 0.10 0.43 0.71 L0.18 1.16 0.52 �7.398
0.06 L0.22 1.69 0.94 L0.33 0.59 �8.105 0.43 L0.13 1.26 0.86 0.06 0.59 �10.405

0.533 0.56 2.06 1.52 L0.33 L0.13 0.60 �6.217 0.21 1.14 0.15 L0.01 L0.11 0.17 �7.592
0.35 1.24 L0.16 �0.03 L0.07 0.12 �8.586 0.99 1.03 0.35 0.60 0.01 0.46 �10.018
1.01 1.81 L0.13 L0.29 1.60 0.63 �4.114 0.67 1.14 L0.03 0.02 0.86 0.42 �4.799

0.6 0.03 1.95 1.52 L0.24 L0.10 0.58 �4.102 0.09 0.99 0.12 0.08 L0.02 0.18 �5.193
L0.08 1.56 L0.20 0.25 L0.05 0.21 �7.645 L0.40 0.50 0.36 0.37 0.02 0.24 �9.678
L0.25 1.64 L0.15 L0.11 1.56 0.55 �2.129 0.09 0.88 L0.01 0.04 0.85 0.36 �3.129

0.667 0.27 0.21 1.50 L0.39 L0.01 0.35 �5.049 0.45 0.59 0.20 0.05 L0.04 0.17 �6.722
0.62 0.04 L0.03 0.17 L0.06 0.07 �9.173 0.04 L0.29 0.37 0.40 L0.02 0.17 �10.873
0.07 0.27 L0.04 L0.19 1.53 0.39 �3.350 0.33 0.37 L0.04 0.01 0.93 0.31 �3.904

0.733 0.04 L0.06 1.44 L0.31 L0.05 0.28 �3.014 L0.03 0.22 0.24 L0.05 L0.02 0.08 �4.476
0.01 0.00 0.00 �0.04 0.00 �0.01 �7.434 0.06 0.18 0.27 0.40 L0.01 0.21 �9.052

L0.12 0.33 L0.08 L0.10 1.51 0.40 �1.566 L0.04 0.10 L0.06 0.02 0.60 0.16 �1.980
0.8 0.60 1.80 L0.11 0.16 L0.01 0.29 �0.872 0.45 1.04 0.00 0.08 0.01 0.19 �1.093
0.867 0.08 1.73 L0.11 0.18 0.05 0.27 1.200 0.22 0.83 0.01 0.08 0.00 0.15 1.413
0.933 0.00 0.00 0.00 0.00 0.00 0.00 �1.561 0.18 0.16 L0.03 0.10 0.03 0.06 �1.808
1 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.000
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Ab Initio Study of Formation Energy and Magnetism of Sigma Phase in Cr–Fe and Cr–Co Systems,

212-220, Copyright (2010), with permission from Elsevier.



are very close to zero. However, it does not mean at all that the
chromium atoms are nonmagnetic through the whole composition
region. Their magnetic moment calculated by VASP reaches even
�1.21 mB/atom (�1.29 mB/atom) in CrCoCoCoCo (CrFeFeFeFe) – see
the second line of Table 6. In binary sigma phases we can see that
the atomic magnetic moments of all three constituents (i.e. Fe, Co,
Cr) mostly decrease with increasing molar fraction of chromium.
Similarly as in elemental Fe and Co, the highest values of magnetic
moments are found at the 4f sublattice with the highest coordi-
nation number.

In Cr–Fe system, the Cr atoms exhibit very often antiferromag-
netic behaviour with respect to Fe atoms, i.e., they have the
opposite orientation of magnetic moments. This fact is fully man-
ifested at 8i, 8i0 and 8j sublattices with some exceptions for higher
chromium concentrations. The antiparallel arrangement of
magnetic moments is also found at the 2a and 4f sublattices, again
with some exceptions. In sporadic cases the antiferromagnetic
arrangement occurs at Fe atoms in the sublattice 2a for FeCrFeCrFe
configuration and in 8i0 for FeFeCrFeCr and CrCrCrFeCr.

In Cr–Co system Cr atoms also exhibit antiferromagnetic behav-
iour with respect to Co atoms. However, with increasing molar
fraction of Cr atoms, we observe increasing amount of Cr atoms that
behave in the ferromagnetic way with respect to Co atoms. In
contrast to the Cr–Fe system the occurrence of this arrangement is
not fully connected with particular sublattices, but it is most frequent
at the 2a and 4f sublattices.

The WIEN97 (VASP) calculated average magnetic moment per
atom of the most stable configurations in Cr–Fe extends from 0.26 mB

to 0.10 mB (0.63 mB to 0.12 mB) for xCr¼ 0.400–0.533. The corre-
sponding values of the WIEN97 (VASP) calculated average magnetic
moment per Fe atom of the most stable configurations in Cr–Fe
extends from 0.65 mB to 0.21 mB (1.30 mB–0.39 mB) for xCr¼ 0.400–
0.533, which is comparable with experiments. For example, Cieslak
et al. [14] reported the average magnetic moment per Fe atom in the
range of 0.287(3) mB–0.142(1) mB for the composition range
xCr¼ 0.450–0.496, where the average Curie temperature TC ranges
from 38.9 K to 8.3 K. The magnetism of the sigma phase at low
temperatures was also confirmed by Read et al. [38]. Furthermore
Korzhavyi [36] claims that magnetic moments are vanishing on Fe
atoms occupying icosahedral sites (sublattices 2a, 8i0) and they are
high, cca 2 mB, on Fe atoms occupying the sites with a high coordi-
nation numbers (sublattices 4f, 8i, 8j). Similar trends were confirmed

by our calculations. The magnetic moment of the Fe in icosahedral
sites is significantly lower but not vanishing.

The VASP calculated average magnetic moment per atom for the
most stable configurations in Cr–Co extends from 0.46 mB to 0.24 mB

for xCr¼ 0.533–0.600 (see Table 6).
Fig. 3(a) and (b) demonstrate our approach to the calculations of

the total energies of formation of sigma phase related to the total
energies of RS structures. The triangles and squares have the same
meaning as in Fig. 1(a) and (b) whereas the lower lines represent
the linear combination of total energies of RS structures based on
equilibrium lattice parameters (full line – WIEN2k results based on
WIEN97 structure data, long-dashed line – VASP) or on the results
calculated for the experimental lattice parameters [12] (dashed
line). The zero of total energy is constituted by the weighted
average of total energies of sigma phases of pure constituents
similarly as in Fig. 1(a) and (b). The solid arrows show the energies
of formation of sigma phase calculated at equilibrium lattice
parameters and the dashed ones correspond to the experimental
lattice parameters [12]. The lattice parameters corresponding to the
minimum of total energies of RS are listed in Table 3.

Fig. 3(a) and (b) demonstrate that the total energy differences
for the pure constituents (DEf(ii)¼ Es�RS, Table 4) calculated by
various methods are close. The results obtained are even quite close
to the differences based on the experimental volumes. Let us note
that for elemental Cr, our values of energy of formation agree very
well with the previous calculations [12,16,37]. In case of Fe our
calculated numbers are between the values calculated in Ref. [37]
and Ref. [16]. Co sigma phase was not treated in Ref. [16] and the
value from Ref. [37] is related to another reference state. Trying to
get this value on equal footing, we arrived to 6.07 kJ/mol which is
surprisingly low in comparison with other available values.

The equilibrium energies of formation of the sigma phase related
to the weighted average of total energy of pure RS structures in the
range of composition that corresponds to the experimental one
(arrows in Fig. 3(a) and (b)) are summarised in Table 5 and in
Fig. 4(a) and (b) together with the results of calculations performed
at the experimental volumes [12] and the experimental values
measured calorimetrically by various authors [8–11].

We can see that the energies of formation obtained by various
methods reveal some scatter. Concerning the nonmagnetic
arrangement, the values of the energies of formation of the sigma
phase in the Cr–Fe system at both compositions decrease in series

Fig. 3. Total energies of formation of sigma phase with respect to RS states: (a) Cr–Fe, (b) Cr–Co. The full (dashed) line and squares (triangles) correspond to the LMTOþWIEN2k
(LMTOþWIEN97) results from this work (from Ref. [12]), based on the WIEN97 equilibrium (experimental) structure data. Long-dashed line shows the energy differences between
the RS and the sigma phase of pure constituents calculated by the VASP code. The arrows mark the energies of formation of the most stable configurations with respect to the RS of
pure constituents close to the border of the experimental region of existence of the sigma phase. Similar arrows for the VASP calculations can be also constructed but they were
omitted for better clarity of the figure.
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LMTOþWIEN97 (based on experimental lattice parameters) [12],
LMTOþWIEN2k, LMTOþVASP, and VASP. The same statement is
valid also for the Cr–Co system except of the fact that the VASP
numbers are above the LMTOþVASP ones. This tendency fully
reflects the level of structure relaxation, i.e. the more relaxed sigma
phase the lower energies of formation are obtained.

Furthermore the results provided by LMTOþVASP and VASP
calculations correspond to the experimental data very well. From
Fig. 4(a) and (b), we can see that inclusion of magnetic ordering
improves the overall agreement with experiments. On the other
hand, it is also necessary to take into account the reliability of the
experimental data in these comparisons, and Fig. 4(b) shows that
the scatter of measured values is indeed very large.

The accuracies given for the calorimetric measurements usually
refer to their physical performance. Errors of chemical nature may
often be much more serious (e.g. impurities, incomplete reactions,
side reactions). So inspecting the results of Zubkov [11], whose
results suggest decrease in heat of formation with Co concentra-
tion, the experimental error has to be assessed from results given in
their Table 1, where the values of �DEdissol for the sigma phase that
contains more than 45 at% of Co were obtained by extrapolation of
experimental data. It seems to be questionable to believe in
decrease of heat of formation with Co composition on the basis of
these results.

The comparison of heat of formation measured experimentally
with the calculated values is performed under the assumption that
DE(0 K)¼DH(T), which need not be valid exactly. Further we should
take into account that DH(T) contains the PV term and vibrationalR

CpdT term for both sigma and RS phase which are not included in
DE(0 K). It may elucidate the difference of calculated and measured
energies of formation.

The difference between the experimental values of heat of
formation in Cr–Co system for Co0.4Cr0.6 of Bell [9] (9.37 kJ/mol) and
Zubkov [11] (2.1 kJ/mol) is more than 400%. So, the higher values of
heat of formation calculated by the ab initio methods in comparison
with the measured ones are not too bad in the case of Cr–Co system.

4. Conclusions

The new achievement of the present paper consists in calcula-
tions of total energies of sigma phase and RS at equilibrium volume.
This removes the uncertainty connected with the use of lattice

parameters of experimentally found sigma phase for calculations of
total energy of hypothetical configurations of pure constituents.
Our study also provides the analysis of the influence of magnetism
on the stability of the Cr–Fe and Cr–Co sigma phase.

The results of ab initio calculations of total energies of sigma and
RS phases of pure constituents (obtained by FLAPW method)
combined with total energies of sigma phases for different
compositions and for pure elements calculated by LMTO-ASA and
FLAPW method were employed to study the stability of sigma
phase in Cr–Fe and Cr–Co systems. Furthermore the additional
calculations performed by the pseudopotential code VASP and the
analysis of the effect of magnetism were carried out. The influence
of relaxation on lattice parameters of all structures was also
included in this work. It turns out that the more structural relax-
ations are used the lower energies of formation are obtained. The
lowest energies of formation were acquired by the VASP code with
the full relaxation and the obtained energies are fully comparable
with experimental data. The preferential occupation of the sub-
lattices was analysed.

Inclusion of magnetic ordering in the Cr–Fe and Cr–Co sigma
phase calculations causes the decrease of energy of formation and
results in the shift of stability region towards the configurations
with a higher concentration of iron or cobalt. We predict that Cr–Fe
and Cr–Co sigma phases are magnetically ordered at 0 K, which
corresponds to experimental findings. Our study reveals that the
largest part of magnetization is carried by the iron or cobalt atoms
and that the chromium atoms do not contribute to this effect very
much although they induce a decrease of the total magnetic
moment by their antiferromagnetic behaviour at some sublattices.
The magnetic moments depend on the kind and position of the
atom and agree satisfactorily with available experimental data. The
influence of the sublattice on the magnetic moment is the same for
both Fe and Co atoms and their magnetic moments decrease from
the sublattices 4f, 8i, 8j, 8i0 to 2a. The magnetic moment of Cr in the
sigma phase structure is close to zero. However it increases with
the increasing number of Fe or Co atoms.
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Fig. 4. Calculated energies of formation of sigma phase, compared with experimentally determined enthalpies of formation: (a) Cr–Fe, (b) Cr–Co. The RS structures correspond to
the zero line. The full (dashed) arrows and open squares (full triangles) correspond to the LMTOþWIEN2k (LMTOþWIEN97) results from this work (from Ref. [12]), both based on
the WIEN97 lattice parameters. Similar arrows for the VASP calculations and experiments were omitted for better clarity. Open and full circles and full diamonds describe the results
of the NM VASP, FM VASP and LMTOþVASP analysis. Experiments done by Dench [8], Bell [9], Downie [10], and Zubkov [11] are marked by asterisks, crosses, open triangles and full
squares, respectively.
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Ab Initio Study of Formation Energy and Magnetism of Sigma Phase in Cr–Fe and Cr–Co Systems,

212-220, Copyright (2010), with permission from Elsevier.



References

[1] Bain EC. Chem and Met Eng 1923;28:23.
[2] Villars P, Calvert LD. Pearson’s handbook of crystallographic data for inter-

metalic phases. Materials Park (OH): ASM International; 1991.
[3] Cook AJ, Jones FW. J Iron Steel Inst 1943;148:217. London;1943;148:223.
[4] Yakel HL. Acta Crystallogr 1983;B39:20.
[5] Dickins GJ, Douglas AMB, Taylor WH. Acta Crystallogr 1956;9:297.
[6] Forsyth JB, d’Alte da Viega. Acta Crystallogr 1963;16:509.
[7] Heino S, Knutson-Wedel EM, Karlsson B. Mater Sci Technol 1999;15:101.
[8] Dench WA. Trans Faraday Soc 1963;59:1279.
[9] Bell HB, Hajra JP, Putland FH, Spencer PJ. Met Sci Journal 1973;7:185.

[10] Downie DB, Arlasan F. J Chem Thermodyn 1983;15:654.
[11] Zubkov AA, Mogutnov BM, Shaposhnikov NG. Dokl Akad Nauk SSSR

1990;311(2):388; Dokl Phys Chem 1990;311:239.
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a b s t r a c t

The Cr–Hf and Cr–Ti belong to interesting systems exhibiting the existence of all polytypes of Laves
phases, i.e. lower-temperature cubic C15 and higher-temperature hexagonal C14 and C36, although in
the Cr–Hf phase diagram only C14 and C15 phases occur. Comparison of total energies of these structures
calculated from first principleswith the total energy of the idealmixture of elemental constituents reveals
the relative stability of Laves phases in these systems. The effect of magnetic order in the Laves phases is
also briefly discussed.
The calculated total energies of formation of all the three polytypes are employed in two- and three-

sublattice models to revise the thermodynamic description of both the systems published recently. New
remodeled Gibbs energies of Laves phases require less fitting parameters than those obtained in previous
treatments and corresponding phase diagrams provide an excellent agreement with the experimental
phase data found in the literature. The proposed procedure allows us to compare the optimised heat
capacity differences with those determined experimentally or theoretically and to use them in phase
diagram calculations.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The Laves phases consisting of chromium and an element from
the IV group of the Periodic Table have been systematically investi-
gated because they are part of structural materials at temperatures
up to 1200 °C, e.g. Nb-silicide based in situ composites [1,2]. It has
been widely accepted that Cr improves oxidation resistance and
Hf enhances both oxidation resistance and strength of these ma-
terials. However, additions of new elements may introduce some
detrimental phases to the composites which deteriorate the prop-
erties of the materials [3]. Therefore, reliable thermodynamic de-
scription of stability of phases in both Cr–Hf and Cr–Ti systems is
needed for successful materials design.
The Cr–Hf and Cr–Ti systems have been critically reviewed

by Yang et al. [3] and Zhuang et al. [4], respectively. Here the
sublattice model [5,6] successfully described the thermodynamic
behaviour and homogeneity ranges of solid solutions and different
types of Cr2Hf and Cr2Ti Laves phases. In both systems, 6
equilibrium phases have been reported: liquid, HCP, BCC, C14,
C15 and C36 Laves phases. In the Cr–Hf system, the Laves
phase structure transforms as a function of temperature from the

∗ Corresponding author at: Department of Chemistry, Faculty of Science,Masaryk
University, Brno, Czech Republic. Tel.: +420 549493742; fax: +420 549491453.
E-mail address: houserova@chemi.muni.cz (J. Pavlů).

lower-temperature cubic C15 polytype to the hexagonal C14
polytype at higher temperatures, avoiding C36 structure [7].
The Cr–Ti system was studied in more detail. It was found that

the Laves phase structures transform with increasing temperature
from the cubic C15 polytype to the hexagonal C36 polytype at in-
termediate temperatures and to the hexagonal C14 polytype at the
highest temperatures. The C15–C36 transformation temperatures
are reported to increase strongly with increasing Ti content from
804 °C at 33.5 at.% Ti to 1223 °C at 37.3 at.% Ti,whereas the transfor-
mation temperature from C36 to C14 seems to be nearly indepen-
dent of composition at 1270±1 °C. However, as described in detail
in [4], there is contradicting information on the existence of C36
structure in the literature, connected with its metastability. C36 is
an intermediate structure occurring in transformation from C14 to
C15 during cooling and the transformation from C36 to C15 is very
sluggish. Therefore, the phase diagram of Cr–Ti is still far from be-
ing well established. Existing experimental studies [4,8] conclude
that the stoichiometric compositions are not incorporated in any
of the phase fields of the Laves phases and show that all structures
of Cr2Ti are stable only with an excess of Ti atoms. During the last
decade or so, structural energy differences (lattice stabilities) cal-
culated from first principles have been employed in the construc-
tion of phase diagrams of systems containing complex phases (see
e.g. [9–12]); a recent review may be found in [13,14].
In the present paper, the ab initio calculated total energies of

formation of two polytypes in the Cr–Hf system and of all the

0364-5916/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.calphad.2010.03.003
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three polytypes of Laves phases in the Cr–Ti systemare successfully
employed in the two- and three-sublattice models to revise the
thermodynamic descriptions published in [3,4]. It turns out that
total energies of individual phases from the ab initio calculations
strongly reduce the number of fitting parameters needed in
construction of phase diagrams in Cr–Ti and Cr–Hf systems and,
in this way, bring more physics into CALPHAD method.

2. Thermodynamic modeling

Using thermodynamic modeling, behaviour of any system un-
der various conditions (i.e. pressure, temperature or composition)
can be described. This approach allows us to predict properties
and behaviour of systems, which are technologically important for
the improvement of current materials or for development of new
ones. Contrary to experiments, this treatment provides not only
the overview of properties of really existing structures but it is
also capable to characterisemetastable or even unstable configura-
tions. The main quantity used in such modeling is the molar Gibbs
energy of the whole system, which is defined as the sum of molar
Gibbs energies of all included phases Gf multiplied by their molar
fractions xf :

Gtot = Σf xf Gf , (1)

where

Gf = Σiyi0G
f
i + G

id
+ GE + Gmag + Gpres. (2)

The molar Gibbs energy of phase Gf contains the sum of molar
Gibbs energies of pure constituents i in the phase f multiplied
by their lattice fractions Σiyi0G

f
i , the terms describing ideal (G

id)

and non-ideal (GE) mixing and, when needed, some special terms
as magnetic (Gmag) or pressure (Gpres) contribution. For a binary
system (A–B), the terms describing mixing may be evaluated by
relatively simple formulas as follows:

Gid = RT (yA ln yA + yB ln yB) (3)

GE = yAyB(L0(T )+ L1(T )(yA − yB)+ L2(T )(yA − yB)2 + · · ·) (4)

where L0, L1 and L2 are the expansion coefficients of the
Redlich–Kister polynomial [15] and T is temperature. Temperature
dependence of L-parameters is given by an equation of type

Lj = aj + bjT + cjT ln T , (5)

where aj, bj and cj are constants. For liquid phase, we use a model
(A, B)1, for BCC and Laves phases, we employ the (A, B)1(Va)3
and (A, B)2(A, B)1 or (A, B)4(A, B)6A2 models [5,6], respectively.
Similar approach has already been used in systems Cr–Nb, Cr–Ta
and Cr–Zr [11,12]. Ideal mixing in Laves phases is then described
by expression

Gid = RT [(y1A ln y
1
A + y

1
B ln y

1
B)+ (y

2
A ln y

2
A + y

2
B ln y

2
B)] (6)

where the superscripts are related to sublattices 1 and 2.
In the case of two-sublattice model of Laves phase [5,6], the

sum of molar Gibbs energies of pure constituents i in the phase
f multiplied by their lattice fractions Σiyi0G

f
i is substituted by

equation

Gref = y1Ay
2
A
0GA:A + y1Ay

2
B
0GA:B + y1By

2
A
0GB:A + y1By

2
B
0GB:B (7)

where Gibbs energies of all ‘‘end-members’’ (0Gi:j) have to be
calculated, as mentioned above. For the sake of thermodynamic
modeling with the help of the two-sublattice model, some of
the experimentally found sublattices of Laves phases have to be
merged, e.g. the 2a and 6h sublattice occupied by Cr atoms are
joined to form one sublattice in thermodynamic model of the C14

phase. Similarly the 4e and 4f sublattices for X atoms (X = Hf, Ti)
and 4f, 6g, and 6h sublattices for Cr atoms in C36 structure are also
merged into two sublattices.
The difference in Gibbs energies of the pure constituents in the

Laves (L) phase and in the Standard Element Reference (SER) state
(i.e. antiferromagnetic (AFM) BCC Cr and nonmagnetic (NM) HCP
Ti and Hf) is given by equation

10GL-SER = 0GL − 0GSER = 10HL-SER − T10SL-SER, (8)

where H is enthalpy and S entropy.
At T = 0, we may write that10HL-SER(T = 0) = 10EL-SER(T =

0), i.e. the difference in enthalpies is equal to the difference of total
energies, because the total energy at 0K is calculated at equilibrium
volume, where it holds (∂U/∂V )T = T (∂p/∂T )V −p = 0. The total
energy differences have been calculated ab initio at equilibrium
volume in the present paper. The difference in enthalpies,10HL-SER
at finite temperature, is then obtained as (Kirchhoff law)

10HL-SER = 10EL-SER +
∫
1C L-SERp dT . (9)

In the region without phase transformation, entropy can be
expressed as

10SL-SER =
∫
(1C L-SERp /T )dT (10)

which, substituted in Eq. (8), after integration (supposing 1C L-SERp
= const.) yields

10GL-SER = 10EL-SER + (1C L-SERp )T − (1C L-SERp )T ln T . (11)

This equation may be successfully employed in the phase diagram
calculations. Usually, 10EL-SER is calculated ab initio, 1C L-SERp is
optimised, as we show below. However, also the value of 1C L-SERp
may be taken from calculations (e.g. from phonon spectra) or
from measurements (e.g. from the analysis of Einstein or Debye
functions). In this way, we could further reduce the number of
fitting parameters needed for description of phase diagrams.

3. Ab initio calculations of total energies

Our electronic structure calculations were performed within
the Density Functional Theory (DFT). We have used the pseudopo-
tential method [16] incorporated into the Vienna Ab initio Simu-
lation Package (VASP) code [17,18] combined with the Projector
Augmented Wave–Perdew–Burke–Ernzerhof (PAW–PBE) pseu-
dopotential [19–21] (i.e. we have employed the generalised gra-
dient approximation for the exchange-correlation energy), and
calculated the total energies of all three Laves phase structures
(C14, C15 and C36) as well as the total energy differences between
the Laves phases and the SER structures. The cut-off energy re-
stricting the number of plane waves in the basis set was 295 eV,
232 eV and 286 eV for Cr, Ti and Hf, respectively, for both pure
constituents and the Laves phases. Spin polarisation was not in-
cluded in our calculations, except when noted. Reason for this is
the fact that all Laves phases found in the systems studied are para-
magnetic at ambient temperatures. Nevertheless, calculations for
spin-polarised Cr2Cr Laves phase (C15) confirmed the influence of
magnetism also on the stability of this structure at 0 K.
Preliminary calculations of A2A, A2B, B2A, B2B (A = Cr, B =

Ti, Hf) configurations of C14, C15 and C36 Laves phase structures
needed for two-sublattice model and also calculations of A6B6 and
A2B10 configurations for C14 and C36 structures needed for three-
sublattice model were accomplished using the experimentally
found lattice parameters for Cr2Ti and Cr2Hf configurations
published in [22] except for the C14 and C15 (C36) Laves phase
of pure chromium, which was studied using the parameters
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Table 1
Calculated and experimental lattice parameters of the SER structures. Symbols a and c stand for lattice constants, Vat is the atomic volume and1 shows the relative difference
between the calculated and experimental atomic volume.

SER

Structure a (pm) c (pm) c/a Vat (107 pm3) 1 (%)

AFM BCC Cr Exp. [23] 287.87 287.87 1.0000 1.19281
−2.48Relax. 285.48 285.48 1.0000 1.16327

NM HCP Hf Exp. [22] 323 512 1.5851 2.31300
−3.63Relax. 319.48 504.34 1.5787 2.22896

NM HCP Ti Exp. [22] 295.04 468.10 1.5866 1.76438
−2.97Relax 292.39 462.49 1.5818 1.71204

Table 2
Equilibrium structural parameters of the C14, C15 and C36 Laves phases found in this work. Symbols a and c stand for lattice constants, z, x and y are the internal structural
parameters and Vat is the atomic volume.

Structure C14 C15
a (pm) c (pm) Vat (107 pm3) 4f-z 6h-x 6h-y a (pm) Vat (107 pm3)

Exp. Cr2Hf [22] 505.6 821 1.51463 – – – 714 1.51664
Cr2Cr 464.09 766.32 1.19117 0.0464 0.8289 0.6578 658.04 1.18726
Cr2Hf 503.14 805.61 1.47179 0.0604 0.8315 0.6631 706.55 1.46966
Cr6Hf6 626.68 634.46 1.79822 0.1223 0.8256 0.6513 – –
CrHf2 552.85 865.58 1.90930 0.0627 0.8253 0.6505 777.45 1.95797
Cr2Hf10 602.11 783.44 2.04974 0.0702 0.8325 0.6650 – –
Hf2Hf 569.53 950.50 2.22500 0.0540 0.8267 0.6535 815.72 2.26154

Structure C36
a (pm) c (pm) Vat (107 pm3) 4e-z 4f-z 4f-z 6h-x 6h-y

Exp. Cr2Hf [22] 506.4 1647 1.52405 – – – – –
Cr2Cr 465.11 1523.11 1.18893 0.1003 0.8485 0.1236 0.1623 0.3247
Cr2Hf 500.90 1624.27 1.47056 0.0945 0.8439 0.1234 0.1647 0.3294
Cr6Hf6 625.94 1275.76 1.80365 0.0638 0.8140 0.1323 0.1568 0.3137
CrHf2 561.55 1771.11 2.01529 0.0600 0.8585 0.1266 0.1603 0.3207
Cr2Hf10 601.38 1569.56 2.04832 0.0895 0.8394 0.1250 0.1652 0.3305
Hf2Hf 569.26 1915.81 2.24022 0.0999 0.8487 0.1302 0.1589 0.3177

Structure C14 C15
a (pm) c (pm) Vat (107 pm3) 4f-z 6h-x 6h-y a (pm) Vat (107 pm3)

Exp. Cr2Ti [22] 493.22 800.53 1.40543 0.0625 0.833 0.666 6.9324 1.38816
Cr2Cr 464.09 766.32 1.19117 0.0464 0.8289 0.6578 658.04 1.18726
Cr2Ti 486.19 778.39 1.32789 0.0605 0.8299 0.6599 682.86 1.32676
Cr6Ti6 569.68 631.96 1.48011 0.1111 0.8259 0.6518 – –
CrTi2 513.21 786.29 1.49463 0.0669 0.8237 0.6474 715.00 1.52301
Cr2Ti10 563.73 706.72 1.62080 0.0754 0.8289 0.6579 – –
Ti2Ti 517.22 894.65 1.72722 0.0523 0.8263 0.6527 749.63 1.75520

Structure C36
a (pm) c (pm) Vat (107 pm3) 4e-z 4f-z 4f-z 6h-x 6h-y

Exp. Cr2Ti [22] 493.22 1601.10 1.40546 0.094 0.844 0.125 0.167 0.334
Cr2Cr 465.11 1523.11 1.18893 0.1003 0.8485 0.1236 0.1623 0.3247
Cr2Ti 484.27 1568.36 1.32720 0.0947 0.8437 0.1236 0.1633 0.3266
Cr6Ti6 562.73 1290.70 1.47483 0.0729 0.8203 0.1286 0.1583 0.3167
CrTi2 512.43 1587.44 1.50412 0.0908 0.8450 0.1288 0.1556 0.3112
Cr2Ti10 563.17 1417.17 1.62188 0.0871 0.8374 0.1264 0.1615 0.3229
Ti2Ti 506.90 1882.28 1.74524 0.1004 0.8496 0.1276 0.1630 0.3259

of corresponding Cr2Ta (Cr2Zr) phases, also given in [22]. The
structural parameters for the SER states of Ti and Hf were taken
from [22] and of Cr from [23].
First, we performed convergence tests of total energies with

respect to the number of k-points. The range of optimumvalues for
the C14 Laves phases extends from a grid of 15 × 15 × 11 points
(Cr2Cr, Ti2Ti), 17× 17× 15 points (Cr2Ti) and 19× 19× 13 points
(Cr6Ti6 and Cr2Ti10) towards 19×19×15 points (CrHf2), 21×21×
15 points (Cr2Hf, Cr2Hf10), 21 × 21 × 17 points (Hf2Hf, CrTi2) and
23 × 23 × 15 points (Cr6Hf6). A similar interval was obtained for
the C15 Laves phases which goes from a grid of 15×15×15 points
(Cr2Cr) and 19×19×19 points (Cr2Ti) towards 21×21×21 points
(Hf2Hf, Cr2Hf, CrHf2 and CrTi2) and 23 × 23 × 23 points (Ti2Ti). A
smaller rangewas obtained for the C36 Laves phaseswhich spreads
from a grid of 15× 15× 13 points (Cr2Cr) and 17× 17× 13 points

(Hf2Hf, Cr2Hf, Cr2Ti, CrTi2) towards 19 × 19 × 15 points (Ti2Ti,
Cr6Hf6, CrHf2, Cr2Hf10, Cr6Ti6 and Cr2Ti10).
In the case of SER structures, we used a grid of 13 × 13 × 13

points for AFM BCC Cr, of 19 × 19 × 15 points for NM HCP Ti and
of 21× 21× 13 points for NM HCP Hf.
After these test calculations, each structure was fully relaxed

which yielded the minimum total energy and the equilibrium
structural parameters. The results obtained are summarised in the
following subsections.
As the Cr SER structure and the C15 Laves phase are cubic, only

volume relaxation is sufficient to get their lowest energy state. The
calculated optimum lattice parameters for the SER structures are
listed in Table 1 and those for the C14, C15 and C36 structures in
Table 2.
Spin polarisation was included in AFM BCC Cr calculations.

As for Laves phases, we performed a pilot study in [24] for
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Table 3
Total energy differences, 10EL−SER , between the Laves phases of various types and the weighted average of the SER states (antiferromagnetic BCC Cr, nonmagnetic HCP
Hf and Ti) calculated in this work, rounded, and compared with the calculated [25–28] and experimental [29] values available in literature. Ab initio results published in
[25,26,28] were calculated using the generalised gradient approximation. All values are given in kJ/mol of atoms (1 eV atom−1 = 96 485 kJ mol−1 atom−1). The values
marked by an asterisk (*) were obtained with the help of the energy difference EFCC − EHCP from Ref. [26], as the value of energy of formation of Laves phase obtained in
Ref. [25] was related to the FCC structure. (Let us note that in Ref. [25], nonmagnetic BCC structure is employed as the SER structure for Cr.)

Composition 10EL−SER (kJ mol−1 atom−1)
Cr2Cr Cr2Hf Cr6Hf6 CrHf2 Cr2Hf10 Hf2Hf

C14 This work 28.63 −8.70 47.25 96.63 19.33 32.10
Refs. 27.8 [25] −9.9 [28] – – – 30.92∗ [25]

C15

This work 27.29 −10.38 – 103.46 – 38.00

Refs. 26.4 [25]
−13 [27]

– – – 35.82∗ [25]−11.6 [28]
−4.8± 4.3 [29]

C36 This work 27.75 −9.68 49.77 97.02 19.57 34.14
Ref. – −10.8 [28] – – – –

Composition 10EL−SER (kJ mol−1 atom−1)
Cr2Cr Cr2Ti Cr6Ti6 CrTi2 Cr2Ti10 Ti2Ti

C14 This work 28.63 −8.47 35.46 51.39 12.59 27.20
Refs. 27.8 [25] −10.2 [28] – – – 24.71∗ [25]

C15
This work 7.29 −10.16 – 57.27 – 32.26

Refs. 26.4 [25] −11 [27] – – – 25.81∗ [25]
−12.0 [28]

C36 This work 27.75 −9.51 37.06 53.53 13.47 28.36
Ref. – −11.0 [28] – – – –

hypothetical Cr2Cr Laves phase with a C15 structure. It turns out
that the spin polarised Cr2Cr in the C15 structure is more stable
than the nonmagnetic one by 31.2 meV/at (3.01 kJ mol−1 atom−1)
which means that the magnetism of Laves phases should be
considered at 0 K. However, at ambient temperatures, Laves phases
Cr2Hf and Cr2Ti are paramagnetic. Therefore, in the present paper,
calculations of total energy differences for comparison of their
relative stability were performed for nonmagnetic states only. It
is a major approximation which appears to work reasonably well
in this system.
Experimental and calculated structural parameters of all C14,

C15 and C36 arrangements in Cr2Hf structure agree quite well. The
calculated equilibrium atomic volume ranges from 96.49% Vexp for
C36 and96.90%Vexp for C15 to 97.17%Vexp for C14,whereVexp is the
experimental atomic volume. A little worse agreement was found
for Cr2Ti where calculated equilibrium atomic volume ranges from
94.43% Vexp for C36 and 94.48% Vexp for C14 to 95.58% Vexp for C15.
The total energy differences10EL−SER between the Laves phases

and SER states are then given in Table 3, where they are compared
with the results of other authors [25–29].
It is obvious that total energy of C36 structure of pure

constituents lies between the values for C14 and C15 structures.
However, for pure Cr occupation the stability of Laves phase
structures increases from C14 over C36 to C15. This order is
opposite to that found for pure Hf and Ti Laves phases where the
stability increases from C15 over C36 to C14 configuration. This
difference is supposed to be caused by different atomic size of
elements studied.
The stability of particular Cr2Xbinary Laves phase configuration

decreases in the sequence C15, C36 and C14 which is the same
as in the case of pure Cr. According to our calculations, the C15
structure should be themost stable configuration in both Cr2Hf and
Cr2Ti system (Table 3). Stability of C14 and C36 structures at higher
temperatures is facilitated by the effect of entropy.
As for CrHf2 and CrTi2 configurations, the absolute values

of calculated structural energy differences are nearly an order
of magnitude higher than those of Cr2Hf and Cr2Ti. This is
a quantitative confirmation of the fact that the Laves phase
structures CrHf2 and CrTi2 are energetically very disadvantageous
configurations.

Experimental evidence of existence of all three structure types
of Laves phases in Cr2Hf and Cr2Ti can be found in [22]. However
in Cr–Hf system, only phase equilibria with C14 and C15 structures
are reported [3,7]. Quantitative conclusions for improvement of
phase diagrams in mentioned systems are not yet available.

4. Calculations of phase diagrams

The thermodynamic basis of the CALPHAD method relies ex-
plicitly on the assumption that the equilibrium phase composition
arises as a result of minimisation of Gibbs energy in closed system
at constant external conditions (temperature and pressure).
For modeling of C14 and C15 Laves phases in the Cr–Hf

system we employ the two-sublattice model [5,6] as it was used
in [3]. We describe these structures as the ordered solid solution
phases (see Eq. (7)) with four ‘‘end-members’’. Their Gibbs energy
is modeled with the help of ab initio total energy differences,
presented in Table 3, where the C36 structure data are included
for possible future reference. The Gibbs energy of the Laves
phases is obtained from Eq. (11) where the heat capacity term is
adjusted to the experimental data. In addition the C14 Laves phase
structure was modeled also using three-sublattice model inspired
by crystallography.
For modeling of C15 Laves phases in the Cr–Ti system we

employ the two-sublattice model [5,6], and for C14 and C36
structure the three-sublattice model, as it was used in [4]. Their
Gibbs energy is modeled with the help of ab initio total energy
differences, presented in Table 3. In addition, the modeling of C14
and C36 structure by using the two-sublattice model is performed
for possible future use.
Results of this procedure are presented in Tables 4 and 5.
Let us note here that the values in Table 3 are given in kJ/mol of

atoms,whereas the values given in Tables 4 and 5 are given in J/mol
of compound (formula unit). That is why the quantities transferred
from Table 3 to Tables 4 and 5 are 3000 times higher (in the case of
two-sublattice model) or 12000 times higher (in the case of three-
sublattice model). Non-rounded values are given here.
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Table 4
Optimised thermodynamic parameters describing the C14, C15 and C36 Laves phases in Cr–Hf system. Ab initio calculated values shown in boldface were taken from Table 3
and were kept fixed during the CALPHAD optimisation. Values of standard Gibbs energies are taken from [30].

Structure Parameters G (Eq. (1)) and L (Eq. (5)) in J mol−1 of formula unit

C14 two-subl.

G(Cr:Cr) = 85900+ 3 ∗ GHSERCR
G(Cr:Hf) = −26095+ 0.67 ∗ T− 0.67 ∗ T ∗ ln(T)+ 2 ∗ GHSERCR+ GHSERHF
G(Hf:Cr) = 289901+ 2 ∗ GHSERHF+ GHSERCR
G(Hf:Hf) = 96312+ 3 ∗ GHSERHF
L(Cr,Hf:Hf; 0) = −3500

C14 three-subl.

G(Cr:Cr:Cr) = 343598+ 12 ∗ GHSERCR
G(Cr:Hf:Cr) = −104379+2.67∗T−2.67∗T∗ln(T)+8∗GHSERCR+4∗GHSERHF
G(Cr:Cr:Hf) = 566979+ 6 ∗ GHSERHF+ 6 ∗ GHSERCR
G(Cr:Hf:Hf) = 231990+ 10 ∗ GHSERHF+ 2 ∗ GHSERCR
L(Cr:Hf:Cr,Hf; 0) = −10 000

C15

G(Cr:Cr) = 81877+ 3 ∗ GHSERCR
G(Cr:Hf) = −31130+ 0.17 ∗ T− 0.17 ∗ T ∗ ln(T)+ 2 ∗ GHSERCR+ GHSERHF
G(Hf:Cr) = 310380+ 2 ∗ GHSERHF+ GHSERCR
G(Hf:Hf) = 114000+ 3 ∗ GHSERHF
L(Cr,Hf:Hf; 0) = −24 000

C36 prediction

G(Cr:Cr:Cr) = 333020+ 12 ∗ GHSERCR
G(Cr:Hf:Cr) = −116208+1.59∗T−1.59∗T∗ln(T)+8∗GHSERCR+4∗GHSERHF
G(Cr:Cr:Hf) = 597242+ 6 ∗ GHSERHF+ 6 ∗ GHSERCR
G(Cr:Hf:Hf) = 234827+ 10 ∗ GHSERHF+ 2 ∗ GHSERCR
L(Cr:Hf:Cr,Hf; 0) = −15 500

Table 5
Optimised thermodynamic parameters describing the C14, C15 and C36 Laves phases in Cr–Ti system. Ab initio calculated values shown in boldface were taken from Table 3
and were kept fixed during the CALPHAD optimisation. Values of standard Gibbs energies are taken from [30].

Structure Parameters G (Eq. (1)) and L (Eq. (5)) in J mol−1 of formula unit

C14 two-subl.

G(Cr:Cr) = 85900+ 3 ∗ GHSERCR
G(Cr:Ti) = −25401− 0.788 ∗ T+ 0.788 ∗ T ∗ ln(T)+ 2 ∗ GHSERCR+ GHSERTI
G(Ti:Cr) = 154157+ GHSERCR+ 2 ∗ GHSERTI
G(Ti:Ti) = 81592+ 3 ∗ GHSERTI
L(Cr, Ti:Ti; 0) = −24 000

C14 three-subl.

G(Cr:Cr:Cr) = 343598+ 12 ∗ GHSERCR
G(Cr:Ti:Cr) = −101605−3.157∗T+3.157∗T∗ln(T)+8∗GHSERCR+4∗GHSERTI
G(Cr:Cr:Ti) = 425552+ 6 ∗ GHSERTI+ 6 ∗ GHSERCR
G(Cr:Ti:Ti) = 151040+ 10 ∗ GHSERTI+ 2 ∗ GHSERCR
L(Cr:Ti:Cr, Ti; 0) = −20 000

C15

G(Cr:Cr) = 81877+ 3 ∗ GHSERCR
G(Cr:Ti) = −30486− 1.414 ∗ T+ 1.414 ∗ T ∗ ln(T)+ 2 ∗ GHSERCR+ GHSERTI
G(Ti:Cr) = 171806+ 2 ∗ GHSERTI+ GHSERCR
G(Ti:Ti) = 96780+ 3 ∗ GHSERTI
L(Cr, Ti:Ti; 0) = −57 450

C36 two-subl.

G(Cr:Cr) = 83255+ 3 ∗ GHSERCR
G(Cr:Ti) = −28534− 1.107 ∗ T+ 1.107 ∗ T ∗ ln(T)+ 2 ∗ GHSERCR+ GHSERTI
G(Ti:Cr) = 160581+ GHSERCR+ 2 ∗ GHSERTI
G(Ti:Ti) = 85066+ 3 ∗ GHSERTI
L(Cr, Ti:Ti; 0) = −28 000

C36 three-subl.

G(Cr:Cr:Cr) = 333020+ 12 ∗ GHSERCR
G(Cr:Ti:Cr) = −114139−4.435∗T+4.435∗T∗ln(T)+8∗GHSERCR+4∗GHSERTI
G(Cr:Cr:Ti) = 444725+ 6 ∗ GHSERCR+ 6 ∗ GHSERTI
G(Cr:Ti:Ti) = 161657+ 10 ∗ GHSERTI+ 2 ∗ GHSERCR
L(Cr:Ti:Cr, Ti; 0) = −31 000

Table 6
Thermodynamic parameters for equilibrium phases (liquid, HCP and BCC) in the Cr–Hf and Cr–Ti system.

Phase Parameter value (Eq. (4)) in J mol−1 per formula unit for Cr–Hf system [3] Parameter value (Eq. (4)) in J mol−1 per formula unit for Cr–Ti system [4]

BCC L0 = 42 847.5− 12 ∗ T L0 = 11 824
L1 = 12 064 L1 = 5012

HCP L0 = 43 774+ 0.64729 ∗ T L0 = 25 500L1 = 15 000

Liquid L0 = −30 000+ 8 ∗ T − this work L0 = −992
L1 = 3800− this work L1 = 1811

The L-parameters describing the excess Gibbs energy GE of
non-ideal mixing in Eqs. (4), (5) are obtained by fitting to the
experimental data and are listed in Tables 4 and 5, too. The
thermodynamic parameters for all other phases (liquid, BCC and
HCP) in both systems were taken from [3,4] based on unary data

from [30]. For the sake of completeness, they are presented in
Table 6.
For remodeling of liquid phase in Cr–Hf system, Miedema’s

guess of enthalpy of formation [27] and Tanaka’s rule [31] for the
enthalpy to entropy ratio in liquid phase were applied.
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Fig. 1a. Phase diagram of the Cr–Hf system calculated in this work in comparison
with experimental data. Here three- (two-)sublattice model for C14 (C15) phase
was used. Parameters for BCC and HCP phases are from [3]. Experimental points
were taken from Refs. [32] (squares) and [33] (triangles). Phase boundaries agree
very well with [7].

The optimisation of parameters of Gibbs energies of Laves
phases is, of course, not the standard CALPHAD optimisation as the
ab initio calculated values shown in boldface in Tables 4 and 5 are
kept fixed. Nevertheless this procedure gives us the possibility to
employ values with clear physical meaning in our assessment.
The calculated phase diagrams of Cr–Hf and Cr–Ti system

are presented in Figs. 1 and 2, where they are compared with
existing experimental data. In spite of the above mentioned ab
initio calculated intermediate lattice stability of C36 Laves phase
in Cr–Hf system, the modeling of its thermodynamic properties
could not be performed yet because of lack of experimental phase
equilibrium data for the Cr–Hf system. The heat capacity and
interaction parameters of C36 Laves phase in Cr–Hf system were
calculated on the basis of the analogical values in Cr–Ti system
for C14 and C36 structures, exploiting similarity of the electronic
structure of Hf and Ti. The relative differences of the values of
heat capacity and interaction parameter of those structures in both
systems were retained.
From Figs. 1 and 2 it is evident that the use of total energy

differences calculated ab initio into the two- or three-sublattice
model of Laves phases describes the phase diagrams (experimental
points) in both Cr–Hf and Cr–Ti systems very well.
Let us note that in the present treatment only two optimised

parameters are needed for a complete thermodynamic description
of any Laves phase: (1) the value of the 1C L-SERp describing the
temperature dependence of Gibbs energy of real Laves phases
(Cr2Hf, Cr2Ti), connected with difference of heat capacity of Laves
phases and SER states by Eqs. (9)–(11); it may be, in principle,
calculated from Einstein or Debye functions or from phonon
spectra, and (2) the value of the first L-coefficient of Redlich–Kister
polynomial (Eq. (4)), which is obtained as a fitting parameter
to experimental phase equilibrium data (here we neglect its
temperature dependence as well as the higher-order terms). Its
physical meaning is, in principle, connected with the binary
interaction of atoms in the structure.
On the other hand, analyses employed in [3,4] require 4

and 6 fitting parameters, respectively, for each Laves phase. In
addition to that, our approach provides a physical meaning to
some coefficients in temperature dependence of Gibbs function
connected with the differences in heat capacities (see Eq. (11)),
which can further reduce the number of fitting parameters needed.

Fig. 1b. Detail of phase diagramof the Cr–Hf system. Three- (two-)sublatticemodel
(marked by full (dashed) lines) for C14 phase is combined with two-sublattice
model for C15 phase in both cases. Experimental points were taken from Refs. [32]
(squares) and [33] (triangles).

Fig. 2a. Phase diagram of the Cr–Ti system calculated in this work in comparison
with existing experimental data [34–44]. Parameters for liquid, BCC andHCP phases
are from [4]. Three-sublattice model was employed for C14 and C36 and two-
sublattice model for C15 phase.

It seems that physically based energy part of Gibbs energy
surface of Laves phases (i.e. that one obtained from ab initio
calculations) does not require such a strong entropy correction in
the present model. This situation is a little bit surprising, as the ab
initio calculated parameters for Cr2Cr, Hf2Hf and Ti2Ti energies of
formation have more positive values than the guessed ones [3,4],
which is, however, in agreement with [25].
We can see from Tables 4 and 5 that the stability of polytypes

at 0 K is the highest for C15 structure and decreases in the
sequence C15–C36–C14. On the other hand, as it may be expected,
the vibrational entropy contribution (heat capacity contribution)
increases in the same order when comparing the samemodels and
values per atoms.
When comparing phase equilibria with Laves phases in Figs. 1b

and 2bwe can see that both ourmodels (two- and three-sublattice)
based on ab initio results provide a very good description of exper-
imental phase data. Let us note, however, that the phase equilibria
presented in [3,4] reproduce phase diagram satisfactorily as well,
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Fig. 2b. Detail of phase diagram of the Cr–Ti system. Three- (two-)sublatticemodel
(marked by full (dashed) lines) for C14 and C36 phases is combined with two-
sublattice model for C15 phase in both cases.

although someparameters describingGibbs energy of Laves phases
haveno reasonable physicalmeaning. Introducing physically based
parameters is advantageous as it makes the optimisation process
simpler, more effective and more reliable for physically based ex-
trapolations to higher order systems.

5. Conclusions

It was shown that ab initio calculated structural energy
differencesmaybe reliably applied in the two- and three-sublattice
model of C14, C15 and C36 Laves phases and that even a smaller
number of parameters for a thermodynamic description of Laves
phases (Tables 4 and 5) is needed than in previous assessments.
Ab initio calculated energies of formation of Laves phases with

respect to the SER (BCC, HCP) states correspond reasonably well to
both experimental datawhere available and to previous theoretical
results.
Our ab initio analysis of relative stability of Laves phase struc-

tures confirms the sequence of decreasing stability C15–C36–C14,
but it cannot be fully utilised in thermodynamic modeling of these
phases in Cr–Hf system because of lack of phase equilibrium data
for C36 structure. However, it can be used in the future when
more experimental data will be available. It may be expected that
first-principles calculations of total energy differences of pure con-
stituents in intermetallic and SER structures will represent a stan-
dard tool for modeling thermodynamics of intermetallic phases in
near future. Furthermore, the proposed procedure also allows to
compare the optimised heat capacity differences with those deter-
mined experimentally or theoretically and to use them in phase
diagram calculations.
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a b s t r a c t

The standard enthalpies of formation of some shape memory alloys have been measured by high tem-
perature direct synthesis calorimetry at 1373 K. The following results (in kJ/mol of atoms) are reported:
CoCr (−0.3 ± 2.9); CuMn (−3.7 ± 3.2); Cu3Sn (−10.4 ± 3.1); Fe2Tb (−5.5 ± 2.4); Fe2Dy (−1.6 ± 2.9); Fe17Tb2

(−2.1 ± 3.1); Fe17Dy2 (−5.3 ± 1.7); FePd3 (−16.0 ± 2.7); FePt (−23.0 ± 1.9); FePt3 (−20.7 ± 2.3); NiMn
(−24.9 ± 2.6); TiNi (−32.7 ± 1.0); TiPd (−60.3 ± 2.5). The results are compared with some earlier exper-
imental values obtained by calorimetry and by EMF technique. They are also compared with predicted
values on the basis of the semi empirical model of Miedema and co-workers and with ab initio calcu-
lations when available. We will also assess the available information regarding the structures of these
alloys.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

W.J. Buehler and F.E. Wang, two crystal physicists observed in
1959 that NiTi alloy (Nitinol) has unique characteristics [1]. This
alloy “remembers” its shape, and therefore such compounds are
called shape memory alloys (SMA). Compounds in this group are
held in the so called “parent” state, which is usually a cubic struc-
ture (Austenite) and heat treated to transform to another structure.
When for example the NiTi wire cools below its transition temper-
ature the atoms rearrange in another structure of lower symmetry,
the Martensite phase. These are solid state transformations. The
Martensite crystals are slightly flexible and can accommodate some
degree of deformation. When the NiTi wire is warmed up the
Martensite crystals revert to their undeformed, “parent” structure
(Austenite). The earliest observations of this effect are credited
to Olander in 1932 (Au–Cd), Greeninger and Mooradian (1938)
(Cu–Zn) and later to Kurdjumov and Khandros (1949) and also to
Chang and Read (1951) [2–5].

The shape memory phenomenon is associated with reversible
martensitic transformations [6]. Such transformations may take
place either by thermoelastic or by a non-thermoelastic process.
When the material is heated up and the structure reverts to the
original or “parent phase” it is called a thermoelastic process. How-

∗ Corresponding author at: Illinois Institute of Technology, Thermal Processing
Technology Center, 10W. 32nd Street, Chicago, IL, 60616, USA. Tel.: +1 773 684 7795;
fax: +1 773 702 4180.

E-mail address: meschel@jfi.uchicago.edu (S.V. Meschel).

ever, there are exceptions, some of the Fe based alloys show a face
centered cubic to hexagonal close pack martensitic transformation
in a non-thermoelastic way [7,8].

In general, materials which allow structures to adapt to their
environment are known as actuators [9]. They can change shape,
hardness, position, frequency and other properties as a response
to temperature, electricity or magnetism. The thermoelastic shape
memory alloys (SMA) may respond to thermal stimuli, piezoelec-
tric ceramics to electric stimuli (PZT = lead zirconate titanate) and
magnetostrictive materials to changes of magnetic fields (Terfenol-
D, Samfenol, Galfenol) [10]. While this definition is the most general
one, we should keep it in mind that though SMA alloys are actuators
not all actuators display shape memory phenomenon.

When a SMA recognizes only its “parent” state, it is undergoing a
so called “one way” shape memory transition. If the sample under-
goes specific “training” treatments, it is possible for the alloy to
recognize both its “parent” shape and also its deformed state. The
result is the fascinating so called two-way shape memory effect,
which is much less well understood [11–14]. This is a unique effect
in inanimate materials, however there are similar manifestations in
the animal kingdom, for example in the training of homing pigeons.

The shape memory alloys are utilized in many areas of endeavor,
including electrical engineering, machinery design, transportation,
chemical engineering, space research and medicine. This indicates
a great demand for these materials. To 1994 more than 15,000
patents were applied for utilization of SMA-s [13], These include
such diverse specific uses as pipe joints, eyeglass frames, orthodon-
tic treatments, stents in bypass surgeries and many other ingenious
applications.

0925-8388/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jallcom.2011.01.152
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In both the experimental and the theoretical treatments of SMA-
s the stability of the alloy is considered very important [15,16].
Since the enthalpies of formation are excellent indicators of the
stability of alloys, we believe that understanding the thermochem-
ical behavior of such compounds would be helpful to members of
the scientific community who design new shape memory alloys
with specific applications in mind [17,18]. We found the list of
compounds where shape memory effect has been observed very
helpful in identifying the more important shape memory alloys
[13,19].

In some instances shape memory effects have been predicted
for metallic systems where compound formation has not been
reported. Some of the binary alloys which are reported to exhibit
shape memory phenomena have only one reported crystal modifi-
cation. It is questionable if the effect is due to thermoelastic SMA
phenomenon if the alloys have no apparent “deformed” modifica-
tion. We also noticed that in some studies compositions of binary
alloys were proposed as exhibiting shape memory effect which are
not stoichiometric. Therefore we assessed in the present commu-
nication the systems where shape memory effect was reported or
predicted and surveyed their basic characteristics. Subsequently
we prepared some stoichiometric compositions for detailed ther-
mochemical study.

It is sometimes possible to find information regarding Gibbs’
energies or estimate these quantities from phase diagrams, but
enthalpies of formation are considerably more scarce. The entropy
in these compounds is also a very significant quantity [16]. This
quantity plays a crucial role in the transformation of the SMA from
the Austenite to the Martensite phase. If the enthalpies of forma-
tion are available, it would be possible in principle to evaluate or
at least estimate the entropies with existing or estimated Gibbs’
energies.

Detailed knowledge of the specific heat could also be very
important in understanding the Austenite–Martensite transition.
One would anticipate a definite break or discontinuity in the rela-
tionship between the specific heat and the temperature at the
transition point. Further study of the transition temperature could
also advance our understanding of this fascinating process. Rane,
Navrotsky and Rossetti studied the detailed thermodynamic behav-
ior of one of the actuators, in a piezoelectric ceramics material (PZT)
[10,20].

Therefore we decided to embark on a study of the thermochem-
ical behavior of some SMA-s. In the current communication we
are reporting standard enthalpies of formation for some binary
SMA-s, namely FePd3, FePt, FePt3, Fe2Tb, Fe17Tb2, Fe2Dy, Fe17Dy2,
NiMn, FeMn, CoCr, Cu3Sn and CuMn. Even though the enthalpies
of formation for NiTi, TiPd and several Pt alloys have already
been measured by high temperature, direct synthesis calorimetry
[21,22], we decided to remeasure the enthalpies of formation of
NiTi and TiPd, because we felt that the information regarding their
structures were not sufficient in the previous studies.

2. Experimental

The experiments were carried out at 1373 ± 2 K in a single unit differential
calorimeter which has been described in an earlier communication by Kleppa and
Topor [23] at the University of Chicago. The measurements in the current study were
made at IIT. The changes in the equipment have been reported in an earlier commu-
nication [22]. All the experiments were performed under the protective atmosphere
of Argon gas which was purified by passing it over titanium chips at 900 ◦C.

A boron nitride (BN) crucible was used to contain the samples.
All the metals were purchased from Johnson Matthey/Aesar (Ward Hill, MA,

USA).The Tb and Dy samples were filed from solid ingots immediately prior to the
experiments. For the alloys where we used Fe,Co, Ni or Cu, these were reduced prior
to the calorimetric experiments at 600 ◦C under hydrogen gas flow to insure that
we avoid surface oxidation of these metals. The two components were mixed in the
appropriate molar ratio, compressed into small pellets of about 2 mm diameter and
then dropped from room temperature into the calorimeter. In a subsequent set of
experiments the reaction products were dropped into the calorimeter to measure

their heat contents. Between the two sets of experiments the samples were kept in
a vacuum desiccator to prevent reaction with oxygen or moisture.

Calibration of the calorimeter was achieved by dropping weighed segments of
high purity, 2 mm diameter Cu wire into the calorimeter at 1373 ± 2 K. The enthalpy
of pure copper at 1373 K, 43.184 kJ/mol of atoms was obtained from Hultgren et al.
[24]. The calibrations were reproducible to within ±2.0–2.5% precision.

The reacted samples were examined by X-ray powder diffraction analyses to
assess their structure and to ascertain the absence of unreacted metals. In the course
of the present study we attempted to prepare 19 binary alloys. Among these, 14
were found acceptable for fully quantitative measurements. We did not attempt to
prepare compositions of binary alloys which were not indicated to exist in the phase
diagram collection of Massalski et al. [25]. These are for example alloys in the Ti–Nb,
U–Nb, In–Tl and Ti–V systems. We also did not include compounds which had no
reported crystal structures either in the ASTM Powder diffraction file or in Pearson’s
collection of crystallographic data [26], as for example in Ti3Ni4, Fe81.6Ga18.4.

The physical characteristics and structures of the binary alloys we prepared
are summarized in Table 1. In the second column we list the Chemical Abstracts
(CAS) Registry Numbers (RN) of the compounds reported to display shape memory
phenomenon. As CA currently indexes over 10 million compounds and alloys, if
a compound has no RN assigned to it, it is unlikely to be appropriate for further
measurements. In the third column we list the melting points of the compounds
and alloys from the data available from the Massalski et al. [25] phase diagram
collection. In the fourth column we list the Pearson symbols assigned to the structure
of the compound available from the ASTM powder diffraction file and from Pearson’s
collection of crystallographic data [26]. In order to have a well defined shape memory
alloy, both the parent structure and the structure after the transition should be
well known. The fifth column designated as comments shows if the reaction was
complete and the modification observed in the calorimetric measurements. We did
not study the alloys in the systems Ag–Cd and Au–Cd, because the vapor pressure of
Cd is such that direct synthesis calorimetry at 1100 ◦C is not possible. The compounds
which we found to be ductile during the preparation could be quite suitable for
preparing thin wires and coils.

To prepare the samples for XRD analyses we used an agate mortar and pestle.
When this was not sufficient we used a hardened steel die and a hammer. In one
case we needed to use a diamond wheel to cut the samples. The alloys we studied
varied significantly in behavior, structure characteristics and physical properties.
We will discuss some of the more important characteristics in the next section.

3. Discussion

3.1. Physical properties and structures

3.1.1. Unreacted alloys: RuTa, Ru2Ta3, Ti4Mo9
These are all listed as shape memory alloys, however we found

that in our conditions they are unreacted. The XRD patterns clearly
showed the presence of unreacted elements. In the XRD pattern
of Ti4Mo9 we noticed the presence of approximately 20% reaction
of the expected compound and two unidentified phases. The XRD
equipment is sufficiently sensitive so that we could have observed
solid solution formation had there been any.

3.1.2. Fe–Pd system
FePd was ductile and could not be powdered in preparation for

XRD analysis. However, we performed an XRD analysis on a very
thin pellet and a subsequent SEM study. Both samples show the
presence of FePd and a substantial amount of unreacted Fe metal.
FePd3 was also ductile. However, the XRD pattern showed a sin-
gle phase, a cubic structure. This is the only modification listed in
both the ASTM powder diffraction file and Pearson’s collection of
crystallographic data [26].

3.1.3. Fe–Pt system
Our FePt sample could not be powdered, it yielded only small

flakes. However, the XRD pattern showed that this compound is a
single phase, a tetragonal structure. This is the only modification
listed in the ASTM powder diffraction file and in Pearson’s crys-
tallographic data [26,27]. FePt3 is ductile. We performed an XRD
analysis on a very thin pellet and found an excellent match of the
published cubic structure. Again, there is only one structure listed
[26].
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Table 1
Physical properties of some binary shape memory alloys.

Compound RN Melting point T (◦C) Structure Pearson symbol Comment

NiTi 12035-60-8 1310(c) cP2, mP4 tP2
Ni3Ti 59328-60-8 1380(c) hP16
NiTi2 108503-16-8 984(p) cF96
Ti3Ni4 105-884 – –
TiPd 12165-82-1 1400(c) cP2, oP4 Both modif.
TiPd2 12333-98-1 960(c) –
TiPd3 12066-72-7 1530(c) hP16
Ti4Mo9 – – – XRD, SEM incomplete
TiNb 12384-42-8 – –
TiNb2 123188-71-6 – –
TiV – – –
TiV2 12067-84-4 – –
Ti2V – – –
RuTa – 1667(p) oF* XRD, SEM, unreacted
Ru2Ta3 – – tP2 XRD, SEM unreacted
AgCd 12002-62-9 cP2, hP2, cI2, oC4
Ag2Cd 119187-00-7 – –
AgCd2 276691-61-3 – –
AuCd 12044-73-4 629 (c) oP4, t*4, cP2

hP27, hP18
InTl - – –
InTl2 - – –
In2Tl - – –
FePd 12022-86-5 790(p) tP4 XRD, SEM

1304(ordering) Incomplete, ductile
FePd3 12310-93-9 820(p) cP4 XRD, single phase

1304(ordering) ductile, cP4
FePt 12186-46-8 ∼1300(p) tP4 XRD, Single phase, tP4
FePt3 57679-16-0 ∼1350(p) cP4 XRD, single phase

Ductile, cP4
Fe3Tb - 1212(p) hR12 XRD, mixed phase
Fe2Tb 12023-38-0452 1187(p) cF24, hR6 XRD, single phase

Both modif.
Fe17Tb2 12063-75-1 1312(p) hR19, hP38 XRD, two hexag. modif.
Fe3Dy - 1305(c) hR12 mixed phase
Fe2Dy 12019-81-7 1270(p) cF24, hR* s.p., cF24
Fe17Dy2 12060-29-6 1375(c) hP38 two hexag. modif.
FeMn 12518-52-4 -(1246 ◦C, ordering) cF4, cI2, t** ductile, tetrag.
Fe3Mn 12182-95-5 – -
Fe4Mn 117443-48-8 – hP2
Fe3Ga4 53237-41-5 906(p) mc42, t*63
Fe3Ga 12063-30-8 – hP8, hP2
FeGa3 12062-72-5 824(p) tP16
CoCr 12052-27-6 ∼1283(c) cI2, cP8 SEM, 90% 1:1
CoCr2 159201-78-2 – –
Co3Cr 15381-39-4 – hP8
NiMn 12263-28-4 911(c) cI2, tP2 tP2
Ni3Mn – – cP4
CuMn 12272-98-9 – cF4, t*4 Tetrag., ss
Cu3Mn 104251-06-1 – –
CuGa2 68985-62-6 eutectic tP3
Cu11Ga39 – – –
Cu3Sn 12019-61-3 676(c) oC80, cF16, m** oC80
Cu6Sn5 12019-69-1 – hP4, hR22
Cu3Si 12134-36-0 859(c) hP72, hR*
Cu3Ge 12158-95-1 698(p) oP8, cI2, hP8, mP4 mP4

3.1.4. Fe–Tb and Fe–Dy systems
In both systems the 3:1 compound did not form quantita-

tively at our conditions. We observed mixed phases where the 1:2
compound was predominant. In both systems the 2:1 compound
formed quantitatively. In both 1:2 compounds two modifications
are listed, a cubic and a hexagonal phase [26]. In TbFe2 we observed
both modifications. In our sample of Fe17Tb2 the XRD pattern of our
sample clearly showed the presence of both the reported hexag-
onal modifications [26]. There were no indications of unreacted
elements or secondary phases. Dy2Fe17 was very difficult to pow-
der. We obtained the sample for the XRD analysis by placing it in
a hardened stainless steel die and hammering it 300 times. The
structure is a reasonably good match of the hP38 type hexagonal
pattern. There were no unreacted elements or secondary phases

present. However, we noticed two unidentified lines in the pattern,
which closely matched the hR19 type hexagonal pattern pub-
lished for Tb2Fe17.This structure has not been published for Dy2Fe17
[26,28–30].

3.1.5. FeMn
This sample is ductile. The XRD performed on a very thin pel-

let did not match either the Fe or the Mn patterns. Subsequent
SEM study showed that the large majority of the sample has
a 1:1 composition with a minor component of 1:2 composition
[31]. We will show the enthalpy of formation result as indica-
tive.
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3.1.6. CoCr
This sample did not melt, yielded light grey pellets. The sam-

ples are ductile and we could not crush them even in the hardened
steel die. The XRD pattern of a very thin pellet did not match the
tetragonal CoCr phase. The closest match was with the alpha-Co
pattern. A subsequent SEM study showed that our sample was
nearly 90% 1:1 composition. The study showed the presence of a
few percent of two secondary phases. This alloy has gained con-
siderable current significance by its use in hip joint arthroplasty
[32].

3.1.7. NiMn
This sample melted, yielded a light grey bead. This alloy sample

was very difficult to powder to prepare the XRD samples. We placed
it in a hardened stainless steel die and hammered it several hundred
times for powder preparation. There are two compounds reported
in this system [25], however the XRD patterns are not listed in the
ASTM powder diffraction file. We generated the pattern of the 1:1
composition from unit cell parameters and the atomic coordinates
of the prototype structure [26]. The XRD pattern showed that we
had no unreacted elements or any secondary phases. The exper-
imental pattern closely matched the generated tP2 pattern. Heo
et al. report this composition as a solid solution [33].

3.1.8. CuMn
This sample melted, and yielded a light grey bead. We could not

powder it even in the hardened steel die. We cut the sample with
a diamond wheel to prepare for heat content measurements. The
XRD pattern showed solid solution formation. The pattern matched
closely the tetragonal Mn pattern with significant shift toward
the copper peaks [34]. Copper based shape memory alloys were
reviewed by Tadaki [8,19].

3.1.9. Cu3Sn
The samples melted, yielded a light grey bead. This sample could

be powdered for XRD analysis. The XRD pattern clearly showed an
excellent match of the published orthorhombic structure. There is
no evidence for the presence of unreacted elements or secondary
phases such as Cu6Sn5.We observed two extra peaks in the pattern
which could possibly be attributed to the cubic modification. The
pattern of the cubic modification is not listed in the ASTM powder
diffraction file. Therefore we generated this pattern from available
unit cell parameters and the appropriate atomic coordinates.

3.1.10. TiNi
This sample was a gold toned silvery alloy partially melted,

which we could not crush. The sample for XRD analysis was filed
from the bead. The XRD pattern showed complete reaction and the
CsCl type cubic structure.

3.1.11. TiPd
This sample was partially melted, yielded a light grey alloy. Our

sample could not be crushed to powder, we were only able to get
chips for the XRD analyses.

The XRD pattern showed both the cubic and the orthorhombic
modifications.

3.2. Standard enthalpies of formation

The standard enthalpies of formation of the shape memory
alloys determined in this study were obtained as the difference
of two sets of measurements. In the first set the following reaction
takes place in the calorimeter:

[A1](s, 298 K) + m[A2](s, 298 K) = [A1][A2]m(s or l, 1373 K) (1)

Table 2
Standard enthalpies of formation of some binary shape memory alloys. Data are in
kJ/mol of atoms.

Compound �H(1) �H(2) �Ho
f

FePd3 14.4 ± 1.1(5) 30.4 ± 2.5(5) −16.0 ± 2.7
FePt 6.0 ± 1.5(5) 29.0 ± 1.1(5) −23.0 ± 1.9
FePt3 9.0 ± 1.3(5) 28.7 ± 1.9(4) −20.7 ± 2.3
Cu3Sn 30.1 ± 2.5(6) 40.5 ± 1.8(4) −10.4 ± 3.1
Fe2Tb 25.1 ± 1.6(7) 30.6 ± 1.8(5) −5.5 ± 2.4
Fe17Tb2 28.9 ± 2.5(6) 31.0 ± 1.5(5) −2.1 ± 3.1
DyFe2 28.6 ± 2.3(5) 30.2 ± 1.8(5) −1.6 ± 2.9
Dy2Fe17 24.0 ± 1.6(5) 29.3 ± 0.7(4) −5.3 ± 1.7
NiMn 33.0 ± 1.9(4) 57.9 ± 1.8(5) −24.9 ± 2.6
FeMna 35.7 ± 2.7(6) 38.3 ± 1.6(5) −2.6 ± 3.1
CoCr 34.3 ± 2.4(5) 34.6 ± 1.7(4) −0.3 ± 2.9
CuMn 41.1 ± 1.3(5) 44.8 ± 2.9(4) −3.7 ± 3.2
TiNi −3.5 ± 0.4(5) 29.2 ± 0.9(5) −32.7 ± 1.0
TiPd −29.7 ± 1.8(5) 30.8 ± 1.6(5) −60.3 ± 2.5

a Indicative result.

Here m represents the molar ratio [A1]/[A2], where A1 and A2
represent the elements in the binary shape memory alloys, while s
denotes solid and l denotes liquid. The reacted pellets were reused
in a subsequent set of measurements to determine their heat con-
tents:

[A1][A2]m(s, 298 K) = [A1][A2]m(s or l, 1373 K) (2)

The standard enthalpy of formation is given by:

�H◦
f = �H(1) − �H(2) (3)

where �H(1) and �H(2) are the enthalpy changes per mole of
atoms in the compounds associated with the reactions in Eqs. (1)
and (2).

The experimental results are summarized in Table 2. The heat
effects associated with the reactions in Eqs. (1) and (2) are given
in kilojoules per mole of atoms as averages of about six consecu-
tive measurements with the appropriate standard deviations. The
fourth column shows the standard enthalpy of formation of the con-
sidered phases. The standard enthalpy of formation in that column
also reflects the small contribution from the uncertainties in the
calibrations. All the measurements were performed in BN crucibles.

We compared the experimental heat contents of the compounds
we studied with the values calculated on the basis of the Neumann-
Kopp rule from the heat contents of the elements as listed in
Hultgren et al. [24] and found reasonable agreement for most com-
pounds. The average experimental heat content for 14 compounds
was 32.9 ± 5 as compared with 37.9 ± 3 kJ/mol of atoms for the
calculated values. The experimental and calculated heat contents
usually show better agreement when the component metals are
all transition metals. We observed some notable deviations for the
heat contents of Fe2Tb, Fe17Tb2, FePt, Fe2Dy, Fe17Dy2, FeMn and
NiMn where the differences between the experimental and the cal-
culated values are quite substantial. Since NiMn melted under our
conditions, some of the difference may be accounted for by the
heats of transformation and the heat of fusion.

In Table 3, we compare our results with experimental measure-
ments from the published literature and with predicted values.
Some of the enthalpies of formation of the shape memory alloys
listed in Table 3 have been measured by Guo and Kleppa [21], by
Topor and Kleppa [35] and by Gachon and Hertz [36]. It is notewor-
thy that our measurement for Cu3Sn agrees well with the earlier
measurement by Kleppa by tin solution calorimetry in 1957 [37].
We found reasonable agreement for the enthalpy of formation of
Dy2Fe17 with Norgren et al. by solution calorimetry [38]. How-
ever our result is significantly different for DyFe2. The authors
refer to errors due to oxidation on p1373 of their study. Also, if
we look at the enthalpies of formation of other Fe–LA systems by
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Table 3
Comparison of the standard enthalpies of formation of some binary shape memory alloys with literature and theoretical predictions. Data are in kJ/mol of atoms.

Compound Current work Literature Method Prediction
Miedema et al. [41] ab initio

NiTi −32.7 ± 1.0 −34(36) DSC −52 −33.1
−33.1 ± 1.1(20) DSC

TiNi3 −43(36) DSC −37
−42.2 ± 1.2(20) DSC

NiTi2 −29(36) DSC −40

TiPd −60.3 ± 2.5 −51.6 ± 6.4(20) DSC −97
−53.3 ± 1.8(20) DSC

TiPd3 −65.0 ± 0.9(20) DSC −62
FePd3 −16.0 ± 2.7 – −4 −10.0
FePt −23.0 ± 1.9 −25(�G) (40) EMF −19 −23.1
FePt3 −20.7 ± 2.3 −17(�G) (40) EMF −11 −19.2
Cu3Sn −10.4 ± 3.1 −9.1(37) SC −5.4
Fe2Tb −5.5 ± 2.4 – DSC −4.4
Fe17Tb2 −2.1 ± 3.1 −3.3(39) EMF −1.5
Fe2Dy −1.6 ± 2.9 −11.1(38) SC −4.4

Fe17Dy2 −5.3 ± 1.7 −1.9(38) SC −1.6
−4.6(39) EMF

NiMn −24.9 ± 2.6 – DSC −12.3
FeMn −2.6 ± 3.1a – DSC +0.4
CoCr −0.3 ± 2.9 – DSC −6.7
CuMn −3.7 ± 3.2 – DSC +5.6

DSC = Direct synthesis calorimetry.
SC = Solution calorimetry.
EMF = Electromotive force measurement.

a Indicative result.

different methodologies, the enthalpy values appear to be small,
between −1 and −5 kJ/mol of atoms. Therefore the reported value
of −11.1 kJ/mol of atoms for DyFe2 seems unusual. We also found
good agreement for the enthalpy of formation of Fe17Dy2 with the
measurements of Gozzi et al. [39]. We also found good agreement
with the enthalpies of formation for NiTi measured by Gachon et al.
by calorimetry [36] and for TiPd measured by Topor and Kleppa
[35]. The results of Gozzi et al. and Hultgren et al. were measured by
the EMF technique [39,40]. The fourth column indicates the method
used in the cited results. The predicted values in the fifth column are
from the semi empirical model of Miedema and co-workers [41].

We recently began comparing our results with predicted values
by ab initio calculations. This is completely the work of Dr. Pavlu
at Masaryk University, Czech Republic and all questions regard-
ing the details of the calculations should be addressed to her. The
energies of formation at 0 K temperature were evaluated using
the Vienna’s Ab initio Simulation Package (VASP), code working
within the Density Functional Theory (DFT) [42,43]. This method
utilizes the Projector Augmented Wave–Perdew–Burke–Ernzerhof
(PAW-PBE) pseudopotentials [44–46]. The Generalized Gradient
Approximation (GGA) program was used here to evaluate the
exchange correlation energy. The preliminary calculations were
accomplished using the experimentally found structural informa-
tion published in Pearson’s collection of crystallographic data and
listed in Table 4 [26]. The FePd, FePd3, FePt and FePt3 structures
considered here to be ferromagnetic (FM) whereas the NiTi inter-
metallics in both the cubic and in the monoclinic arrangement are
treated as nonmagnetic (NM). The structural parameters for the
standard element reference (SER) states: FM bcc Fe, NM fcc Pd and
Pt, FM fcc Ni and NM hcp Ti were also cited from [26].

The cut off energy restricting the number of plane waves in the
basis set was 348 eV, 326 eV, 299 eV, 350 eV and 232 eV for Fe, Pd, Pt,
Ni and Ti respectively, both for pure constituents and constituents
in the intermetallic compounds.

We first performed convergence tests of the total energies
with respect to the number of k-points. The range of optimum

values extends from a grid of 23 × 23 × 17 points for FePt, from
23 × 23 × 15 for FePd, from 23 × 23 × 23 points for FePd3 and mon-
oclinic NiTi, to 31 × 31 × 31 points for FePt3, and to 33 × 33 × 33
points for cubic NiTi.

In the case of the SER structures we used a grid of 9 × 9 × 9 points
for FM bcc Fe and FM fcc Ni, of 19 × 19 × 15 points for NM hcp Ti,
of 37 × 37 × 37 points for NM fcc Pd and of 41 × 41 × 41 points for
NM fcc Pt. After these calculations, each structure was fully relaxed,
which yielded the minimum total energy and the equilibrium struc-
tural parameters at 0 K. As the Fe, Pd, Pt and Ni SER structures, FePd3,
FePt3 and one of the NiTi modifications are cubic, only the volume
relaxation is necessary to obtain their lowest energy state.

The results are summarized in Table 4.The agreement of cal-
culated V/atom with experiments is very good as the deviations
of calculated values from experiments (given in % of experimen-
tal value) lie in the interval of −5%(Pd) to +9.5%(Fe) for SER states
and in the interval from −3.5%(FePd3) to +4.5%(FePt) for inter-
metallic phases. The relatively high deviation for pure FM bcc Fe
is given by the choice of experimental data. If this deviation is
calculated with respect to the second experimental number given
in Table 4 its value is only +2.3%. The comparison of found and
experimental magnetic moments (Table 4) in case of FM bcc Fe,
FM fcc Ni, FM FePd, FM FePd3 and FM FePt provides an excel-
lent agreement. In the case of FePt3 the antiferromagnetic (AFM)
arrangement of the structures is reported [50]. Nevertheless the
magnetic moments found in the literature agree very well with the
calculated ones.

The above described approach can in principle evaluate the
structural stabilities, precise heats of formation, electronic struc-
tural properties, chemical bonding, magnetic ordering and defect
properties. However, it must be kept in mind that the data rigor-
ously refer to 0 K. Therefore comparison with experimental data
at 298 K may give rise to some discrepancies and the ab initio
value should be recalculated. In general, the energy of formation
of a binary intermetallic compound is obtained as a difference
between its equilibrium total energy and the total energies of the
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Table 4
Ab initio calculations.

A. Optimized structural parameters of the SER states found in this work and compared with experimental data.

Structure a (Å) b (Å) c (Å) ˇ V/atom (Å3)

FM bcc Fe Exp. 2.9315 a a 90 12.5962
Expa 2.8576 a a 90 11.6669
Calc. 2.8358 a a 90 11.4023
FM fcc Ni Exp. 3.5236 a a 90 11.0623
Exp.b 3.52 a a 90 10.9036
Calc. 3.5227 a a 90 10.9286
NM fcc Pd Exp. 3.890 a a 90 14.7160
Calc. 3.9540 a a 90 15.4538
NM fcc Pt Exp. 3.923 a a 90 15.0937
Calc. 3.9772 a a 90 15.7281
NM hcp Ti Exp. 2.9504 a 4.6810 120 17.6438
Calc. 2.9239 a 4.6249 120 17.1204

B. Optimized structural parameters of the intermetallic compounds found in this work and compared with experimental data. So-called internal parameters
of phase describe the positions of atoms within the unit cell and symbols x, y, z denote the axes in the direction of which the position of atoms is defined.

Structure a (Å) b (Å) c (Å) ˇ V/atom (Å3)

FePd exp. 3.8552 a 3.7142 90 13.8006
Calc. 3.8360 a 3.7690 90 13.8649
FePd3 Exp. 3.8480 a a 90 14.2444
Calc. 3.8919 a a 90 14.7378
FePt Exp. 4.0001 a 3.6721 90 14.6891
Calc. 3.8619 a 3.7609 90 14.0230
FePt3 Exp. 3.8720 a a 90 14.5126
Calc. 3.9122 a a 90 14.9692
NiTi Exp. 3.0070 a a 90 13.5947
Cubic Calc. 3.0047 a a 90 13.5633
NiTi Exp. 4.6225 4.2105 2.8854 96.8000 13.9409
Monocl.Calc. 4.7812 4.0343 2.9147 102.2351 13.7361
Internal par. 2e − x Ni 2e − z Ni 2e − x Ti 2e − z Ti
Exp. 0.8070 0.9475 0.2790 0.5274
Calc. 0.8288 0.9362 0.2851 0.6147

C. Optimized magnetic moments of the SER states and intermetallic compounds found in this work and compared with experimental data. � Denotes average
magnetic moment per atom.

Structure Ref. �Fe (�B) �Ni/Pd/Pt (�B) Comment

FM bcc Fe [47] 2.12
This work 2.18

FM fccNi [48] 0.61 (Ni)
This work 0.60 (Ni)

FePd [49] 2.85 0.35 (Pd)
This work 2.96 0.36 (Pd)

FePd3 [49] 2.37(13) 0.51 (4) (Pd) At 300 K
[49] 3.10 0.42 (Pd)
This work 3.30 0.35 (Pd)

FePt [50] 2.8 0.4 (Pt)
This work 2.95 0.35 (Pt)

FePt3 [50] 3.3 – AFM arr.
[50] – 0.38 (Pt) FM arr.
This work 3.26 0.38 (Pt)

D. Ab initio calculated total energy differences between the intermetallic compound and the weighted averages of total energies of the SER phases of pure
constituents. All values are given in kJ/mol of atoms.

Structure �0Eintermet−SER

FePd −6.036
FePd3 −10.029
FePt −23.095
FePt3 −19.232
NiTi (cubic) −33.056
NiTi (monoclinic) −37.057

Å = Angstrom.
1 Å = 0.1 nm.

a Ref. [47].
b Ref. [48].
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pure atomic constituents at the same conditions, both calculated
ab initio at 0 K. Since in the ab initio calculations the energy per
formula unit of the binary compound is evaluated at 0 K there is no
entropy contribution. The enthalpy of formation at 0 K is therefore
identical with the energy of formation at this temperature and can
be calculated at 298 K using Kirchoff’s law. Often the approxima-
tion of Neumann–Kopp’s rule is used and the value of the energy of
formation (at 0 K) is approximately compared with the value of the
enthalpy of formation (at higher temperatures) without further cal-
culation. The Gibbs’ energy of formation is derived from the Gibbs’
energy difference of the compound and the pure constituents. It
follows than that in the derivation of the formation Gibbs’ energies
it is necessary to know well the Gibbs’ energies of the pure phases
and include an entropy contribution. The fifth column in Table 3 and
part D in Table 4. list the predicted values by ab initio calculations
by Dr. Pavlu.

It is encouraging that most of the new predicted values compare
quite well with the experimental measurements. Despite some
exceptions where we noted discrepancies the agreement is far bet-
ter than with the Miedema semi empirical model. However, we
should keep it in mind that the ab initio calculations refer to 0 K
and the experimental measurements to 298 K.

To illustrate the correlations between experimental and pre-
dicted values, we have reasonable agreement with the values
predicted by the semi empirical model of Miedema and co-workers
for 3 alloys from the total of 14 studied. By reasonable agreement
our criteria was less than 20% difference between the experimen-
tal enthalpies and the predicted values. In comparison, we have
reasonable agreement with the values predicted by the ab initio
calculations in 3 alloys of the total of 4 for which calculations had
been made using the same criteria.

4. Conclusions

1 Some aspects of the thermochemical behavior of 14 shape mem-
ory alloys are summarized.

2 The physical characteristics and the structures of the alloys stud-
ied are assessed. Several of the alloys in this study are ductile
which is a relevant property in the application of shape memory
alloys.

3 The standard enthalpies of formation have been measured by
high temperature direct synthesis calorimetry.

4 The experimental enthalpies of formation were compared with
previously determined enthalpies in the published literature
and with calculated values from the semi empirical model of
Miedema and co-workers and with the ab initio calculations in
this work. We found that the ab initio calculations agree better
with our experimental measurements.

5 The ab initio calculated equilibrium structural parameters and
magnetic moments agree very well with those published in the
literature. It was shown that the energies of formation corre-
sponding to these equilibrium arrangements can significantly
contribute to the analysis of the energetics of intermetallic phases
in spite of the fact that they are calculated at 0 K.
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a b s t r a c t

Amethod for the extension of SGTEGibbs energy expression for pure elements to zero Kelvin temperature
is described. Themethod is based on the Einstein formula for the temperature dependence of heat capacity
extended to give the temperature dependence of the Gibbs energy below the limiting temperature
of validity of SGTE unary data (Tlim). The method maintains the SGTE unary data above the limiting
temperature and forces the low temperature extension to have the same function value and the value
of the first derivative at Tlim as the respective SGTE Gibbs energy polynomial. The extended heat capacity
polynomials were also set to have the same function value and the value of the first derivative at Tlim.
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1. Introduction

The Gibbs energy data for the pure elements currently used in
CALPHAD applications are represented by simple experimentally
based polynomials [1], which are usually restricted at low
temperatures to 298.15 K or to some other limiting temperature
(Tlim).

For the modeling of phase transformations below this limit,
it is necessary to extend the Gibbs energy polynomials for
pure elements [1], to zero Kelvin temperature. Values of SGTE
polynomials of Gibbs energy above Tlim should be left unchanged,
because they are based on experiments and are widely used.

For the extension of Gibbs energy of pure elements below the
limiting temperature, the Einstein and Debye model incorporates
the vibrational contribution to the Gibbs energy, which is the
prevailing contribution to it in the temperature region considered.
In the present paper, the SGTE polynomials [1] are extended below
Tlim using the Einstein formula for the temperature dependence of

∗ Correspondence to: Masaryk University, Central European Institute of Tech-
nology, CEITEC, 611 37 Brno, Czech Republic. Tel.: +420 549498134; fax: +420
541211214.

E-mail address: vrestal@chemi.muni.cz (J. Vřešt’ál).

the heat capacity, extended to give the temperature dependence
of Gibbs energy. In this first step, magnetic and pressure
contributions to the Gibbs energy and the temperature and
concentration dependence of the Einstein and Debye temperature
are not considered.

2. Thermodynamic model

According to [2], the heat capacity of the pure elements can be
represented by

Cp = 3AR

TE
T

2

+ aT + bT 4
+ cT 2, (1)

for nonmagnetic elements, where T is the temperature in K and
A =

eTE /T
eTE /T

−1
2 is introduced for simplification of further equations.

The first term in Eq. (1) represents the contribution of the har-
monic lattice vibration, TE is the Einstein temperature and R is the
universal gas constant. The second term consists of contributions
from electronic excitations and low-order anharmonic corrections
(dilatational and explicitly anharmonic), and the parameter, a, can
be related to a non-thermodynamic information, e.g., electron den-
sity of states at Fermi level. The third term is from the high-order
anharmonic lattice vibrations, and it is seldom that one can find

0364-5916/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
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Table 1
Values of the Einstein temperature TE for stable structures of elements recalculated from Debye temperatures from [6,7], where the values for Tc were taken from [9], values
for Y from [10] and values for B were taken from [11]. Limiting temperatures Tlim were taken from [1], corresponding values of SGTE Gibbs energy at Tlim,G(Tlim), from [1],
and values of parameters a, b, c and E0 for extended Gibbs energy expression, Eq. (2), below limiting temperature Tlim are this work. Some values of TE for unstable structures
of elements are recalculated from TD and added from literature [2] for Fe, from [6] for Ti, Zr and Hf, and from [8] for V. Temperatures are in Kelvin, energy in J mol−1 .

Element TE Tlim G(Tlim) E0 a b c

Li-bcc_A2 264.88 200 −6260.44 −7962.63 0.0112590 2.37900E−09 −1.53294E−04
Na-bcc_A2 121.66 200 −10760.3 −8016.02 0.0257557 1.66252E−09 −1.50434E−04
K-bcc_A2 70.07 200 −13456.9 −7988.74 0.0194388 1.81586E−09 −1.17296E−04
Rb-bcc_A2 43.12 200 −15892.4 −8042.92 0.0120858 1.12973E−09 −4.12642E−05
Cs-bcc_A2 29.26 200 −17595.2 −8041.85 −0.0127130 −1.14058E−09 1.81210E−04
Be-hcp_A3 1108.8 298.15 −2832.42 −15659.3 0.00610649 −9.49706E−10 1.49314E−04
Mg-hcp_A3 308 298.15 −9740.85 −8833.11 0.0539769 8.10174E−10 −2.30295E−04
Ca-fcc_A1 177.1 298.15 −12399.4 −8060.32 0.0169877 5.21547E−11 −4.22890E−05
Sr-fcc_A1 113.2 298.15 −16605.1 −8186.46 0.0457474 7.33731E−10 −1.94534E−04
Ba-bcc_A2 84.7 298.15 −18634.3 −7911.40 0.0684640 2.92889E−09 −4.52605E−04
Sc-hcp_A3 277.2 298.15 −10328.9 −8706.90 0.0469648 5.81278E−10 −1.83312E−04
Y-hcp_A3 184.8 298.15 −13248.0 −8431.21 0.0482034 6.10041E−10 −1.89282E−04
La-DHCP 109.34 298.15 −16965.4 −8252.86 0.0446360 5.46438E−10 −1.70763E−04
Ti-hcp_A3 323.4 298.15 −9159.16 −8861.83 0.0441439 6.18793E−10 −1.74763E−04
Ti-bcc_A2 220.22 298.15 −4597.55 −1800.32 0.0210120 5.66515E−11 −5.16686E−05
Ti-fcc_A1 255.64 298.15 −3188.98 −2091.78 0.00378822 5.88120E−11 9.79921E−07
Zr-hcp_A3 224.07 130 −6587.28 −8313.16 0.0806209 1.31270E−08 −7.48881E−04
Zr-bcc_A2 147.07 298.15 −6719.72 −674.409 0.0328312 5.42043E−10 −1.48985E−04
Zr-fcc_A1 144.76 298.15 −4350.11 177.008 −0.0346112 −6.41923E−10 1.90319E−04
Hf-hcp_A3 194.04 298.15 −12987.4 −8421.33 0.0557452 8.33639E−10 −2.42998E−04
Hf-bcc_A2 126.28 298.15 −2998.58 4357.63 0.0386224 6.09732E−10 −1.73357E−04
Hf-fcc_A1 158.62 298.15 −3643.34 1905.99 0.0342399 4.98051E−10 −1.44210E−04
V-bcc_A2 292.6 298.15 −9209.85 −8475.16 0.0327470 5.26993E−10 −1.41840E−04
V-fcc_A1 306.46 298.15 −1202.99 −997.557 0.0255088 3.48182E−10 −9.96915E−05
V-hcp_A3 318.78 298.15 −4494.29 −4580.80 0.0258721 3.16351E−10 −9.62630E−05
Nb-bcc_A2 211.75 298.15 −10813.9 −7944.08 0.0196347 4.61047E−10 −1.01055E−04
Ta-bcc_A2 184.8 298.15 −12364.8 −8101.73 0.0295502 3.93215E−10 −1.21167E−04
Cr-bcc_A2 485.1 298.15 −7017.64 −9933.46 0.0488572 3.86670E−10 −1.60734E−04
Mo-bcc_A2 346.5 298.15 −8515.13 −8861.12 0.0428376 5.86744E−10 −1.78282E−04
W-bcc_A2 308 298.15 −9724.92 −8790.52 0.0562411 8.30265E−10 −2.47579E−04
Mn-bcc_A12 315.7 298.15 −9606.49 −8968.11 0.0477805 6.66697E−10 −1.79805E−04
Tc-hcp_A3 388.08 298.15 −9834.66 −9735.06 0.0942685 1.31947E−09 −4.00134E−04
Re-hcp_A3 331.1 298.15 −10890.3 −9466.06 0.0939376 1.23562E−09 −3.93606E−04
Fe-bcc_A2 308.77 298.15 −1841.40 22.9525 0.0963983 1.75273E−09 −4.61144E−04
Fe-fcc_A1 308.77 298.15 −2731.18 −1141.91 0.0822187 1.36384E−09 −3.70372E−04
Ru-hcp_a3 462 298.15 −8531.37 −10149.2 0.0826785 9.22441E−10 −3.20209E−04
Os-hcp_a3 385 298.15 −9730.18 −9711.29 0.0857969 9.43881E−10 −3.38392E−04
Co-hcp_a3 342.65 298.15 −2529.54 −1070.33 0.109565 1.73121E−09 −4.92418E−04
Rh-fcc_a1 369.6 298.15 −9408.34 −9434.27 0.0729270 9.59375E−10 −2.97118E−04
Ir-fcc_a1 323.4 298.15 −10585.9 −9287.76 0.0816946 1.01455E−09 −3.36578E−04
Ni-fcc_a1 346.5 298.15 −8006.62 −7481.20 0.0734882 9.20651E−10 −2.98323E−04
Pd-fcc_a1 210.98 298.15 −11277.0 −8108.69 0.0287734 5.98583E−10 −1.35483E−04
Pt-fcc_a1 184.8 298.15 −12412.2 −8152.49 0.0279310 3.31714E−10 −1.03994E−04
Cu-fcc_a1 264.11 298.15 −9883.67 −8342.85 0.0328876 5.34699E−10 −1.45771E−04
Ag-fcc_a1 173.25 298.15 −12686.2 −8035.52 0.0251270 3.03702E−10 −9.84096E−05
Au-fcc_a1 127.05 298.15 −14158.6 −7702.16 0.00399439 −3.03981E−11 −1.14985E−06
Zn-hcp_a3 251.79 298.15 −12411.9 −8961.08 0.0919485 1.47137E−09 −4.17994E−04
Cd-hcp_a3 160.93 298.15 −15444.1 −8609.56 0.0917643 1.67170E−09 −4.38435E−04
Hg-rhombo_a10 55.363 200 −16031.5 −10050.4 −0.0437813 −2.41620E−09 3.77809E−04
B-beta_rhombo_B 1216.6 298.15 −1759.08 −16255.1 0.0121461 −1.85030E−12 2.41989E−06
Al-fcc_a1 329.56 298.15 −8437.64 −8676.15 0.0306683 4.14808E−10 −1.20157E−04
Ga-orthorhombic 246.4 298.15 −12142.7 −8798.22 0.0844341 1.78765E−09 −4.13421E−04
In-tetragonal_a6 83.16 298.15 −17188.3 −7672.15 −0.00241309 −3.97574E−11 3.54384E−05
Tl-hcp-a3 60.445 200 −13331.4 −7440.98 0.00150820 1.89647E−09 −9.03568E−05
C-hex_a9(graphite) 1717.1 298.15 −1712.07 −13723.2 0.362613 6.03075E−09 −1.68581E−03
Si-diamond_a4 496.65 298.15 −5608.21 −9397.17 0.0344888 6.55998E−10 −1.72822E−04
Ge-diamond_a4 287.98 298.15 −9269.48 −8350.18 0.0393997 8.44279E−10 −2.04327E−04
Sn-bct-a5 154 100 −7403.69 −8217.96 0.165492 6.48251E−08 −2.13202E−03
Pb-fcc_a1 80.85 298.15 −19320.1 −8198.50 0.0533286 8.82599E−10 −2.34318E−04
As-rhombo_a7 217.1 298.15 −10640.8 −8008.48 0.0151794 1.87854E−10 −5.85733E−05
Sb-rhombo_a7 162.5 298.15 −13572.3 −8079.96 0.0420057 8.00203E−10 −2.01951E−04
Bi-rhombo_a7 91.63 298.15 −16915.5 −7725.07 0.0163926 2.86831E−10 −7.17683E−05

experimental information to validate the parameter, b. The reason
for a choice of T 4 [2], rather than T 2 [3] in the third term, is that the
former one gives a better fit to the high-temperature heat-capacity
data for a wide spectrum of pure elements, and, most importantly,
it results in reasonable values for the parameter, a, while a term in

T 2 does not [2]. In spite of that, the parameter c is added for smooth
continuation of Cp through the Tlim (the term cT 2 having zero value
at 0 K).

From the expression for Cp, Eq. (1), the Gibbs energy at 105 Pa
relative to the standard element reference state can be evaluated

Appendix XIV: Vřešt’ál J. et al., CALPHAD 37 (2012) 37 113

Reprinted from CALPHAD, 37, Vřešt’ál J., Štrof J., Pavlů J.,
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by Chen and Sundman [2]:

G(T ) = E0 +
3
2
RTE + 3RT ln


1 − e−TE/T 

−
a
2
T 2

−
b
20

T 5
−

c
6
T 3 (2)

where E0 is the total energy of a nonmagnetic structure of an
element at 0 K relative to the standard element reference state, and
the second term is the energy of zero-point lattice vibrations [4,5].

The condition for smooth connecting of the extended G(T )
function belowa contact temperature Tlim, (usually, but not always,
298.15 K) to the valid G(T ) function (SGTE) above this temperature
is the equality of their function values and values of their first
derivative at Tlim. This ensures fluent connecting also for S =

dG/dT and for H = G + TS. Similarly, the condition for a smooth
connection of heat capacity Cp(T ) function below and above Tlim
is the equality of their function values and values of their first
derivative at contact temperature Tlim. Therefore, formulas for
calculation of E0, a, b, and c parameters for the Gibbs energy of
elements in a non-magnetic state below Tlim, Eq. (2), are based on
the solution of the system of Eqs. (3)–(6):

G (Tlim) = E0 +
3
2
RTE + 3RTlim ln


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−
a
2
Tlim2

−
b
20

Tlim5
−

c
6
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
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
− 3BR

TE
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− aTlim −
b
4
Tlim4

−
c
2
Tlim2 (4)

Cp (Tlim) = 3CR


TE
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2

+ aTlim + bTlim4
+ cTlim2 (5)

where the B =
e−TE /Tlim

1−e−TE /Tlim
and C =

eTE /Tlim
eTE /Tlim−1

2 are introduced for

simplification of further equations.
Subsequently

dCp

dT
(Tlim) = DER + a + 4bTlim3

+ 2cTlim, (6)

where the DER term stands for the derivative of the first term of
Eq. (5) i.e.

DER = −6AR
T 2
E

T 3
− 3AR

T 3
E

T 4
+ 6R

T 3
E

T 4

e2TE/T
eTE/T − 1

3 .

Solution of the system of linear equations (3)–(6) in unknowns
a, b, c and E0 is trivial (e.g. sequential elimination of unknowns
a and c from Eqs. (4) to (6)) and final expressions for unknowns
a, b, c, and E0 are as follows:

b =
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a =
dCp
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− 2cTlim (9)

E0 = G (Tlim) −
3
2
RTE − 3RTlim ln
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+
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2
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+
b
20

aTlim5
+

c
6
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where Tlim is the mentioned contact temperature (usually, but
not always, 298.15 K), for which the extension of unary data is
connected to the SGTE unary data [1]. G(Tlim), dG/dT (Tlim), Cp(Tlim)
and dCp/dT (Tlim) represent function values and values of first
derivative of respective SGTE polynomials at Tlim. TE is the Einstein
temperature. (Expressions (1− eTE/Tlim), (1− e−TE/Tlim) and ln(1−

e−TE/Tlim) can be evaluated in some softwares, e.g. Thermocalc, by
using of FUNCTION statements in advance.)

3. A case study

The Einstein function used in Eq. (1), requires a value for
the Einstein temperature. The Einstein temperature is related
to the Debye temperature as TE ∼= 0.77TD [5]. The Debye
temperature of interest is the low temperature limit of the
Debye temperature, required for the purpose of extending the
unary Gibbs energy data. This low temperature limit of Debye
temperature for an ideal solid, TD(−3), can be obtained from either
low temperature elastic constants (theoretically) or from heat
capacity data (experimentally). TD(−3) means Debye temperature
from the (−3)moment of phonon frequencies [6]. At temperatures
T ≤ TD, anharmonic effects are still rather small, and therefore the
low temperature limit of the Debye temperature describeswell the
behavior of the heat capacity of elements in the low temperature
region.

The values of Debye temperature, TD(−3), were taken from the
publications [6,7], for elements in their thermodynamically stable
structures. Some values of TD for unstable structures of elements
are added from literature [2] for Fe, from [6] for Ti, Zr and Hf, and
from [8] for V on the empirical basis described below. The Einstein
temperatures TE were obtained through use of the equation TE ∼=

0.77TD [5].
The values of parameters a, b, c and E0 in Eq. (2), representing

the extension of theGibbs energy of SGTE data [1] to zero Kelvin for
this case are given in Table 1. For dynamically unstable structures
(e.g. V-hcp, Ti, Zr, Hf-bcc), it is impossible to calculate TD(−3).
In this case the value of TD(0) can be calculated as the high
temperature limit of TD. The exact relation between TD(−3) and
TD(0) cannot be found theoretically, but in [6] the empirical
relation TD(−3) = TD(0)/0.94 was published for Ti, Zr, and Hf.
Data found in this empirical way are also included in the Table 1.

An excel file for the calculation of parameters a, b, c , and E0 is
attached as supplementary material for future use when further
Debye temperatures are available. Data in the form of G-HSER
are added in Appendix together with the graphical pictures of
extension of G(T ) and Cp curves to zero Kelvin temperature for all
elements in Table 1. It is obvious, that the simple extrapolation of
G(T ) values from [1] below the contact temperature Tlim fails close
to zero Kelvin because of the term with negative exponent at T .
Using the Einstein formula in the expression for G(T ) cures this
problem and the smooth link to the SGTE data at the temperature
Tlim makes it possible to use the existing SGTE datawithout change.
For low values of Debye temperature, the continuation of Cp-curve
in some cases (e.g. Ba, Cd, Pb, and in smaller extent in Sr, Zn, Sb, La,
Co, Hf-bcc, Zr-bcc, Fe-bcc) exhibits extremum in continuation from
SGTE values to the Einstein function values. Reason for it may be in
anharmonicity contribution to Cp or more probably in the fact that
some SGTE-data close to (but above) Tlim are not fully consistent
with the low temperature information represented by the Debye
temperature. Such a behavior may indicate that Tlim should be set
to higher temperatures (in the case of Ba shift of Tlim to about 350 K
cure this problem, Fig. 2b), but in some cases (Cd, Pb) the shift of
Tlim to the melting temperature of the respective element is not
enough for removing the extremum (Fig. 15b, Fig. 17b). Anyway,
Gibbs energy continues fluently to zero Kelvin also in such cases.
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4. Conclusion

Knowledge of the Debye (Einstein) temperature at low
temperatures makes it possible to obtain a realistic extension
of Gibbs energy function as the temperature falls towards 0 K.
For the stable structures, the low temperature limit of the
Debye temperature, TD(−3), can be calculated on the basis of
elastic constants or experimentally by measurement of the heat
capacity in the low temperature region. For dynamically unstable
structures, the high temperature limit of Debye temperature TD(0)
can be calculated. The relation between TD(0) and TD(−3) cannot
be found theoretically, but an empirical relation can be validated
and values of TD(−3) can be than used for the extension of SGTE
unary data to zero Kelvin temperature [2,6,8].
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Appendix A

Table A.1 contains extended Gibbs energy data (Eq. (2)) in the
form of G-HSER for elements listed in Table 1.

(In some softwares, the argument of logarithmic function
should be calculated first).

Figs. 1–18 illustrate connection of G(T ) and Cp(T ) of extended
functions with SGTE functions. Red color: extended functions, blue
color: SGTE functions.

Table A.1

Li-BCC_A2 (0 < T < 200.00)
−7962.63 + (3/2) (8.31451)(264.88) + 3(8.31451)T ln(1 − exp(−264.88/T)) − (0.0112590/2)T2 − (−1.53294E − 04/6)T3 − (2.37900E − 09/20)T5

Na-BCC_A2 (0 < T < 200.00)
−8016.02 + (3/2) (8.31451) (121.66) + 3(8.31451)T ln(1 − exp(−121.66/T)) − (0.0257557/2)T2 − (−1.50434E − 04/6)T3 − (1.66252E − 09/20)T5

K-BCC_A2 (0 < T < 200.00)
−7988.74 + (3/2) (8.31451) (70.07) + 3(8.31451)T ln(1 − exp(−70.07/T)) − (0.0194388/2)T2 − (−1.17296E − 04/6)T3 − (1.81586E − 09/20)T5

Rb-BCC_A2 (0 < T < 200.00)
−8042.92 + (3/2) (8.31451) (43.12) + 3(8.31451)T ln(1 − exp(−43.12/T)) − (0.0120858/2)T2 − (−4.12642E − 05/6)T3 − (1.12973E − 09/20)T5

Cs-BCC_A2 (0 < T < 200.00)
−8041.85 + (3/2) (8.31451) (29.26) + 3(8.31451)T ln(1 − exp(−29.26/T)) − (−0.0127130/2)T2 − (1.81210E − 04/6)T3 − (−1.14058E − 09/20)T5
Be-HCP_A3 (0 < T < 298.15)
−15659.3 + (3/2) (8.31451) (1108.8) + 3(8.31451)T ln(1 − exp(−1108.8/T)) − (0.00610649/2)T2 − (1.49314E − 04/6)T3 − (−9.49706E − 10/20)T5

Mg-HCP_A3 (0 < T < 298.15)
−8833.11 + (3/2) (8.31451) (308) + 3(8.31451)T ln(1 − exp(−308/T)) − (0.0539769/2)T2 − (−2.30295E − 04/6)T3 − (8.10174E − 10/20)T5

Ca-FCC_A1 (0 < T < 298.15)
−8060.32 + (3/2) (8.31451) (177.1) + 3(8.31451)T ln(1 − exp(−177.1/T)) − (0.0169877/2)T2 − (−4.22890E − 05/6)T3 − (5.21547E − 11/20)T5

Sr-FCC_A1 (0 < T < 298.15)
−8186.46 + (3/2) (8.31451) (113.2) + 3(8.31451)T ln(1 − exp(−113.2/T)) − (0.0457474/2)T2 − (−1.94534E − 04/6)T3 − (7.33730E − 10/20)T5

Ba-BCC_A2 (0 < T < 298.15)
−7911.40 + (3/2) (8.31451) (84.7) + 3(8.31451)T ln(1 − exp(−84.7/T)) − (0.0684640/2)T2 − (−4.52605E − 04/6)T3 − (2.92889E − 09/20)T5
Sc-HCP_A3 (0 < T < 298.15)
−8706.90 + (3/2) (8.31451) (277.2) + 3(8.31451)T ln(1 − exp(−277.2/T)) − (0.0469648/2)T2 − (−1.83312E − 04/6)T3 − (5.81278E − 10/20)T5

Y-HCP_A3 (0 < T < 298.15)
−8431.21 + (3/2) (8.31451) (184.8) + 3(8.31451)T ln(1 − exp(−184.8/T)) − (0.0482034/2)T2 − (−1.89282E − 04/6)T3 − (6.10041E − 10/20)T5

La-DHCP (0 < T < 298.15)
−8252.86 + (3/2) (8.31451) (109.34) + 3(8.31451)T ln(1 − exp(−109.34/T)) − (0.0446360/2)T2 − (−1.70763E − 04/6)T3 − (5.46438E − 10/20)T5
Ti-HCP_A3 (0 < T < 298.15)
−8861.83 + (3/2) (8.31451) (323.4) + 3(8.31451)T ln(1 − exp(−323.4/T)) − (0.0441439/2)T2 − (−1.74763E − 04/6)T3 − (6.18793E − 10/20)T5

Ti-BCC_A2 (0 < T < 298.15)
−1800.32 + (3/2) (8.31451) (220.22) + 3(8.31451)T ln(1 − exp(−220.22/T)) − (0.0210120/2)T2 − (−5.16686E − 05/6)T3 − (5.66515E − 11/20)T5

Ti-FCC_A1 (0 < T < 298.15)
−2091.78 + (3/2) (8.31451) (255.64) + 3(8.31451)T ln(1 − exp(−255.64/T)) − (0.00378822/2)T2 − (9.79921E − 07/6)T3 − (5.88120E − 11/20)T5
Zr-HCP_A3 (0 < T < 130.00)
−8313.16 + (3/2) (8.31451) (224.07) + 3(8.31451)T ln(1 − exp(−224.07/T)) − (0.0806209/2)T2 − (−7.48881E − 04/6)T3 − (1.31270E − 08/20)T5

Zr-BCC_A3 (0 < T < 298.15)
−674.409 + (3/2) (8.31451) (147.07) + 3(8.31451)T ln(1 − exp(−147.07/T)) − (0.0328312/2)T2 − (−1.48985E − 04/6)T3 − (5.42043E − 10/20)T5

Zr-FCC_A1 (0 < T < 298.15)
177.008 + (3/2) (8.31451) (144.76) + 3(8.31451)T ln(1 − exp(−144.76/T)) − (−0.0346112/2)T2 − (1.90319E − 04/6)T3 − (−6.41923E − 10/20)T5
Hf-HCP_A3 (0 < T < 298.15)
−8421.33 + (3/2) (8.31451) (194.04) + 3(8.31451)T ln(1 − exp(−194.04/T)) − (0.0557452/2)T2 − (−2.42998E − 04/6)T3 − (8.33639E − 10/20)T5

Hf-BCC_A2 (0 < T < 298.15)
4357.63 + (3/2) (8.31451) (126.28) + 3(8.31451)T ln(1 − exp(−126.28/T)) − (0.0386224/2)T2 − (−1.73357E − 04/6)T3 − (6.09732E − 10/20)T5

Hf-FCC_A1 (0 < T < 298.15)
1905.99 + (3/2) (8.31451) (158.62) + 3(8.31451)T ln(1 − exp(−158.62/T)) − (0.0342399/2)T2 − (−1.44210E − 04/6)T3 − (4.98051E − 10/20)T5
V-BCC_A2 (0 < T < 298.15)
−8475.16 + (3/2) (8.31451) (292.6) + 3(8.31451)T ln(1 − exp(−292.6/T)) − (0.0327470/2)T2 − (−1.41840E − 04/6)T3 − (5.26993E − 10/20)T5
V-FCC_A1 (0 < T < 298.15)

(continued on next page)
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Table A.1 (continued)

−997.557 + (3/2) (8.31451) (306.46) + 3(8.31451)T ln(1 − exp(−306.46/T)) − (0.0255088/2)T2 − (−9.96915E − 05/6)T3 − (3.48182E − 10/20)T5

V-HCP_A3 (0 < T < 298.15)
−4580.80 + (3/2) (8.31451) (318.78) + 3(8.31451)T ln(1 − exp(−318.78/T)) − (0.0258721/2)T2 − (−9.62630E − 05/6)T3 − (3.1635E − 10/20)T5
Nb-BCC_A2 (0 < T < 298.15)
−7944.08 + (3/2) (8.31451) (211.75) + 3(8.31451)T ln(1 − exp(−211.75/T)) − (0.0196347/2)T2 − (−1.01055E − 04/6)T3 − (4.61047E − 10/20)T5

Ta-BCC_A2 (0 < T < 298.15)
−8101.73 + (3/2) (8.31451) (184.8) + 3(8.31451)T ln(1 − exp(−184.8/T)) − (0.0295502/2)T2 − (−1.21167E − 04/6)T3 − (3.93215E − 10/20)T5
Cr-BCC_A2 (0 < T < 298.15)
−9933.46 + (3/2) (8.31451) (485.1) + 3(8.31451)T ln(1 − exp(−485.1/T)) − (0.0488572/2)T2 − (−1.60734E − 04/6)T3 − (3.86670E − 10/20)T5

Mo-BCC_A2 (0 < T < 298.15)
−8861.12 + (3/2) (8.31451) (346.5) + 3(8.31451)T ln(1 − exp(−346.5/T)) − (0.0428376/2)T2 − (−1.78282E − 04/6)T3 − (5.86744E − 10/20)T5

W-BCC_A2 (0 < T < 298.15)
−8790.52 + (3/2) (8.31451) (308) + 3(8.31451)T ln(1 − exp(−308/T)) − (0.0562411/2)T2 − (−2.47579E − 04/6)T3 − (8.30265E − 10/20)T5
Mn-BCC_A12 (0 < T < 298.15)
−8968.11 + (3/2) (8.31451) (315.7) + 3(8.31451)T ln(1 − exp(−315.7/T)) − (0.0477805/2)T2 − (−1.79805E − 04/6)T3 − (6.66697E − 10/20)T5

Tc-HCP_A3 (0 < T < 298.15)
−9735.06 + (3/2) (8.31451) (388.08) + 3(8.31451)T ln(1 − exp(−388.08/T)) − (0.0942685/2)T2 − (−4.00134E − 04/6)T3 − (1.31947E − 09/20)T5

Re-HCP_A3 (0 < T < 298.15)
−9466.06 + (3/2) (8.31451) (331.1) + 3(8.31451)T ln(1 − exp(−331.1/T)) − (0.0939376/2)T2 − (−3.93606E − 04/6)T3 − (1.23562E − 09/20)T5
Fe-BCC_A2 (0 < T < 298.15)
22.9525 + (3/2) (8.31451) (308.77) + 3(8.31451)T ln(1 − exp(−308.77/T)) − (0.0963983/2)T2 − (−4.61144E − 04/6)T3 − (1.75273E − 09/20)T5

Fe-FCC_A1 (0 < T < 298.15)
−1141.91 + (3/2) (8.31451) (308.77) + 3(8.31451)T ln(1 − exp(−308.77/T)) − (0.0822187/2)T2 − (−3.70372E − 04/6)T3 − (1.36384E − 09/20)T5

Ru-HCP_A3 (0 < T < 298.15)
−10149.2 + (3/2) (8.31451) (462) + 3(8.31451)T ln(1 − exp(−462/T)) − (0.0826785/2)T2 − (−3.20209E − 04/6)T3 − (9.22441E − 10/20)T5

Os-HCP_A3 (0 < T < 298.15)
−9711.29 + (3/2) (8.31451) (385) + 3(8.31451)T ln(1 − exp(−385/T)) − (0.0857969/2)T2 − (−3.38392E − 04/6)T3 − (9.43881E − 10/20)T5
Co-HCP_A3 (0 < T < 298.15)
−1070.33 + (3/2) (8.31451) (342.65) + 3(8.31451)T ln(1 − exp(−342.65/T)) − (0.109565/2)T2 − (−4.92418E − 04/6)T3 − (1.73121E − 09/20)T5

Rh-FCC_A1 (0 < T < 298.15)
−9434.27 + (3/2) (8.31451) (369.6) + 3(8.31451)T ln(1 − exp(−369.6/T)) − (0.0729270/2)T2 − (−2.97118E − 04/6)T3 − (9.59375E − 10/20)T5

Ir-FCC_A1 (0 < T < 298.15)
−9287.76 + (3/2) (8.31451) (323.4) + 3(8.31451)T ln(1 − exp(−323.4/T)) − (0.0816946/2)T2 − (−3.36578E − 04/6)T3 − (1.01455E − 09/20)T5
Ni-FCC_A1 (0 < T < 298.15)
−7481.20 + (3/2) (8.31451) (346.5) + 3(8.31451)T ln(1 − exp(−346.5/T)) − (0.0734882/2)T2 − (−2.98323E − 04/6)T3 − (9.20651E − 10/20)T5

Pd-FCC_A1 (0 < T < 298.15)
−8108.69 + (3/2) (8.31451) (210.98) + 3(8.31451)T ln(1 − exp(−210.98/T)) − (0.0287734/2)T2 − (−1.35483E − 04/6)T3 − (5.98583E − 10/20)T5

Pt-FCC_A1 (0 < T < 298.15)
−8152.49 + (3/2) (8.31451) (184.8) + 3(8.31451)T ln(1 − exp(−184.8/T)) − (0.0279310 − /2)T2 − (−1.03994E − 04/6)T3 − (3.31714E − 10/20)T5
Cu-FCC_A1 (0 < T < 298.15)
−8342.85 + (3/2) (8.31451) (264.11) + 3(8.31451)T ln(1 − exp(−264.11/T)) − (0.0328876/2)T2 − (−1.45771E − 04/6)T3 − (5.34699E − 10/20)T5

Ag-FCC_A1 (0 < T < 298.15)
−8035.52 + (3/2) (8.31451) (173.25) + 3(8.31451)T ln(1 − exp(−173.25/T)) − (0.0251270/2)T2 − (−9.84096E − 05/6)T3 − (3.03702E − 10/20)T5

Au-FCC_A1 (0 < T < 298.15)
−7702.16 + (3/2) (8.31451) (127.05) + 3(8.31451)T ln(1 − exp(−127.05/T)) − (0.00399439/2)T2 − (−1.14985E − 06/6)T3 − (−3.03981E − 11/20)T5
Zn-HCP_A3 (0 < T < 298.15)
−8961.08 + (3/2) (8.31451) (251.79) + 3(8.31451)T ln(1 − exp(−251.79/T)) − (0.0919485/2)T2 − (−4.17994E − 04/6)T3 − (1.47137E − 09/20)T5

Cd-HCP_A3 (0 < T < 298.15)
−8609.56 + (3/2) (8.31451) (160.93) + 3(8.31451)T ln(1 − exp(−160.93/T)) − (0.0917643/2)T2 − (−4.38435E − 04/6)T3 − (1.67170E − 09/20)T5

Hg-RHOMBO_A10 (0 < T < 200)
−10050.4 + (3/2) (8.31451) (55.363) + 3(8.31451)T ln(1 − exp(−55.363/T)) − (−0.0437813/2)T2 − (3.77809E − 04/6)T3 − (−2.41620E − 09/20)T5
B-BETA_RHOMBO_B (0 < T < 298.15)
−16255.1 + (3/2) (8.31451) (1216.6) + 3(8.31451)T ln(1 − exp(−1216.6/T)) − (0.0121461/2)T2 − (2.41989E − 06)T3 − (−1.85030E − 12/20)T5

Al-FCC_A1 (0 < T < 298.15)
−8676.15 + (3/2) (8.31451) (329.56) + 3(8.31451)T ln(1 − exp(−329.56/T)) − (0.0306683/2)T2 − (−1.20157E − 04/6)T3 − (4.14808E − 10/20)T5

Ga-ORTHORHOMBIC (0 < T < 298.15)
−8798.22 + (3/2) (8.31451) (246.4) + 3(8.31451)T ln(1 − exp(−246.4/T)) − (0.0844341/2)T2 − (−4.13421E − 04/6)T3 − (1.78765E − 09/20)T5

In-TETRAGONAL_A6 (0 < T < 298.15)
−7672.15 + (3/2) (8.31451) (83.16) + 3(8.31451)T ln(1 − exp(−83.16/T)) − (−0.00241390/2)T2 − (3.54384E − 05/6)T3 − (−3.97574E − 11/20)T5

Tl-HCP_A3 (0 < T < 200)
−7440.98 + (3/2) (8.31451) (60.445) + 3(8.31451)T ln(1 − exp(−60.445/T)) − (0.00150820/2)T2 − (−9.03568E − 05/6)T3 − (1.89647E − 09/20)T5
C-HEXAGONAL_A9 (graphite) (0 < T < 298.15)
−13723.16 + (3/2) (8.31451) (1717.1) + 3(8.31451)T ln(1 − exp(−1717.1/T)) − (0.362613/2)T2 − (−1.68581E − 03/6)T3 − (6.03075E − 09/20)T5

Si-DIAMOND_A4 (0 < T < 298.15)
−9397.17 + (3/2) (8.31451) (496.65) + 3(8.31451)T ln(1 − exp(−496.65/T)) − (0.0344888/2)T2 − (−1.72822E − 04/6)T3 − (6.55998E − 10/20)T5

(continued on next page)
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Table A.1 (continued)

Ge-DIAMOND_A4 (0 < T < 298.15)
−8350.18 + (3/2) (8.31451) (287.98) + 3(8.31451)T ln(1 − exp(−287.98/T)) − (0.0393973/2)T2 − (−2.04327E − 04/6)T3 − (8.44279E − 10/20)T5

Sn-BCT_A5 (0 < T < 100)
−8217.96 + (3/2) (8.31451) (154) + 3(8.31451)T ln(1 − exp(−154/T)) − (0.165492/2)T2 − (−2.13202E − 03/6)T3 − (6.48250E − 08/20)T5

Pb-FCC_A1 (0 < T < 298.15)
−8198.50 + (3/2) (8.31451) (80.85) + 3(8.31451)T ln(1 − exp(−80.85/T)) − (0.0533286/2)T2 − (−2.34318E − 04/6)T3 − (8.82599E − 10/20)T5
As-RHOMBO_A7 (0 < T < 298.15)
−8008.48 + (3/2) (8.31451) (217.1) + 3(8.31451)T ln(1 − exp(−217.1/T)) − (0.0151794/2)T2 − (−5.85733E − 05/6)T3 − (1.87854E − 10/20)T5

Sb- RHOMBO_A7 (0 < T < 298.15)
−8079.96 + (3/2) (8.31451) (162.5) + 3(8.31451)T ln(1 − exp(−162.5/T)) − (0.0420057/2)T2 − (−2.01951E − 04/6)T3 − (8.00203E − 10/20)T5

Bi- RHOMBO_A7 (0 < T < 298.15)
−7725.07 + (3/2) (8.31451) (91.63) + 3(8.31451)T ln(1 − exp(−91.63/T)) − (0.0163926/2)T2 − (−7.17683E − 05/6)T3 − (2.86831E − 10/20)T5
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Fig. 1. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements Li, Na, K, Rb, Cs (Color online).
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Fig. 2. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements Be, Mg, Ca, Sr, Ba (Color online).
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Fig. 3. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements La, Y, Sc (Color online).
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Fig. 4. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for element Ti in hcp, bcc and fcc structures (Color online).
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Fig. 5. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for element Zr in hcp, bcc and fcc structures (Color online).
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Fig. 6. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for element Hf in hcp, bcc and fcc structures (Color online).
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Fig. 7. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for element V in hcp, bcc and fcc structures (Color online).
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Fig. 8. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements V, Nb, Ta (Color online).
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Fig. 9. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements Cr, Mo, W (Color online).
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Fig. 10. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements Mn, Tc, Re (Color online).
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Fig. 11. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements Ru, Os, and, Fe in bcc and fcc structures (Color
online).
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Fig. 12. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements Co, Ir, Rh (Color online).
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Fig. 13. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements Ni, Pd, Pt (Color online).
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Fig. 14. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements Cu, Ag, Au (Color online).
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Fig. 15. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements Zn, Cd, Hg (Color online).
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Fig. 16. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements B, Al, Ga, In, Tl (Color online).
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Fig. 17. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements C, Si, Ge, Sn, Pb (Color online).
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Fig. 18. Temperature dependence of Gibbs energy (a) and heat capacity (b) for extended and SGTE functions for elements As, Sb, Bi (Color online).
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Appendix B. Supplementary data

Supplementary material related to this article can be found
online at doi:10.1016/j.calphad.2012.01.003.
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Appendix XIV: Vřešt’ál J. et al., CALPHAD 37 (2012) 37 123

Reprinted from CALPHAD, 37, Vřešt’ál J., Štrof J., Pavlů J.,
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Abstract

Structural properties and energetics of Fe-based C14 Laves phases at various compositions (i.e. Fe2Fe, Fe2X, X2Fe, X2X,
where X stands for Si, Cr, Mo, W, Ta) were investigated using the pseudopotential VASP (Vienna Ab initio Simulation
Package) code employing the PAW-PBE (Projector Augmented Wave - Perdew-Burke-Ernzerhof) pseudopotentials. Full
relaxation was performed for all structures studied including the reference states of elemental constituents and the
equilibrium structure parameters as well as bulk moduli were found. The structure parameters of experimentally found
structures were very well reproduced by our calculations. It was also found that the lattice parameters and volumes of the
unit cell decrease with increasing molar fraction of iron. Thermodynamic analysis shows that the Fe2X configurations of
Laves phases are more stable than the X2Fe ones. Some of the X2Fe configurations are even unstable with respect to the
weighted average of the Laves phases of elemental constituents. Our calculations predict the stability of Fe2Ta. On the other
hand, Fe2Mo and Fe2W are slightly unstable (3.19 and 0.68 kJ.mol-1, respectively) and hypothetical structures Fe2Cr and
Fe2Si are found unstable as well.

Keywords: C14 Laves phases; Fe-based systems; Lattice stability; Ab-initio calculations

* Corresponding author: houserova@chemi.muni.cz 

Journal  of  Mining and Metal lurgy,
Section B: Metal lurgy

J. Min. Metall. Sect. B-Metall. 48 (3) B (2012) 395 - 401 

DOI:10.2298/JMMB120704050P 

1. Introduction

C14 Laves phase represents a complex
intermetallic structure, which can be found in many
systems (e.g. Cr-Ta, Cr-Zr, Fe-Mo, Fe-W, Fe-Ta, Ta-
V). If present it significantly influences material
characteristics. The Fe-based systems are very
important for the development of ferritic steels and
Laves phases are considered to be promising
strengthening phases under certain conditions. In
binary systems, these phases can be usually found as
stoichiometric but in higher systems they can exhibit
some solubility of other elements (Si, Cr). For
example, Si has been found to play an important role
in the stability of this phase and, because of lack of
experimental data concerning the influence of Si on
Laves phase in simpler subsystems, a theoretical
study of this effect is highly desirable.

In principle, basic properties of any phase are
determined by its electronic structure. The purpose of
this paper is to study, from first principles, the
stability of C14 Laves phases in various binary
systems consisting of Fe and some of the following
elements: Si, Cr, Mo, Ta or W.

The paper is organised as follows: After the
Introduction, we describe our ab initio calculations in
Section 2. Section 3 presents the structural and

energetic analysis and discussion of the results.
Section 4 concludes the paper.

2. Ab initio calculations

Our first-principles calculations were performed by
the pseudopotential Vienna Ab initio Simulation
Package (VASP) code [1,2] using the Projector
Augmented Wave - Perdew-Burke-Ernzerhof (PAW-
PBE) pseudopotential [3-5]. The exchange-correlation
energy was evaluated within the Generalised Gradient
Approximation [6]. Spin polarisation was not included in
our calculations, except when noted. Reason for this is
the fact that all Laves phases found in the above
mentioned systems at ambient temperatures are
paramagnetic. From the crystallographic point of view,
the C14 Laves phase belongs to the hexagonal structures.
It has 12 atoms in its unit cell and its symmetry is
described by the space group No. 194 [7, 8].

Optimum calculation settings were achieved starting
with the experimentally found lattice parameters. The
structure parameters for the reference states (RS)
(structures of elemental constituents, which are stable at
Standard Ambient Temperature and Pressure (SATP), i.e.
FM bcc Fe, NM diamond Si and NM bcc Mo, W and Ta)
were taken from [8] and of AFM bcc Cr from [9] (Table
1). For Laves phases in Fe-(Cr,Mo,Si), Fe-Ta and Fe-W
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Appendix XVI: Pavlů J. et al., J. Min. Met. B 48 (3) B (2012) 395 124

Journal of Mining and Metallurgy, Section B: Metallurgy, 48 (3) B, Pavlů J., Šob M.,
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systems the lattice parameters from Fe2Mo, Fe2Ta and
Fe2W [8] (Table 2), respectively, were implemented.
Convergence tests of the total energies with respect to
number of k-points have shown that the range of
optimum values goes from a grid of 11x11x8 points
(Fe2Mo, W2Fe and elemental Mo and W in C14
structure) towards 25x25x13 points (Fe2W). In the case
of RS, this range spreads from a grid of 9x9x9 points for
FM bcc Fe and NM Si in diamond structure to 23x23x23
points for NM bcc Ta and W.

3. Results and discussion

3.1 Structure

Calculated structure parameters in comparison
with experimental data are shown in Table 1 for RS
structures of elemental constituents and in Table 2 for
the C14 Laves phases studied. It may be seen that the
theoretical results agree well with experimental
values.
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Table 1. Calculated and experimental lattice parameters of the RS structures (AFM stands for antiferromagnetic, FM for
ferromagnetic and NM for nonmagnetic state, Vat denotes the volume per atom).

Table 2. Calculated and experimental structure parameters and bulk moduli (B0) of the C14 Laves phases in the Fe-X
systems (X = Si, Cr, Mo, Ta, W). 

Structure a (a.u.) c / a Vat (a.u.3) 4f-z 6h-x B0 (Mbar)

Fe2Fe 8.5562 1.5976 72.2224 0.0804 0.8260 2.62
Fe2Cr 8.6291 1.5938 73.9032 0.0775 0.8250 2.68
Cr2Fe 8.7111 1.6095 76.7794 0.0621 0.8287 2.38
Cr2Cr 8.7701 1.6512 80.3841 0.0464 0.8289 2.38
Fe2Mo 8.8485 1.6146 80.7275 0.0695 0.8273 2.88

Fe2Mo exp [8] 8.9668 1.6299 84.8053 0.063 a 0.83 a - - -
Mo2Fe 9.6076 1.5838 101.3668 0.0612 0.8280 2.11
Mo2Mo 9.7465 1.6466 110.0248 0.0413 0.8298 2.42
Fe2Si 8.6043 1.6601 76.3173 0.0714 0.8265 2.13
Si2Fe 9.6519 1.3569 88.0536 0.0230 0.8214 1.43
Si2Si 10.5905 1.2334 105.7317 0.0718 0.8158 0.89
Fe2Ta 8.9710 1.6347 85.1753 0.0656 0.8293 2.68

Fe2Ta exp [8] 9.1841 1.6284 91.0364 0.063 a 0.83 a - - -
Ta2Fe 10.0163 1.5921 115.4628 0.0329 0.8294 1.58
Ta2Ta 10.3003 1.5922 125.5696 0.0623 0.8292 2
Fe2W 8.8403 1.6219 80.8705 0.0686 0.8279 3.11

Fe2W exp [8] 8.9522 1.6242 84.0975 0.063 a 0.83 a - - -
W2Fe 9.7322 1.5896 105.7456 0.0595 0.8291 2.26
W2W 9.8110 1.6515 112.5596 0.0417 0.8301 2.82

a As the corresponding experimental data were not found in [8], the values of C14 MgZn2 Laves phase were used here.

Structure 
This work (relaxed)  Experiment  

a
(a.u.) 

Vat
(a.u.3)

B0 
(Mbar)  

a
(a.u.) 

Vat
(a.u.3) Ref.  

AFM bcc Cr  5.3947 78.5015 1.86  5.44 80.4946 [8]  

FM bcc Fe  5.3589 76.9466 1.94  5.40 
5.4160  

78.7320 
79.4339  

[9] 
[10]  

NM bcc Mo  5.9513 105.3921 2.71  59.4340 104.9723 [8]  
NM diam. Si  10.3354 138.0030 0.90  102.6290 135.1209 [8]  
NM bcc Ta  6.2531 122.2539 2.01  62.3970 121.4672 [8]  
NM bcc W  5.9915 107.5396 3.15  59.8060 106.9582 [8]  

Appendix XVI: Pavlů J. et al., J. Min. Met. B 48 (3) B (2012) 395 125

Journal of Mining and Metallurgy, Section B: Metallurgy, 48 (3) B, Pavlů J., Šob M.,
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The deviations in atomic volume are within the
range from -3.1 to 2.1 % for RS (from Fe to Si) and
from -3.8 to -6.4 % for Laves phases (from Fe2W to
Fe2Ta). We have also found unambiguous trends in the
geometry of Laves phase configurations (i.e. Fe2Fe,
Fe2X, X2Fe, X2X) depending on the amount of Fe
atoms in unit cell and on the size (or number of
electrons) of X atom. These trends are demonstrated
in Figure 1.

The most obvious tendency may be observed in
behaviour of the lattice parameters (a, c) and atomic
volumes (Vat) which increase with the concentration
of X atoms involved except of the case of c parameter
in Fe-Si system. This common trend results from the
fact that Fe atoms are ones of the smallest particles
studied in this work [11]. The differences in the size
between the Fe and X atoms affect the distances
between the individual lines in Figure 1(c) as here the
effects of mutual interplay of a and c are “integrated”
into the value of atomic volume. We can see there that
the values of Vat of all structures increase in the series
Fe-Cr, -Si, -Mo, -W and -Ta – individual curves in
Figure 1(c) do not intersect. This tendency is similar
to trends in empirical atomic radii [11] which give the
order Si, W, Fe, Cr, Mo, Ta. What are the reasons for

disagreement in case of Si and W? The answer
concerning W is simple. As we do not study separate
atoms but bulk material our results should be
compared rather with other experimental data e.g.
covalent radii [12-16], metallic radii [12] or valence
shell orbital radii [17]. These data show that Vat of
W in bounded state moves toward higher values.
The best agreement with our results was found in
the case of the valence d-orbital radii in [17] (0.72
Fe, 0.86 Cr, 1.38 Mo, 1.47 W and 1.55 Ta (a.u.)),
which increase exactly in the same order as our
atomic volumes Vat. However it must be taken into
account that there are several ways how to define
radius for atoms. The further question is why such
small atoms as Si provide a Laves phase with so
relatively large Vat. In case of Si, although the atoms
themselves are relatively small, covalent bonds can
increase the average atomic volume quite a lot (cf.
Vat = 138 a.u.3 in diamond structure). For metallic
constituents, we may conclude that the effective
atomic sizes (here valence d-orbital radii) play an
important role in determining of the atomic volume
of studied configurations.

We can also see that even the internal parameters
describing positions of atoms in the unit cell depend
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Figure 1. Concentration dependence of the a, c, Vat and c/a for C14 Laves phases in Fe-X systems (X = Si, Cr, Mo, Ta, W).
The right-hand side of Fig. 1(c) shows the atomic volumes in the reference-state structures of elemental
constituents. Numerical values are given in Table 2. 
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on the molar fraction of Fe in a regular way. (Fig. 2)
The internal parameters 6h-x and 4f-z describe
positions of atoms in 6h sublattice in direction of both
x and y axes within the range of 0.8158-0.8301 and in
4f sublattice in the direction of the axis z in the
interval 0.0230-0.0804, respectively. It is obvious that
these parameters strongly depend on the composition
of the structure. Except of Fe-Si system, the 6h-x
parameter slightly increases with decreasing
concentration of Fe atoms. The 4f-z parameter, on the
other hand, reveals the opposite tendency in most
cases. There are some exceptions from this trend in
the Fe-Ta and Fe-Si system which may correspond to
the irregularities in trends in c/a ratio (Fig.1(d)).

To study the distance in coordination spheres of
atoms and kind of the Nearest Neighbours (NN), the
values of the 6h-x and 4f-z parameters must be
considered. In the case of sublattices in Laves phases
studied, we found that the 1st NN atoms do not lie in
the same distance from the central atom. They form
some kind of shells whose widths are listed in Table 3.

The interplay of internal and lattice parameters
can be seen in Figure 3 where the deviations from the
trends observed earlier are not manifested and we get

smooth concentration dependencies of average 1st NN
distances from central atom on composition.

We can draw the following conclusions
concerning the 1st NN distances in various sublattices:

• In each configuration of C14 Laves phase, the 1st

NN distance increases in series 6h, 2a and 4f except
for the Ta2Fe, Mo2Mo and W2W where the 2a
sublattice reveals slightly lower average 1st NN
distance than the 6h sublattice. 

• The 2a sublattice has the Coordination Number
(CN) 12 and the 1st NN consist of six 6h and six 4f
atoms in all Laves phase configurations studied. The
average distances between the central atom and the 1st

NN atom reveal smooth dependence on Fe
composition, see Figure 3(a). The width of the 1st NN
shell ranges from 0.34 a.u. for Cr2Cr to 0.78 a.u. for
Si2Si configuration. 

• The 1st NN coordination shell of the 6h sublattice
(CN=12) consists of two 6h, two 2a, two 6h, four 4f
and two 4f atoms (in the order of increasing distances)
and it reveals only tiny changes in its arrangement in
the C14 Laves phases studied. There is only some
rearrangement between the furthest six (4+2) 4f atoms
found in the Fe-rich configurations. On the other
hand, the X-rich configurations prefer to arrange these
six 4f atoms in the opposite order, i.e. in subgroups of
2 and 4 atoms. Let us note that there are some
anomalies in Si2Fe and Si2Si:

- In Si2Fe the couple of 4f atoms substitutes the
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Table 3. The average 1st NN distances (r) and the widths of
the 1st NN shells (w) for C14 Laves phases in the
Fe-X systems (X = Si, Cr, Mo, Ta, W).

Structure
r (a.u.) w (a.u.)

2a 4f 6h 2a 4f 6h
No. of atoms in

shell 12 16 12 12 16 12

Fe2Fe 2.48 2.67 2.44 0.41 0.41 0.54
Fe2Cr 2.50 2.68 2.46 0.41 0.36 0.52
Cr2Fe 2.50 2.72 2.49 0.40 0.17 0.45
Cr2Cr 2.53 2.76 2.54 0.34 0.50 0.54
Fe2Mo 2.55 2.76 2.53 0.40 0.19 0.48
Mo2Fe 2.75 2.98 2.73 0.46 0.22 0.50
Mo2Mo 2.81 3.07 2.82 0.39 0.67 0.61
Fe2Si 2.51 2.71 2.49 0.35 0.19 0.56
Si2Fe 2.65 2.87 2.63 0.61 0.81 0.66
Si2Si 2.88 3.05 2.82 0.78 0.92 0.61
Fe2Ta 2.59 2.81 2.58 0.40 0.15 0.47
Ta2Fe 2.85 3.12 2.87 0.44 0.84 0.63
Ta2Ta 2.95 3.20 2.94 0.49 0.22 0.52
Fe2W 2.55 2.76 2.53 0.40 0.18 0.49
W2Fe 2.78 3.02 2.77 0.46 0.21 0.50
W2W 2.83 3.09 2.84 0.39 0.70 0.60

Figure 2. Concentration dependence of the 6h-x and 4f-z
internal parameter for C14 Laves phases in the
Fe-X systems (X = Si, Cr, Mo, Ta, W). 
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first two 6h atoms in the shell i.e. the number of 4f/6h
atoms is increased/lowered here by two. This fact can
be a consequence of the significant decrease in 4f-z
parameter which causes that the atoms of the 4f
sublattice become to be the nearest surrounding of the
6h atoms. 

- Si2Si reveals, on the other hand, a shift of the first
two 6h nearest atoms to the farthest position of the
coordination sphere. 

However, even in spite of these rearrangements in

the 1st NN coordination shell of the 6h sublattice we
can still see a smooth dependence of the average 1st

NN distances on composition (Fig. 3(c)). The width of
the 1st NN shell ranges from 0.45 a.u. for Cr2Fe to 0.66
a.u. for Si2Fe configuration. 

• The 4f sublattice (CN=16) reveals many
rearrangements of the order of three 2a, six 6h, three
6h, three 4f and one 4f atom in the 1st NN coordination
shell but there are no evident rules here. Again, the
concentration dependences of the average NN
distances are quite smooth. 

Using ab initio methods, the values of bulk moduli
of RS and Laves phases can be calculated and their
values are listed in Tables 1 and 2. The composition
dependence of bulk moduli is shown in Figure 4. It
can be seen there that bulk moduli of Laves phases in
all systems studied exhibit a strong composition
dependence. The least influence of molar fraction of
Fe can be found in Fe-Cr system which can be caused
by similar size of atoms of these elements. Bulk
moduli of both binary and pure constituent Laves
phases also strongly depend on the kind of X
component and their values decrease in the same
order as in case of the RS, i.e. from W, Mo, Ta to Si,
except for Fe-Cr system, which can be caused by
magnetic ordering of Cr and Fe RS. The values of
bulk moduli of pure element structures and of the
Laves phases are very close in case of NM elements,
i.e. bulk moduli of Mo, W, Si and Ta Laves phase are
89.3 %, 89.5 %, 98.9 % and 99.5 % of the RS value,
respectively. On the other hand the bulk moduli of
NM Cr and Fe Laves phase are much higher than
those of magnetic RS (i.e. 128.0 % and 135.1 % of RS
value, respectively).

3.2 energetics

Total energy of formation per atom may be
obtained as 
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Figure 3. Concentration dependences of the average 1st NN
distances for the 2a, 4f and 6h sublattice for C14
Laves phases in the Fe-X systems (X = Si, Cr, Mo,
Ta, W). 

Figure 4. Concentration dependence of the bulk modulus
for C14 Laves phases in the Fe-X systems (X = Si,
Cr, Mo, Ta, W).

Appendix XVI: Pavlů J. et al., J. Min. Met. B 48 (3) B (2012) 395 128

Journal of Mining and Metallurgy, Section B: Metallurgy, 48 (3) B, Pavlů J., Šob M.,
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where Eat stands for total energy per atom and xFe
denotes the molar fraction of Fe.

All equilibrium total energy differences 
are summarised in Table 4 and Fig. 5 which shows
that the only stable configuration is the Fe2Ta one. But
there are two other structures Fe2W and Fe2Mo which
are only slightly unstable in comparison with the
remaining configurations. These three structures
revealing the highest tendencies to stability are the
only ones among the Fe-X systems studied which

have been experimentally found.
The comparison in Table 4 shows that our

calculated data for C14 Laves phase of elemental
constituents are in perfect agreement with ab initio
calculated data published in [18]. The agreement with
experimental data is worse. This is given by the fact
that experiments are not performed at 0 K temperature.

4. Conclusions

The purpose of this work was to understand, with
the help of ab initio electronic structure calculations,
the relations between the electronic structure, size of
the atoms and the thermodynamic as well as structural
properties of the C14 Laves phases. We demonstrate
that the structure parameters and heats of formations
strongly depend on the molar fraction of Fe atoms and
that the calculated equilibrium parameters correspond
very well to the experimental values. Analysis of our
results shows that both geometric and electronic
factors are important for stabilization of the C14
Laves phase in the iron-based systems.

Our ab initio electronic structure calculations
reveal that the C14 Laves phase is unstable at zero
temperature in both Fe-Mo and Fe-W system which is
in contradiction with experiments. However, the
absolute value of the total energy of formation is very
low. We suppose that the instability at higher
temperatures is suppressed by the entropy effects.
But, on the other hand, some other C14 Laves phases
(e.g. Fe2Ta) are stable even at low temperatures. We
have found that the phase stability related to the
reference state is significantly influenced by
occupations of sublattices.
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Figure 5. Concentration dependence  of                  for C14
Laves phases in the Fe-X systems (X = Si, Cr, Mo,
Ta, W) (fully relaxed results).
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Table 4. Ab initio calculated total energies of formation (kJ.mol(-1) of atoms) of various Laves phase configurations
with respect to the weighted ratio of the RS compared with literature data.

a This value was obtained using the energy difference Ebcc - Ediamond = 0.53 eV = 51.1 kJ/mol [25], as the value of energy of
formation of Laves phase in Si obtained in Ref. [18] was related to bcc Si. 

b The sample showed significant amount of second phases in X-ray diffraction analyses [20].

Eat
Laves

F

RRS

a

Elem. X
Fe2X X2Fe X2X

VASP Exp. VASP VASP Calc.
Cr 20.22 - - - 30.10 28.63 27.8 [18]
Mo 3.19 -14.1 [19] 67.38 36.60 36.5 [18]
Si 19.91 - - - 48.92 56.52 53.6 [18]a

Ta -18.61

-6.3±1.9 [20] b

83.70 9.35 9.7 [18]
-19.7 [21]

-19.25±2.79 [22]
-19.27 [23]

W 0.68 -7.61±3.14 [24] 82.60 44.40 43.8 [18]
Fe - - - - - - - - - 38.27 31.1 [18]
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a b s t r a c t

V–Zr is a well known system where a phase transformation from rhombohedral V2Zr structure to cubic
C15 Laves phase occurs during heating at about 115 K. Here we provide a thermodynamic description
of this phenomenon, supported by ab initio calculations. We utilize our new method of extension of the
Scientific Group Thermodata Europe (SGTE) unary thermodynamic database to zero Kelvin and
demonstrate that it may be applied also to complicated intermetallic phases. To keep our analysis
on equal footing with previous results for higher temperatures, data regarding a recent thermodynamic
assessment of the V–Zr system (valid for temperatures above 298.15 K) were reassessed. With the help
of ab initio approach, we demonstrate that the ZrV2 rhombohedral phase is not stable at 0 K and
transforms to C15 Laves phase. The stability of C15 Laves phase is confirmed by analysis of elastic stability
criteria and phonon spectra calculations.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Topologically close-packed intermetallic compounds such as
Laves phases are promising candidates for high-temperature
materials due to their interesting mechanical and corrosion
resistance features [1] which can be influenced by their possible
polymorphism and peculiar magnetic and electrical properties
[2,3]. The solubility of hydrogen in Laves phases [4] and super-
conductivity [5] are also important properties of these com-
pounds. Electronic structure, elastic properties and total energies
of C15 Laves phases of V2M type (M¼Zr, Hf, or Ta) were studied
with the help of ab initio calculations in [6–8] and the relations
between electronic structure, elastic moduli and stability were
analyzed. It was found that the V2Zr C15 Laves phase compound,
which is cubic at room temperature, undergoes a structural trans-
formation to a non-Laves rhombohedral phase at low tempera-
tures [9–11]. The transformation temperature was determined to
be 116.7 K by Moncton [11] and 110 K by Rapp [10], who also
reported the corresponding latent heat of transformation as
31 J/mol. In general, it is very difficult to explore low-
temperature phase diagrams describing such transformations both
experimentally and theoretically and it is great challenge to

perform thermodynamic modeling in this region. It is the reason
for doing this work.

The first step towards the low-temperature predictions of
thermodynamic functions was done in works [12,13], where
equations for Gibbs energy valid at low temperatures and neces-
sary values of Debye temperatures for many elements are given.
In our recent work [14], the expressions of Gibbs energies of 52
elements were extended to zero Kelvin on this basis and they may
form the base for modeling of phase equilibria by the CALPHAD
method at low temperatures.

Furthermore, one of the options how to model the Gibbs
energy of any intermetallic phase at low temperatures is based
on the extension of its Gibbs energy from high-temperature region
towards zero Kelvin which also takes into account the value of
its Debye temperature (TD). A fundamental prerequisite for the
success of this method is the existence of precise expression for
the Gibbs energy of studied phase at high temperature i.e. above
298.15 K.

In the V–Zr system the data of phase equilibria above room
temperature were determined in [15–17] and thermodynamic
assessments were published for equilibria above room tempera-
ture by Servant [18] and Zhao et al. [19], where the description
of Gibbs energy of V2Zr C15 Laves phase was evaluated by the
ATAT software [20,21].

In this work, we have taken the results of Zhao [19] as reliable
and improved the description of C15 Laves phase and a hexagonal
close-packed (HCP_A3) phase above room temperature. However,
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Rapp [10], Moncton [11], Keiber [22] and Geibel [23] have found
rhombohedral phase as stable phase below 113 K, which cannot
be drawn in high-temperature phase diagram. Therefore, we have
performed the extension of calculation of phase diagram down
to zero Kelvin, using the description of unary data below room
temperature [14] and the new extension of expression of Gibbs

energy of C15 Laves phase and rhombohedral phase to zero Kelvin
compatible with Gibbs energy expressions above 298.15 K [19] and
based on respective values of Debye temperatures [22–24].

In addition to that, our ab initio calculations of elastic constants
and phonon spectra bring new findings concerning the stability
and behavior of C15 and rhombohedral V2Zr phase.

Table 1
Calculated and experimental lattice parameters and bulk moduli (B) of the SER states. Symbols a and c stand for lattice parameters, Vat is the atomic volume and Δ shows the
relative difference between the calculated and experimental atomic volume and bulk modulus.

SER state a (pm) c/a Vat (107 pm3) Δ% B (GPa) Δ%

NM BCC_A2 V
Exp. [32] 303.09 1 1.392 �5.11 161.9 [33] þ16.46
This work 297.83 1 1.321 188.5

NM HCP_A3 Zr
Exp. [32] 323.18 1.593 1.164 þ0.64 83.3 [33] þ17.22
This work 323.55 1.598 1.172 97.6

Table 2
Equilibrium structural parameters and bulk moduli (B) of Laves phases and a non-Laves rhombohedral phase found in this work. Symbols a and c stand for lattice parameters
and Vat is the atomic volume; Δ denotes the relative difference between the calculated and experimental atomic volume.

Structure a (pm) c/a Vat (107 pm3) Δ% B (GPa)

C14
V2V

This work 493.22 1.5652 1.565 – 181.8
V2Zr

Exp. [32] 527.70 1.6386 2.007 – –

This work 521.34 1.6032 1.893 �5.65 147.4
VZr2

This work 557.23 1.5929 2.297 – 91.6
Zr2Zr

This work 575.87 1.6667 2.652 – 88.6

C15
V2V

This work 688.17 1 1.358 – 179.9
V2Zr

Exp. [32] 745.00 1 1.723 – 139a

This work 732.90 1 1.640 �4.79 145.2
VZr2

This work 789.31 1 2.049 – 87.5
Zr2Zr
This work 824.88 1 2.339 – 85.3

C36
V2V

This work 493.30 3.1324 1.567 – 181.1
V2Zr

This work 528.06 3.0890 1.895 – 146.9
VZr2

This work 558.41 3.1993 2.321 – 90.0
Zr2Zr

This work 577.14 3.3310 2.668 – 87.7

Rhombohedral phase (hexagonal coordinates)
V2V

This workb 486.46 2.4518 1.358 – 180.6
V2Zr

Exp. [22] 535.61 2.3267 1.720 – –

This workb 518.37 2.4480 1.641 �4.62 145.5
VZr2

This work 622.01 1.8027 2.087 – 81.0
Zr2Zr

This work 620.07 2.0429 2.343 – 85.8

a Calculated value published in Ref. [24].
b These values (written in rhombohedral coordinates) correspond to the C15 Laves phase arrangement and were obtained by the full structure relaxation.
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2. Ab initio calculations of stability of V2Zr phases

The energy of formation of chosen phase at 0 K can be obtained
with the help of ab initio electronic-structure calculations, per-
formed within the Density Functional Theory (DFT). We used the
pseudopotential method [25] incorporated into the Vienna
Ab initio Simulation Package (VASP) code [26,27] combined with
the Projector Augmented Wave–Perdew–Burke–Ernzerhof (PAW-
PBE) pseudopotential [28–30] (i.e. we employed the Generalized
Gradient Approximation (GGA) for the exchange-correlation
energy), and we calculated the total energies of the C15 V2Zr
Laves phase and a rhombohedral structure as well as the total
energy of the Standard Element Reference (SER) states i.e. HCP_A3
Zr and BCC_A2 V, which are the phases stable at pressure of 105 Pa
(1 bar) and temperature 298.15 K.

In general, Laves phases form the largest group of intermetallic
compounds and crystallize in cubic (MgCu2, C15), or hexagonal
(MgZn2, C14 and MgNi2, C36) type structures which differ only
by a different stacking of the same four-layered structural units
[31]. Therefore an additional ab initio study of stability of C14, C15
and C36 structures was performed to obtain a sound physical
background for possible future thermodynamic modeling.

The preliminary calculations of C14 and C15 V2Zr Laves phase
modifications and SER states of Zr and V were accomplished using

the corresponding experimentally found lattice parameters pub-
lished in [32]. For the C36 V2Zr Laves phase, we employed the data
of the Cr2Zr phase from [32] and for rhombohedral phase, the data
from [22]. The cut-off energy restricting the number of plane
waves in a basis set was 241 eV for HCP_A3 Zr, Laves phases and
rhombohedral structures except for pure V structures (BCC_A2
and V2V – rhombohedral and Laves phase modifications) where
the value of 201 eV was used.

The convergence tests of total energies with respect to the
number of k-points were also performed. In the case of SER states
with 2 atoms in the unit cell, we used a grid of 19�19�19 points
for nonmagnetic (NM) BCC_A2 V and of 21�21�15 points for
NM HCP_A3 Zr. The optimum values obtained for the C14 Laves
phases are 15�15�13 (V2V), 21�21�13 (V2Zr), 21�21�15
(Zr2Zr) and 21�21�17 (VZr2) k-points, for the C15 Laves phases
13�13�13 (V2V), 19�19�19 (V2Zr, VZr2) and 21�21�21
(Zr2Zr) k-points and for the C36 Laves phases 13�13�13 (V2V),
17�17�13 (Zr2Zr, V2Zr) and 19�19�13 (VZr2) k-points. The
optima 15�15�13 (V2V, V2Zr, VZr2) and 17�17�13 (Zr2Zr) k-
points were found in case of rhombohedral phase described using
the hexagonal lattice parameters.

The spin polarization was not included in our calculations.
The reason for this is the fact that all Laves phases found in the
systems studied are paramagnetic at ambient temperatures and
V2V and V2Zr C15 Laves phase were found NM from ab initio
calculations.

After the test calculations, each structure was fully relaxed
yielding the minimum total energy and the equilibrium structural
parameters. As the SER state of vanadium and the C15 Laves phases
are cubic, only a volume relaxation is sufficient to get their lowest
energy state. The calculated optimum lattice parameters and bulk
moduli (B) for SER states, C14, C15 and C36 Laves phases and the
non-Laves rhombohedral structure are listed in Tables 1 and 2.

Experimental and calculated structural parameters of SER
states and V2Zr configurations in C15 and C14 Laves phase agree
quite well. Concerning the rhombohedral phase, the situation
is more complicated. Here, the analyses of Nearest Neighbors
(NN) distances and primitive cells were performed and the
results obtained were compared with C15 Laves phase equilibrium
data. It was found that the V2V and V2Zr configuration of
rhombohedral phase transforms to the C15 Laves phase during
the relaxation which is confirmed by the identity of their primitive
cells. Furthermore, the corresponding total energy differences
Δ0E

L�SER
between the rhombohedral (C15 Laves) phase and SER

states given in Table 3 are almost identical.
The same statement is also valid for their bulk moduli B listed

in Table 2. On the other hand, the VZr2 and Zr2Zr configurations

Table 3

Total energy differences Δ0E
L�SER

between the Laves phases of various types and
the weighted average of the SER states (NM BCC_A2 V and NM HCP_A3 Zr)
calculated in this work and compared with values available in literature [34,35].
The ab initio results published in [34,35] were obtained using the GGA. The energy
of the energetically most favorable V2Zr structure is denoted as boldface. All values
are given in kJ/mol of atoms (1 eV/atom ¼96.485 kJ/mol of atoms).

Composition V2V V2Zr VZr2 Zr2Zr

C14
This work 9.81 3.32 68.53 20.51

C15
This work 11.23 5.07 77.85 27.35
Ref. 11.0 [34] – – 26.50 [34,35]

C36
This work 10.42 4.03 71.95 22.80

Rhombohedral phase
This work 11.22a 5.07a 65.23 24.68

a These values correspond to the C15 Laves phase arrangement and were
obtained by the full structure relaxation. The total energy difference between this
relaxed structure and C15 Laves phase in V2V (V2Zr) configuration is �0.0109
(�0.0015) kJ/mol of atoms.

Fig. 1. Density of states of phonons (a) and dispersion relations of phonons (b) in V2Zr C15 Laves phase, calculated by Phonon software [36].
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of rhombohedral phase do not converge to the C15 Laves phase
arrangement during their structural relaxation. Even more, these
structures become more stable than the C15 Laves phase.

The absolute values of energies of formation of VZr2 configura-
tion of C14, C15 and C36 Laves phase and rhombohedral structure
are nearly 21, 15, 18 and 13 times higher, respectively, than those of
V2Zr configuration. This is a quantitative confirmation of the fact
that the VZr2 arrangement of the above mentioned structures is
energetically very disadvantageous.

The stability of the C15 structure at higher temperatures
is facilitated by the vibrational energy effect in spite of the positive
value of energy of formation of C15 and non-Laves (rhombohedral)
structure at 0 K.

3. Elastic constants and phonon spectra of V2Zr C15
Laves phase

The phonon spectra of V2Zr C15 Laves phase were calculated
using the Phonon software [36]. The behavior of phonon density
of states (DOS) is displayed in Fig. 1a together with the dispersion
relations of phonons (Fig. 1b).

It may be seen that the V2Zr in C15 Laves phase structure
is dynamically stable at zero Kelvin which is in agreement with the
findings published in [24] where the V2Zr C15 structure is
presented as mechanically stable according to the elastic stabilityTa
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Table 5
Reassessed L-parameters of C15 Laves phase and HCP_A3 phase.

Phase T (K) Parameter
(J mol�1 per
formula unit)

This work Ref. [19]

HCP_A3 298–3000 0LV,Zr 41,000þ1.0T 1,180,172.2þ10.096698T
1LV,Zr 8000þ2.5T 1,137,938.4þ25.73129T

V2Zr_C15 298–2000 0LV:V,Zr 60,000 �1998.517þ40.88416T
1LV:V,Zr – 2478.3464þ5.0971524T
2LV:V,Zr – 3388.8469þ2.0837273T
0LV,Zr:Zr 25,000 19,133.339�31.652724T
1LV,Zr:Zr – 9002.261þ18.724243T
2LV,Zr:Zr – 10,837.862�9.3671388T

Fig. 2. Phase diagram of V–Zr system above 298.15 K calculated according to [19]
(with HCP_A3 and C15 data reassessed), compared with experimental data: stars
from [15], crosses from [16].
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criteria: C1140; C4440; C114 jC12j and ðC11þ2C12Þ40. To con-
firm this finding, the elastic constants of C15 Laves phase were
calculated and are listed in Table 4.

From this table, we can see that the mechanical stability of the
C15 phase predicted in [24] was confirmed by our results listed
in last two lines. These results were obtained by calculating the
total energy as a function of the shears [37,38] and are in very
good agreement with data published in [24]. Furthermore, the
elastic constants in cubic systems are related to the phonon and
sound velocities as reported in [39]. Hence, our ab initio elastic
constants were compared to those obtained from the least-square
fits of the appropriate acoustic phonon slopes and applying
density of ZrV2 ρ¼6518 kg m�3 determined using the calculated
lattice constant (see Table 2). Resulting values are given in the last
line of Table 4. The C11 and C44 that are directly obtained from
the slopes of the phonon branches differ from the respective
elastic constants calculated in the conventional manner by about
14% and 5%, respectively. We note significant discrepancies
between the slopes that involve combinations of the elastic
constants. Therefore, the C12 appearing only in the combination
of the elastic constants cannot be determined unambiguously.
One has to note that estimates of the elastic constants appropriate
for zero-sound propagation (long wave-length limit, i.e. q-0 where q
denotes the wave-vector) are usually not as precise as those
determined from deformation energy or stress–strain relationships
and the discrepancies may reach several or more percent (see for
example [40]).

4. Thermodynamic modeling and phase diagram
above 298.15 K

In this temperature region, we adopted a recent assessment of
thermodynamic parameters of V–Zr system [19] except for the
overestimated number of parameters of C15 Laves phase which
was reduced in our work. Subsequently, the corresponding para-
meters for HCP_A3 phase had to be also reoptimized. The obtained
data are presented in Table 5 together with data published
in [19].

It is obvious that lower values of 0LV,Zr and 1LV,Zr parameters of
HCP_A3 phase are sufficient in our modeling. In addition to it,
1L and 2L parameters of C15 Laves phase are not needed in our
approach. The same parameters as in [19] were used for a liquid
and a body-centered cubic (BCC_A2) phase. The rhombohedral
phase has not been modeled at this stage as it is not stable in this
temperature region.

The calculated phase diagram is shown in Fig. 2. From Table 6,
we can see that the differences in invariant temperatures calcu-
lated in [19] and in this work are very small.

The detail of the phase diagram in the region of BCC_A2/
HCP_A3 transformation of Zr is presented in Fig. 3.

5. Thermodynamic modeling of V2Zr phases below 298.15 K

The Compound Energy Formalism (CEF) [41,42] was also
employed for thermodynamic modeling of the V–Zr system down

to zero Kelvin. In this temperature region, the Gibbs energy of
elemental constituents may be expressed with respect to SER state
by equation [14]

G0ðTÞ ¼ E0þ3
2RTEþ3RTlnð1�e�TE=T Þ�a

2T
2� b

20T
5�c

6T
3: ð1Þ

where TE is the Einstein temperature and a, b and c are constants.
It is assumed that Gibbs energy of stoichiometric phases can be

expressed also in the form of Eq. (1) and it is evaluated to reach
a smooth connection at limiting temperature. Namely, the
extended Gibbs energy of C15 Laves phase should have the same
function value and the same values of the first and the second
derivatives as the Gibbs energy polynomial for V2Zr published in
[19] at the limiting temperature (Tlim), which was chosen as
298.15 K. The resulting system of equations is based on general
expressions for Gibbs energy valid for low temperatures published
in [14] and was used as follows (parameter c in Eq. (1) is
neglected):

GC15ðT limÞ ¼ EC150 þ3
2
RTC15

E þ3RT limlnð1�e�TC15
E =T lim Þ�a

2
T lim

2� b
20

T lim
5

¼ 1135:53119�15:8195494T limþ1:34559042TlnðT limÞ
ð2:1Þ

dGC15ðT limÞ
dT

¼ 3Rlnð1�e�TC15
E =T lim Þ�3R

TC15
E

Tlim

e�TC15
E =T lim

ð1�e�TC15
E =T lim Þ

�aT lim�
b
4
T lim

4

¼�14:47395898þ1:34559042lnðT limÞ ð2:2Þ

and

d2GC15ðT limÞ
dT2 ¼�3R

TC15
E

T lim

e�TC15
E =T limTC15

E =T lim
2

ð1�e�TC15
E =T lim Þ2

�a�bT lim
3

¼ 1:34559042
1

T lim
: ð2:3Þ

The Einstein temperature (TE) can be calculated from the
Debye temperature (TD) according to the relation [43]

TE ¼ 0:77TD: ð3Þ

Table 6
Temperatures of invariant reactions in the V–Zr system.

Reaction T (K) from [19] T (K) [this work]

V-BCC_A2þ liquid-V2Zr C15 1573 1569.1
Liquid-V2Zr C15þZr-BCC_A2 1538 1535.7
Zr-BCC_A2-V2Zr C15þZr-HCP_A3 1050 1052.9

Fig. 3. Detail of the V–Zr phase diagram (Fig. 2) in the region of BCC_A2/HCP_A3
transformation of Zr. Stars from [15], crosses from [16].
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The value of Debye temperature of V2Zr in C15 Laves phase
structure was obtained by Zhang et al. [24] at zero pressure and
zero Kelvin and amounts to TD¼214.8 K, so that TEC15 = 165.4 K.

The solution of the above mentioned system of equations
by elimination method is

a ¼�0:119565 J mol�1 K�2;

b¼ 1:26414� 10�9 J mol�1 K�5;

EC150 ¼�2173:70 J mol�1:

For the Gibbs energy of V2Zr rhombohedral phase the same
approach is used and its Gibbs energy is defined as

GRHOMBOðT limÞ ¼ ERHOMBO
0 þ3

2RT
RHOMBO
E

þ3RT limlnð1�e�TRHOMBO
E =T lim Þ�a

2T lim
2 ð4Þ

and the parameter b was neglected in this expression. Further-
more, the value E0

RHOMBO¼E0
C15 was used here because the

ab initio calculated total energy difference between the relaxed rhom-
bohedral structure and C15 Laves phase of -0.0015 kJ/mol of atoms
(see Table 3) is negligible. In case of V2Zr rhombohedral phase, Geibel
et al. [23] published the value of TD¼203 K and similar value,
200 K, was presented by Keiber et al. [22]. Therefore the average

value TD¼201.5 K for the rhombohedral phase is accepted in present
calculations.

The solution of system of thermodynamic equations results in:

a¼�0:153448 J mol�1 K�2;

ERHOMBO
0 ¼ EC150 ¼�2173:70 J mol�1 ðTable 3Þ;

which is calculated under the condition that GRHOMBO(T)¼GC15(T)
at the transformation temperature of 113.3 K (average value of
[10,11]).

The Gibbs energy for V2Zr rhombohedral phase above 298.15 K
is expressed simply as linear continuation of function

GRHOMBOðTÞ ¼�2173:70þ3
2RT

RHOMBO
E þ3RTlnð1�e�TRHOMBO

E =T Þ

��0:153448
2

T2ðTo298:15 KÞ ð5Þ

which is valid below limiting temperature Tlim¼298.15 K. This
linear continuation above Tlim is expressed as

GRHOMBOðTÞ ¼ �1324:41þ3:80309T ðT4298:15KÞ ð6Þ

Fig. 4. Temperature dependence of the molar Gibbs energy of V2Zr C15 Laves and of V2Zr rhombohedral phase. Blue curve represents the Gibbs energy of the V2Zr C15 Laves
phase according to [19] including its extrapolation below 298.15 K performed in the present paper, the red/green curves show the extension of the Gibbs energy [14] of the V2Zr
C15 Laves phase/V2Zr rhombohedral phase based on our new model (this work) to zero Kelvin. Gibbs energy of V2Zr rhombohedral phase above 298.15 is given by Eq. (6). (Our
data of V2Zr C15 Laves and rhombohedral phase are listed in Table 7. For elemental constituents, we employed SGTE data [44] above 298.15 K and data from [14] below 298.15 K.)

Table 7
The Gibbs energy data for V2Zr C15 Laves and rhombohedral phase used for the calculation of Fig. 4.

V2Zr C15 Laves phase (0oTo298.15)
�2173.70þ2062.8þ24.9435T ln(1�exp(�165.4T�1))þ0.0597826T2�6.3207�10�11T5þ2 GHSERVþGHSERZR

V2Zr C15 Laves phase (298.15oTo3000) from Ref. [19]
1135.53�15.8195Tþ1.345590T ln(T)þ2 GHSERVþGHSERZR

V2Zr rhombohedral phase (0oTo298.15)
�2173.70þ1935.6þ24.942T ln(1�exp(�155.2T�1))þ0.07598T2þ2GHSERVþGHSERZR

V2Zr rhombohedral phase (298.15oTo3000)
�1324.41þ3.80309Tþ2 GHSERVþGHSERZR
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The shape of molar Gibbs energy G(T) functions for V2Zr C15 Laves
phase and for V2Zr rhombohedral phase in the temperature region
0–400 K is illustrated in Fig. 4. We also show there the simple
extrapolation of polynomial of molar Gibbs energy for V2Zr C15
calculated in [19]. It may be seen that this extrapolation acquires
unphysical values for temperatures lower than 50 K.

The values of a, b and E0 parameters obtained in this section
were successfully employed in the phase diagram calculations.

6. Calculation of phase diagram

The thermodynamic basis of the CALPHAD method relies
explicitly on the assumption that the equilibrium phase composi-
tion arises as a result of a minimization of Gibbs energy in a
closed system at constant external conditions (temperature and
pressure) [42].

Table 8
The zirconium Gibbs energy unary data extended to zero Kelvin in the form of GHSER in J/mol connected with corresponding SGTE data [14,44].

Zr HCP_A3 (0oTo130)
�8313.16þ2794.55þ24.9435T ln(1�exp(�224.07T�1))�0.0403104T2þ1.24814�10�4T3�0.65635�10�9T5

Zr HCP_A3 (130oTo2128)
�7827.595þ125.6490T�24.1618T ln(T)�0.00437791T2þ34,971T�1

Zr HCP_A3 (2128oTo6000)
�26,085.92þ262.7242T�42.144T ln(T)�1.3428961031T�9

Zr BCC_A2 (0oTo298.15)
�674.409þ1834.23þ24.9435T ln(1�exp(�147.07T�1))�0.0164156T2þ0.248308�10�4T3�2.710215�10�11T5

Zr BCC_A2 (298.15oTo2128)
�525.539þ124.9457T�25.6074T ln(T)�3.40084�10�4T2�9.72897�10�9T3þ25,233T�1�7.614289�10�11T4

Zr BCC_A2 (2128oTo4000)
4620.034þ1.55998TþGHSERZRþ1.41035�1032T�9 ;(GHSERZR=G(ZR HCP_A3))

Table 9
Vanadium Gibbs energy unary data extended to zero Kelvin in the form of GHSER in J/mol connected with corresponding SGTE data [14,44].

V BCC_A2 (0oTo298.15)
�8475.16þ3649.24þ24.9435T ln(1�exp(�292.6T�1))�0.0163735T2þ0.23640�10�4T3�2.63496�10�11T5

V BCC_A2 (298.15oTo790)
�7930.430þ133.346053T�24.134T ln(T)�3.098�10�3T2þ1.2175�10�7T3þ69,460T�1

V BCC_A2 (790oTo2183)
�7967.84þ143.291T�25.9T ln(T)þ6.25�10�5T2�6.8�10�7T3

V BCC_A2 (2183oTo4000)
�41,689.8þ321.1407T�47.430T ln(T)þ6.4439�1031T�9

V HCP_A3 (0oTo298.15)
�4580.80þ3975.75þ24.9435T ln(1�exp(�318.78T�1))-0.012936T2þ1.60438�10�5T3�1.58175�10�11T5

V HCP_A3 (298.15oTo4000)
GHSERVþ4000þ2.4T; (GHSERV¼G(V BCC_A2))

Fig. 5. The V–Zr phase diagram calculated in this work and compared with
experimental data: stars [15], crosses [16], square [10] and triangle [11].

Fig. 6. The V–Zr phase diagram below 298.15 K calculated in this work and
compared with experimental data: square [10], triangle [11].
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Appendix XVII: Štrof J. et al., CALPHAD 44 (2014) 62 137
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For the modeling of C15 Laves phase in the V–Zr system
below Tlim, we employed the model of stoichiometric phase, where
a continual extension of Gibbs energy from temperature region
above Tlim¼298.15 K (Section 5) was included. The V2Zr rhombo-
hedral phase was described below Tlim using analogous equation
for Gibbs energy. The optimized thermodynamic parameters
describing both V2Zr C15 Laves phase and V2Zr rhombohedral
phase in the V–Zr system are summarized in Table 7 where
GHSERV¼G(V BCC_A2) and GHSERZR¼G(Zr HCP_A3).

The thermodynamic L-parameters of both BCC_A2 and HCP_A3
phases for the temperatures below 298.15 K are kept equal to
those published for temperatures above 298.15 K in [19] in Table 5
(Section 4). Their unary data were taken from [14]. For the sake of
completeness, they are presented in Tables 8 (zirconium) and 9
(vanadium).

The phase diagram calculated by using these parameters is
shown in Fig. 5 and its details below 298.15 K are in Fig. 6. It may
be seen that a very good agreement of calculated phase diagram
with available experimental data was obtained.

7. Conclusions

A thorough ab initio analysis of phases found in V–Zr system was
performed at 0 K. Ab initio calculated values of lattice parameters,
bulk moduli and energies of formation of Laves phases with respect
to the SER states, i.e. BCC_A2 for V and HCP_A3 for Zr, correspond
reasonably well to both experimental data wherever available and
previous theoretical results. It is shown from ab initio calculations
that the ZrV2 rhombohedral phase is not stable at 0 K and its
structure transforms to C15 Laves phase arrangement. The stability
of C15 phase was proved by analysis of elastic constants and phonon
spectra calculations.

It was also shown that the methodology of calculation of unary
data [14] at temperatures below 298.15 K is transferable to more
complicated structures. The proposed procedure, using the Gibbs
energy expression based on Debye temperature of modeled phases
and on compatibility with SGTE unary data, extends CALPHAD-
type modeling and enables us to calculate phase diagrams down
to zero Kelvin. This may be important for modeling of phase
equilibria in multicomponent systems in materials in extreme
conditions.
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Appendix XVII: Štrof J. et al., CALPHAD 44 (2014) 62 138
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