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Abstrakt

Habilitační práce je souborem článků [2 – 10] publikovaných v mezinárodních
časopisech, z nichž čtyři jsou evidovány v databázi Web of Science. Většina
těchto článků má spoluautory, jimiž jsou Ivana Horová, Kamila Vopatová,
R.J. Karunamuni a další, přičemž podíl všech autorů na společných článcích
je rovnocenný. Práce také odkazuje na knihu [1], která vyšla v roce 2012
v nakladatelství World Scientific a je shrnutím získaných poznatků a prak-
tickou aplikací našich výsledků v jazyce Matlab.

Oblastí našeho výzkumu je teorie jádrového vyhlazování, které zazname-
nalo v posledních dvaceti letech nebývalý rozmach. V současnosti patří já-
drové vyhlazování ke standardním neparametrickým technikám používaných
při zpracování a modelování dat. Základy teorie jádrového vyhlazování jsou
popsány v monografiích [48, 74, 79]. Řídícím faktorem při jádrovém vyhla-
zování je vyhlazovací parametr, který se v jednorozměrném případě nazývá
šířka vyhlazovacího okna, ve vícerozměrném případě jej nazýváme vyhlazo-
vací matice. V našem výzkumu jsme se tedy zaměřili především na volbu
tohoto vyhlazovacího parametru.

V případě jádrových odhadů regresní funkce byly navrženy dvě nové
metody. První předpokládá cyklický plán, kdy se data periodicky opakují,
a byla publikována v [10]. Druhá metoda byla představena v článku [7] a její
statistické vlastnosti byly odvozeny v článku [3], který byl loni přijat k pub-
likaci. V souvislosti s odhady regresní funkce byly také studovány hraniční
efekty (viz [25]) a dále problematika jádrových odhadů regresní funkce pro
korelovaná data (viz [4]).

Neméně zajímavým tématem v této oblasti je problematika hraničních
efektů, které při jádrových odhadech nastávají. Zaměřili jsme se zejména
na hraniční efekty při jádrových odhadech distribuční funkce. V článku
[9] jsme se zabývali potlačením těchto efektů při odhadech ROC křivky.
V článku [8] jsme studovali vliv a potlačení efektů při odhadech rizikové
funkce. Dále jsme se také zabývali využitím jádrových odhadů ve financích,
konkrétně při odhadování indexů a křivek, které popisují kvalitu skóringových
modelů (viz [5]).

Velmi významnou část našeho výzkumu tvoří zobecnění principů jádro-
vých odhadů v jednorozměrném případě na vícerozměrný prostor. Zaměřili
jsme se nejprve na jádrové odhady hustoty. V článku [6] byla představena it-
erační metoda pro hledání optimální vyhlazovací matice, zejména její grafická
interpretace ve speciálním případě dvourozměrného prostoru a za předpok-
ladu diagonální matice. Statistické vlastnosti a zobecnění na plnou matici
pro tuto metodu byly odvozeny v článku [2].
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Preface

The thesis is a collection of articles [2 – 10]. Four of them have been published
in international journals indexed by Web of Science. The paper [3] was
accepted in December 2013. The thesis also refers to the book [1] which is
a summary of all results in our research area.

Our main research interest lies in the theory of kernel smoothing. Ker-
nel methods are well-known and intensively used by the community of non-
parametricians because they are a useful tool for local weighting. Kernel
estimators combine two main advantages: simple expression and ease of im-
plementation.

It is well known that the most important factor in kernel estimation is
a choice of smoothing parameters. This choice is particularly important be-
cause of its role in controlling both the amount and the direction of smooth-
ing. This problem has been widely discussed in many monographs and pa-
pers.

The following overview starts with a motivation of the theory of kernel
smoothing and then briefly describes the main contributions of the book [1]
and the papers [2 – 10]. In order to make the presentation more compact,
the thesis consists of the author’s selected papers in the area. In References
one can find the list of other related publications of the author [11 – 28].

Pronouncement

Almost all papers included in this thesis have co-authors, namely I. Horová,
K. Vopatová, R. J. Karunamuni, J. Zelinka, M. Řezáč and D. Lajdová. In
all cases, the contributions of all authors were equivalent, since the results
were based on common discussions. Formally, the author’s contribution to
the paper [10] was 100%, the author’s contribution to the papers [3, 5, 7, 8, 9]
was 50% and the author’s contribution to the monograph [1] and the papers
[2, 4, 6] was 33%.

Acknowledgement

I wish to thank all the co-authors for their friendly and always very help-
ful collaboration. I would like to express my gratitude to my colleague
Prof. Ivana Horová for our numerous interesting discussions. And most im-
portantly, I would like to thank my wife Veronika. Her support, encourage-
ment, patience and love were the bedrock upon which the past eight years of
my life have been built.

3



1 Introduction

Kernel smoothing belongs to a general category of techniques for nonpara-
metric curve estimations including nonparametric regression, nonparamet-
ric density estimators and nonparametric hazard functions. These estima-
tions depend on a smoothing parameter called a bandwidth which controls
the smoothness of the estimate and on a kernel which plays a role of weight
function. As far as the kernel function is concerned, a key parameter is its
order which is related both to the number of its vanishing moments and to
the number of existing derivatives for the underlying curve to be estimated.
As concerns a bandwidth choice – it is the crucial problem in the kernel
smoothing and this is the main topic of our research.

The first part of our research includes a methodology for nonparametric
regression analysis, complemented with practical applications. In nonpara-
metric regression estimation, a critical and inevitable step is to choose the
smoothing parameter (bandwidth) to control the smoothness of the curve
estimate. The smoothing parameter considerably affects the features of the
estimated curve. Although in practice one can try several bandwidths and
choose a bandwidth subjectively, automatic (data-driven) selection proce-
dures could be useful for many situations; see [73] for more examples. Several
automatic bandwidth selectors were proposed and studied in [37], [50], [49],
[38] with the references included. It is well recognized that these bandwidth
estimates are the subject to large sample variation. The kernel estimates
based on the bandwidths selected by these procedures could have very dif-
ferent appearances. Due to the large sample variation, classical bandwidth
selectors might not be very useful in practice. This fact has motivated us in
our research to find new methods for bandwidth selection which give much
more stable bandwidth estimates.

In connection with the kernel regression analysis we have to mention one
essential fact. The regression model assumes no correlation in measurements.
In the case of independent observations the literature on bandwidth selection
methods is quite extensive. Nevertheless, if an autocorrelation structure of
errors occurs in data, then classical bandwidth selectors have not always
provided applicable results (see [35]). Many real data sets (especially time
series) show the autocorrelation. This has led us to study possibilities for
overcoming the effect of dependence on the bandwidth selection.

The next part of our research is focused on the studying of boundary
effects in kernel estimation. In practical processing we encounter data which
are bounded in some interval. The quality of the estimate in the boundary
region is affected since the “effective” window does not belong to this inter-
val, therefore the finite equivalent of the moment conditions on the kernel
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function does not apply any more. This phenomenon is called the boundary
effect. Although there is a vast literature on boundary correction in density
estimation context, the boundary effects problem in the cumulative distri-
bution function and the regression function context has been less studied.
Thus, we have focused our research to these areas of kernel smoothing.

As we have already mentioned, kernel smoothing is widely used in many
statistical research areas. One of them is focused on studying discrimination
measures used to determine the quality of models at separating in a binary
classification system. There are many possible ways to measure the perfor-
mance of the classification rules. It is often very helpful to be given a method
for displaying and summarizing performance over a wide range of conditions.
This aim is fulfilled, e.g., by the ROC (Receiver Operating Characteristic)
curve, Information value curve, Lift, Kolmogorov-Smirnov statistics and oth-
ers. There are many problems in the estimation of these curves in practice
and the kernel smoothing approach seems to be very helpful. Thus, our
research has been directed also to this area.

The important part of our research is devoted to the extension of the
univariate kernel density estimate to the multivariate setting. As we have
already explained, the typical question, motivated by the origins of this re-
search area, asks to determine the optimal smoothing parameter (matrix).
Some “classical” methods in the multivariate case were developed and widely
discussed in papers [31], [42], [41], [68], [39]. Tarn Duong’s PhD thesis ([39])
provided a comprehensive survey of bandwidth matrix selection methods
for kernel density estimation. Papers [32], [40] investigated general density
derivative estimators, i.e., kernel estimators of multivariate density deriva-
tives using general (or unconstrained) bandwidth matrix selectors. We have
followed mentioned papers and we have proposed a new data-driven band-
width matrix selection method. Ideas similar to this method have been ap-
plied to kernel estimates of multivariate regression functions.

We would like to emphasize a great interest and usefulness of all men-
tioned problems in many fields of applied sciences (environmetrics, chemo-
metrics, biometrics, medicine, econometrics, . . . ). Thus our works deal not
only with the theoretical background of the considered problems but also
with the application to real data. For example, see [4] where the utility of the
proposed method was illustrated through an application to the time series of
ozone data. For applications of smoothing methods in medicine see [14]. The
wide range of applications in finance can be found in [5, 16, 17, 20, 21, 18].
The use of some proposed methods for modeling in environmetrics was de-
scribed in [22]. See the list in “Other Publications of the Author” at the end
of the thesis for more references.
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Author’s Contribution

Our interest is focused on an outstanding open problem of the optimal band-
width matrix selection in the multivariate case. Although there exist several
classical approaches, it is problematic to implement them in practice be-
cause of their computational difficulty. Our results concerning this problem
are described in Section 6. The author considers these results to be the most
valuable part of the thesis since they can potentially constitute a significant
step towards a more effective computable solution of the problem.

In Section 3 we overview our results concerning two other related prob-
lems. The main part describes results concerning optimal bandwidth selec-
tion for the univariate kernel regression and the remaining part deals with
the problem of autocorrelated data in kernel regression.

Our investigations of boundary effects in kernel smoothing (Section 4)
serve as a supporting ground for new techniques in reliability assessment
(Section 5), and the results obtained there could be beneficial for applications
in other research areas.

Finally, Section 7 presents a monograph, where all results of our research
are summarized. An integral part of the book is a special toolbox in MAT-
LAB. The toolbox is described in the book in detail and provides a practical
implementation of presented methods.

2 Assumptions and notations

In this section, we introduce a definition of the kernel and show notations
and general assumptions used in our research.

Definition 1. Let ν, k be nonnegative integers, 0 ≤ ν < k. Let K be a real
valued function satisfying K ∈ Sν,k,
where

Sν,k =





K ∈ Lip[−1, 1], support(K) = [−1, 1]

1∫
−1

xjK(x)dx =





0, 0 ≤ j < k, j 6= ν
(−1)νν!, j = ν
βk 6= 0, j = k.

(1)

Such a function is called a kernel of order k. The integral conditions are
often called moment conditions.

A commonly used kernel function is the Gaussian kernel

K(x) =
1√
2π

exp(−x2/2).
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Nevertheless, this kernel has an unbounded support and thus it does not
belong to the class Sν,k.

2.1 The univariate case

Let us consider a univariate function f (a density function or a regression
function) which should be estimated. We present a short overview of the
notation and assumptions used in our research.

(N1) The positive number h is a smoothing parameter called also a band-
width. The bandwidth h is depending on n, h = h(n): {h(n)}∞n=1 is
a nonrandom sequence of positive numbers.

(N2) Kh(t) =
1
h
K
(
t
h

)
, K ∈ S0,k, k is even, h > 0.

(N3) V (ρ) =
∫
R

ρ2(x)dx for any square integrable scalar valued function ρ.

(A1) K ∈ S0,k ∩ Cν [−1, 1], K(j)(−1) = K(j)(1) = 0, j = 0, 1, . . . , ν, ν ∈ N,
i.e., K(ν) ∈ Sν,k+ν (see [46, 60]).

(A2) f ∈ Ck0 , ν + k ≤ k0, f
(ν+k) is square integrable.

(A3) lim
n→∞

h = 0, lim
n→∞

nh2ν+1 = ∞.

2.2 The multivariate case

This part is devoted to the extension of assumptions for the univariate case
to the multivariate setting. Let us consider a d-dimensional space as the
domain of the estimated function f .

(N1) H denotes a class of d× d symmetric positive definite matrices.

(N2) V (g) =
∫
Rd

g(x)gT (x)dx for any square integrable vector valued func-

tion g.

(A1) The kernel function K satisfies the moment conditions
∫
K(x)dx = 1,∫

xK(x)dx = 000,
∫
xx

TK(x)dx = β2Id, Id is the d× d identity matrix.

(A2) H ∈ H, H = Hn is a sequence of bandwidth matrices such that
n−1/2|H|−1/2(H−1)j, j = 0, 1, . . . , ν, ν ∈ N, and entries of H approach
zero ((H−1)0 is considered as equal to 1).

(A3) Each partial derivative of f of order j+2, j = 0, 1, . . . , ν, is continuous
and square integrable.
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3 Kernel estimation of a regression function

One of our research interest includes the methodology for nonparametric
regression analysis, combined with practical applications.

The aim of regression analysis is to produce a reasonable analysis of an un-
known regression function m. By reducing the observational errors it allows
the interpretation to concentrate on important details of the mean depen-
dence of Y on X. Kernel regression estimates are one of the most popular
nonparametric estimates.

Let us consider a standard regression model of the form

Yi = m(xi) + εi, i = 1, . . . , n, (2)

where m is an unknown regression function, Y1, . . . , Yn are observable data
variables with respect to the design points x1, . . . , xn. The residuals ε1, . . . , εn
are independent identically distributed random variables for which

E(εi) = 0, var(εi) = σ2 > 0, i = 1, . . . , n.

We suppose the fixed equally spaced design, i.e., design variables are not
random and xi = i/n, i = 1, . . . , n. In the case of random design, where
the design points X1, . . . , Xn are random variables with the same density f ,
all considerations are similar to the fixed design. A more detailed description
of the random design can be found, e.g., in [79].

The most popular regression estimator was proposed by Nadaraya and
Watson ([64] and [80]) and it is defined as

m̂NW (x, h) =

n∑
i=1

Kh(xi − x)Yi

n∑
i=1

Kh(xi − x)
. (3)

In order to complete the overview of commonly used nonparametric meth-
ods for estimating m(x) we mention these estimators:

• local – linear estimator ([76, 36])

m̂LL(x, h) =
1

n

n∑

i=1

{ŝ2(x, h)− ŝ1(x, h)(xi − x)}Kh(xi − x)Yi

ŝ2(x, h)ŝ0(x, h)− ŝ1(x, h)2
, (4)

where

ŝr(x, h) =
1

n

n∑

i=1

(xi − x)rKh(xi − x), r = 0, 1, 2,
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• Priestley – Chao estimator ([66])

m̂PCH(x, h) =
1

n

n∑

i=1

Kh(xi − x)Yi, (5)

• Gasser – Müller estimator ([44])

m̂GM(x, h) =
n∑

i=1

Yi

∫ si

si−1

Kh(t− x)dt, (6)

where

si =
xi + xi+1

2
=

2i+ 1

2n
, i = 1, . . . , n− 1, s0 = 0, sn = 1.

One can see from these formulas that kernel estimators can be generally
expressed as

m̂(x, h) =
n∑

i=1

W
(j)
i (x, h)Yi, (7)

where weights W
(j)
i (x, h), j ∈ {NW,LL, PCH,GM} correspond to weights

of estimators m̂NW , m̂LL, m̂PCH and m̂GM defined above.
In the univariate case, these estimators depend on a bandwidth, which

is a smoothing parameter controlling the smoothness of an estimated curve
and a kernel which is considered as a weight function.

3.1 Choosing the shape of the kernel

The choice of the kernel does not influence the asymptotic behavior of the
estimate so significantly as the bandwidth does. We assume K ∈ S0,k and
under the additional assumption that k is even, k > 0. More detailed proce-
dures for choosing the optimal kernel are described in [1].

3.2 Choosing the optimal bandwidth

The choice of the smoothing parameter is a crucial problem in the kernel
regression. The literature on bandwidth selection is quite extensive, e.g.,
monographs [79, 74, 75], papers [48, 33, 34, 67, 77, 37, 38, 58, 10].

Although in practice one can try several bandwidths and choose a band-
width subjectively, automatic (data-driven) selection procedures could be
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useful for many situations; see [73] for more examples. Most of these proce-
dures are based on estimating Average Mean Square Error. They are asymp-
totically equivalent and asymptotically unbiased (see [48, 33, 34]). However,
in simulation studies ([58]), it is often observed that most selectors are biased
toward undersmoothing and yield smaller bandwidths more frequently than
predicted by asymptotic results.

As a part of our research we developed two methods for the optimal
bandwidth selections.

3.2.1 Plug-in method

In the simulation study of [33], it was observed that standard criterions give
smaller bandwidths more frequently than predicted by the asymptotic theo-
rems. [33] provided an explanation for the cause and suggested a procedure
to overcome the difficulty. By applying the procedure, we have introduced
a method for bandwidth selection which gives much more stable bandwidth
estimates (see [10]). As a result, we have obtained a type of plug-in method.

Our ideas are based on an assumption of a “cyclic design”, that is, we
suppose m to be a smooth periodic function and the estimate is obtained by
applying the kernel on the extended series Ỹi, i = −n + 1,−n + 2, . . . , 2n,
where generally Ỹj+ln = Yj for j = 1, . . . , n and l ∈ Z. Similarly xi = i/n,
i = −n+ 1,−n+ 2, . . . , 2n.

The main result of the paper [10] is the plug-in estimator of the optimal
bandwidth h

ĥPI =

(
σ̂2V (K)(k!)2

2knβ2
kÂk

) 1

2k+1

. (8)

We would like to point out the computational aspect of the proposed
estimator. It has preferable properties compared to the classical methods
because there is no problem of minimization of any error function. Also,
the sample size which is necessary for computing the estimation is far less
than for classical methods. On the other hand, a minor disadvantage could be
the fact that we need a “starting” approximation of the unknown parameter
h. We would also like to specify the proposed method was developed for
a rather limited case: the cyclic design.

3.2.2 Iterative method

Successful approaches to the bandwidth selection in kernel density estimation
can be transferred to the case of kernel regression. The iterative method for
the kernel density was developed and widely discussed in [54]. The ideas
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of this paper were extended to the regression case. The obtained selector
was introduced in [7] and its statistical properties were derived in [3]. The
proposed method is based on an optimally balanced relation between the
integrated variance and the integrated square bias

AIV {m̂(·, hopt)} − 2kAISB{ m̂(·, hopt)} = 0, (9)

where

AIV {m̂(·, hopt)} =
σ2V (K)

nh

and

AISB{ m̂(·, hopt)} =
1

n

n∑

i=1

(Em̂(xi, h)−m(xi))
2.

The main idea consists in finding a fixed point of the equation

h =
σ̂2V (K)

2knhÂISB {m̂(·, h)}
. (10)

We use Steffensen’s iterative method with the starting approximation ĥ0 =
2/n. This approach leads to an iterative quadratically convergent process
(see [54]).

3.3 Kernel regression for correlated data

As mentioned above, the literature on bandwidth selection methods is quite
extensive in the case of independent observations. Nevertheless, if an au-
tocorrelation structure of errors occurs in data, then classical bandwidth
selectors have not always provided applicable results (see [35]). There exist
several possibilities for overcoming the effect of dependence on the bandwidth
selection.

In the paper [4] we used the results of [35] and [10] and developed a new
flexible plug-in approach for estimating the optimal smoothing parameter.
The utility of the method was illustrated through a simulation study and
application to the time series of ozone data obtained from the Vernadsky
station in Antarctica.
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4 Boundary effects in kernel estimation

In practical processing we encounter data which are bounded in some interval.
The quality of the estimate in the boundary region is affected since the “ef-
fective” window [x − h, x + h] does not belong to this interval, so the finite
equivalent of the moment conditions on the kernel function does not apply
any more. This phenomenon is called the boundary effect. There are several
methods to cope with boundary effects. One of them is based on the construc-
tion of special boundary kernels. Their construction was described in details
for instance in [63] or [51]. These kernels can be used successfully in kernel
regression but their use in density or distribution function estimates gives
often inappropriate results.

Although there is a vast literature on the boundary correction in density
estimation context, the boundary effects problem in distribution function
and regression function context has been less studied. Thus we focused our
research on these areas of kernel smoothing.

4.1 Boundary effects in kernel regression

If the support of the true regression curve is bounded then most nonparamet-
ric methods give estimates that are severely biased in regions near the end-
points. To be specific, the bias of m̂(x) is of order O(h) rather than O(h2)
for x ∈ [0, h] ∪ [1 − h, 1]. This boundary problem affects the global perfor-
mance visually and also in terms of a slower rate of convergence in the usual
asymptotic analysis. It has been recognized as a serious problem and many
works are devoted to reducing the effects.

[44, 45, 46] and [63] discussed boundary kernel methods. Another ap-
proach to the boundary problems are reflection methods which generally con-
sist in reflecting data about the boundary points and then estimating the re-
gression function. These methods were discussed, e.g., in [69, 47]. The reflec-
tion principles used in kernel density estimation can be also adapted to ker-
nel regression. The regression estimator with the assumption of the “cyclic"
model described in [10] can be also considered as the special case of a reflec-
tion technique. A short comparative study of methods for boundary effects
eliminating was given in [25].

4.2 Boundary effects in kernel estimation of a distribu-

tion function

We have focused also on the boundary correction in kernel estimation of a cu-
mulative distribution function (CDF) which is important for other applica-
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tions – especially for kernel estimation of ROC curves and hazard functions.
In the paper [9], we developed a new kernel type estimator of the ROC

curve that removes boundary effects near the end points of the support. The
estimator is based on a new boundary corrected kernel estimator of distri-
bution functions and it is based on ideas of [56, 57], developed for boundary
correction in kernel density estimation. The basic technique of construction
of the proposed estimator is a type of a generalized reflection method involv-
ing reflecting a transformation of the observed data. In fact, the proposed
method generates a class of boundary corrected estimators. We have derived
expressions for the bias and variance of the proposed estimator. Furthermore,
the proposed estimator has been compared with the "classical estimator" us-
ing simulation studies.

Using similar ideas as in [9] we have developed a new kernel estimator
of the hazard function. The method was proposed in [8] and successfully
removes boundary effects and performs considerably better than classical
estimators.

5 Kernel estimation and reliability assessment

The following part of our research is focused on studying discrimination mea-
sures used for detecting the quality of models at separating in a binary classi-
fication system. There are many possible ways of measuring the performance
of the classification rules. It is often very helpful to know a way of displaying
and summarizing performance over a wide range of conditions. This aim is
fulfilled by the ROC (Receiver Operating Characteristic) curve. It is a single
curve summarizing the distribution functions of the scores of two classes.

In our research, we have followed the financial sphere, where the discrim-
ination power of scoring models is evaluated. However, most of all studied
indices have wide application in many other areas, where models with binary
output are used, like biology, medicine, engineering and so on.

References on this topic are quite extensive, see, e.g., [72, 29, 78]. In
[5], we summarized the most important quality measures and gave some
alternatives to them. All of the mentioned indices are based on the density or
on the distribution function, therefore one can suggest the technique of kernel
smoothing for estimation. More detailed studies on all indices can be also
found, e.g., in [20, 21]. Finally, a new conservative approach to quality
assessment was proposed in [18].
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6 Multivariate kernel density estimation

An important part of our research is devoted to the extension of the univariate
kernel density estimate to the multivariate setting.

Let a d-variate random sample X1, . . . ,Xn be drawn from a density f .
The kernel density estimator f̂ at the point x ∈ Rd is defined as

f̂(x,H) =
1

n

n∑

i=1

KH(x−Xi), (11)

where K is a kernel function, which is often taken to be a d-variate symmetric
probability function, H is a d×d symmetric positive definite matrix and KH

is the scaled kernel function

KH(x) = |H|−1/2K(H−1/2
x)

with |H| the determinant of the matrix H.
In a univariate case, kernel estimates depend on a bandwidth, which is

a smoothing parameter controlling smoothness of an estimated curve and
a kernel which is considered as a weight function. The choice of the smooth-
ing parameter is a crucial problem in the kernel density estimation. The lit-
erature on bandwidth selection is quite extensive, e.g., monographs [79], [74],
[75], papers [61], [65], [71], [55], [30]. As far as the kernel estimate of density
derivatives is concerned, this problem has received significantly less attention.
In paper [50], an adaptation of the least squares cross-validation method was
proposed for the bandwidth choice in the kernel density derivative estima-
tion. In paper [52], the automatic procedure of simultaneous choice of the
bandwidth, the kernel and its order for kernel density and its derivative esti-
mates was proposed. But this procedure can be only applied in case that the
explicit minimum of the Asymptotic Mean Integrated Square Error of the es-
timate is available. It is known that this minimum exists only for d = 2 and
the diagonal matrix H. In paper [6], the basic formula for the corresponding
procedure was given.

The need for nonparametric density estimates for recovering the structure
in multivariate data is greater since a parametric modelling is more difficult
than in the univariate case. The extension of the univariate kernel methodol-
ogy is not without problems. The most general smoothing parameterization
of the kernel estimator in d dimensions requires the specification entries of
d × d positive definite bandwidth matrix. The multivariate kernel density
estimator we have dealt with is a direct extension of the univariate estimator
(see, e.g., [79]).
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Successful approaches to the univariate bandwidth selection can be trans-
ferred to the multivariate settings. The least squares cross-validation and
plug-in methods in the multivariate case were developed and widely discussed
in papers [31], [42], [41], [68], [39]. Some papers (e.g., [23], [6], [19]) were fo-
cused on constrained parameterization of the bandwidth matrix such as a di-
agonal matrix. It is a well-known fact that a visualization is an important
component of the nonparametric data analysis. In paper [6], this effective
strategy was used to clarify the process of the bandwidth matrix choice using
bivariate functional surfaces. The paper [53] brought a short communication
on a kernel gradient estimator. Tarn Duong’s PhD thesis ([39]) provided
a comprehensive survey of bandwidth matrix selection methods for kernel
density estimation. The papers [32], [40] investigated general density deriva-
tive estimators, i.e., kernel estimators of multivariate density derivatives us-
ing general (or unconstrained) bandwidth matrix selectors. They defined the
kernel estimator of the multivariate density derivative and provided results
for the Mean Integrated Square Error convergence asymptotically and for
finite samples. Moreover, the relationship between the convergence rate and
the bandwidth matrix was established here. They also developed estimates
for the class of normal mixture densities.

We have followed the mentioned papers and in [2] we proposed a new
data-driven bandwidth matrix selection method. This method is based on
an optimally balanced relation between the integrated variance and the in-
tegrated squared bias, see [54]. Similar ideas have been applied to kernel
estimates of regression functions (see [7] or [3]). We have discussed the sta-
tistical properties and relative rates of convergence of the proposed method
as well.

7 The monograph

The knowledge obtained in our research in kernel smoothing theory has re-
sulted in writing a monograph [1]. The book provides a brief comprehen-
sive overview of statistical theory. We do not concentrate on details since
there exists a number of excellent monographs developing statistical theory
([79, 48, 62, 74, 75, 70] etc.). Instead, the emphasis is given to the implemen-
tation of presented methods in MATLAB. All created programs are included
into a special toolbox which is an integral part of the book. This toolbox
contains many MATLAB scripts useful for kernel smoothing of density, dis-
tribution function, regression function, hazard function, multivariate density
and also for kernel estimation and reliability assessment. The toolbox can
be downloaded from the public web page (see [59]).
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The toolbox is divided into six parts according to the chapters of the book.
All scripts are included in a user interface and it is easy to manipulate with
this interface. Each chapter of the book contains a detailed help for the
related part of the toolbox.

The monograph is intended for newcomers to the field of smoothing tech-
niques and would be also appropriate for a wide audience: advanced graduate
and PhD students, researchers from both the statistical science and interface
disciplines.

8 Conclusion and further research

The previous text summarizes all our results in kernel smoothing which be-
longs to a general category of techniques for nonparametric curve estimations.
We have studied several parts of kernel smoothing theory. The most inter-
esting theoretical results were obtained in multivariate kernel estimating and
in the choosing of the optimal smoothing parameter.

We have also paid attention to the use of our results in many fields of
applied sciences like environmetrics, biometrics, medicine or econometrics.
Thus our works deal not only with the theoretical background of the consid-
ered problems but also with the application to real data.

In the further research we would like to aim at extending our previous
results to modeling for functional data sets. The functional data set can
be defined as the observation of the random variable which takes values in
an infinite dimensional space (or functional space). Thus the analysis of
functional data seems to be a natural extension of our ideas. For more about
functional data analysis see, e.g., [43].

16



References

Publications Included in the Thesis

[1] I. Horová, J. Koláček, and J. Zelinka, Kernel Smoothing in MATLAB:
Theory and Practice of Kernel Smoothing. Singapore: World Scientific
Publishing Co. Pte. Ltd., 2012.

[2] I. Horová, J. Koláček, and K. Vopatová, “Full bandwidth matrix selec-
tors for gradient kernel density estimate,” Computational Statistics &
Data Analysis, vol. 57, no. 1, pp. 364–376, 2013.

[3] J. Koláček and I. Horová, “Selection of bandwidth for kernel regression,”
Communications in Statistics - Theory and Methods. to appear.

[4] I. Horová, J. Koláček, and D. Lajdová, “Kernel regression model for total
ozone data,” Journal of Environmental Statistics, vol. 4, no. 2, pp. 1–12,
2013.

[5] M. Řezáč and J. Koláček, “Lift-based quality indexes for credit scoring
models as an alternative to gini and ks,” Journal of Statistics: Advances
in Theory and Applications, vol. 7, no. 1, pp. 1–23, 2012.

[6] I. Horová, J. Koláček, and K. Vopatová, “Visualization and bandwidth
matrix choice,” Communications in Statistics – Theory and Methods,
vol. 41, no. 4, pp. 759–777, 2012.

[7] J. Koláček and I. Horová, “Iterative bandwidth method for kernel re-
gression,” Journal of Statistics: Advances in Theory and Applications,
vol. 8, no. 2, pp. 91–103, 2012.

[8] J. Koláček and R. J. Karunamuni, “A generalized reflection method for
kernel distribution and hazard functions estimation,” Journal of Applied
Probability and Statistics, vol. 6, no. 2, pp. 73–85, 2011.

[9] J. Koláček and R. J. Karunamuni, “On boundary correction in kernel
estimation of ROC curves,” Austrian Journal of Statistics, vol. 38, no. 1,
pp. 17–32, 2009.

[10] J. Koláček, “Plug-in method for nonparametric regression,” Computa-
tional Statistics, vol. 23, no. 1, pp. 63–78, 2008.

17



Other Publications of the Author

[11] K. Vopatová, I. Horová, and J. Koláček, “Bandwidth matrix selectors
for multivariate kernel density estimation,” in Theoretical and Applied
Issues in Statistics and Demography, pp. 123–130, Barcelona: Interna-
tional Society for the Advancement of Science and Technology (ISAST),
2013.

[12] K. Konečná, I. Horová, and J. Koláček, “Conditional density estima-
tions,” in Theoretical and Applied Issues in Statistics and Demography,
pp. 39–45, Barcelona: International Society for the Advancement of Sci-
ence and Technology (ISAST), 2013.

[13] D. Lajdová, J. Koláček, and I. Horová, “Kernel regression model with
correlated errors,” in Theoretical and Applied Issues in Statistics and
Demography, pp. 81–88, Barcelona: International Society for the Ad-
vancement of Science and Technology (ISAST), 2013.

[14] M. Trhlík, R. Soumarová, P. Bartoš, M. Těžká, J. Koláček, K. Vopatová,
I. Horová, and P. Šupíková, “Neoadjuvant chemotherapy for primary
advanced ovarian cancer,” in The International Journal of Gynecological
Cancer – October 2012, vol 22, issue 8, supplement 3, E517, 2013.

[15] I. Horová, J. Koláček, K. Vopatová, and J. Zelinka, “Contribution to
bandwidth matrix choice for multivariate kernel density estimate,” in
ISI 2011, Proceedings of the 58th World Statistics Congress, ISI 2011,
2011.

[16] M. Řezáč and J. Koláček, “Adjusted empirical estimate of information
value for credit scoring models,” in PROCEEDINGS ASMDA 2011,
(Rome), pp. 1162–1169, Edizioni ETS, 2011.

[17] J. Koláček and M. M. Řezáč, “Quality measures for predictive scoring
models,” in PROCEEDINGS ASMDA 2011 (C. H. S. Raimondo Manca,
ed.), (Rome, Italy), pp. 720–727, Edizioni ETS, 2011.

[18] J. Koláček and M. Řezáč, “A conservative approach to assessment
of discriminatory models,” in Workshop of the Jaroslav Hájek Center
and Financial Mathematics in Practice I, Book of short papers (I. H.
Jiří Zelinka, ed.), (Brno), pp. 30–36, Masaryk University, 2011.

[19] K. Vopatová, I. Horová, and J. Jan Koláček, “Bandwidth matrix choice
for bivariate kernel density derivative,” in Proceedings of the 25th Inter-
national Workshop on Statistical Modelling, (Glasgow (UK)), pp. 561–
564, 2010.

18



[20] J. Koláček and M. Řezáč, “Assessment of scoring models using informa-
tion value,” in 19th International Conference on Computational Statis-
tics, Paris France, August 22-27, 2010 Keynote, Invited and Contributed
Papers, (Paris), pp. 1191–1198, SpringerLink, 2010.

[21] M. Řezáč and J. Koláček, “On aspects of quality indexes for scoring
models,” in 19th International Conference on Computational Statistics,
Paris France, August 22-27, 2010 Keynote, Invited and Contributed Pa-
pers, (Paris), pp. 1517–1524, SpringerLink, 2010.

[22] I. Horová, J. Koláček, J. Zelinka, and A. H. El-Shaarawi, “Smooth esti-
mates of distribution functions with application in environmental stud-
ies,” in Advanced topics on mathematical biology and ecology, (Mexico),
pp. 122–127, WSEAS Press, 2008.

[23] I. Horová, J. Koláček, J. Zelinka, and K. Vopatová, “Bandwidth
choice for kernel density estimates.,” in Proceedings IASC, (Yokohama),
pp. 542–551, IASC, 2008.

[24] J. Koláček, “An improved estimator for removing boundary bias in kernel
cumulative distribution function estimation,” in Proceedings in Com-
putational Statistics COMPSTAT’08, (Porto), pp. 549–556, Physica-
Verlag, 2008.

[25] J. Koláček and J. Poměnková, “A comparative study of boundary effects
for kernel smoothing,” Austrian Journal of Statistics, vol. 35, no. 2,
pp. 281–289, 2006.

[26] J. Koláček, “Use of fourier transformation for kernel smoothing,” in Pro-
ceedings in Computational Statistics COMPSTAT’04, pp. 1329 – 1336,
Springer, 2004.

[27] J. Koláček, “Some stabilized bandwidth selectors for nonparametric re-
gression,” Journal of Electrical Engineering, vol. 54, no. 12, pp. 65–68,
2003.

[28] J. Koláček, “Problems of automatic data-driven bandwidth selectors for
nonparametric regression,” Journal of Electrical Engineering, vol. 53,
no. 12, pp. 48–51, 2002.

19



Other References

[29] R. Anderson. The credit scoring toolkit: theory and practice for retail
credit risk management and decision automation. Oxford University
Press, 2007.

[30] R. Cao, A. Cuevas, and W. González Manteiga. A comparative study
of several smoothing methods in density estimation. Computational
Statistics and Data Analysis, 17(2):153–176, 1994.

[31] J. E. Chacón and T. Duong. Multivariate plug-in bandwidth selection
with unconstrained pilot bandwidth matrices. Test, 19(2):375–398, 2010.

[32] J. E. Chacón, T. Duong, and M. P. Wand. Asymptotics for general multi-
variate kernel density derivative estimators. Statistica Sinica, 21(2):807–
840, 2011.

[33] S. Chiu. Why bandwidth selectors tend to choose smaller bandwidths,
and a remedy. Biometrika, 77(1):222–226, 1990.

[34] S. Chiu. Some stabilized bandwidth selectors for nonparametric regres-
sion. Annals of Statistics, 19(3):1528–1546, 1991.

[35] C. K. Chu and J. S. Marron. Choosing a kernel regression estimator.
Statistical Science, 6(4):404–419, 1991.

[36] W. S. Cleveland. Robust locally weighted regression and smoothing scat-
terplots. Journal of the American Statistical Association, 74(368):829–
836, 1979.

[37] P. Craven and G. Wahba. Smoothing noisy data with spline functions -
estimating the correct degree of smoothing by the method of generalized
cross-validation. Numerische Mathematik, 31(4):377–403, 1979.

[38] B. Droge. Some comments on cross-validation. Technical Report 1994-7,
Humboldt Universitaet Berlin, 1996.

[39] T. Duong. Bandwidth selectors for multivariate kernel density esti-
mation. PhD thesis, School of Mathematics and Statistics, University
of Western Australia, oct 2004.

[40] T. Duong, A. Cowling, I. Koch, and M. P. Wand. Feature significance
for multivariate kernel density estimation. Computational Statistics &
Data Analysis, 52(9):4225–4242, 2008.

20



[41] T. Duong and M. Hazelton. Convergence rates for unconstrained band-
width matrix selectors in multivariate kernel density estimation. Journal
of Multivariate Analysis, 93(2):417–433, 2005.

[42] T. Duong and M. Hazelton. Cross-validation bandwidth matrices for
multivariate kernel density estimation. Scandinavian Journal of Statis-
tics, 32(3):485–506, 2005.

[43] F. Ferraty and P. Vieu. Nonparametric functional data analysis: theory
and practice. Springer, 2006.

[44] T. Gasser and H.-G. Müller. Kernel estimation of regression functions. In
T. Gasser and M. Rosenblatt, editors, Smoothing Techniques for Curve
Estimation, volume 757 of Lecture Notes in Mathematics, pages 23–68.
Springer Berlin / Heidelberg, 1979.

[45] T. Gasser, H.-G. Müller, and V. Mammitzsch. Kernels for nonparamet-
ric curve estimation. Journal of the Royal Statistical Society. Series B
(Methodological), 47(2):238–252, 1985.

[46] B. Granovsky and H.-G. Müller. Optimizing kernel methods - a unifying
variational principle. International Statistical Review, 59(3):373–388,
1991.

[47] P. Hall and T. E. Wehrly. A geometrical method for removing edge
effects from kernel-type nonparametric regression estimators. Journal
of the American Statistical Association, 86(415):pp. 665–672, 1991.

[48] W. Härdle. Applied Nonparametric Regression. Cambridge University
Press, Cambridge, 1st edition, 1990.

[49] W. Härdle, P. Hall, and J. Marron. How far are automatically chosen
regression smoothing parameters from their optimum. Journal of the
American Statistical Association, 83(401):86–95, 1988.

[50] W. Härdle, J. S. Marron, and M. P. Wand. Bandwidth choice for density
derivatives. Journal of the Royal Statistical Society. Series B (Method-
ological), 52(1):223–232, 1990.

[51] I. Horová. Boundary kernels. In Summer schools MATLAB 94, 95,
pages 17–24. Brno: Masaryk University, 1997.

[52] I. Horová, P. Vieu, and J. Zelinka. Optimal choice of nonparametric
estimates of a density and of its derivatives. Statistics & Decisions,
20(4):355–378, 2002.

21



[53] I. Horová and K. Vopatová. Kernel gradient estimate. In F. Ferraty,
editor, Recent Advances in Functional Data Analysis and Related Topics,
pages 177–182. Springer-Verlag Berlin Heidelberg, 2011.

[54] I. Horová and J. Zelinka. Contribution to the bandwidth choice for
kernel density estimates. Computational Statistics, 22(1):31–47, 2007.

[55] M. C. Jones and R. F. Kappenman. On a class of kernel density estimate
bandwidth selectors. Scandinavian Journal of Statistics, 19(4):337–349,
1991.

[56] R. Karunamuni and T. Alberts. A generalized reflection method
of boundary correction in kernel density estimation. Canad. J. Statist.,
33:497–509, 2005b.

[57] R. Karunamuni and S. Zhang. Some improvements on a boundary cor-
rected kernel density estimator. Statistics & Probability Letters, 78:497–
507, 2008.

[58] J. Koláček. Kernel Estimation of the Regression Function (in Czech).
PhD thesis, Masaryk University, Brno, feb 2005.

[59] J. Koláček and J. Zelinka. MATLAB toolbox, 2012.

[60] J. S. Marron and D. Nolan. Canonical kernels for density-estimation.
Statistics & Probability Letters, 7(3):195–199, 1988.

[61] J. S. Marron and D. Ruppert. Transformations to reduce boundary bias
in kernel density estimation. Journal of the Royal Statistical Society.
Series B (Methodological), 56(4):653–671, 1994.

[62] H.-G. Müller. Nonparametric regression analysis of longitudinal data.
Springer, New York, 1988.

[63] H.-G. Müller. Smooth optimum kernel estimators near endpoints.
Biometrika, 78(3):521–530, 1991.

[64] E. A. Nadaraya. On estimating regression. Theory of Probability and
its Applications, 9(1):141–142, 1964.

[65] B. Park and J. Marron. Comparison of data-driven bandwidth selectors.
Journal of the American Statistical Association, 85(409):66–72, 1990.

[66] M. B. Priestley and M. T. Chao. Non-parametric function fitting. Jour-
nal of the Royal Statistical Society. Series B (Methodological), 34(3):385–
392, 1972.

22



[67] J. Rice. Bandwidth choice for nonparametric regression. Annals
of Statistics, 12(4):1215–1230, 1984.

[68] S. Sain, K. Baggerly, and D. Scott. Cross-validation of multivariate
densities. Journal of the American Statistical Association, 89(427):807–
817, 1994.

[69] E. Schuster. Incorporating support constraints into nonparametric esti-
mators of densities. Communications in Statistics-Theory end Methods,
14(5):1123–1136, 1985.

[70] D. W. Scott. Multivariate density estimation: theory, practice, and
visualization. Wiley, 1992.

[71] D. W. Scott and G. R. Terrell. Biased and unbiased cross-validation
in density estimation. Journal of the American Statistical Association,
82(400):1131–1146, 1987.

[72] N. Siddiqi. Credit risk scorecards: developing and implementing intelli-
gent credit scoring. Wiley and SAS Business Series. Wiley, 2006.

[73] B. W. Silverman. Some aspects of the spline smoothing approach to
non-parametric regression curve fitting. Journal of the Royal Statistical
Society. Series B (Methodological), 47:1–52, 1985.

[74] B. W. Silverman. Density estimation for statistics and data analysis.
Chapman and Hall, London, 1986.

[75] J. S. Simonoff. Smoothing Methods in Statistics. Springer-Verlag, New
York, 1996.

[76] C. J. Stone. Consistent nonparametric regression. The Annals of Statis-
tics, 5(4):595–620, 1977.

[77] M. Stone. Cross-validatory choice and assessment of statistical pre-
dictions. Journal of the Royal Statistical Society Series B-Statistical
Methodology, 36(2):111–147, 1974.

[78] L. Thomas. Consumer credit models: pricing, profit, and portfolios.
Oxford University Press, 2009.

[79] M. Wand and M. Jones. Kernel smoothing. Chapman and Hall, London,
1995.

[80] G. S. Watson. Smooth regression analysis. Sankhya: The Indian Journal
of Statistics, Series A, 26(4):359–372, 1964.

23



Reprints of articles

24



Computational Statistics and Data Analysis 57 (2013) 364–376

Contents lists available at SciVerse ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Full bandwidth matrix selectors for gradient kernel density estimate

Ivana Horová a,∗, Jan Koláček a, Kamila Vopatová b

a Department of Mathematics and Statistics, Masaryk University, Brno, Czech Republic
b Department of Econometrics, University of Defence, Brno, Czech Republic

a r t i c l e i n f o

Article history:

Received 4 July 2011
Received in revised form 2 July 2012
Accepted 5 July 2012
Available online 10 July 2012

Keywords:

Asymptotic mean integrated square error
Multivariate kernel density
Unconstrained bandwidth matrix

a b s t r a c t

The most important factor in multivariate kernel density estimation is a choice of a
bandwidth matrix. This choice is particularly important, because of its role in controlling
both the amount and the direction of multivariate smoothing. Considerable attention has
been paid to constrained parameterization of the bandwidth matrix such as a diagonal
matrix or a pre-transformation of the data. A generalmultivariate kernel density derivative
estimator has been investigated. Data-driven selectors of full bandwidth matrices for a
density and its gradient are considered. The proposed method is based on an optimally
balanced relation between the integrated variance and the integrated squared bias. The
analysis of statistical properties shows the rationale of the proposed method. In order
to compare this method with cross-validation and plug-in methods the relative rate of
convergence is determined. The utility of the method is illustrated through a simulation
study and real data applications.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Kernel density estimates are one of the most popular nonparametric estimates. In a univariate case, these estimates
depend on a bandwidth,which is a smoothing parameter controlling smoothness of an estimated curve and a kernelwhich is
considered as aweight function. The choice of the smoothing parameter is a crucial problem in the kernel density estimation.
The literature on bandwidth selection is quite extensive, e.g., monographs Wand and Jones (1995), Silverman (1986) and
Simonoff (1996), papersMarron andRuppert (1994), Park andMarron (1990), Scott and Terrell (1987), Jones andKappenman
(1991) and Cao et al. (1994). As far as the kernel estimate of density derivatives is concerned, this problem has received
significantly less attention. In paper Härdle et al. (1990), an adaptation of the least squares cross-validation method is
proposed for the bandwidth choice in the kernel density derivative estimation. In paper Horová et al. (2002), the automatic
procedure of simultaneous choice of the bandwidth, the kernel and its order for kernel density and its derivative estimates
was proposed. But this procedure can be only applied in case that the explicit minimum of the Asymptotic Mean Integrated
Square Error of the estimate is available. It is known that this minimum exists only for d = 2 and the diagonal matrix H . In
paper Horová et al. (2012), the basic formula for the corresponding procedure is given.

The need for nonparametric density estimates for recovering structure in multivariate data is greater since a parametric
modeling is more difficult than in the univariate case. The extension of the univariate kernel methodology is not without its
problems. The most general smoothing parameterization of the kernel estimator in d dimensions requires the specification
entries of d × d positive definite bandwidth matrix. The multivariate kernel density estimator we are going to deal with is
a direct extension of the univariate estimator (see, e.g., Wand and Jones (1995)).

Successful approaches to the univariate bandwidth selection can be transferred to the multivariate settings. The least
squares cross-validation and plug-in methods in the multivariate case have been developed and widely discussed in papers
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Chacón and Duong (2010), Duong and Hazelton (2005b,a), Sain et al. (1994) and Duong (2004). Some papers (e.g., Horová
et al. (2008, 2012) and Vopatová et al. (2010)) have been focused on constrained parameterization of the bandwidth matrix
such as a diagonal matrix. It is well-known fact that a visualization is an important component of the nonparametric data
analysis. In paper Horová et al. (2012), this effective strategy was used to clarify the process of the bandwidth matrix
choice using bivariate functional surfaces. The paper Horová and Vopatová (2011) brings a short communication on a
kernel gradient estimator. Tarn Duong’s PhD thesis (Duong, 2004) provides a comprehensive survey of bandwidth matrix
selection methods for kernel density estimation. Papers Chacón et al. (2011) and Duong et al. (2008) investigated general
density derivative estimators, i.e., kernel estimators of multivariate density derivatives using general (or unconstrained)
bandwidth matrix selectors. They defined the kernel estimator of the multivariate density derivative and provided results
for theMean Integrated Square Error convergence asymptotically and for finite samples.Moreover, the relationship between
the convergence rate and the bandwidth matrix has been established here. They also developed estimates for the class of
normal mixture densities.

The paper is organized as follows: In Section 2 we describe kernel estimates of a density and its gradient and give a
form of the Mean Integrated Square Error and the exact MISE calculation for a d-variate normal kernel as well. The next
sections are devoted to a data-driven bandwidth matrix selection method. This method is based on an optimally balanced
relation between the integrated variance and the integrated squared bias, see Horová and Zelinka (2007a). Similar ideas
were applied to kernel estimates of hazard functions (see Horová et al. (2006) or Horová and Zelinka (2007b)). It seems that
the basic idea can be also extended to a kernel regression and we are going to investigate this possibility. We discuss the
statistical properties and relative rates of convergence of the proposed method as well. Section 5 brings a simulation study
and in the last section the developed theory is applied to real data sets.

2. Estimates of a density and its gradient

Let a d-variate random sample X1, . . . ,Xn be drawn from a density f . The kernel density estimator f̂ at the point x ∈ Rd

is defined as

f̂ (x,H) =
1

n

n

i=1

KH(x − Xi), (1)

where K is a kernel function, which is often taken to be a d-variate symmetric probability function, H is a d × d symmetric
positive definite matrix and KH is the scaled kernel function

KH(x) = |H|−1/2K(H−1/2x)

with |H| the determinant of the matrix H.
The kernel estimator of the gradient Df at the point x ∈ Rd is

Df (x,H) =
1

n

n

i=1

DKH(x − Xi), (2)

where DKH(x) = |H|−1/2H−1/2DK(H−1/2x) and DK is the column vector of the partial derivatives of K .

Since we aim to investigate both density itself and its gradient in a similar way, we introduce the notation

Dr f (x,H) =
1

n

n

i=1

DrKH(x − Xi), r = 0, 1, (3)

where D0f = f , D1f = Df .

We make some additional assumptions and notations:

(A1) The kernel function K satisfies the moment conditions

K(x)dx = 1,


xK(x)dx = 0,


xxTK(x)dx = β2Id, Id is the

d × d identity matrix.
(A2) H = Hn is a sequence of bandwidth matrices such that n−1/2|H|−1/2(H−1)r , r = 0, 1, and entries of H approach zero

((H−1)0 is considered as equal to 1).
(A3) Each partial density derivative of order r + 2, r = 0, 1, is continuous and square integrable.
(N1) H is a class of d × d symmetric positive definite matrices.
(N2) V (ρ) =


R

ρ2(x)dx for any square integrable scalar valued function ρ.
(N3) V (g) =


Rd g(x)g

T (x)dx for any square integrable vector valued function g . In the rest of the text,


stands for


Rd

unless it is stated otherwise.
(N4) DDT = D2 is a Hessian operator. Expressions like DDT = D2 involve ‘‘multiplications’’ of differentials in the sense that

∂

∂xi

∂

∂xj
=

∂2

∂xi∂xj
.

This means that (D2)m,m ∈ N, is a matrix of the 2m-th order partial differential operators.
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(N5) vecH is a d2 × 1 vector obtained by stacking columns of H.
(N6) Let d∗ = d(d + 1)/2, vechH is d∗ × 1 a vector-half obtained from vecH by eliminating each of the above diagonal

entries.
(N7) The matrix Dd of size d2 × d∗ of ones and zeros such that

DdvechH = vecH

is called the duplication matrix of order d.
(N8) Jd denotes d × d matrix of ones.

The quality of the estimate Dr f can be expressed in terms of the Mean Integrated Square Error

MISEr{Dr f (·,H)} = E


∥Dr f (x,H) − Dr f (x)∥2dx,

with ∥ · ∥ standing for the Euclidean norm, i.e., ∥v∥2 = vTv = tr(vvT ). For the sake of simplicity we write the argument of
MISEr as H. This error function can be also expressed as the standard decomposition

MISEr(H) = IVr(H) + ISBr(H),

where IVr(H) =

Var{Dr f (x,H)}dx is the integrated variance and

ISBr(H) =


∥EDr f (x,H) − Dr f (x)∥2dx

=

 


K(z)Dr f (x − H1/2z)dz − Dr f (x)


2

dx

=


∥(KH ∗ Dr f )(x) − Dr f (x)∥2dx

is the integrated square bias (the symbol ∗ denotes convolution).
Since MISEr is not mathematically tractable, we employ the Asymptotic Mean Integrated Square Error. The AMISEr

theorem has been proved (e.g., in Duong et al. (2008)) and reads as follows:

Theorem 1. Let assumptions (A1) –(A3) be satisfied. Then

MISEr(H) ≃ AMISEr(H),

where

AMISEr(H) = n−1|H|−1/2tr

(H−1)rV (DrK)


  

AIVr

+
β2
2

4
vechTHΨ 4+2rvechH

  
AISBr

. (4)

The term Ψ 4+2r involves higher order derivatives of f and its subscript 4 + 2r , r = 0, 1, indicates the order of derivatives
used. It is a d∗ × d∗ symmetric matrix.

It can be shown that
∥{tr(HD2)Dr}f (x)∥2dx = vechTHΨ 4+2rvechH.

Then (4) can be rewritten as

AMISEr(H) = n−1|H|−1/2tr(H−1)rV (DrK) +
β2
2

4


∥{tr(HD2)Dr}f (x)∥2dx, r = 0, 1. (5)

Let K = φI be the d-variate normal kernel and suppose that f is the normal mixture density f (x) =
k

l=1 wlφΣl
(x− µl),

where for each l = 1, . . . , k, φΣl
is the d-variate N(0, Σl) normal density and w = (w1, . . . , wk)

T is a vector of positive
numbers summing to one.

In this case, the exact formula for MISEr was derived in Chacón et al. (2011). For r = 0, 1 it takes the form

MISEr(H) = 2−rn−1(4π)−d/2|H|−1/2(trH−1)r + wT

(1 − n−1)Ω2 − 2Ω1 + Ω0


w, (6)

where

(Ωc)ij = (−1)rφcH+Σij
(µij)


µT

ij(cH + Σij)
−2µij − 2tr(cH + Σij)

−1
r

with Σij = Σi + Σj, µij = µi − µj.
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3. Bandwidth matrix selection

The most important factor in multivariate kernel density estimates is the bandwidth matrix H. Because of its role in
controlling both the amount and the direction of smoothing this choice is particularly important.

Let H(A)MISE,r stand for a bandwidth matrix minimizing (A)MISEr , i.e.,

HMISE,r = argmin
H∈H

MISEr(H)

and

HAMISE,r = argmin
H∈H

AMISEr(H).

As it has been mentioned in former works (see, e.g., Duong and Hazelton (2005a,b)), the discrepancy between HMISE,r and
HAMISE,r is asymptotically negligible in comparison with the random variation in the bandwidth matrix selectors that we
consider. The problems of estimating HMISE,r and HAMISE,r are equivalent for most practical purposes.

If we denote DH = ∂
∂vechH , then using matrix differential calculus yields

DHAMISEr(H) = −(2n)−1|H|−1/2tr

(H−1)rV (DrK)


DT

dvecH
−1 + n−1|H|−1/2r


−DT

dvec(H
−1V (DrK)H−1)



+
β2
2

2
Ψ 4+2rvechH.

Unfortunately, there is no explicit solution for the equation

DHAMISEr(H) = 0 (7)

(with an exception of d = 2, r = 0 and a diagonal bandwidth matrix H, see, e.g., Wand and Jones (1995)). But nevertheless
the following lemma holds.

Lemma 2.

AIVr(HAMISE,r) =
4

d + 2r
AISBr(HAMISE,r). (8)

Proof. See Complements for the proof. �

It can be shown (Chacón et al., 2011) that

HAMISE,r = C0,rn
−2/(d+2r+4) = O(n−2/(d+2r+4)Jd)

and then AMISEr(HAMISE,r) is of order n−4/(d+2r+4).
SinceHAMISE,r resp.HMISE,r cannot be found in practice, the data-drivenmethods for selection ofH have been proposed in

papers Chacón and Duong (2010), Duong (2004), Duong and Hazelton (2005b), Sain et al. (1994) andWand and Jones (1994)
etc.. The performance of bandwidth matrix selectors can be assessed by its relative rate of convergence. We generalize the
definition for the relative rate of convergence for the univariate case to the multivariate one.

LetHr be a data-driven bandwidth matrix selector. We say thatHr converges to HAMISE,r with relative rate n−α if

vech(Hr − HAMISE,r) = Op(Jd∗n−α)vechHAMISE,r . (9)

This definition was introduced by Duong (2004).
Now, we remind cross-validation methods CVr(H) (Duong and Hazelton, 2005b; Chacón and Duong, 2012) which aim to

estimate MISEr . CVr(H) is an unbiased estimate of MISEr(H) − trV (Dr f ) and

CVr(H) = (−1)r tr





1

n2

n

i,j=1

D2r(KH ∗ KH)(Xi − Xj) −
2

n(n − 1)

n

i,j=1
i≠j

D2rKH(Xi − Xj)





, (10)

HCVr = argmin
H∈H

CVr(H).

It can be shown that the relative rate of convergence to HMISE,r is n−d/(2d+4r+8) (Chacón and Duong, 2012) and to HAMISE,r is
n−min{d,4}/(2d+4r+8) (see Duong and Hazelton (2005b) for r = 0).

Plug-inmethods for the bandwidthmatrix selectionwere generalized to themultivariate case inWand and Jones (1994).
The idea consists of estimating the unknownmatrixΨ 4+2r . The relative rate of convergence toHMISE,r andHAMISE,r is the same
n−2/(d+2r+6) when d ≥ 2 (see, e.g., Chacón (2010) and Chacón and Duong (2012)).

In papers Horová et al. (2008, 2012), a special method for bandwidth matrix selection for a bivariate density for the case
of diagonal bandwidthmatrix has been developed and the rationale of thismethod has been explained. Thismethod is based
on formula (8). As concerns the bandwidth matrix selection for the kernel gradient estimator, the aforementioned method
was extended to this case in Vopatová et al. (2010) and Horová and Vopatová (2011). Because the problem of the bandwidth
matrix choice both for density itself and its gradient are closely related one to each other, we address the problem of these
choices together.
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4. Proposed method and its statistical properties

As mentioned, our method is based on Eq. (8) in the sense that a solution of DHAMISEr(H) = 0 is equivalent to solving
Eq. (8). But AISBr(H) depends on the unknown density. Thus we adapt the similar idea as in the univariate case (Horová and
Zelinka (2007a)) and use a suitable estimate of AISBr .

Eq. (8) can be rewritten as

(d + 2r)n−1|H|−1/2tr

(H−1)rV (DrK)


− β2

2


∥{tr(HD2)Dr}f (x)∥2dx = 0. (11)

Let us denote

Λ(z) = (K ∗ K ∗ K ∗ K − 2K ∗ K ∗ K + K ∗ K)(z),

ΛH(z) = |H|−1/2Λ(H−1/2z).

Then the estimate of AISBr(H) can be considered as

AISBr(H) =


∥(KH ∗ Dr f )(x,H) − Dr f (x,H)∥2dx.

This estimate involves non-stochastic terms, therefore, according to Taylor (1989), Jones and Kappenman (1991) and Jones
et al. (1991), we eliminated these terms and propose an (asymptotically unbiased) estimate

AISBr(H) = tr





(−1)r

n2

n

i,j=1
i≠j

D2rΛH(Xi − Xj)





.

Now, instead of Eq. (11) we aim to solve the equation

(d + 2r)n−1|H|−1/2tr

(H−1)rV (DrK)


− 4tr





(−1)r

n2

n

i,j=1
i≠j

D2rΛH(Xi − Xj)





= 0. (12)

Remark 1. The bandwidth matrix selection method based on Eq. (12) is called the Iterative method (IT method) and the
bandwidth estimate is denotedHITr .

Remark 2. In the following we assume that K is the standard normal density φI. Thus Λ(z) = φ4I(z)− 2φ3I(z)+φ2I(z) and
β2 = 1. We are going to discuss statistical properties of the Iterative method which will show its rationality.

Let Γr(H) stand for the left hand side of (11) and Γr(H) for the left hand side of (12).

Theorem 3. Let the assumptions (A1) –(A3) be satisfied and K = φI. Then

E(Γr(H)) = Γr(H) + o(∥vecH∥5/2),

Var(Γr(H)) = 32n−2|H|−1/2∥vecH∥−2rV (vecD2rΛ)V (f ) + o(n−2|H|−1/2∥vecH∥−2r).

Proof. For the proof see Complements. �

As far as the convergence rate of the IT method is concerned, we are inspired with AMSE lemma (Duong, 2004; Duong
and Hazelton, 2005a). The following theorem takes place.

Theorem 4. Let the assumptions (A1) –(A3) be satisfied and K = φI. Then

MSE{vechHITr } = O

n−min{d,4}/(d+2r+4)Jd∗


× vechHAMISE,rvech

THAMISE,r .

Proof. Proof of theorem can be found in Complements. �

Corollary 5. The convergence rate to HAMISE,r is n
−min{d,4}/(2d+4r+8) for the IT method.

Remark 3. For the r-th derivative the cross-validation method is of order n−min{d,4}/(2d+4r+8) and the plug-in method is of
order n−2/(d+2r+6) (with respect to HAMISE,r ).
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5. Computational aspects and simulations

Eq. (12) can be rewritten as

|HITr |
1/24 tr





(−1)r

n

n

i,j=1
i≠j

D2rΛHITr
(Xi − Xj)





= (d + 2r)tr

(H−1

ITr
)rV


DrK


.

This equation represents a nonlinear equation for d∗ unknown entries of HITr . In order to find all these entries we need
additional d∗ − 1 equations. Below, we describe a possibility of obtaining these equations.

We adopt a similar idea as in the case of the diagonal matrix (see also Terrell (1990), Scott (1992), Duong et al. (2008) and
Horová and Vopatová (2011)). We explain this approach for the case d = 2 with the matrix

HITr =


ĥ11,r ĥ12,r

ĥ12,r ĥ22,r


.

Let Σ be a sample covariance matrix

Σ =


σ̂ 2
11 σ̂12

σ̂12 σ̂ 2
22


.

The initial estimates of entries ofHITr can be chosen as

ĥ11,r = ĥ2
1,r = (σ̂ 2

11)
(12+r)/12 n(r−4)/12,

ĥ22,r = ĥ2
2,r = (σ̂ 2

22)
(12+r)/12 n(r−4)/12,

ĥ12,r = sign σ̂12|σ̂12|
(12+r)/12 n(r−4)/12.

For details see Horová and Vopatová (2011).

Hence

ĥ22,r =


σ̂ 2
22

σ̂ 2
11

(12+r)/12

ĥ11,r , (13)

ĥ2
12,r =


σ̂ 2
12

σ̂ 2
11

(12+r)/12

ĥ11,r (14)

and further

|HITr | = ĥ2
11,r


(σ̂11σ̂22)

(12+r)/6 − σ̂
(12+r)/6
12


σ̂

(12+r)/3
11

= ĥ2
11,rS(σ̂ij).

Thus we arrive at the equation for the unknown ĥ11,r

4ĥ11,r


S(σ̂ij)tr





(−1)r

n

n

i,j=1
i≠j

D2rΛHITr
(Xi − Xj)





= (d + 2r)tr

(H−1

ITr
)rV


DrK


. (15)

This approach is very important for computational aspects of solving Eq. (12). Putting Eqs. (13)–(15) forms one nonlinear
equation for the unknown ĥ11,r and it can be solved by means of an appropriate iterative numerical method. This procedure
gives thenameof the proposedmethod. Evidently, this approach is computationallymuch faster than a generalminimization
process.

To test the effectiveness of our estimator, we simulated its performance against the least squares cross-validation
method. All simulations and computations were done in MATLAB. The simulation is based on 100 replications of 6 bivariate
normal mixture densities, labeled A–F . Means and covariance matrices of these distributions were generated randomly.
Table 1 brings the list of the normal mixture densities. Densities A and B are unimodal, C and D are bimodal and E and F are
trimodal. Their contour plots are displayed in Fig. 1.

The sample size of n = 100 was used in all replications. We calculated the Integrated Square Error (ISE)

ISEr{Dr f (·,H)} =


∥Dr f (x,H) − Dr f (x)∥2dx

for each estimated density and its derivative over all 100 replications. The logarithm of results is displayed in Tables 2 and
3 and in Fig. 2. Here ‘‘ITER’’ denotes the results for our proposed method, ‘‘LSCV’’ stands for the results of the Least Squares
Cross-validation method (10) and ‘‘MISE’’ is a tag for the results obtained by minimizing (6).

Finally, we compared computational times of all methods. Results are listed in Table 4.
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Table 1

Normal mixture densities.

Density Formula N(vecTµ, vecTΣ)

A N

(−0.2686, −1.7905), (7.9294, −10.0673; −10.0673, 22.1150)



B N

(−0.6847, 2.6963), (16.9022, 9.8173; 9.8173, 6.0090)



C 1
2N

(0.3151, −1.6877), (0.1783, −0.1821; −0.1821, 1.0116)


+ 1

2N

(1.1768, 0.3731), (0.2414, −0.8834; −0.8834, 4.2934)



D 1
2N

(1.8569, 0.1897), (1.5023, −0.9259; −0.9259, 0.8553)


+ 1

2N

(0.3349, −0.2397), (2.3050, 0.8895; 0.8895, 1.2977)



E 1
3N

(0.0564, −0.9041), (0.9648, −0.8582; −0.8582, 0.9332)


+ 1

3N

(−0.7769, 1.6001), (2.8197, −1.4269; −1.4269, 0.9398)



+ 1
3N

(1.0132, 0.4508), (3.9982, −3.7291; −3.7291, 5.5409)



F 1
3N

(2.2337, −2.9718), (0.6336, −0.9279; −0.9279, 3.1289)


+ 1

3N

(−4.3854, 0.5678), (2.1399, −0.6208; −0.6208, 0.7967)



+ 1
3N

(1.5513, 2.2186), (1.1207, 0.8044; 0.8044, 1.0428)



Fig. 1. Contour plots for target densities.

Table 2

Logarithm of ISE0 for bandwidth matrices.

Target density A B C D E F

ITER Mean −7.562 −6.345 −4.319 −4.918 −4.779 −5.103
Std 0.459 0.448 0.264 0.274 0.203 0.180

LSCV Mean −7.110 −5.781 −4.332 −4.957 −4.917 −5.138
Std 0.531 0.610 0.407 0.518 0.385 0.325

MISE Mean −7.865 −4.256 −4.168 −3.521 −2.763 −3.903
Std 0.397 0.418 0.188 0.340 0.237 0.164

6. Application to real data

An important question arising in application to real data is which observed features – such as a local extremes – are
really there. Chaudhuri and Marron (1999) introduced the SiZer (Significant Zero) method for finding structure in smooth
data. Duong et al. (2008) proposed a framework for feature significance in d-dimensional data which combines kernel
density derivative estimators and hypothesis tests for modal regions. Distributional properties are given for the gradient
and curvature estimators, and pointwise tests extend the two-dimensional feature significance ideas of Godtliebsen et al.
(2002).
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Table 3

Logarithm of ISE1 for bandwidth matrices.

Target density A B C D E F

ITER Mean −7.618 −4.005 −0.888 −2.698 −1.991 −3.203
Std 0.289 0.405 0.055 0.099 0.030 0.032

LSCV Mean −5.364 −0.210 0.503 −1.214 −0.501 −1.544
Std 2.638 2.960 2.364 2.437 2.373 1.914

MISE Mean −7.939 −4.314 −1.813 −3.544 −2.732 −3.864
Std 0.391 0.443 0.311 0.359 0.241 0.172

Fig. 2. Box plots for log(ISE).

Table 4

Average computational times (in seconds).

Target density r A B C D E F

ITER 0 0.0826 0.0685 0.0596 0.0801 0.0754 0.0591
1 0.8295 0.8201 0.8542 0.8605 0.8538 0.8786

LSCV 0 0.5486 0.5732 0.5182 0.4844 0.5004 0.5004
1 1.7936 1.6483 1.3113 1.3128 1.6495 1.5581

MISE 0 0.1927 0.1982 0.7126 0.5540 1.8881 2.4000
1 0.5236 0.3112 1.2653 1.3452 2.3089 4.1172

We started with the well-known ‘Old Faithful’ data set (Simonoff, 1996), which contains characteristics of 222 eruptions
of the ‘Old Faithful Geyser’ in Yellowstone National Park, USA, during August 1978 and August 1979. Kernel density and
first derivative estimates using the standard normal kernel based on the following bandwidth matrices obtained by the IT
method

HIT0 =


0.0703 0.7281
0.7281 9.801


, HIT1 =


0.2388 3.006
3.006 50.24



are displayed in Fig. 3. The intersections of ∂ f /∂x1 = 0 and ∂ f /∂x2 = 0 show the existence of extremes.
The second data set is taken from UNICEF—‘‘The State of the World’s Children 2003’’. It contains 72 pairs of observations

for countries with a GNI less than 1000 US dollars per capita in 2001. X1 variable describes the under-five mortality rate,
i.e., the probability of dying between birth and exactly five years of age expressed per 1000 live births, and X2 is a life
expectancy at birth, i.e., the number of years newborn children would live if subject to the mortality risks prevailing for
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Fig. 3. ‘Old Faithful’ data contour plots—estimated density f̂ (left) and estimated partial derivatives ∂ f /∂x1 = 0, ∂ f /∂x2 = 0 (right).

Fig. 4. ‘UNICEF Children’ data contour plots—estimated density f̂ (left) and estimated partial derivatives ∂ f /∂x1 = 0, ∂ f /∂x2 = 0 (right).

Fig. 5. Swiss bank notes data contour plots—estimated density f̂ (left) and estimated partial derivatives ∂ f /∂x1 = 0, ∂ f /∂x2 = 0 (right).

the cross-section of population at the time of their birth (UNICEF, 2003). These data have also been analyzed in Duong and
Hazelton (2005b).

Bandwidth matrices for the estimated density f̂ and its gradient Df are

HIT0 =


1112.0 −138.3
−138.3 24.20


and HIT1 =


2426 −253.7

−253.7 38.38


,

respectively. Fig. 4 illustrates the use of the iterative bandwidth matrices for the ‘UNICEF Children’ data set.
We also analyzed a Swiss bank notes data set from Simonoff (1996). It contains measurements of the bottom margin

and diagonal length of 100 real Swiss bank notes and 100 forged Swiss bank notes. Contour plots in Fig. 5 represent kernel
estimates of the joint distribution of the bottom margin and diagonal length of the bills using bandwidth matrices

HIT0 =


0.1227 −0.0610

−0.0610 0.0781


, HIT1 =


0.6740 −0.3159

−0.3159 0.4129


.

The bills with longer diagonal and shorter bottom margin correspond to real bills.
The density estimate shows a bimodal structure for the forged bills (bottom right part of the plot) and it seems that the

gradient estimate does not match this structure. The elements of the bandwidth matrix for the gradient estimate are bigger
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in magnitude than the ones of the bandwidth matrix for density estimate, as expected from the theory. Three bumps in the
tails are too small and the gradient estimator is not able to distinguish them.

7. Conclusion

We restricted ourselves on the use of the standard normal kernel. This kernel satisfies smoothness conditions and
provides easy computations of convolutions. Due to these facts it was possible to compare the IT method with the LSCV
method.

The simulation study and application to real data show that the IT method provides a sufficiently reliable way of
estimating arbitrary density and its gradient. The ITmethod is also easy implementable and seems to be less time consuming
(see Horová and Zelinka (2007a) for d = 1, see also Table 4 for d = 2).

Further assessment of the practical performance and an extension to a curvature density estimate would be very
important further research. Although the theoretical comparison also involves PI methods, they are not included in the
simulation study. This would be an interesting task for further research.

8. Complements

We start with introducing some facts on matrix differential calculus and on the Gaussian density (see Magnus and
Neudecker (1979, 1999) and Aldershof et al. (1995)).

Let A, B be d × d matrices and r = 0, 1:

1◦. tr(ATB) = vecTAvecB
2◦. DH|H|−1/2 = − 1

2 |H|−1/2DT
dvecH

−1

3◦. DHtr(H−1A) = −DT
dvec(H

−1AH−1)

4◦.


φcI(z){tr(H1/2D2H1/2zzT )D2r}f (x)dz = c{tr(HD2)D2r}f (x)
φcI(z){tr2(H1/2D2H1/2zzT )D2r}f (x)dz = 3c2{tr2(HD2)D2r}f (x)
φcI(z){trk(H1/2D2H1/2zzT )tr(H1/2DzT )D2r}f (x)dz = 0, k ∈ N0

5◦. Λ(z) = φ4I(z) − 2φ3I(z) + φ2I(z),
then using 4◦ yields

Λ(z)dz = 0
Λ(z){tr(H1/2D2H1/2zzT )D2r}f (x)dz = 0
Λ(z){tr2(H1/2D2H1/2zzT )D2r}f (x)dz = 6{tr2(HD2)D2r}f (x)
Λ(z){trk(H1/2D2H1/2zzT )tr(H1/2DzT )D2r}f (x)dz = 0, k ∈ N0

6◦.

Dkf (x)[Dkf (x)]Tdx = (−1)k


D2kf (x)f (x)dx, k ∈ N

7◦. Taylor expansion in the form (for r = 0, 1)

D2r f (x − H1/2z) = D2r f (x) − {zTH1/2DD2r}f (x)

+
1

2!
{(zTH1/2D)2D2r}f (x) + · · · +

(−1)k

k!
{(zTH1/2D)kD2r}f (x) + o(∥H1/2z∥kJdr ).

Sketch of the proof of Lemma 2:

Proof. Consider Eq. (7) and multiply it from the left by 1
2vech

TH.

Then

(4n)−1|H|−1/2vechTHtr

(H−1)rV (DrK)


DT

dvecH
−1 + (2n)−1|H|−1/2rvechTH


DT

dvec(H
−1V (DrK))H−1



=
β2
2

4
vechTHΨ 4+2rvechH.

The right hand side of this equation is AISBr . Further, if we use the facts on matrix calculus, we arrive at formula (8). �

We only present a sketch of proofs of theorems. Detailed proofs are available on request from the first author.

Sketch of the proof of Theorem 3:

Proof. In order to show the validity of the relation for the expected value of Γr(H), we evaluate E(AISBr(H)) and start with

E tr

D2rΛH(X1 − X2)


= tr


D2rΛH(x − y)f (x)f (y)dxdy

= tr


ΛH(x − y)f (x)D2r f (y)dxdy

= tr


Λ(z)D2r f (x − H1/2z)f (x)dzdx.
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Taylor expansion, defined in 7◦, and using 5◦ yields

= tr


Λ(z)


5

i=0

(−1)i

i!
{(zTH1/2D)iD2r}f (x) + o(∥H1/2z∥5)Jdr


f (x)dzdx

= tr


Λ(z)


1

4!
{(zTH1/2D)4D2r}f (x) + o(∥H1/2z∥5)Jdr


f (x)dzdx

=
1

4!
tr


Λ(z){tr2(H1/2D2H1/2zzT )D2r}f (x)f (x)dzdx + o(∥vecH∥5/2),

using properties 5◦ and 6◦ we arrive at

=
1

4
tr


{tr2(HD2)D2r}f (x)f (x)dx + o(∥vecH∥5/2)

=
(−1)r

4


∥{tr(HD2)Dr}f (x)∥2dx + o(∥vecH∥5/2).

To prove the second part of the Theorem it is sufficient to derive Var(AISBr(H))

Var(AISBr(H)) = Var





4

n2

n

i,j=1
i≠j

trD2rΛH(Xi − Xj)





.

Since trD2rΛH is symmetric about zero, we can use U-statistics, e.g., Wand and Jones (1995). In our case

Var
4

n2

n

i,j=1
i≠j

trD2rΛH(Xi − Xj) = 32n−3(n − 1)Var trD2rΛH(X1 − X2) + 64n−3(n − 1)(n − 2)

× Cov{trD2rΛH(X1 − X2), trD
2rΛH(X1 − X3)}.

Most of terms are asymptotically negligible, therefore the formula written above reduces to

32n−2 E(trD2rΛH(X1 − X2))
2

  
ξ2

−64n−1 E2trD2rΛH(X1 − X2)  
ξ0

+ 64n−1 E(trD2rΛH(X1 − X2)trD
2rΛH(X1 − X3))  

ξ1

. (16)

Let us express ξ0, ξ1 and ξ2. From previous computations of the expected value one can see that ξ0 is of order o(∥vecH∥3).

ξ1 =


trD2rΛH(x − y)trD2rΛH(x − z)f (x)f (y)f (z)dxdydz

=


Λ(u)Λ(v)f (x)trD2r f (x − H1/2u)trD2r f (x − H1/2v)dxdudv

=


Λ(u)Λ(v)f (x)tr


5

i=0

(−1)i

i!
{D2rai}f (x) + o(∥H1/2u∥5)Jdr



× tr


5

i=0

(−1)i

i!
{D2rbi}f (x) + o(∥H1/2v∥5)Jdr


dxdudv, where a = uTH1/2D, b = vTH1/2D

=


Λ(u)Λ(v)f (x)

1

4!4!
tr{D2ra4}f (x)tr{D2rb4}f (x)dxdudv + o(∥vecH∥4)

=
1

4!4!


f (x)


Λ(z){tr2(H1/2D2H1/2zzT )D2r}f (x)dz

2
dx + o(∥vecH∥4)

=
1

16


{tr2(HD2)D2r}f (x){tr2(HD2)D2r}f (x)f (x)dx + o(∥vecH∥4).

Thus ξ1 is of order o(∥vecH∥3) and is negligible.
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Finally

ξ2 =


trD2rΛH(x − y)trD2rΛH(x − y)f (x)f (y)dxdy

= |H|−1/2


tr2(H−rD2rΛ(z))f (x)f (x − H1/2z)dxdz

= |H|−1/2∥vecH∥−2rV (vecD2rΛ)V (f ) + o(|H|−1/2∥vecH∥−2r),

which completes the proof of Theorem 3. �

Sketch of the proof of Theorem 4:

Proof. Since Γr(H)
P

→ Γr(H) thenHITr
P

→HAMISE,r as n → ∞ and we can adopt ideas of AMSE lemma (Duong, 2004). We
expand

Γr(HITr ) = (Γr − Γr)(HITr ) + Γr(HITr )

= (1 + o(1))(Γr − Γr)(HAMISE,r) + Γr(HAMISE,r)

+ (1 + o(1))DT
HΓr(HAMISE,r)vech(HITr − HAMISE,r).

Wemultiply the equation by vechHAMISE,r from the left side and remove all negligible terms. Then we obtain

0 = vechHAMISE,r(Γr − Γr)(HAMISE,r) + vechHAMISE,rD
T
HΓr(HAMISE,r)vech(HITr − HAMISE,r).

It is easy to see that DT
HΓr(HAMISE,r) = aTn−2/(d+2r+4) and vechHAMISE,r = bn−2/(d+2r+4) for constant vectors a and b, which

implies

vech(HITr − HAMISE,r) = −(baT )−1

  
C

n4/(d+2r+4)vechHAMISE,r(Γr − Γr)(HAMISE,r).

Let us note that the matrix baT can be singular in some cases (e.g., for a diagonal bandwidth matrix) and thus the matrix
C = −(baT )−1 does not exist. But this fact does not take any effect for the rate of convergence.

Using results of Theorem 3 we express the convergence rate of MSE

(Γr − Γr)(HAMISE,r)



= Bias2(Γr(HAMISE,r)) + Var(Γr(HAMISE,r))

= (o(∥vecHAMISE,r∥
5/2))2 + O(n−2|HAMISE,r |

−1/2∥vecHAMISE,r∥
−2r)

= (O(∥vecHAMISE,r∥
3))2 + O(n−2|HAMISE,r |

−1/2∥vecHAMISE,r∥
−2r)

= O(n−12/(d+2r+4)) + O(n−(d+8)/(d+2r+4))

= O(n−min{d+8,12}/(d+2r+4)).

Then

MSE{vechHITr } = MSE

(Γr − Γr)(HAMISE,r)


C vechHAMISE,rvech

THAMISE,r C
Tn8/(d+2r+4)

= O

n−min{d+8,12}/(d+2r+4)


O

n8/(d+2r+4)Jd∗


vechHAMISE,rvech

THAMISE,r

= O

n−min{d,4}/(d+2r+4)Jd∗


vechHAMISE,rvech

THAMISE,r . �
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SELECTION OF BANDWIDTH FOR KERNEL REGRESSION

JAN KOLÁČEK, IVANA HOROVÁ

Abstract. The most important factor in kernel regression is a choice of
a bandwidth. Considerable attention has been paid to extension the idea of
an iterative method known for a kernel density estimate to kernel regression.

Data-driven selectors of the bandwidth for kernel regression are considered.
The proposed method is based on an optimally balanced relation between the
integrated variance and the integrated square bias. This approach leads to an

iterative quadratically convergent process. The analysis of statistical proper-

ties shows the rationale of the proposed method. In order to see statistical

properties of this method the consistency is determined. The utility of the
method is illustrated through a simulation study and real data applications.

Keywords and Phrases: kernel regression, bandwidth selection, iterative method.

Mathematics Subject Classification: 62G08

1. Introduction

Kernel regression estimates are one of the most popular nonparametric estimates.
In a univariate case, these estimates depend on a bandwidth, which is a smoothing
parameter controlling smoothness of an estimated curve and a kernel which is con-
sidered as a weight function. The choice of the smoothing parameter is a crucial
problem in the kernel regression. The literature on bandwidth selection is quite
extensive, e.g., monographs [20, 17, 18], papers [7, 2, 3, 15, 19, 4, 5, 12, 13].

Although in practice one can try several bandwidths and choose a bandwidth
subjectively, automatic (data-driven) selection procedures could be useful for many
situations; see [16] for more examples. Most of these procedures are based on es-
timating of Average Mean Square Error. They are asymptotically equivalent and
asymptotically unbiased (see [7, 2, 3]). However, in simulation studies ([12]), it
is often observed that most selectors are biased toward undersmoothing and yield
smaller bandwidths more frequently than predicted by asymptotic results.

Successful approaches to the bandwidth selection in kernel density estimation can
be transferred to the case of kernel regression. The iterative method for the kernel
density has been developed and widely discussed in [9]. The proposed method is
based on an optimally balanced relation between the integrated variance and the
integrated square bias.

The paper is organized as follows: In Section 2 we describe kernel estimates of
a regression function and give a form of the Mean Integrated Square Error and its
asymptotic alternative. The next section is devoted to a data-driven bandwidth
selection method. This method is based on an optimally balanced relation between
the integrated variance and the integrated squared bias, see [9]. Similar ideas were

Department of Mathematics and Statistics, Masaryk University, Brno, Czech Republic.
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2 JAN KOLÁČEK, IVANA HOROVÁ

applied to kernel estimates of hazard functions (see [11] or [10]). It seems that
the basic idea can be also extended to a kernel regression and we are going to
investigate this possibility. We discuss the statistical properties of the proposed
method as well. Section 4 brings a simulation study and in the last section the
developed theory is applied to real data sets.

2. Univariate kernel regression

Consider a standard regression model of the form

(2.1) Yi = m(xi) + εi, i = 1, . . . , n,

where m is an unknown regression function, Y1, . . . , Yn are observable data vari-
ables with respect to the design points x1, . . . , xn. The residuals ε1, . . . , εn are
independent identically distributed random variables for which

E(εi) = 0, var(εi) = σ2 > 0, i = 1, . . . , n.

We suppose the fixed equally spaced design, i.e., design variables are not random
and xi = i/n, i = 1, . . . , n. In the case of random design, where the design points
X1, . . . , Xn are random variables with the same density f , all considerations are
similar as for the fixed design. More detailed description of the random design can
be found, e.g., in [20].

The aim of kernel smoothing is to find a suitable approximation m̂ of the un-
known function m.

We consider the estimator proposed by Pristley and Chao [14] which is defined
as

(2.2) m̂(x, h) =
1

n

n∑

i=1

Kh(x− xi)Yi, for x ∈ (0, 1).

The function K is called the kernel which is assumed to be symmetric about zero
and be supported on [−1, 1], be such that V (K) =

∫
K(u)2du < ∞ and have a

finite second moment (i.e.,
∫
u2K(u)du = β2 < ∞). Set Kh(.) =

1
hK( .

h ), h > 0.
A parameter h is called a bandwidth.

The quality of a kernel regression estimator can be locally described by the Mean
Square Error (MSE) or by a global criterion the Mean Integrated Square Error
(MISE), which can be written as a sum of the Integrated Variance (IV) and the
Integrated Square Bias (ISB)

MISE
{
m̂(·, h)

}
= E

1∫

0

[m̂(x, h)−m(x)]2dx

=

1∫

0

Var m̂(x, h)dx

︸ ︷︷ ︸
IV

+

1∫

0

[(Kh ∗m)(x)−m(x)]2dx

︸ ︷︷ ︸
ISB

+O
(
n−1

)
,

(2.3)

where ∗ denotes a convolution.
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SELECTION OF BANDWIDTH FOR KERNEL REGRESSION 3

Since the MISE is not mathematically tractable we employ the Asymptotic Mean
Integrated Square Error (AMISE)

(2.4) AMISE{m̂(·, h)} =
V (K)σ2

nh︸ ︷︷ ︸
AIV

+

(
β2

2

)2

V (m′′)h4

︸ ︷︷ ︸
AISB

,

where V (m′′) =
1∫
0

(m′′(x))
2
dx. The optimal bandwidth considered here is hopt,

the minimizer of (2.4), i.e.,

hopt = argmin
h∈Hn

AMISE{m̂(·, h)},

where Hn = [an−1/5, bn−1/5] for some 0 < a < b <∞.
The calculation gives

(2.5) hopt =

(
σ2V (K)

nβ2
2V (m′′)

) 1

5

.

In nonparametric regression estimation a critical and inevitable step is to choose
the smoothing parameter (bandwidth) to control the smoothness of the curve esti-
mate. The smoothing parameter considerably affects the features of the estimated
curve.

One of the most widespread procedures for bandwidth selection is the cross-
validation method, also known as “leave-one-out” method.

The method is based on modified regression smoother (2.2) in which one, say
the j-th, observation is left out:

m̂−j(xj , h) =
1

n

n∑

i=1
i6=j

Kh(xi − xj)Yi, j = 1, . . . , n.

With using these modified smoothers, the error function which should be minimized
takes the form

(2.6) CV(h) =
1

n

n∑

i=1

{m̂−i(xi)− Yi}
2.

The function CV(h) is commonly called a “cross-validation” function. Let ĥCV

stand for minimization of CV(h), i.e.,

ĥCV = argmin
h∈Hn

CV(h).

The literature on this criterion is quite extensive, e.g., [19, 4, 7, 5].

3. Iterative method for kernel regression

The proposed method is based on the following relation. It is easy to show that
the equation holds

(3.1) AIV {m̂(·, hopt)} − 4AISB{ m̂(·, hopt)} = 0,
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where AIV and AISB are terms used in (2.4). For estimating of AIV and AISB in
(3.1) we use

ÂIV {m̂(·, h)} =
σ̂2V (K)

nh
, with σ̂2 =

1

2n− 2

n∑

i=2

(Yi − Yi−1)
2

and

ÂISB {m̂(·, h)} =

1∫

0

[(Kh ∗ m̂)(x, h)− m̂(x, h)]2dx

=
1

4n2h

n∑

i,j=1

i6=j

Λ

(
xi − xj

h

)
YiYj ,

where Λ(z) = (K ∗K ∗K ∗K−2K ∗K ∗K+K ∗K)(z) (see Complements for more
details, for properties of Λ(z) see [8]).

To find the bandwidth estimate ĥIT we solve the equation

(3.2) ÂIV {m̂(·, h)} − 4ÂISB {m̂(·, h)} = 0,

which leads to finding a fixed point of the equation

(3.3) h =
σ̂2V (K)

4nhÂISB {m̂(·, h)}
.

We use Steffensen’s iterative method with the starting approximation ĥ0 = 2/n.
This approach leads to an iterative quadratically convergent process (see [9]).

The solution ĥIT of the equation (3.2) can be considered as a suitable approxi-
mation of hopt as it is confirmed by the following theorem.

Theorem 3.1. Let m ∈ C2[0, 1], m′′ be square integrable, limh
n→∞

= 0, limnh
n→∞

=∞.

Let P(h) stand for the left side of (3.1) and P̂(h) for the left side of (3.2). Then

(3.4)
E(P̂(h)) = P(h) +O

(
n−1

)
,

var(P̂(h)) = O
(
n−1

)
.

Theorem 3.1 states that P̂(h) is a consistent estimate of P(h). This result
confirms that the solution of (3.3) may be expected to be reasonably close to hopt.
Proof of Theorem 3.1 can be found in Complements.

4. Simulation study

We carry out two simulation studies to compare the performance of the band-
width estimates. The comparison is done in the following way. The observations,
Yi, for i = 1, . . . , n = 100, are obtained by adding independent Gaussian random
variables with mean zero and variance σ2 to some known regression function. Both
regression functions used in our simulations are illustrated in Fig. 1.

One hundred series are generated. For each data set, we estimate the optimal
bandwidth by both mentioned methods, i.e., for each method we obtain 100 es-
timates. Since we know the optimal bandwidth, we compare it with the mean
of estimates and look at their standard deviation, which describes the variability
of methods. The Epanechnikov kernel K(x) = 3

4 (1− x2)I[−1,1] is used in all cases.

Page 4 of 22

URL: http://mc.manuscriptcentral.com/lsta E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics ? Theory and Methods

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

 O
n
ly

SELECTION OF BANDWIDTH FOR KERNEL REGRESSION 5

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1. Regression functions.

Finally, we calculate the Integrated Square Error (ISE)

ISE{m̂(·, h)} =

1∫

0

(m̂(x, h)−m(x))
2
dx

for each estimated regression function over all 100 replications. The logarithm of
results are displayed in Tables 2, 4 and in Figures 3, 5. Here “IT” denotes the
results for our proposed method, “CV” stands for the results of the cross-validation
method.

4.1. Simulation 1. In this case, we use the regression function

m(x) = x3(1− x)3

with σ2 = 0.0032. Table 1 summarizes the sample means and the sample standard

deviations of bandwidth estimates, E(ĥ) is the average of all 100 values and std(ĥ)
is their standard deviation. Figure 2 illustrates the histogram of results of all 100
experiments.

hopt = 0.1188

E(ĥ) std(ĥ)

CV 0.1057 0.0297

IT 0.1184 0.0200

Table 1. Means and standard deviations

Table 2 gives the mean and the standard deviations of log(ISE) for each method
compared with log(ISE) for the regression estimate obtained with hopt. Figure 3
illustrates the histogram of log(ISE) of all 100 experiments.

As we see, the standard deviation of all results obtained by the proposed method
is less than the value for the case of cross-validation method and also the mean
of these results is slightly closer to the theoretical optimal bandwidth. The com-
parison of results with respect to log(ISE) leads to the similar result. The reason
is that the regression function is smooth and satisfies all the conditions supposed
in the previous section. Thus the proposed method works very well in this case.
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Figure 2. Distribution of ĥ for both methods.

E(log(ISE)) std(log(ISE))

hopt −14.4452 0.5421

IT −14.3481 0.5193

CV −14.2160 0.6276

Table 2. Means and standard deviations of log(ISE)

4.2. Simulation 2. In the second example, we use the regression function

m(x) = sin(π x) cos
(
3π x5

)

with σ2 = 0.05. Table 3 summarizes the sample means and the sample standard

deviations of bandwidth estimates, E(ĥ) is the average of all 100 values and std(ĥ)
is their standard deviation. Figure 4 illustrates the histogram of results of all 100
experiments.

Table 4 brings the mean and the standard deviations of log(ISE) for each method
compared with log(ISE) for the regression estimate obtained with hopt. Figure 5
illustrates the histogram of log(ISE) of all 100 experiments.

Although the mean of ĥIT is not so close to hopt as the mean of ĥCV , the values
of ISE are better. Also the variability of the proposed method seems to be smaller
in this case. Thus we make a conclusion that the proposed method can provide
better results for this regression model.
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Figure 3. Logarithm of ISE.

hopt = 0.0585

E(ĥ) std(ĥ)

CV 0.0633 0.0168

IT 0.0708 0.0072

Table 3. Means and standard deviations

E(log(ISE)) std(log(ISE))

hopt −5.0932 0.3908

IT −5.0560 0.3741

CV −4.9525 0.3966

Table 4. Means and standard deviations of log(ISE)

5. Application to real data

The main goal of this section is to make a comparison of mentioned bandwidth
estimators on a real data set. We use data from [1] and follow annual measurements
of the level, in feet, of Lake Huron 1875 – 1972, i.e., the sample size is n = 98. We
transform data to the interval [0, 1] and use both selectors considered in the previous
section to get the optimal bandwidth. We use the Epanechnikov kernel K(x) =
3
4 (1− x2)I[−1,1]. All estimates of optimal bandwidth are listed in Table 5.
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Figure 4. Distribution of ĥ for both methods.
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Figure 5. Logarithm of ISE.

Figure 6 illustrates the kernel regression estimate with the smoothing parameter

ĥCV = 0.0204 which was obtained by cross-validation method.
Figure 7 shows the kernel regression estimate with the smoothing parameter

ĥIT = 0.0501. This value was found by our proposed method
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Table 5. Optimal bandwidth estimates for Lake Huron data.

iterative method ĥIT = 0.0501

cross-validation ĥCV = 0.0204

1860 1880 1900 1920 1940 1960 1980
5
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8

9

10

11

12

Figure 6. Kernel regression estimate with ĥCV = 0.0204.

1860 1880 1900 1920 1940 1960 1980
5

6

7

8

9

10

11

12

Figure 7. Kernel regression estimate with ĥIT = 0.0501.

Since we do not know the true regression function m(x) it is hard to assess objec-
tively which one of kernel estimates is better. It is very important to realize the fact
that the final decision about the estimate is partially subjective because the esti-
mates of the bandwidth are only asymptotically optimal. The values summarized
in the table and figures show that the estimate with the smoothing parameter
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obtained by cross-validation criterion is undersmoothed. In the context of these
considerations, the estimate with parameter obtained by the iterative method ap-
pears to be sufficient.

6. Conclusion

A new bandwidth selector for kernel regression was proposed. The analysis of
statistical properties shows the rationale of the proposed method. The advantage
of the method is in computational aspects, since it makes possible to avoid the
minimization process and only solves one nonlinear equation.
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8. Complements

Proof of Theorem 3.1.
Let us denote

(8.1) P(h) =
V (K)σ2

nh
− h4β2

2V (m′′)

and let

(8.2) P̂(h) =
V (K)σ̂2

nh
−

1

n2h

n∑

i,j=1

i 6=j

Λ

(
xi − xj

h

)
YiYj

stand for an estimate of P. The proposed method aims to solve the equation

P̂(h) = 0.

For a better clarity we use the notation
∫
for

1∫
0

in next. As the first step, we prove

the following lemma.

Lemma 8.1. For i, j = 1, . . . , n, i 6= j the formula holds

hΛ

(
xi − xj

h

)
YiYj =

∫ [
(K ∗K)

(
x− xi

h

)
−K

(
x− xi

h

)]

×

[
(K ∗K)

(
x− xj

h

)
−K

(
x− xj

h

)]
YiYjdx.

Proof.
∫ [

(K ∗K)

(
x− xi

h

)
−K

(
x− xi

h

)][
(K ∗K)

(
x− xj

h

)
−K

(
x− xj

h

)]
dx

=

∫
(K ∗K)

(
x− xi

h

)
(K ∗K)

(
x− xj

h

)
dx− 2

∫
(K ∗K)

(
x− xi

h

)
K

(
x− xj

h

)
dx

+

∫
K

(
x− xi

h

)
K

(
x− xj

h

)
dx.

Set the three integrals in the sum as η1, η2, η3. We modify η3 by substitution
t =

x−xj

h . Using the parity of K we get

η3 = h

∫ 1−xj

h

−xj

h

K(t)K

(
t−

xi − xj

h

)
dt.
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Provided xj ∈ [0, 1] then, as h→∞, −xj/h→ −∞ and (1−xj)/h→∞. Therefore

η3 = h(K ∗K)

(
xi − xj

h

)
.

Similarly we can obtain

η2 = h(K ∗K ∗K)

(
xi − xj

h

)
,

η1 = h(K ∗K ∗K ∗K)

(
xi − xj

h

)
.

Thus η1 − 2η2 + η3 = hΛ
(

xi−xj

h

)
. �

We start with an evaluation of 1
n2hE

n∑
i,j=1

i6=j

Λ
(

xi−xj

h

)
YiYj :

1

n2h
E

n∑

i,j=1

i 6=j

Λ

(
xi − xj

h

)
YiYj

L.8.1
=

1

n2h2
E

n∑

i,j=1

i6=j

∫ [
(K ∗K)

(
x− xi

h

)
−K

(
x− xi

h

)]

×

[
(K ∗K)

(
x− xj

h

)
−K

(
x− xj

h

)]
YiYjdx

=
1

n2h2

n∑

i,j=1

i6=j

∫ [
(K ∗K)

(
x− xi

h

)
−K

(
x− xi

h

)]

×

[
(K ∗K)

(
x− xj

h

)
−K

(
x− xj

h

)]
m(xi)m(xj)dx

=

∫





∞∫

−∞

[(K ∗K)(t)−K(t)]m(x− ht)dt

︸ ︷︷ ︸
I1





2

dx+O
(
n−1

)
.

Now, we approximate the integral I1 by the Taylor’s expansion of m(x− th)

I1 =

∞∫

−∞

[(K ∗K)(t)−K(t)]

[
m(x)− thm′(x) +

t2h2

2
m′′(x) +O(t3h3)

]
dt.

It is an easy exercise to see the moment conditions for (K ∗K)(t)−K(t):
∞∫
−∞

(K ∗

K)(t) −K(t)dt =
∞∫
−∞

t2k+1[(K ∗K)(t) −K(t)]dt = 0, k ∈ N,
∞∫
−∞

t2[(K ∗K)(t) −

K(t)]dt = 2β2.
Thus

I1 = h2β2m
′′(x) +O

(
h4

)
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and
1

n2h
E

n∑

i,j=1

i 6=j

Λ

(
xi − xj

h

)
YiYj = h4β2

2V (m′′) +O
(
h6

)
+O

(
n−1

)
.

Finally

EP̂(h) =
V (K)σ2

nh
− β2

2V (m′′)h4 +O
(
n−1

)

and

(8.3) EP̂(h) = P(h) +O
(
n−1

)
.

Since it is assumed lim
n→∞

nh =∞ then EP̂(h)→ P(h).

Now, we derive the formula for varP̂(h). As the first we express varÂISB =

E(ÂISB)2 − E2ÂISB.

E(ÂISB)2 =
1

16n4h2
E





n∑

i,j=1

i6=j

Λ

(
xi − xj

h

)
YiYj





2

=
1

16n4h2
E





n∑

i,j,k,l=1

i 6=j 6=k 6=l

Λ

(
xi − xj

h

)
Λ

(
xk − xl

h

)
YiYjYkYl

︸ ︷︷ ︸
ζ1

+
n∑

i,j,k=1

i6=j 6=k

Λ

(
xi − xj

h

)
Λ

(
xi − xk

h

)
Y 2
i YjYk

︸ ︷︷ ︸
ζ2

+
n∑

i,j=1

i6=j

Λ2

(
xi − xj

h

)
Y 2
i Y

2
j

︸ ︷︷ ︸
ζ3





.

Then we compute

1

16n4h2
Eζ1 =

1

16n4h2

n∑

i,j,k,l=1

i 6=j 6=k 6=l

Λ

(
xi − xj

h

)
Λ

(
xk − xl

h

)
m(xi)m(xj)m(xk)m(xl)

=
1

16h2

∫∫∫∫
Λ

(
x− y

h

)
Λ

(
u− v

h

)
m(x)m(y)m(u)m(v)dxdydudv +O

(
n−1

)

=
1

16h2

{∫∫
Λ

(
x− y

h

)
m(x)m(y)dxdy

}2

+O
(
n−1

)

=
1

16





∫ ∞∫

−∞

Λ(t)m(x− th)m(x)dtdx





2

+O
(
n−1

)

It is easy to see the moment conditions for Λ(z):
∞∫
−∞

Λ(z)dz =
∞∫
−∞

z2Λ(z)dz = 0,

∞∫
−∞

z2k−1Λ(z)dz = 0, k ∈ N,
∫
z4Λ(z)dz = 6β2

2 ([8]). By using the second order
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Taylor’s expansion of m(x− th) we obtain the result

1

16n4h2
Eζ1 =

1

32





∫
m′′(x)m(x)dx

∞∫

−∞

[
Λ(t)t2h2 +O

(
h3

)]
dt





2

+O
(
n−1

)
= O

(
n−1

)
.

Similarly,

1

16n4h2
Eζ2 =

1

16n4h2

n∑

i,j,k=1

i6=j 6=k

Λ

(
xi − xj

h

)
Λ

(
xi − xk

h

)[
m2(xi) + σ2

]
m(xj)m(xk)

=
1

16nh2

∫∫∫
Λ

(
x− y

h

)
Λ

(
x− z

h

)[
m2(x) + σ2

]
m(y)m(z)dxdydz +O

(
n−1

)

=
1

16n

∫ ∞∫

−∞

∞∫

−∞

Λ(t)Λ(u)
[
m2(x) + σ2

]
m(x− th)m(x− uh)dtdudx+O

(
n−1

)

=
1

64n

∫
m′′2(x)

[
m2(x) + σ2

]
dx





∞∫

−∞

Λ(t)t2h2dt





2

+O
(
h6n−1

)
+O

(
n−1

)
.

1

16n4h2
Eζ3 =

1

16n4h2

n∑

i,j=1

i6=j

Λ2

(
xi − xj

h

)[
m2(xi) + σ2

] [
m2(xj) + σ2

]

=
1

16n2h2

∫∫
Λ2

(
x− y

h

)[
m2(x) + σ2

] [
m2(y) + σ2

]
dxdy +O

(
n−1

)

=
1

16n2h

∫ ∞∫

−∞

Λ2(t)
[
m2(x) + σ2

] [
m2(x− th) + σ2

]
dtdx+O

(
n−1

)

=
V (Λ)V (m2 + σ2)

16n2h
+O

(
n−1

)
.

By combining results for E(ÂISB)2 and E2ÂISB we arrive at the expression

varÂISB = O
(
n−1

)
.

Since σ̂2 is a consistent estimator of σ2 (see [6]) and varÂISB is of order O
(
n−1

)
,

varP̂ is a consistent estimator of varP.
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[9] I. Horová and J. Zelinka. Contribution to the bandwidth choice for kernel density estimates.

Computational Statistics, 22(1):31–47, 2007.
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Abstract

The present paper is focused on a fully nonparametric regression model for autocorre-
lation structure of errors in time series over total ozone data. We propose kernel methods
which represent one of the most effective nonparametric methods.

But there is a serious difficulty connected with them – the choice of a smoothing pa-
rameter called a bandwidth. In the case of independent observations the literature on
bandwidth selection methods is quite extensive. Nevertheless, if the observations are de-
pendent, then classical bandwidth selectors have not always provided applicable results.
There exist several possibilities for overcoming the effect of dependence on the bandwidth
selection. In the present paper we use the results of Chu and Marron (1991) and Koláček
(2008) and develop two methods for the bandwidth choice. We apply the above men-
tioned methods to the time series of ozone data obtained from the Vernadsky station in
Antarctica. All discussed methods are implemented in Matlab.

Keywords: total ozone, kernel, bandwidth selection.

1. Introduction

Antarctica is significantly related to many environmental aspects and processes of the Earth.
And thus its impact on the global climate system and water circulation in the world ocean is
essential.

The stratosphere ozone depletion over Antarctica was discovered at the beginning of the
1990s. The lowest total ozone contents (TOC) in Antarctica are usually observed in the first
week of October. The formation of ozone depletion begins approximately in the second half of
August, culminates in the first half of October, and dissolves in November. During the ozone
depletion, the average ozone concentration varied at the time of its culmination in October
from the original value over 300 Dobson Units (DU) in 1950s and 1960s to a level between
100 and 150 DU in 1990-2000 (see Láska et al. (2009)). One DU is set as a 0.001 mm strong

http://www.jenvstat.org


2 Kernel Regression Model for Total Ozone Data

layer of ozone under the pressure 1013 hPa and temperature 273 K.

One of the issues resolved within the Czech–Ukrainian scientific cooperation implemented on
the Vernadsky Station in Antarctica is the measurement of total ozone content (TOC) in the
stratosphere. The Vernadsky station is located on the west coast of Antarctic peninsula (65◦S,
64◦W). These data were obtained from ground measurements predominantly taken with the
Dobson No 031 spectrophotometer. Data can be found at UAC (2012).

The data sets were processed as time points measuring the average daily amount of ozone.
In order to analyze these data we have to take into account the autocorrelation structure
of errors on such time series. We focus on kernel regression estimators of series of ozone
data. These estimators depend on a smoothing parameter and it is well-known that selecting
the correct smoothing parameter is difficult in the presence of correlated errors. There exist
methods which are modifications of a classical cross-validation method for independent errors
(the modified cross-validation method or the partitioned cross-validation method - see Chu
and Marron (1991), Härdle and Vieu (1992)).

In the present paper we develop a new flexible plug-in approach for estimating the optimal
smoothing parameter. The utility of this method is illustrated through a simulation study
and application to TOC data measured in periods August to April 2004-2005, 2005-2006,
2006-2007.

2. Procedure Development

2.1. Kernel regression model

In nonparametric regression problems we are interested in estimating the mean function
E(Y |x) = m(x) from a set of observations (xi, Yi), i = 1, . . . , n. Many methods such as
kernel methods, regression splines and wavelet methods are currently available. The papers
in this filed have been mostly focused on case where an unknown function m is hidden by a
certain amount of a white noise. The aim of a regression analysis is to remove the white noise
and produce a reasonable approximation to the unknown function m.

Consider now the case when the noise is no longer white and instead contains a certain amount
of a structure in the form of correlation. In particular, if data sets have been recorded over
time from one object under a study, it is very likely that another response of the object will
depend on its previous response. In this context we will be dealing with a time series case,
where design points are fixed and equally spaced and thus our model takes the form

Yi=m(i/n)+εi, i = 1, . . . , n, (1)

and εi is an unknown ARMA process, i.e.,

E(εi) =0, var(εi) = σ2, i = 1, . . . , n,

cov(εi, εj) =γ|i−j| = σ2ρ|i−j|, corr(εi, εj) = ρ|i−j|
(2)

and the stationary process

γ0 = σ2, ρt =
γt
γ0

,
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where ρt is an autocorrelation function and γt is an autocovariance function. We consider the
simplest situation (Opsomer et al. (2001), Chu and Marron (1991))

ρt/n = ρt.

Simple and the most widely used regression smoothers are based on kernel methods (see
e.g. monographs Müller (1987), Härdle (1990), Wand and Jones (1995)). These methods are
local weighted averages of the response Y . They depend on a kernel which plays the role
of a weighted function, and a smoothing parameter called a bandwidth which controls the
smoothness of the estimate.

Appropriate kernel regression estimators were proposed by Priestley and Chao (1972), Nadaraya
(1964) and Watson (1964), Stone (1977), Cleveland (1979) and Gasser and Müller (1979).

These estimators were shown to be asymptotically equivalent (Lejeune (1985), Müller (1987),
Wand and Jones (1995)) and without the lost of generality we consider the Nadaraya–Watson
(NW) estimators m̂ of m. The NW estimator of m at the point x ∈ (0, 1) is defined as

m̂(x, h) =

n∑
i=1

Kh(xi − x)Yi

n∑
i=1

Kh(xi − x)

, (3)

for a kernel function K, where Kh(.) = 1
hK( .

h), and h is a nonrandom positive number
h = h(n) called the bandwidth.

Before studying the statistical properties of m̂ several additional assumptions on the statistical
model and the parameters of the estimator are needed:

I. Let m ∈ C2[0, 1].

II. Let K be a real valued function continuous on R and satisfying the conditions:

(i) |K(x)−K(y)| ≤ L|x− y| for a constant L > 0, ∀x, y ∈ [−1, 1],

(ii) support(K) = [−1, 1], K(−1) = K(1) = 0,

(iii)
∫ 1
−1 x

jK(x)dx =





1 j = 0,

0 j = 1,

β2 6= 0 j = 2.

Such a function is called a kernel of order 2 and a class of these kernels is denoted
as S02.

III. Let h = h(n) be a sequence of nonrandom positive numbers, such that h → 0 and
nh → ∞ as n → ∞.

IV. lim
n→∞

∞∑
k=1

|ρk| < ∞, i.e., R =
∞∑
k=1

ρk exists,

V. 1
n

∞∑
k=1

k|ρk| = 0.
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Remark. The well-known kernels are, e.g.,

Epanechnikov kernel K(x) = 3
4(1− x2)I[−1,1],

quartic kernel K(x) = 3
4(1− x2)2I[−1,1],

triweight kernel K(x) = 35
32(1− x2)2I[−1,1],

Gaussian kernel K(x) = 1√
2π
e

−x
2

2 ,

where I[−1,1] is an indicator function.

Though the Gaussian kernel does not satisfy the assumption II.(ii), it is very popular in many
applications.

There is no problem with a choice of a suitable kernel. Symmetric probability density functions
are commonly used (see Remark above). But choosing the smoothing parameter is a crucial
problem in all kernel estimates. The literature on bandwidth selections is quite extensive in
case of independent errors.

It is well known that when the kernel method is used to recover m, that correlated errors
trouble bandwidth selection severely (see Altman (1990), Opsomer et al. (2001)). De Braban-
ter et al. (2010) developed a bandwidth selection procedure based on bimodal kernels which
successfully removes the error correlation without requiring any prior knowledge about its
structure.

The global quality of the estimate m̂ can be expressed by means of the Mean Integrated
Squared Error (Altman (1990), Opsomer et al. (2001)). However more mathematically
tractable is the Asymptotic Mean Integrated Squared Error (AMISE):

AMISE(m̂, h) =
V (K)

nh
S

︸ ︷︷ ︸
AIV(m̂,h)

+
β2
2

4
h4A2

︸ ︷︷ ︸
AISB(m̂,h)

,

where

V (K) =
∫
K2(x)dx, S = σ2(1 + 2

∞∑
k=1

ρk) = σ2(1 + 2R), A2 =
∫ 1
0 m′′(x)2dx.

The first term is called the asymptotic integrated variance (AIV) and the second one the
asymptotic integrated squared bias (AISB). This decomposition provides an easier analysis
and interpretation of the performance of the kernel regression estimator.

Using a standard procedure of mathematical analysis one can easily find that the bandwidth
hopt minimizing the AMISE is given by the formula

hopt =
(V (K)S

nβ2
2A2

)1/5
= O(n−1/5). (4)

This formula provides a good insight into an optimal bandwidth, but unfortunately it depends
on the unknown S and A2.

Let us explain the impact of assuming an uncorrelated model.
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If R > 0 (error correlation is positive), then AIV(m̂, h) is larger than in the corresponding
uncorrelated case and AMISE(m̂, h) is minimized by a value h that is larger than in the
uncorrelated case. It means that assuming wrongly uncorrelated errors causes that the
bandwidth becomes too small.

If R < 0 (error correlation is negative), then AIV(m̂, h) is smaller and AMISE(m̂, h) optimal
bandwidth is smaller than in the uncorrelated case.

In the next section the choosing of parameters S and A2 will be treated.

2.2. Choosing the parameters

There are a number of data-driven bandwidth selection methods, but it can be shown that
they fail in the case of correlated errors.

Among the earliest fully automatic and consistent bandwidth selectors are those based on
cross-validation ideas. The cross-validation method employs an objective function

CV (h) =
1

n

n∑

j=1

(
m̂−j(xj , h)− Yj

)2
, (5)

where m̂−j(xj , h) is the estimate of m̂(xj , h) with xj deleted, i.e., the leave-one-out estimator.

The estimate of hopt is then

ĥopt = arg min
h∈Hn

CV (h),

where Hn = [an−1/5, bn−1/5], 0 < a < b < ∞.

Remark. If the design points are equally spaced then a recommended interval is [ 1n , 1).

However, this ordinary method is not suitable in the case of correlated observations. As
it was shown in the papers Altman (1990) and Opsomer et al. (2001), if the observations
are positively correlated, then the CV method produces too small a bandwidth, and if the
observations are negatively correlated, then the CV method produces a large bandwidth.

We demonstrate this fact by the following example.

Consider the regression model (1), where

m(x) = cos (3.15πx), εi = φεi−1 + ei,

ei – i.i.d. normal random variables N(0, σ2),

ε1 – N(0, σ2/(1− φ2)),

φ = 0.6, σ = 0.5,

i.e, the regression errors are AR(1) process.

Figure 1 shows the result obtained by the CV method. It is evident, that the estimate is
undersmoothed.

In order to overcome this problem, modified and partitioned CV methods were proposed by
Härdle and Vieu (1992) and Chu and Marron (1991), respectively.
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Estimate obtained with bandwidth selected by CV

Simulated data with AR(1) correlation

Figure 1: The estimate of simulated data with AR(1) errors

The modified cross-validation (MCV) method is a ”leave-(2l + 1)-out” version of CV (l ≥ 0).
The idea consists in minimizing of the modified cross-validation score:

CVl(h) =
1

n

n∑

j=1

(
m̂−j(xj , h)− Yj

)2
, (6)

where m̂−j(xj , h) is the ”leave-(2l+1)-out”estimate of m̂(xj , h), i.e., the observations (xj+i, Yj+i),
−l ≤ i ≤ l are left out in constructing m̂(xj , h).

Then

ĥMCV = arg min
h∈Hn

CVl(h).

The principle of the partitioned cross-validation method (PCV) can be described as follows.

For any natural number g ≥ 1, the PCV involves splitting the observations into g groups by
taking every g-th observation, calculating the ordinary cross-validation score CV0,k(h) of the
k-th group of observations separately, for k = 1, 2, . . . , g, and minimizing the average of these
ordinary cross-validation scores

CV ∗(h) =
1

g

g∑

k=1

CV0,k(h). (7)

Let ĥ∗CV stand for the minimizer of CV ∗(h):

ĥ∗CV = arg min
h∈Hn

CV ∗(h).

Since ĥ∗CV is appropriate for the sample size n/g, the partitioned cross-validated bandwidth

ĥPCV (g) is defined to be rescaled ĥ∗CV :

ĥPCV (g) = g−1/5ĥ∗CV .

When g = 1, the PCV is an ordinary cross-validation.
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Remark. The number of subgroups is g and the number of observations in each group is
η = n/g. If n is not a multiplier of g, then the values Yj , 1 ≤ j ≤ g[n/g] are applied and
the rest of the observations are dropped out ([n/g] is the highest integer less or equal
to n/g).

The asymptotic behavior of ĥMCV (l) and ĥPCV (g) was studied in the paper by Chu and Marron
(1991). Furthemore we focus on the PCV method.

The PCV method needs to determine the factor g. A possible approach for the practical
choice of g is based on an analogue of the mean squared error. Using the asymptotic variance
and the asymptotic mean of ĥPCV (g)/hopt, the asymptotic mean squared error (AMSE) of
this ratio is defined by

AMSE
(
ĥPCV (g)/hopt

)
= n−1/5VARPCV (g) +

[
CPCV (g)/C − 1

]2
, (8)

where VARPCV (g), CPCV (g), C depend on γk,K,A2 (see Chu and Marron (1991)).

Theoretically, if there exists a value ĝ which minimizes AMSE over g ≥ 1, then this value is
taken as the optimal value of g in the sense of AMSE:

ĝopt = argmin
g≥1

AMSE
(
ĥPCV (g)/hopt

)
.

Unfortunately the minimization of AMSE also depends on the unknown γk and A2.

As far as the estimation of the variance component S is concerned, a common approach is
the following (see e.g. Herrmann et al. (1992), Hart (1991), Opsomer et al. (2001), Chu and
Marron (1991)):

Ŝ =γ̂0

(
1 + 2

n−1∑

k=1

ρ̂k

)
, γ̂0 = σ̂2, ρ̂k =

γ̂k
γ̂0

,

γ̂k =
1

n− k

n−k∑

t=1

(
Yt − Y

)(
Yt+k − Y

)
, k = 0, . . . , n− 1.

(9)

Nevertheless there is still a problem of how to estimate A2. In paper Chu and Marron (1991)
a simulation study was only conducted and no idea of estimating A2 was given there.

We complete this method by adding a suitable estimate of A2 and recommend to use an
estimate of A2 proposed by Koláček (2008). By means of the Fourier transformation he

derived a suitable estimate Â2 of A2. Therefore, A2 in the AMSE formula is replaced by Â2.
This approach is commonly known as a plug-in method.

Plug-in methods are also commonly used for selecting the bandwidth in the kernel regression.
But these methods perform badly when the errors are correlated. In the paper Herrmann
et al. (1992) a modified version of an existing plug-in bandwidth selectors is proposed. This
method is based on the Gasser–Müller estimator of the second derivative and an iterative
process is constructed. It is shown that under some additional assumptions this iterative
process converges to a suitable estimate of the optimal bandwidth.

However we do not use this iterative method and propose to directly plug-in A2 in the formula
(4). This new version of a plug-in method is denoted as PI and the bandwidth estimate takes
the form:

ĥPI =
(V (K)Ŝ

nβ2
2Â2

)1/5
.
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Figure 2: The regression function m(x)

hopt = 0.759

E(ĥ) std(ĥ)

PCV 0.1927 0.0649
PI 0.1513 0.0083

Table 1: The estimates ĥ

We would like to point out the computational aspect of the plug-in method. It has preferable
properties to classical methods, because it does not need any additional calculations such as
the PCV method (see Koláček (2008) for details).

3. Case study

We conduct a simulation study to compare the PCV method and the PI method. The
Epanechnikov kernel is used both in simulations and in applications.

Consider the regression model (1), where

m(x) =
−6 sin 11x+ 5

cotg(x− 7)
, εi = φεi−1 + ei

ei – i.i.d. normal random variables N(0, σ2)

ε1 – N(0, σ2/(1− φ2))

φ = 0.6, σ = 0.5,

for i = 1, . . . , n = 100.

The graph of the regression function m is presented in Figure 2.

One hundred series are generated. For each data set, the optimal bandwidth is estimated by
the PCV and PI method. Table 1 shows the comparison of means and standard deviations
for these two methods.
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Figure 3: ISE(m̂(., h)) =
∫ 1
0

(
m̂(x, h)−m(x)

)2
dx.
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Figure 4: The autocorrelation function of the data set August 2004 – April 2005

The Integrated Square Error (ISE) is calculated for each estimate m̂(., h):

ISE(m̂(., h)) =

∫ 1

0

(
m̂(x, h)−m(x)

)2
dx

for both PCV and PI methods and the results are displayed by means of the boxplots in
Figure 3.

4. Results and discussion

In this section we apply the methods described above to ozone data. We analyze data which
were measured in the period August to April in years 2004–2005, 2005–2006, 2006–2007. The
sample size is n = 273 days. The observations are correlated as it can be seen in Figure 4. We
transform data to the interval [0,1] and use the PCV method and the PI method to get the
optimal bandwidth. Then we re-transform the bandwidth to the original sample and obtain
the final kernel estimate.

Kernel estimates based on the PCV and PI methods are presented in Figure 6, Figure 7, or
in Figure 8, respectively.
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Figure 5: RLWR estimate with span = 40 (dashed line) and PI estimate with the bandwidth
= 17.8 (solid line).
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Figure 6: PCV estimate with the bandwidth = 20.9 (dashed line) and PI estimate with the
bandwidth = 17.8 (solid line).

In paper Kalvová and Dubrovský (1995) the robust locally wighted regression (RLWR) is
employed for data processing of TOC. They recommended to optimize h subjectively. This
approach needs an experience and a special knowledge of the given data sets. The advantage
of our methods consists in more complex approach. These methods are general and they
allow to choose the value of h automatically. We used their methodology for data April 2004
- August 2005 and the comparison of the estimate obtained by the PI method and by the
robust locally weighted regression can be seen in Figure 5. The PI method yields a rather
oversmoothed estimate.

Our experience shows that both methods could be considered as a suitable tool for the choice
of the bandwidth. But it seems that the PI method is sufficiently reliable and less time
consuming than the PCV method.

Presented methods can be applied to other time series not only in environmetrics but also in
economics or other fields.
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Figure 7: PCV estimate with the bandwidth = 20.4 (dashed line) and PI estimate with the
bandwidth = 21.9 (solid line).
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Figure 8: PCV estimate with the bandwidth = 17.2 (dashed line) and PI estimate with the
bandwidth = 22.3 (solid line).
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Abstract 

Assessment of risk associated with the granting of credits is very successfully 

supported by techniques of credit scoring. To measure the quality, in the sense 

of the predictive power, of the scoring models, it is possible to use quantitative 

indexes such as the Gini index (Gini), the K-S statistic (KS), the c-statistic, and 

lift. They are used for comparing several developed models at the moment of 

development as well as for monitoring the quality of the model after  

deployment into real business. The paper deals with the aforementioned  

quality indexes, their properties and relationships. The main contribution of  

the paper is the proposal and discussion of indexes and curves based on lift.  

The curve of ideal lift is defined; lift ratio (LR) is defined as analogous to Gini 

index. Integrated relative lift (IRL) is defined and discussed. Finally, the 

presented case study shows a case when LR and IRL are much more 

appropriate to use than Gini and KS. 
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1. Introduction 

Banks and other financial institutions receive thousands of credit 

applications every day (in the case of consumer credits, it can be tens or 

hundreds of thousands every day). Since it is impossible to process them 

manually, automatic systems are widely used by these institutions for 

evaluating the credit reliability of individuals, who ask for credit. The 

assessment of the risk associated with the granting of credits has been 

underpinned by one of the most successful applications of statistics and 

operations research: credit scoring. 

Credit scoring is the set of predictive models and their underlying 

techniques that aid financial institutions in the granting of credits. These 

techniques decide who will get credit, how much credit they should get, 

and what further strategies will enhance the profitability of the 

borrowers to the lenders. Credit scoring techniques assess the risk in 

lending to a particular client. They do not identify “good” or “bad” 

(negative behaviour is expected, e.g., default) applications on an 

individual basis, but forecast the probability that an applicant with any 

given score will be “good” or “bad”. These probabilities or scores, along 

with other business considerations such as expected approval rates, 

profit, churn, and losses, are then used as a basis for decision making. 

Several methods connected to credit scoring have been introduced 

during last six decades. The most well-known and widely used are logistic 

regression, classification trees, the linear programming approach, and 

neural networks. 

The methodology of credit scoring models and some measures of their 

quality have been discussed in surveys including Hand and Henley [7], 

Thomas [14] or Crook et al. [4]. Even if ten years ago the list of books 

devoted to the issue of credit scoring was not extensive, the situation has 

improved in the last decade. In particular, this list now includes 

Anderson [1], Crook et al. [4], Siddiqi [11], Thomas et al. [15], and 

Thomas [16]. 
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The aim of this paper is to give an overview of widely used techniques 

used to assess the quality of credit scoring models, to discuss the 

properties of these techniques, and to extend some known results. We 

review widely used quality indexes, their properties and relationships. 

The main part of the paper is devoted to lift. The curve of ideal lift is 

defined; lift ratio is defined as analogous to Gini index. Integrated 

relative lift is defined and discussed. 

2. Measuring the Quality 

We can consider two basic types of quality indexes: first, indexes 

based on a cumulative distribution function like the Kolmogorov- 

Smirnov statistic, Gini index or lift; second, indexes based on a likelihood 

density function like the mean difference (Mahalanobis distance) or 

informational statistic. For further available measures and appropriate 

remarks, see Wilkie [17], Giudici [6] or Siddiqi [11]. 

Assume that the realization Rs ∈  of a random variable S (score) is 

available for each client and put the following markings: 


=

otherwise.,0

good,isclient,1
D  (1) 

Distribution functions, respectively, their empirical forms, of the scores of 

good (bad) clients are given by 

( ) ( ),11

1
. =∧≤= ∑= DasI

n
aF i

N

i

GOODn  

( ) ( ) [ ],,,0
1

1
. HLaDasI

m
aF i

N

i

BADm ∈=∧≤= ∑=  (2) 

where is  is the score of i-th client, n is the number of good clients, m is 

the number of bad clients, and I is the indicator function, where 

( ) 1true =I  and ( ) .0false =I  L is the minimum value of a given score, H 

is the maximum value. The empirical distribution function of the scores of 

all clients is given by 
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( ) ( ) [ ],,,
1

1
. HLaasI

N
aF i

N

i

ALLN ∈≤= ∑=  (3) 

where mnN +=  is the number of all clients. We denote the proportion 

of bad (good) clients by 

.,
mn

n
p

mn

m
p GB +=+=  (4) 

An often-used characteristic in describing the quality of the model 

(scoring function) is the Kolmogorov-Smirnov statistic (K-S or KS). It is 

defined as 

[ ] ( ) ( ) .max ..,
aFaFKS GOODnBADm

HLa
−= ∈  (5) 

It takes values from 0 to 1. Value 0 corresponds to a random model, value 

1 corresponds to the ideal model. The higher the KS, the better the 

scoring model. 

The Lorenz curve (LC), sometimes called the ROC curve (receiver 

operating characteristic curve), can also be successfully used to show the 

discriminatory power of a scoring function, i.e., the ability to identify good 

and bad clients. The curve is given parametrically by 

( ),. aFx BADm=  

( ) [ ].,,. HLaaFy GOODn ∈=  (6) 

Each point of the curve represents some value of a given score. If we 

consider this value as a cut-off value, we can read the proportion of 

rejected bad and good clients. An example of a Lorenz curve is given in 

Figure 1. We can see that by rejecting 20% of good clients, we also reject 

50% of bad clients at the same time. 
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Figure 1. Lorenz curve (ROC). 

The LC for a random scoring model is represented by the diagonal 

line from [ ]0,0  to [ ].1,1  It is the polyline from [ ]0,0  through [ ]0,1  to 

[ ]1,1  in the case of an ideal model. It is obvious that the closer the curve 

is to the bottom right corner, the better is the model. 

The definition and name (LC) is consistent with Müller and Rönz [8]. 

One can find the same definition of the curve, but called ROC, in Thomas 

et al. [15]. Siddiqi [11] used the name ROC for a curve with reversed axes 

and LC for a curve with the CDF of bad clients on the vertical axis and 

the CDF of all clients on the horizontal axis. This curve is also called the 

CAP (cumulative accuracy profile) or lift curve, see Sobehart et al. [12] or 

Thomas [16]. Furthermore, it is called a gains chart in the field of 

marketing; see Berry and Linoff [2]. An example of CAP is displayed in 

Figure 2. The ideal model is now represented by a polyline from [ ]0,0  
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through [ ]1,Bp  to [ ].1,1  The advantage of this figure is that, one can 

easily read the proportion of rejected bads against the proportion of all 

rejected. For example, in the case of Figure 2, we can see that if we want 

to reject 70% of bads, we have to reject about 40% of all applicants. 

 

Figure 2. CAP. 

In connection to LC, we consider the next quality measure, the Gini 

index. This index describes a global quality of the scoring model. It takes 

values from 0 to 1 (it can take negative values for contrariwise models). 

The ideal model, i.e., the scoring function that perfectly separates good 

and bad clients, has a Gini index equal to 1. On the other hand, a model 

that assigns a random score to the client, has a Gini index equal to 0. It 

can be shown that the Gini index is greater than or equal to KS for any 

scoring model. Using Figure 3, it can be defined as follows: 

.2A
BA

A
Gini =+=  (7) 
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Figure 3. Lorenz curve, Gini index. 

This means that, we compute the ratio of the area between the curve 

and the diagonal (which represents a random model) to the area between 

the ideal model’s curve and the diagonal. Since the axes describe a unit 

square, the area BA +  is always equal to 0.5. Therefore, we can compute 

the Gini as two times the area A. Using previous markings, the 

computational formula of the Gini index is given by 

[( )1..
2

1 −
=

−−= ∑ kk BADmBADm

N

k

FFGini  

( )],1.. −+×
kk GOODnGOODn FF  (8) 

where ( )
kk GOODnBADm FF ..  is the k-th vector value of the empirical 

distribution function of bad (good) clients. For further details, see 

Anderson [1] or Xu [18]. The Gini index is a special case of Somers’ D 

(Somers [13]), which is an ordinal association measure. According to 

Thomas [16], one can calculate the Somers’ D as 



MARTIN ĮEZÁČ AND JAN KOLÁČEK 8

,
mn

bgbg

D

j

ij

i

i

j

ij

i

i
S ⋅

−
=

∑∑∑∑ ><  (9) 

where ( )ji bg  is the number of goods (bads) in the i-th interval of scores. 

Furthermore, it holds that SD  can be expressed by the Mann-Whitney  

U-statistic; see Nelsen [9] for further details. 

When we use CAP instead of LC, we can define the accuracy rate 

(AR); see Thomas [16] or Sobehart et al. [12], where it is called the 

accuracy ratio. Again, it is defined by the ratio of some areas. We have 

diagonalandCAPslmodeidealbetweenArea
diagonalandcurveCAPbetweenArea ′=AR  

( ) .
10.5

diagonalandcurveCAPbetweenArea

Bp−=  (10) 

Although the ROC and CAP are not equivalent, it is true that Gini and 

AR are equal for any scoring model. Proof for discrete scores is given       

in Engelmann et al. [5]; for continuous scores, one can find it in           

Thomas [16]. 

In connection to the Gini index, the c-statistic (Siddiqi [11]) is defined as 

.
2

1_ Gini
statc

+=  (11) 

It represents the likelihood that a randomly selected good client has a 

higher score than a randomly selected bad client, i.e., 

( ).01_ 2121 =∧=≥= DDssPstatc   (12) 

It takes values from 0.5, for the random model, to 1, for the ideal model. 

An alternative name for the c-statistic can be found in the literature. It is 

known also as Harrell’s c, which is a reparameterization of Somers’ D 

(Newson [10]). Furthermore, it is called AUROC, e.g., in Thomas [16] or 

AUC, e.g., in Engelmann et al. [5]. 
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3. Lift 

Another possible indicator of the quality of scoring model is lift, which 

determines the number of times that, at a given level of rejection, the 

scoring model is better than random selection (the random model). More 

precisely, the ratio is the proportion of bad clients with a score less than a 

(where [ ]HLa ,∈ ) to the proportion of bad clients in the general 

population. Formally, it can be expressed by 

( ) ( )

( )
( )
( )

( )10

0

0

1

1

1

1

=∨=

=

≤

=∧≤

==

∑
∑
∑

∑

=

=

=

=

DDI

DI

asI

DasI

BadRate

aCumBadRate
aLift

N

i

N

i

i

N

i

i

N

i

 

( )
( )

.

0

1

1

N

m

asI

DasI

i

N

i

i

N

i

≤

=∧≤

=
∑

∑
=

=

 (13) 

It can be easily verified that the lift can be equivalently expressed as 

( ) ( )( ) [ ].,,
.

. HLa
aF

aF
aLift

ALLN

BADn ∈=  (14) 

Now, we would like to discuss the form of the lift function for the case of 

the ideal model. This is the model for which sets of output scores of bad 

and good clients are disjoint. So there exists a cut-off point, for which 
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( ) ( )
( ) ( )


>=∧≤+=
≤=∧≤=≤

.,10

,,0

caDaSPDP

caDaSP
aSP  (15) 

Thus, we can derive the form of the lift function 

( )
( )




>
≤

=
.,

1

,,
1

.
ca

aF

ca
p

aLift

ALLN

B
ideal  (16) 

In practice, lift is computed corresponding to %100,%,20%,10 …  of 

clients with the worst score (see Coppock [3]). Usually, it is computed by 

using a table with the numbers of both all and bad clients in given score 

bands (deciles). An example of such a table is given by Table 1. 

Table 1. Lift (absolute and cumulative form) computational scheme 

Absolutely Cumulatively 

Decile #Clients # Bad  

clients 

Bad  

rate 

Abs.  

Lift 

#Bad  

clients 

Bad  

rate 

Cum.  

Lift 

 1 100 35 35.0% 3.50 35 35.0% 3.50 

 2 100 16 16.0% 1.60 51 25.5% 2.55 

     3 100 8  8.0% 0.80 59  19.7% 1.97 

 4 100 8    8.0%    0.80 67 16.8% 1.68 

 5 100 7  7.0% 0.70 74 14.8% 1.48 

 6 100 6  6.0% 0.60 80 13.3% 1.33 

 7 100 6  6.0% 0.60 86 12.3% 1.23 

 8 100 5  5.0% 0.50 91 11.4% 1.14 

 9 100 5  5.0% 0.50 96 10.7% 1.07 

10 100 4  4.0% 0.40 100 10.0% 1.00 

All 1000 100 10.0%     

It is possible to compute the lift value in each decile (absolute lift in 

the fifth column in Table 1), but usually, and in accordance with the 

definition of Lift(a), the cumulative form is used. It holds that the value of 

lift has an upper limit of Bp/1  and tends to a value of 1 when the score 

tends to infinity (or to its upper limit). In our case, we can see that the 



LIFT-BASED QUALITY INDEXES FOR CREDIT … 11

best possible value of lift is equal to 10. We obtained the value 3.5 in the 

first decile, which is nothing excellent, but high enough for the model to 

be considered applicable in practice. Results are further illustrated in 

Figure 4. 

 

Figure 4. Lift value (absolute and cumulative). 

In the context of this approach, we define 

( ) ( ( ))
( ( ))qFF

qFF
qLift

ALLNALLN

ALLNBADm

1
..

1
.. −

−=Q   

( ( )) ( ],1,0,
1 1

.. ∈= − qqFF
q ALLNBADm    (17) 

where q represents the score level of %100q  of the worst scores and 

( )qF ALLN
1
.

−  can be computed as 

( ) { [ ] ( ) }.,,min .
1
. qaFHLaqF ALLNALLN ≥∈=−  (18) 

It can be easily shown that the lift function for the ideal model is now 
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( ) ( ]
( ]




∈
∈=

.1,
1

,,0,
1

,B

B
B

ideal

pq
q

pq
p

qLiftQ  (19) 

Figure 5, below, gives an example of the lift function for ideal, random, 

and actual models. 

 

Figure 5. QLift function, lift ratio. 

Using the previous Figure 5, we define lift ratio as analogous to Gini 

index 

( )

( )
.

1

1

1

0

1

0

−

−
=+=
∫
∫

dqqLift

dqqLift

BA

A
LR

idealQ

Q

 (20) 



LIFT-BASED QUALITY INDEXES FOR CREDIT … 13

It is obvious that, it is a global measure of a model's quality and that it 

takes values from 0 to 1. Value 0 corresponds to the random model, value 

1 matches the ideal model. The meaning of this index is quite simple: the 

higher, the better. An important feature is that lift ratio allows us to 

fairly compare two models developed on different data samples, which is 

not possible with lift. 

Since lift ratio compares areas under the lift function corresponding 

to actual and ideal models, the next concept is focused on the comparison 

of lift functions themselves. We define the relative lift function by 

( ) ( )( ) ( ].1,0, ∈= q
qLift

qLift
qRLift

idealQ

Q
 (21) 

An example of this function is presented in Figure 6. The definition 

domain of the function is [ ];1,0  the range is a subinterval of [ ].1,0  The 

graph starts at point [ ( )],, minmin qLiftpq B Q⋅  where minq  is a positive 

number near to zero. Then, it falls to a local minimum in point 

[ ( )]BBB pLiftpp Q⋅,  and then rises up to point [ ].1,1  It is obvious that 

the graph of relative lift function for a better model is closer to the top 

line, which represents the function for the ideal model. 
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Figure 6. Relative lift function. 

Now, it is natural to ask what we obtain when we integrate the 

relative lift function. We define the integrated relative lift (IRL) by 

( ) .
1

0

dqqRLiftIRL ∫=  (22) 

It takes values from ,
2

5.0
2
Bp+  for the random model, to 1, for the ideal 

model. Again the following holds: the higher, the better. This global 

measure of scoring a model’s quality has an interesting connection to the 

c-statistic. 

We made a simulation with scores generated from a normal 

distribution. The scores of bad clients had a mean equal to 0 and a 

variance equal to 1. The scores of good clients had a mean and variance 
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from 0.1 to 10 with a step equal 0.1. The number of samples and sample 

size were Bp,1000  was equal to 0.1. IRL and the c-statistic were 

computed for each sample and each value of the mean and variance of a 

good clients’ scores. Finally, means of IRL and the c-statistic were 

computed. The results are presented in Figure 7. Part (b) represents the 

contour plot of the figure in part (a). 

The simulation shows that IRL and the c-statistic are approximately 

equal when the variances of good and bad clients are equal. Furthermore, 

it shows that they significantly differ when the variances are different 

and the ratio of the mean and variance of good clients is near to 1. 

4. Case Study 

To illustrate the advantage of the proposed indexes, we introduce a 

simple case study. We consider two scoring models with a score 

distribution given in Table 2. 

Furthermore, we consider the standard meaning of scores, i.e., a 

higher score band means better clients (clients with the lowest scores, 

i.e., clients in score band 1, have the highest probability of default). 
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(a) 

 

(b) 

Figure 7. Difference of IRL and c-stat (a) and its contour plot (b). 
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Table 2. Score distribution and QLift of given scoring models 

 Scoring model 1 Scoring model 2 

Score 

band 
#Clients q 

# Bad 

clients 

Cumul. 

bad rate 
QLift 

#Bad 

clients 

Cumul. 

bad rate 
QLift 

1 100 0.1 20  20.0% 2.00 35 35.0% 3.50 

2 100 0.2 18  19.0% 1.90 16 25.5% 2.55 

3 100 0.3 17     18.3%  1.83 8 19.7% 1.97 

4 100 0.4 15  17.5% 1.75 8 16.8% 1.68 

5 100 0.5 12  16.4% 1.64 7 14.8% 1.48 

6 100 0.6 6  14.7% 1.47 6 13.3% 1.33 

7 100 0.7 4  13.1% 1.31 6 12.3% 1.23 

8 100 0.8 3  11.9% 1.19 5 11.4% 1.14 

9 100 0.9 3  10.9% 1.09 5 10.7% 1.07 

10 100 1.0 2  10.0% 1.00 4 10.0% 1.00 

All 1000  100   100   

The Gini index for each model is equal to 0.420. KS is equal to 0.356 

for model 1 and to 0.344 for model 2. According to these numbers, one can 

say that both models are almost the same, maybe the first one is slightly 

better. However, if we look at the models in more detail, we find that they 

differ significantly. We get the first insight from their Lorenz curves in 

Figure 8. 
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Figure 8. Lorenz curves for model 1 and model 2. 

We can see that model 1 is stronger for higher score bands. This 

means that this model better separates the good from the best clients. On 

the other hand, model 2 is stronger for lower score bands, which means 

that it better separates the bad from the worst clients. We can read the 

same result from the figures of QLift and RLift in Figure 9. 
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Figure 9. QLift and RLift for model 1 and model 2. 
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It is necessary to mention one computational problem at this point. In 

the discrete case, as in the case of Table 2, we do not know the value of 

QLift for q less than 0.1. Since QLift is not defined for ,0=q  we need to 

extrapolate it somehow. According to the shape of the QLift curve, we 

propose using quadratic extrapolation, which yields 

( ) ( ) ( ) ( ).3.02.031.030 LiftLiftLiftLift QQQQ +⋅−⋅=  (23) 

When we have a full data set, we can use formula (17). In this case, the 

extrapolation is not needed. Of course, we still do not have the value 

QLift (0). However, if we start the computation of QLift in some positive 

value of q, which is sufficiently near to zero, the final result is precise 

enough. 

Overall, we can compare our two scoring models. Table 3, below, 

contains values of Gini indexes, K-S statistics, values of QLift(0.1), LR 

indexes, and IRL indexes. QLift(0.1) is a local measure of a model’s 

quality; model 2 was designed to be better in the first score bands, hence 

it is natural that the value of QLift(0.1) is significantly higher for model 

2, concretely 3.5 versus 2.0. On the other hand, all remaining indexes are 

global measures of a model’s quality. Models were designed to have the 

same Gini index and similar KS. However, we can see that LR and IRL 

significantly differ for our models, 0.242 versus 0.372 and 0.699 versus 

0.713, respectively. 

Table 3. Quality indexes of two assessed scoring models 

 Scoring model 1 Scoring model 2 

Gini 0.420 0.420 

KS 0.356 0.344 

QLift(0.1) 2.000 3.500 

LR 0.242 0.372 

IRL 0.699 0.713 



LIFT-BASED QUALITY INDEXES FOR CREDIT … 21

Finally, if the expected reject rate is up to 40%, which is a very 

natural assumption, using LR and IRL, we can state that model 2 is 

better than model 1 although their Gini indexes are equal and even their 

KS are in reverse order. 

5. Conclusion 

In Section 2, we presented widely used indexes for the assessment of 

credit scoring models. We focused mainly on the definitions of Lorenz 

curve, CAP, Gini index, AR, and lift. The Lorenz curve is sometimes 

confused with ROC. The discussion of their definitions is given within the 

paper. We suggest using the definition of the Lorenz curve given in 

Müller and Rönz [8], the definition of ROC given in Siddiqi [11], and the 

definition of CAP given in Sobehart et al. [12]. 

The main part of the paper, Section 3, was devoted to lift. Formulas 

for lift in basic and quantile form were presented as well as their forms 

for ideal models. These formulas allow the calculation of the value of lift 

for any given score and any given quantile level and comparison with the 

best obtainable results. 

Lift ratio was presented as analogous to Gini index. An important 

feature is that LR allows the fair comparison of two models developed on 

different data samples, which is not possible with lift or QLift. 

Furthermore, a relative lift function was proposed, which shows the ratio 

of the QLifts of the actual and ideal models. Finally, integrated relative 

lift was defined. The connection to the c-statistic was presented by means 

of a simulation by using normally distributed scores. This simulation 

showed that IRL and the c-statistic are approximately equal in the case 

when the variances of good and bad clients are equal. 

Despite the high popularity of the Gini index and KS, we conclude 

that the proposed lift based indexes are more appropriate for assessing 

the quality of credit scoring models. In particular, it is better to use them 

in the case of an asymmetric Lorenz curve. In such cases, using the Gini 

index or KS during the development process could lead to the selection of 

a weaker model. 
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Kernel smoothers are among the most popular nonparametric functional estimates.
These estimates depend on a bandwidth that controls the smoothness of the estimate.
While the literature for a bandwidth choice in a univariate density estimate is
quite extensive, the progress in the multivariate case is slower. The authors focus
on a bandwidth matrix selection for a bivariate kernel density estimate provided
that the bandwidth matrix is diagonal. A common task is to find entries of the
bandwidth matrix which minimizes the Mean Integrated Square Error (MISE). It is
known that in this case there exists explicit solution of an asymptotic approximation
of MISE (Wand and Jones, 1995). In the present paper we pay attention to the
visualization and optimizers are presented as intersection of bivariate functional
surfaces derived from this explicit solution and we develop the method based on this
visualization. A simulation study compares the least square cross-validation method
and the proposed method. Theoretical results are applied to real data.

Keywords Asymptotic mean integrated square error; Bandwidth matrix; Mean
integrated square error; Product kernel.

Mathematics Subject Classification 62G07; 62H12.

1. Introduction

Methods for a bandwidth choice in a univariate density estimate have been
developed in many papers and monographs (e.g., Cao et al., 1994; Chaudhuri and
Marron, 1999; Härdle et al., 2004; Horová et al., 2002; Horová and Zelinka, 2007;
Silverman, 1989; Taylor, 1989; Wand and Jones, 1995).

In this paper we focus on a problem of a data-driven choice of a bandwidth
matrix in bivariate kernel density estimates. Bivariate kernel density estimation
problem is an excellent setting for understanding aspects of multivariate kernel
smoothing.

This problem, despite being the simplest multivariate density estimation
problem, presents many challenges when it comes to selecting the correct amount
of smoothing (i.e., choosing of a bandwidth matrix H). Most of popular bandwidth
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760 Horová et al.

selection methods in a univariate case (e.g., Cao et al., 1994; Härdle et al., 2004)
can be transferred into multivariate settings. The least squares cross-validation,
the biased cross-validation, the smoothed cross-validation, and plug-in methods in
multivariate case have been developed and widely discussed (Chacón and Duong,
2009; Duong and Hazelton, 2003, 2005a,b; Sain et al., 1994; Scott, 1992; Wand and
Jones, 1994). The problem of the bandwidth matrix selection can be simplified by
imposing constraints on H (Wand and Jones, 1995).

A common approach to the multivariate smoothing is to first rescale the data so
the sample variances are equal in each dimension—this approach is called scaling or
sphering the data so the sample covariance matrix is the identity (e.g., Duong, 2007;
Wand and Jones, 1993). The aim of the present paper is to propose methods for the
bandwidth matrix choice in bivariate case without using any pretransformations of
the data.

It is well known that a visualization is an important component of a
nonparametric data analysis (e.g., Chaudhuri and Marron, 1999; Godtliebsen et al.,
2002). We use this effective strategy to clarify the process of the bandwidth
matrix choice by using bivariate functional surfaces. The proposed method uses
an optimally balanced relation between bias squared and variance and a suitable
estimate of the asymptotic approximation of Mean Integrated Square Error (MISE).

The paper is organized as follows: In Section 2 we describe the basic properties
of the multivariate density estimates. Section 3 is devoted to the mean integrated
square error and its minimization. In Section 4 we deal with asymptotic MISE
(AMISE) and its minimization. In Section 5 we describe the idea of our method
and the theoretical results are explain by means of bivariate functional surfaces.
In Section 6 we conduct a simulation study comparing the least squares cross-
validation (LSCV) method and the proposed method. In Section 7 the theoretical
results are applied to real data.

2. Kernel Density Estimation

Consider a d-variate random sample X1� � � � �Xn coming from an unknown
density f . We denote Xi1� � � � � Xid the components of Xi and a generic vector x ∈ �

d

has the representation x = �x1� � � � � xd�
T .

For a d-variate random sample X1� � � � �Xn drawn from the density f the kernel
density estimator is defined

f̂ �x� H� = 1
n

n∑
i=1

KH�x− Xi�� (1)

where H is a symmetric positive definite d × d matrix called the bandwidth matrix,
and KH�x� = �H�−1/2K�H−1/2x�, where �H� stands for the determinant of H , and K

is a d-variate kernel function. The kernel function K is often taken to be a d-variate
probability density function.

There are two types of multivariate kernels created from a symmetric univariate
kernel k—a product kernel KP and a spherically symmetric kernel KS:

KP�x� =
d∏
i=1

k�xi�� KS�x� = ckk
(√

xTx
)
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where c−1
k =

∫
k
(√

xTx
)
dx. The choice of a kernel does not influence the estimate as

significantly as the bandwidth matrix.
The choice of the smoothing matrix H is of a crucial importance. This matrix

controls the amount and the direction of the multivariate smoothing.
Let ℋ

ℱ
denote the class of symmetric, positive definite d × d matrices. The

matrix H ∈ ℋ
ℱ

has 1
2d�d + 1� independent entries which have to be chosen. A

simplification can be obtained by imposing the restriction H ∈ ℋ
�
, where ℋ

�
⊂ ℋ

ℱ

is the subclass of diagonal positive definite matrices: H = diag�h2
1� � � � � h

2
d�. A further

simplification follows from the restriction H ∈ ℋ
�

where ℋ
�
= �h2Id� h > 0�, Id is

d × d identity matrix and leads to the single bandwidth estimator (Wand and Jones,
1995). Using the single bandwidth matrix parametrization class ℋ

�
is not advised

for data which have different dispersions in the coordinate directions (Wand and
Jones, 1993). On the other hand, the bandwidth selectors in the general ℋ

ℱ
class

are able to handle differently dispersed data but are computationally intensive. So
the ℋ

�
diagonal matrix class is a compromise between computational speed with

sufficient flexibility.
For this reason we turn our attention to the bivariate kernel density estimate

provided that the bandwidth matrix is diagonal (i.e., H = diag�h2
1� h

2
2�). First, let us

make some notation:

•
∫

will be shorthand for
∫∫

and dx will be shorthand for dx1dx2, V�K� =∫
K2�x�dx, and

• �f stands for the gradient and �
2
f for the Hessian matrix.

�f =




�f�x�

�x1

�f�x�

�x2


 �

2
f =




�2f�x�

�x21

�2f�x�

�x1�x2

�2f�x�

�x1�x2

�2f�x�

�x22


 �

For the next steps we need a few assumptions about the kernel function K, the
bandwidth matrix H , and the density f :

(A1) K is a product bivariate kernel function satisfying

∫
K�x�dx = 1�

∫
xK�x�dx = 0�

∫
xxTK�x�dx = �2�K�I2�

(A2) H = Hn is a sequence of diagonal bandwidth matrices such that n−1�h1h2�
−1

and h2
1 and h2

2 approach zero as n → �.
(A3) Each entry of the Hessian matrix �

2
f is piecewise continuous and square

integrable.

3. MISE and Its Minimization

The quality of the estimate (1) can be expressed in terms of MISE (Wand and Jones,
1995)

MISE�H� =
∫

E
(
f̂ �x� H�− f�x�

)2
dx =

∫
var�f̂ �x� H��dx+

∫
bias2�f̂ �x� H��dx�
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that is,

MISE�H� = 1
nh1h2

V�K�+ o
(
�nh1h2�

−1
)

+ 1
4
�2
2�K�

(
h4
1	4�0 + 2h2

1h
2
2	2�2 + h4

2	0�4

)
+ o

(
�h2

1 + h2
2�

2
)

where

	k�ℓ =
∫ (�2f

�x21

)k/2 (
�2f

�x22

)ℓ/2

dx� k� ℓ = 0� 2� 4� k+ ℓ = 4�

Let HMISE be a minimizer of MISE with respect to H , that is,

HMISE = arg min
H∈ℋ�

MISE�

The well known method of estimating HMISE is the LSCV method (Duong and
Hazelton, 2005b; Wand and Jones, 1995). The LSCV objective function is

LSCV�H� =
∫ (

f̂ �x� H�
)2

dx− 2
n

n∑
i=1

f̂−i�Xi� H��

f̂−i�Xi� H� = 1
�n− 1�

n∑
j=1
j �=i

KH�Xi − Xj��

This function can be written in terms of convolutions �f ∗ g��x� =
∫
�
f�u�g�x −

u�du (Duong and Hazelton, 2005b):

LSCV�H� = n−2
n∑

i�j=1

�KH ∗ KH − 2KH��Xi − Xj�+ 2n−1KH�0��

Moreover, HLSCV = argminH∈ℋ�
LSCV is an unbiased estimate of H in the sense

E �LSCV�H�� = MISE
(
f̂ �·� H�

)
−
∫

f 2�x�dx�

4. AMISE and Its Minimization

Since MISE is not mathematically tractable, we employ an AMISE, which can be
written as a sum of an asymptotic integrated variance and an asymptotic integrated
square bias:

AMISE�H� = V�K�

nh1h2︸ ︷︷ ︸
AIVar

+ 1
4
�2�K�

2
(
h4
1	4�0 + 2h2

1h
2
2	2�2 + h4

2	0�4

)

︸ ︷︷ ︸
AIBias2

(2)

and HAMISE stands for minimum of AMISE

HAMISE = arg min
H∈ℋ�

AMISE�

D
ow

nl
oa

de
d 

by
 [

M
as

ar
yk

ov
a 

U
ni

ve
rz

ita
 v

 B
rn

e]
, [

Iv
an

a 
H

or
ov

a]
 a

t 0
8:

02
 1

2 
Ja

nu
ar

y 
20

12
 



Visualization and Bandwidth Choice 763

First, we summarize properties of AMISE and HAMISE. As a multivariate
analogue of the functional, which minimization yields optimal kernels, we consider
the functional

W�K� = V�K�2/3�2�K�
2/3�

Moreover, we define as a canonical factor

�3 = V�K�

�2�K�
2
�

Making some calculations we arrive at the following lemma.

Lemma 4.1. AMISE(H) can be expressed in the form

AMISE�H� = W�K�

{
�

nh1h2

+ 1
4�2

�h4
1	4�0 + 2h2

1h
2
2	2�2 + h4

2	0�4�

}
� (3)

It can be shown (Wand and Jones, 1995) that the entries of HAMISE are equal to

h2
1�AMISE =


 	

3/4
0�4V�K�

n�2�K�
2	

3/4
4�0

(
	2�2 + 	

1/2
0�4	

1/2
4�0

)




1/3

�

(4)

h2
2�AMISE =


 	

3/4
4�0V�K�

n�2�K�
2	

3/4
0�4

(
	2�2 + 	

1/2
0�4	

1/2
4�0

)




1/3

�

Thus h2
i�AMISE = O�n−1/3�� i = 1� 2.

Inserting these quantities into the formula (2), we arrive at the following lemma.

Lemma 4.2. Let HAMISE ∈ ℋ
�

be a minimizator of AMISE with entries given by

formula (4). Then

∫
varf̂ �x� HAMISE�dx

︸ ︷︷ ︸
AIVar

= 2
∫ (

biasf̂ �x� HAMISE

)2
dx

︸ ︷︷ ︸
AIBias2

� (5)

This relation is of great importance because it serves as a basis for a method we
are going to present. It means that minimization of AMISE is equivalent to seeking
for HAMISE such that (5) is satisfied.

Further, the use of formulas (4) in the relation (3) yields

AMISE�HAMISE� =
3
2
n−2/3W�K�

(
	2�2 + 	

1/2
0�4	

1/2
4�0

)1/3
� (6)

that is, AMISE�HAMISE� = O�n−2/3�.
It is easy to show that

h2�AMISE

h1�AMISE

=
(
	4�0

	0�4

)1/4

(7)
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764 Horová et al.

and

(
	2�2 + 	

1/2
0�4	

1/2
4�0

)1/3
= �

n1/3h1�AMISE h2�AMISE

Then substituting
(
	2�2 + 	

1/2
0�4	

1/2
4�0

)1/3
into (6) we obtain

AMISE�HAMISE� =
3W�K�

2nh1�AMISEh2�AMISE

�

This formula allows to separate kernel effects from bandwidth matrix effects in
AMISE and thus offers a possibility to choose the kernel and the bandwidth matrix
in some automatic and optimal way. For a univariate case an automatic procedure
for simultaneous choice of a bandwidth, a kernel, and an order of the kernel was
proposed previously (Horová et al., 2002).

Remark. The biased cross-validation methods and smoothed cross-validation
method for estimating HAMISE have been widely discussed previously (Duong and
Hazelton, 2005b; Sain et al., 1994; Wand and Jones, 1994).

5. Proposed Methods

Our method is based on formula (5) and on a suitable estimate of AMISE.
In Horová et al. (2008) a suitable estimate of AMISE was used and the

extension of the method for a univariate case was presented in Horová and Zelinka
(2007). Here, we briefly describe this method and provide theoretical results.

Let

̂AMISE�H� =
∫

v̂arf̂ �x� H�dx+
∫ (

b̂iasf̂ �x� H�
)2

dx�

where

∫
v̂arf̂ �x� H�dx = 1

n

∫ [∫
K2

H�x− y�f̂ �y� H�dy
]
dx

= 1
n
�H�−1/2

∫∫
K2�z�f̂ �x−H1/2z� H�dzdx

= 1
n
�H�−1/2V�K�

∫
f̂ �x� H�dx

= 1
n
�H�−1/2V�K�

and

∫ (
b̂iasf̂ �x� H�

)2
dx =

∫ [∫
KH�x− y�f̂ �y� H�dy − f̂ �x� H�

]2
dx

=
∫ [∫

K�z�f̂ �x−H1/2z� H�dz − f̂ �x� H�
]2

dx

D
ow

nl
oa

de
d 

by
 [

M
as

ar
yk

ov
a 

U
ni

ve
rz

ita
 v

 B
rn

e]
, [

Iv
an

a 
H

or
ov

a]
 a

t 0
8:

02
 1

2 
Ja

nu
ar

y 
20

12
 



Visualization and Bandwidth Choice 765

= 1
n2

n∑
i�j=1

�KH ∗ KH ∗ KH ∗ KH − 2KH ∗ KH ∗ KH

+ KH ∗ KH��Xi − Xj��

Here a connection of the estimated squared bias term with the bootstrap method of
Taylor (1989) can be seen.

Hereinafter, ĤAMISE = diag�ĥ2
1�AMISE� ĥ

2
2�AMISE� is the minimizer of ̂AMISE over

the class of diagonal bandwidth matrices ℋ
�
(i.e., ĤAMISE = argminH∈ℋ�

̂AMISE).

Let g�h1� h2� stand for the sum of convolutions in the form
∫ (

b̂iasf̂ �x� H�
)2

dx,
that is,

g�h1� h2� =
n∑

i=1

n∑
j=1

�KH ∗ KH ∗ KH ∗ KH − 2KH ∗ KH ∗ KH + KH ∗ KH��Xi − Xj��

The idea of our method is based on Lemma 4.2. Thus, we are seeking for ĥ1, ĥ2

such that

1
n

1

ĥ1ĥ2

V�K� = 2
1
n2

g�ĥ1� ĥ2�

that is,

nV�K� = 2ĥ1ĥ2g�ĥ1� ĥ2� (8)

It means that minimization of ̂AMISE could be achieved through the solving
Eq. (8).

But (8) is the nonlinear equation for two variables and thus we need another
relation between h1 and h2. This problem will be dealt with in the next section. Now
we explain the rationale of the proposed method.

Theorem 5.1. Let assumptions (A1), (A2), (A3) be satisfied and let the density f have

continuous partial derivatives of the fourth order. Then

E
∫

KH�x− y�f̂ �y� H�dy = f�x�+ �2�K�tr�H�
2
f �x��

+ 1
4
�2�K�

2tr�H�
2
fH�

2
f �x��+ o�trH��

The proof is given in the Appendix.

Corollary 5.1. Under assumptions of Theorem 5.1, the relation

E
(
b̂iasf̂ �x� H�

)
= biasf̂ �x� H�+ o�trH�

is valid.

The last relation confirms that the solution of Eq. (8) may be expected to be
reasonably close to ĤAMISE.
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766 Horová et al.

Figure 1. Optimal values of h1 and h2 lie on the curve ��h1� h2� = 2h1h2g�h1� h2�−
nV�K� = 0, which is an intersection of the surface ��h1� h2� (light gray) and the coordinate
plane z = 0 (white).

Remark. Jones et al. (1991) was treated of the properties of the estimated square
bias for a univariate case.

Remark. Wand and Jones (1995) reminded of solve-the-equation (STE) univariate
selectors, which require solving nonlinear equation with respect to h. But their idea
is different from that which we present.

Figure 1 shows the shape of the functional ��h1� h2� = 2h1h2g�h1� h2�− nV�K�
and the point we are seeking lies on curve ��h1� h2� = 0. Obviously, it has not a
unique solution, and thus we need another relationship between h1 and h2 to get the
unique solution. We propose two possibilities how to find this relationship.

5.1. M1 Method

Using Scott’s rule (Scott, 1992) ĥi = 
̂in
−1/6 for i = 1� 2 gives the other relationship

between h1 and h2. It is easy to see that

h2 = ĉh1� ĉ = 
̂2


̂1

�

and 
̂ can be estimated by a sample standard deviation, or by some robust method
(e.g., a median deviation).

Now, the system of two equations for two unknowns h1, h2 has to be solved:

M1




2h1h2g�h1� h2� = nV�K�

h2 = ĉh1

(9)

Figure 2 demonstrates the solution of the system (9) as an intersection of the
functional and planes.

As it will be shown in a simulation study, the method is rather inappropriate
because the entries of covariance matrix are often not able to take into account the
curvature of f and its orientation.
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Visualization and Bandwidth Choice 767

Figure 2. M1 method: The point �ĥ1� ĥ2� we are looking for is an intersection of the plane
h2 − ĉh1 = 0 (dark gray) and the surface ��h1� h2� (light gray) and the coordinate plane
z = 0 (white).

5.2. M2 Method

The second method can be considered as a hybrid of the biased cross-validation
method (Duong and Hazelton, 2005b; Sain et al., 1994) and the plug-in method
(Wand and Jones, 1994). We are concerned with fact (7), that is,

h4
2�AMISE · 	0�4 = h4

1�AMISE · 	4�0� (10)

where

	0�4 =
∫ (�2f

�x22

)2

dx� 	4�0 =
∫ (�2f

�x21

)2

dx�

For the sake of simplicity in the next considerations the notation h1 = h1�AMISE,
h2 =h2�AMISE is used.

Relation (10) means that h1, h2 should be such that this equation is satisfied.
At this step the estimates of 	0�4 and 	4�0 are needed. Since we assume that K is a
product kernel we can express the estimates of 	0�4 and 	4�0 as the following

	̂0�4 = n−2
n∑

i�j=1

(
�2KH

�x22
∗ �2KH

�x22

)
�Xi − Xj��

	̂4�0 = n−2
n∑

i�j=1

(
�2KH

�x21
∗ �2KH

�x21

)
�Xi − Xj��

where instead of a pilot bandwidth matrix G in the plug-in method the bandwidth
matrix H is used (i.e., 	̂0�4, 	̂4�0 estimate the density curvature in both directions).

Now, relation (10) yields

h4
2n

−2
n∑

i�j=1

(
�2KH

�x22
∗ �2KH

�x22

)
�Xi − Xj� = h4

1n
−2

n∑
i�j=1

(
�2KH

�x21
∗ �2KH

�x21

)
�Xi − Xj�� (11)

Hence, we have the second equation for h1, h2.
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768 Horová et al.

Figure 3. The searched point �ĥ1� ĥ2� is an intersection of the surface ��h1� h2� (light gray),
the coordinate plane z = 0 (white) and the surface ��h1� h2� (dark gray).

The proposed method is described by the system

M2





2h1h2g�h1� h2� = nV�K�

h4
2

∑n
i�j=1

(
�2KH

�x22
∗ �2KH

�x22

)
�Xi − Xj� = h4

1

n∑
i�j=1

(
�2KH

�x21
∗ �2KH

�x21

)
�Xi − Xj�

(12)

The solution �ĥ1� ĥ2� of this nonlinear system is an estimate of �h1�AMISE� h2�AMISE�.
This system can be solved by Newton’s method.

Table 1

Target densities

Normal I �2�0� 0� 1/4� 1� 0�

Normal II 1
2�2�−3/2� 0� 1/16� 1� 0�+ 1

2�2�3/2� 0� 1/16� 1� 0�

Normal III 1
2�2�0� 0� 1� 1� 0�+ 1

2�2�3� 0� 1� 1/2� 0�

Normal IV 1
3�2�0� 0� 1� 1� 0�+ 1

3�2�0� 4� 1� 4� 0�+ 1
3�2�4� 0� 4� 1� 0�

Normal V 1
4�2�0� 0� 1� 1� 0�+ 3

4�2�4� 3� 4� 3� 0�

Normal VI 1
5�2�0� 0� 1� 1� 0�+ 1

5�2�1/2� 1/2� 4/9� 4/9� 0�

+ 3
5�2�13/12� 13/12� 25/81� 25/81� 0�

Normal VII 1
3�2�0�−3� 1� 1/16� 0�+ 1

3�2�0� 0� 1� 1/16� 0�+ 1
3�2�0� 3� 1� 1/16� 0�

Normal VIII 1
3�2�0�−3� 1� 1/16� 0�+ 1

3�2�0� 0� 1/2� 1/16� 0�+ 1
3�2�0� 3� 1/8� 1/16� 0�

Normal IX 1
3�2�−6/5� 0� 9/16� 9/16� 7/10�+ 1

3�2�0� 0� 9/16� 9/16�−7/10�

+ 1
3�2�6/5� 0� 9/16� 9/16� 7/10�

Beta Beta ℬ�2� 4� ·ℬ�2� 6�

Beta Weibull ℬ�2� 4� ·� �2� 3�

Gamma Beta 	�2� 1� ·ℬ�2� 6�

LogNormal ℒ�2�0� 0� 1� 1� 0�
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Visualization and Bandwidth Choice 769

Figure 4. Contour plots of normal target densities.

Figure 5. Contour plots of nonnormal target densities.
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770 Horová et al.

In Fig. 3 the graphs of the surfaces

��h1� h2� = 2h1h2g�h1� h2�− nV�K�

and

��h1� h2� = h4
2

n∑
i�j=1

(
�2KH

�x22
∗ �2KH

�x22

)
�Xi − Xj�− h4

1

n∑
i�j=1

(
�2KH

�x21
∗ �2KH

�x21

)
�Xi − Xj�

are presented. The solution of this system yields the estimates ĥ1 and ĥ2.

Remark. It is clear that h2
i�AMISE = O�n−1/3�. Asymptotic properties and a rate of

convergence of ĤAMISE to HAMISE can be treated of in a similar way as in (Duong and
Hazelton, 2005a,b) and (Duong and Hazelton, 2005a) showed that the discrepancy
between HAMISE and HMISE is asymptotically negligible.

6. Simulation Study

In this section we conduct a simulation study comparing the LSCV method with the
M1 and M2 methods. Samples of the size n = 100 were drawn from densities listed
in Table 1. Bandwidth matrices were selected for 100 random samples generated
from each density. Contour plots of target densities are displayed in Figures 4
and 5.

As a criterion for comparison of data driven bandwidth matrix selectors the
average of integrated square errors, that is,

ISE = avgH
∫
�f̂ �x� H�− f�x��2dx� (13)

Table 2

ISE: The average of ISE with a standard error in parentheses

Density LSCV M1 M2

Normal I 1�58 · 10−2�0�150 · 10−2� 0�91 · 10−2�0�041 · 10−2� 0�92 · 10−2�0�042 · 10−2�

Normal II 1�82 · 10−2�0�068 · 10−2� 3�59 · 10−2�0�045 · 10−2� 1�39 · 10−2�0�043 · 10−2�

Normal III 0�62 · 10−2�0�040 · 10−2� 0�47 · 10−2�0�016 · 10−2� 0�49 · 10−2�0�017 · 10−2�

Normal IV 0�28 · 10−2�0�024 · 10−2� 0�20 · 10−2�0�007 · 10−2� 0�23 · 10−2�0�008 · 10−2�

Normal V 0�23 · 10−2�0�013 · 10−2� 0�18 · 10−2�0�005 · 10−2� 0�18 · 10−2�0�005 · 10−2�

Normal VI 1�55 · 10−2�0�110 · 10−2� 1�00 · 10−2�0�045 · 10−2� 1�01 · 10−2�0�045 · 10−2�

Normal VII 1�23 · 10−2�0�063 · 10−2� 5�51 · 10−2�0�146 · 10−2� 1�11 · 10−2�0�075 · 10−2�

Normal VIII 2�92 · 10−2�0�126 · 10−2� 5�52 · 10−2�0�144 · 10−2� 2�76 · 10−2�0�124 · 10−2�

Normal IX 1�98 · 10−2�0�084 · 10−2� 1�91 · 10−2�0�044 · 10−2� 1�81 · 10−2�0�048 · 10−2�

Beta Beta 3�07 · 10−1�0�194 · 10−1� 1�93 · 10−1�0�071 · 10−1� 1�99 · 10−1�0�104 · 10−1�

Beta Weibull 5�92 · 10−2�0�420 · 10−2� 3�72 · 10−2�0�151 · 10−2� 4�12 · 10−2�0�248 · 10−2�

Gamma Beta 5�93 · 10−2�0�324 · 10−2� 4�05 · 10−2�0�128 · 10−2� 4�27 · 10−2�0�221 · 10−2�

LogNormal 2�49 · 10−2�0�060 · 10−2� 2�51 · 10−2�0�065 · 10−2� 2�81 · 10−2�1�601 · 10−2�

D
ow

nl
oa

de
d 

by
 [

M
as

ar
yk

ov
a 

U
ni

ve
rz

ita
 v

 B
rn

e]
, [

Iv
an

a 
H

or
ov

a]
 a

t 0
8:

02
 1

2 
Ja

nu
ar

y 
20

12
 



Visualization and Bandwidth Choice 771

is used, where the average is taken over simulated realizations. Table 2 brings
the results of this comparison. It can be also considered the criterion IAE =
avgH

∫
�f̂ �x� H�− f�x��dx.

Figures 6–8 show distributions of the entries ĥ1 and ĥ2 of bandwidth matrices
ĤAMISE in the �h1� h2� coordinate plane. We observe that LSCV estimates of
HAMISE suffer from large variability. This fact could be explained by the fact that
MISE�H� surface is rather flatter near HMISE. The M1 and M2 methods perform
very similarly; however, the M1 estimator fails for densities Normal II, Normal VII
and Normal VIII. It is due to the fact that the use of the Scott’s (1992) rule does
not quite account for the curvature of f . The same problem occurs in application to
real data, shown in the next section. The advantage of the M1 method is contained
in its simplicity.

Figure 6. Distribution of ĥ1 and ĥ2—normal densities.
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772 Horová et al.

Figure 7. Distribution of ĥ1 and ĥ2—normal densities.

Figure 8. Distribution of ĥ1 and ĥ2—nonnormal densities.
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Visualization and Bandwidth Choice 773

Figure 9. Kernel estimate of plasma lipid data.

On the other hand, it is obvious that the LSCV method performs rather well
in mixtures of normal densities (Normal VII, Normal VIII) with respect to M1.
The M2 method seems to be sufficiently reliable and easy to implement (using the
product kernel). This fact is also confirmed by examing these methods on real data
sets in the next section.

7. Application to Real Data

We applied the proposed methods to the plasma lipid data—a bivariate data set
consisting of concentration of plasma cholesterol and plasma triglycerides taken on
320 patients with chest pain in a heart disease study (Scott, 1992). A scatterplot of
the data is shown in Fig. 9a. Figures 9c and 9d represent reconstructed probability
density functions using the bandwidth matrix ĤM1 = diag�5�372� 11�632� and ĤM2 =
diag�14�992� 25�582�, respectively. It can be compared with the reconstructed
probability density function using ĤLSCV = diag�42�312� 31�862� shown in Fig. 9b.
The authors of the original case study (Scott et al., 1978) found two primary clusters
in these data set as well as the method M2 has found. See also papers by Ćwik
and Koronacki (1997), Sain et al. (1994), Silverman (1989), and Wand and Jones
(1995). Interestingly, while the LSCV and M1 methods fail to recognize the density
bimodality, the M2 estimate is clearly bimodal.

8. Conclusion

The advantage of these methods is in their flexibility and in the fact that they are
very easy to implement, especially for product kernels. Due to the fast computations
of convolutions these methods seem to be less time consuming. Simulations show
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774 Horová et al.

that M2 estimates provides a sufficiently reliable way of estimating arbitrary
densities.

We would like to emphasize that we restrict ourselves on the use of the
Epanechnikov product kernel, because it has an optimality property (Wand and
Jones, 1995) and corresponding integrals can be easily evaluated by means of
convolutions. On the other hand, this kernel does not satisfy smoothness conditions
for bias cross-validation methods and the plug-in method. Thus the simulation study
compares the proposed methods with the LSCV method. Moreover, the proposed
methods essentially minimize the MISE as the LSCV does.

Further assessment of their practical performance and comparison with other
matrix bandwidth selectors through a large-scale simulation study would be very
important further research.

Appendix

Proof of Theorem 5.1. The proof requires some notations: for a m× n matrix A vec
is the vector operation (i.e., vecA is a mn× 1 vector of stacked columns of the
matrix A), and A⊗ B denotes the Kronecker product of matrices A and B.

Let us denote

I�x� = E
∫

KH�x− y�f̂ �y� H�dy

= E
∫

K�z�f̂ �x−H1/2z� H�dz

=
∫

K�z�Ef̂ �x−H1/2z� H�dz�

And now compute

I1�z� = Ef̂�x−H1/2z� H� =
∫

KH�x−H1/2z − y�f�y�dy�

Substitutions yield

I1�z� =
∫

K�w− z�f�x−H1/2w�dw =
∫

K�u�f�x−H1/2u −H1/2z�du�

We use Taylor expansion in the form

f�x−H1/2u −H1/2z� = f�x−H1/2z�−
(
H1/2u

)T
�f �x−H1/2z�

+ 1
2

(
H1/2u

)T
�

2
f �x−H1/2z�H1/2u + o�trH��

Hence, using properties (A1) of the kernel

I1�z� = f�x−H1/2z�+ 1
2

∫ (
H1/2u

)T
�

2
f �x−H1/2z�H1/2uK�u�du + o�trH�

= f�x−H1/2z�+ 1
2
�2�K�trH�

2
f �x−H1/2z�+ o�trH��
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Visualization and Bandwidth Choice 775

Further

trH�
2
f �x−H1/2z� = �vecH�T vec�2

f �x−H1/2z�

(Magnus and Neudecker, 2007).
Now, we need Taylor expansion of vec�2

f �x−H1/2z�:

vec�2
f �x−H1/2z� = vec�2

f �x�− ��f ⊗�
2
f ��x�H

1/2z

+ 1
2
��2

f ⊗�
2
f ��x�vec�zz

TH�+O�
vecH2
��

Thus

I1�z� = f�x−H1/2z�+ 1
2
�2�K� �vecH�T

{
vec�2

f �x�− ��f ⊗�
2
f ��x�H

1/2z

+ 1
2
��2

f ⊗�
2
f ��x�vec�zz

TH�+O�
vecH2
�
}
+ o�trH��

Hence

I�x� =
∫

K�z�I1�z�dz

=
∫

K�z�f�x−H1/2z�dz + 1
2
�2�K� �vecH�T vec�2

f �x�

+ 1
4
�2�K�

2 �vecH�T �2
f ⊗�

2
f �x�vecH + o�trH�

= Ef̂�x� H�+ 1
2
�2�K�tr�H�

2
f �x��

+ 1
4
�2�K�

2trH�
2
f �x�H�

2
f �x�+ o�trH��

where we use again the results from (Magnus and Neudecker, 2007): A�B�C�D
square matrices ⇒ trABCD = �vecD�T �A⊗ C�TvecBT . In our case D = B = H�A =
C = �

2
f �x�. All matrices are symmetrical and from this statement the last expression

follows immediately. Since

Ef̂�x� H� = f�x�+ 1
2
�2�K�trH�

2
f �x�+ o�trH�

the statement of Theorem 5.1 is valid. �

Proof of Corollary 5.1.

E�b̂iasf̂ �x� H�� = E
(∫

KH�x− y�f̂ �y� H�dy − f̂ �x� H�
)

= f�x�+ �2�K�tr�H�
2
f �x��+

1
4
�2
2�K�tr�H�

2
f �x�H�

2
f �x��

+ o�trH�− E�f̂ �x� H��
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= f�x�+ �2�K�tr�H�
2
f �x��+

1
4
�2
2�K�tr�H�

2
f �x�H�

2
f �x��

− f�x�− 1
2
�2�K�tr�H�

2
f �x��+ o�trH�

= 1
2
�2�K�tr�H�

2
f �x��+

1
4
�2
2�K�tr�H�

2
f �x�H�

2
f �x��+ o�trH��

Further, E�f̂ �x� H�− f�x�� = 1
2�2�K�tr�H�

2
f �x��+ o�trH�, then

E�b̂iasf̂ �x� H�� = biasf̂ �x� H�+ 1
4
�2
2�K�tr�H�

2
f �x�H�

2
f �x��+ o�trH�

= biasf̂ �x� H�+ o�trH��
�
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Ćwik, J., Koronacki, J. (1997). A combined adaptive-mixtures/plug-in estimator of
multivariate probability densities. Comput. Statist. Data Anal. 26:199–218.

Duong, T. (2007). ks: Kernel density estimation and kernel discriminant analysis for
multivariate data in R. J. Stat. Soft. 21:1–16.

Duong, T., Hazelton, M. L. (2003). Plug-in bandwidth matrices for bivariate kernel density
estimation. J. Nonparametr. Stat. 15:17–30.

Duong, T., Hazelton, M. L. (2005a). Convergence rates for unconstrained bandwidth matrix
selectors in multivariate kernel density estimation. J. Multivariate Anal. 93:417–433.

Duong, T., Hazelton, M. L. (2005b). Cross-validation bandwidth matrices for multivariate
kernel density estimation. Scand. J. Statist. 32:485–506.

Godtliebsen, F., Marron, J. S., Chaudhuri, P. (2002). Significance in scale space for density
estimation. J. Comput. Graph. Statist. 11:1–21.

Härdle, W., Müller, M., Sperlich, S., Werwatz, A. (2004). Nonparametric and Semiparametric

Models. [On-line]. Retrieved from http://fedc.wiwi.hu-berlin.de/xplore/ebooks/html/-
spm/

Horová, I., Vieu, P., Zelinka, J. (2002). Optimal choice of nonparametric estimates of a
density and of its derivatives. Statistics & Decisions 20:355–378.
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KERNEL REGRESSION 
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Abstract 

The aim of the contribution is to extend the idea of an iterative method known 

for a kernel density estimate to kernel regression. The method is based on a 

suitable estimate of the mean integrated square error. This approach leads to 

an iterative quadratically convergent process. We conduct a simulation study 

comparing the proposed method with the well-known cross-validation method. 

Results are implemented in Matlab. 

1. Univariate Kernel Density Estimator 

Let nXX ,,1 …  be independent real random variables having the 

same continuous density f. The symbol f̂  will be used to denote whatever 

density estimation is currently being considered. 

Definition 1.1. Let k be an even nonnegative integer and K be a real 

valued function continuous on R  and satisfying the conditions: 

(i) ( ) ( ) yxLyKxK −≤−  for a constant [ ],1,1,,0 −∈∀> yxL  
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(ii) support ( ) [ ] ( ) ( ) ,011,1,1 ==−−= KKK  

(iii) ( )





=≠β
=

<<
=∫−

.,0

,,1

,0,0
1

1
kj

j

kj

dxxKx

k

j ν  

Such a function is called a kernel of order k and a class of these kernels is 

denoted as .0kS  

Remark 1.2. The well-known kernels are, e.g., 

(a) Epanechnikov kernel: ( ) ( ) [ ],1
4
3

1,1
2 −−= IxxK  

(b) quartic kernel: ( ) ( ) [ ],1
4
3

1,1
22 −−= IxxK  

(c) triweight kernel: ( ) ( ) [ ],1
32
35

1,1
22 −−= IxxK  

(d) Gaussian kernel: ( ) ,
2

1 2

2x

exK
−

π=  

where [ ]1,1−I  is an indicator function. Though the Gaussian kernel does 

not satisfy the assumption (ii), it is very popular in many applications. 

Let ,0kSK ∈  set ( ) ( ) .0,
.1

. >= h
h

K
h

Kh  A parameter h is called a 

bandwidth. The kernel estimator of f at the point R∈x  is defined as 

( ) .1,ˆ

1



 −= ∑= h

Xx
K

nh
hxf i

n

i

 

The problem of choosing the smoothing parameter is of a crucial 

importance and will be treated in the next sections. Our analysis requires 

the specification of an appropriate error criterion for measuring the error 

when estimating the density at a single point as well as the error when 
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estimating the density over the whole real line. A useful criterion when 

estimating at a single point is the mean square error (MSE) defined by 

{ ( )} { ( ) ( )} .,ˆ,ˆ 2
xfhxfEhxfMSE −=  

As concerns a global criterion, we consider the mean integrated square 

error 

{ ( )} { ( ) ( )} .,ˆ,ˆ 2
dxxfhxfEhfMISE −=⋅ ∫  

Since MISE is not mathematically tractable, we employ the asymptotic 

mean integrated square error (AMISE), which can be written as a sum of 

the asymptotic integrated variance and the asymptotic integrated square 

bias 

{ ( )} ( ) ( ( ) ),
!

,ˆ

ˆ

2

2
2

ˆ
��� 
��� 	�
	�

fAISB

kkk

fAIV

fV
k

h
nh

KV
hfAMISE

β+=⋅  (1.1) 

where ( ) ( ) .2 dxxggV ∫=  Now, by minimizing (1.1) with respect to h, we 

obtain the AMISE-optimal bandwidth { ( )},,ˆminarg, hfAMISEh kopt ⋅=  

which takes the form 

( )
( ( ) ) .

!

2 2

2
12

,
k

k

k
kopt

k

fknV

KV
h β=+  

For more details, see, e.g., [9], [14]. 

2. Iterative Method for Kernel Density Estimation 

The problem of choosing how much to smooth, i.e., how to choose the 

bandwidth is a crucial common problem in kernel smoothing. Methods for 

a bandwidth choice have been developed in many papers and 

monographs, see, e.g., [1, 2, 5, 7, 8, 11, 12, 14], and many others. 

However, there does not exist any universally accepted approach to this 

serious problem yet. 



JAN KOLÁČEK and IVANKA HOROVÁ 94

The iterative method is based on the relation 

( ) ( ),,ˆ2,ˆ
,, koptkopt hfkAISBhfAIV ⋅=⋅  (2.1) 

with estimates of AIV and AISB 

n ( ) ( )ˆ , ,
V K

AIV f h
nh

⋅ =  

and 

n ( ) ( ) ( ) ( )( )2ˆ ˆ ˆ, , ,AISB f h K x f x hy h dy f x h dx⋅ = − −∫ ∫  

,
1

1,
2 


 −Λ= ∑= h

XX

hn

ji
n

ji

 

where 

( ) ( ) ( ),2 zKKKKKKKKKz ∗+∗∗−∗∗∗=Λ  

and ∗  denotes the convolution, i.e., ( ) ( ) ( ) .dttuKtKuKK −=∗ ∫  The 

bandwidth estimate kITh ,
ˆ  is a solution of the equation 

( )
.0

2

1,
2

=


 −Λ− ∑= h

XX

hn

k

nh

KV ji
n

ji

 (2.2) 

In the paper [8], this nonlinear equation was solved by Steffensen’s 

method. But this equation can be rewritten as 

( ) .0
2

1,

=−


 −Λ∑
≠=

KV
h

XX

n

k ji
n

ji
ji

  (2.3) 

Since the first derivative of the function standing on the left hand side of 

this equation is easy to compute by using convolutions, Newton’s method 

can be used. For more details, see [9]. 
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3. Univariate Kernel Regression 

Consider a standard regression model of the form 

( ) ,,,1, nixmY iii …=ε+=   (3.1) 

where m is an unknown regression function, nYY ,,1 …  are observable 

data variables with respect to the design points .,,1 nxx …  The residuals 

nεε ,,1 …  are independent identically distributed random variables for 

which 

( ) ( ) .,,1,0var,0 2 niE ii …=>σ=ε=ε  

The aim of kernel smoothing is to find a suitable approximation lm  of the 

unknown function m. 

To avoid boundary effects, the estimate is obtained by applying the 

kernel on the extended series ,2,,2,1,
~

nnniYi …+−+−=  where 

jnj YY =±~
 for .,,1 nj …=  Similarly, .2,,2,1, nnninixi …+−+−==  

The assumption of the cyclic model leads to the kernel regression 

estimator 

l ( ) ( ) i2

1

1
, , 1, , ,

n

ij h i j
n i n

m x h K x x Y j n
C =− +

= − =∑ …   (3.2) 

where ( ).1

1
ih

n

ni
n xKC ∑− +−=
=  For more details about this estimator, see [9] 

and [10]. 

The quality of a kernel regression estimator can be locally described 

by the mean square error (MSE) or by a global criterion the mean 

integrated square error (MISE). According to same reasons as in kernel 

density estimation, we employ the asymptotic mean integrated square 

error (AMISE), which can be written as a sum of the asymptotic 

integrated variance and asymptotic integrated square bias 
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{ l ( ) } ( ) 2 2
2, ,

!
k

k

AIV AISB

V K k
AMISE m h A h

nh k

σ β ⋅ = +   ��	�
 ���	��

  (3.3) 

where ( ( )( )) .2
dxxmA k

k ∫=  The optimal bandwidth considered here is 

,,kopth  the minimizer of (3.3), i.e., 

{ l ( ) }, arg min , ,
n

opt k
h H

h AMISE m h∈= ⋅  

where [ ( ) ( ) ]121121 , +−+−= kk
n bnanH  for some .0 ∞<<< ba  

The calculation gives 

( ) ( )
.

2

! 12
1

2

22

,

+






β
σ= k

kk

kopt
Akn

kKV
h   (3.4) 

In nonparametric regression estimation, like in density estimation, a 

critical and inevitable step is to choose the smoothing parameter 

(bandwidth) to control the smoothness of the curve estimate. The 

smoothing parameter considerably affects the features of the estimated 

curve. 

One of the most widespread procedures for bandwidth selection is the 

cross-validation method, also known as “leave-one-out” method. 

The method is based on modified regression smoother (3.2) in which 

one, say the j-th, observation is left out 

l ( ) ( ) i2

1

1
, , 1, , .

i j

n

ij j h i j
n i n

m x h K x x Y j n
C

≠
−

=− +
= − =∑ …  

With using these modified smoothers, the error function which should be 

minimized takes the form 

( ) { l ( ) }2

1

1
.

n

i i i

i

CV h m x Y
n

−
=

= −∑   (3.5) 
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The function ( )hCV  is commonly called a “cross-validation” function. Let 

CVĥ  stand for minimization of ( ),hCV  i.e., 

( ).minargˆ hCVh
nHh

CV ∈=  

The literature on this criterion is quite extensive, e.g., [3, 4, 6, 13]. 

4. Iterative Method for Kernel Regression 

The proposed method is based on the similar relation as in the kernel 

density estimation. It is easy to show that the following equation holds: 

l ( ) l ( ), ,, 2 , ,opt k opt kAIV m h kASBm h⋅ = ⋅   (4.1) 

where 

l ( ) ( )2
, ,

V K
AIV m h

nh

σ⋅ =  

and 

l ( ) l ( ) ( ){ }2

1

1
, , .

n

i i

i

mASB h Em x h m x
n =

⋅ = −∑  

For estimating of AIV and ASB in (4.1), we use 

nl ( ) ( ) ( )2
22

1
2

ˆ 1
ˆ, , with ,

2 2

n

i i

i

V K
AIV m h Y Y

nh n −=
σ⋅ = σ = −− ∑  

and 

nl ( ),ASBm h⋅ ( ) ( ) .
~1~11

22

1

2

11










 −−−= ∑∑∑ +−=+−==

lilh

n

nln
ijih

n

nin

n

j

YxxK
C

YxxK
Cn

 

To find the bandwidth estimate ,ˆ
,kITh  we solve the following equation: 
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( )
nl ( )

2ˆ
.

2 ,

V K
h

knASBm h

σ= ⋅   (4.2) 

We use Steffensen’s iterative method with the starting approximation 

.ˆ
0 nkh =  This approach leads to an iterative quadratically convergent 

process. 

5. Simulation Study 

We carry out two simulation studies to compare the performance of 

the bandwidth estimates. The comparison is done by the following way. 

The observations, ,iY  for ,100,,1 == ni …  are obtained by adding 

independent Gaussian random variables with mean zero and variance 2σ  

to some known regression function. Both regression functions used in our 

simulations are illustrated in Figure 1. They are not chosen randomly for 

our comparison. The first one is suitable for the extension to the cyclic 

model, on the other side, the second function does not satisfy the 

assumption for the cyclic model. 
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Figure 1. Regression functions. 

One hundred series are generated. For each data set, we estimate the 

optimal bandwidth by both mentioned methods, i.e., for each method, we 

obtain 100 estimates. Since we know the optimal bandwidth, we compare 

it with the mean of estimates and look at their standard deviation, which 

describes the variability of all methods. The Epanechnikov kernel 

( ) ( ) [ ]1,1
21

4
3 −−= IxxK  is used in all cases. 
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5.1. Simulation 1. In this case, we use the regression function 

( ) ( ) ,5
6

4sin220cos + −+= x
xxm  

with .3.02 =σ  Table 1 summarizes the sample means and the sample 

standard deviations of bandwidth estimates, ( )hE ˆ  is the average of all 

100 values and ( )hstd ˆ  is their standard deviation. Figure 2 illustrates the 

histogram of results of all 100 experiments. 

Table 1. Means and standard deviations 

 0560.02, =opth  

 ( )hE ˆ  ( )hstd ˆ  

CV 0.0550 0.0120 

IT 0.0556 0.0048 

 

Figure 2. Distribution of �h  for both methods. 
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As we see, the standard deviation of all results obtained by the 

proposed method is less than the value for the case of cross-validation 

method and also the mean of these results is a little bit closer to the 

theoretical optimal bandwidth. The reason is that the regression function 

is smooth and satisfies the conditions for the extension to the cyclic 

design. Thus, the proposed method works very well in this case. 

5.2. Simulation 2. In the second example, we use the regression function 

( ) ( ) ( ) ,55cot1011ln 13 −−+−= xxxm  

with .05.02 =σ  Table 2 summarizes the sample means and the sample 

standard deviations of bandwidth estimates, ( )hE ˆ  is the average of all 

100 values and ( )hstd ˆ  is their standard deviation. Figure 3 illustrates 

the histogram of results of all 100 experiments. 

Table 2. Means and standard deviations 

 0707.02, =opth  

 ( )hE ˆ  ( )hstd ˆ  

CV 0.1466 0.0443 

IT 0.0592 0.0112 
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Figure 3. Distribution of �h  for both methods. 

It is evident that better results are obtained by the proposed method. 

This method is successful despite the fact that the regression function 

does not meet assumptions for the extension to the cyclic model. The 

cross-validation method often results in smaller bandwidths. The 

variance of this criterion is also significant. 
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summary

In this paper we focus on kernel estimates of cumulative distribution and hazard
functions (rates) when the observed random variables are nonnegative. It is well
known that kernel distribution estimators are not consistent when estimating
a distribution function near the point x = 0. This fact is rather visible in many
applications, for example in kernel ROC curve estimation [10]. In order to avoid
this problem we propose a bias reducing technique that is a kind of generalized
reflection method. Our method is based on ideas of [8] and [19] developed for
boundary correction in kernel density estimation. The proposed estimators are
compared with the traditional kernel estimator and with the estimator based on
“classical” reflection method using simulation studies.

Keywords and phrases: kernel estimation, reflection, distribution function, hazard
function.

AMS Classification: 30C40, 62G30.

1 Introduction

The most commonly used nonparametric estimate of a cumulative distribution function F

is the empirical distribution function Fn, where Fn(x) = n−1
∑n

i=1 I[Xi ≤ x] with X1, ...,

Xn being the observations. But Fn is a step function even in the case that F is a continuous

function. Another type of nonparametric estimator for F is derived from kernel smoothing

methods. Kernel smoothing is most widely used because it is easy to apply and produce

estimators which have good small and asymptotic properties. Kernel smoothing has received

a lot of attention in density estimation. Good references in this area are [3], [16] and [17].



However, results in kernel distribution function estimation are relatively few. Theoretical

properties of kernel distribution function estimator have been investigated by [12], [14] and

[1]. Although there is a vast literature on boundary correction in density estimation context,

boundary effects problem in distribution function context has been less studied. The same

can be said about estimation of hazard function (rates) estimation.

In this paper, we develop a new kernel type estimator of the cumulative distribution

and hazard rates that removes boundary effects near the end points of the support. Our

estimator is based on a new boundary corrected kernel estimator of distribution function

and it is based on ideas of [6], [7], [8] and [19] developed for boundary correction in kernel

density estimation. The basic technique of construction of the proposed estimator is kind of

a generalized reflection method involving reflecting a transformation of the observed data.

In fact, the proposed method generates a class of boundary corrected estimators. We derive

expressions for the bias and variance of the proposed estimators. Furthermore, the pro-

posed estimators are compared with the traditional estimator and with the estimator based

on “classical” reflection method using simulation studies. We observe that the proposed

estimators successfully remove boundary effects and performs considerably better than the

others two.

Kernel smoothing in distribution function estimation and boundary effects are discussed

in the next section. The proposed estimator of distribution functions is given in Section 3.

Section 4 discusses estimation of hazard functions (rates). Simulation results are given in

Section 5 and our results are applied on real data in Section 6. Finally, some concluding

remarks are given in Section 7.

2 Kernel distribution estimator and boundary effects

Let f denote a continuous density function with support [0, a], 0 < a ≤ ∞, and consider

nonparametric estimation of the cumulative distribution function F of f based on a random

sample X1, ..., Xn from f . Suppose that F (j), the j-th derivative of F , exists and is

continuous on [0, a], j = 0, 1, 2, with F (0) = F and F (1) = f . Then the traditional kernel

estimator of F is given by

F̂h,K(x) =
1

n

n∑

i=1

W

(
x−Xi

h

)
, W (x) =

x∫

−1

K(t)dt (2.1)

where K is a unimodal symmetric density function with support [−1, 1] and h is the band-

width (h → 0 as n → ∞). Set β2 =
1∫

−1

t2K(t)dt. The basic properties of F̂h,K(x) at interior

points are well-known (e.g., [11]), and under some smoothness assumptions these include,

for h ≤ x ≤ a− h,

E(F̂h,K(x))− F (x) =
1

2
β2f

(1)(x)h2 + o(h2)
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nVar(F̂h,K(x)) = F (x)(1− F (x)) + hf(x)

1∫

−1

W (t)(W (t)− 1)dt+ o(h).

The performance of F̂h,K(x) at boundary points, i.e., for x ∈ [0, h)∪ (a−h, a], however, dif-

fers from the interior points due to so-called “boundary effects” that occur in nonparametric

curve estimation problems. More specifically, the bias of F̂h,K(x) is of order O(h) instead

of O(h2) at boundary points while the variance of F̂h,K(x) is of the same order. This fact

can be clearly seen by examining the behavior of F̂h,K inside the left boundary region [0, h].

Let x be a point in the left boundary, i.e., x ∈ [0, h]. Then we can write x = ch, 0 ≤ c ≤ 1.

It can be shown that the bias and variance of F̂h,K(x) at x = ch are of the form

E(F̂h,K(x))− F (x) = hf(0)

−c∫

−1

W (t)dt

+ h2f (1)(0)





c2

2
+ c

−c∫

−1

W (t)dt−

c∫

−1

tW (t)dt



+ o(h2)

(2.2)

nVar(F̂h,K(x)) = F (x)(1− F (x)) + hf(0)





c∫

−1

W 2(t)dt− c



+ o(h). (2.3)

From the expression (2.2) it is now clear that the bias of F̂h,K(x) is of order O(h) instead

of O(h2). To remove this boundary effect in kernel distribution estimation we investigate a

new class of estimators in the next section.

3 The proposed estimator

In this section we propose a class of estimators of the distribution function F of the form

F̃h,K(x) =
1

n

n∑

i=1

{
W

(
x− g1(Xi)

h

)
−W

(
−
x+ g2(Xi)

h

)}
, (3.1)

where h is the bandwidth, W is a cumulative distribution function defined by (2.1) and g1
and g2 are two transformations that need to be determined. We assume that gi, i = 1, 2, are

nonnegative, continuous and monotonically increasing functions defined on [0,∞). Further

assume that g−1
i exists, gi(0) = 0, g

(1)
i (0) = 1, and that g

(2)
i exists and is continuous on

[0,∞), where g
(j)
i denotes the j-th derivative of gi, with g

(0)
i = gi and g−1

i denoting the

inverse function of gi, i = 1, 2. We will choose g1 and g2 so that F̃h,K(x) ≥ 0 everywhere.

Note that the i-th term of the sum in (3.1) can be expressed as

W

(
x− g1(Xi)

h

)
−W

(
−
x+ g2(Xi)

h

)
=

x+g2(Xi)

h∫

−x+g1(Xi)

h

K(t)dt.
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The preceding integral is non-negative provided the inequality −x+g1(Xi)
h

≤
x+g2(Xi)

h
holds.

Since x ≥ 0, the preceding inequality will be satisfied if g1 and g2 are such that g1(Xi) ≤

g2(Xi) for i = 1, . . . , n. Thus we will assume that g1 and g2 are chosen such that g1(x) ≤

g2(x) for x ∈ [0,∞) for the proposed estimator. Now, we can obtain the bias and variance

of (3.1) at x = ch, 0 ≤ c ≤ 1, as

E(F̃h,K(x))− F (x) = h2



f (1)(0)


c2

2
+ 2c

−c∫

−1

W (t)dt−

c∫

−c

tW (t)dt




− f(0)g
(2)
1 (0)

c∫

−1

(c− t)W (t)dt

−f(0)g
(2)
2 (0)

−c∫

−1

(c+ t)W (t)dt



+ o(h2).

(3.2)

nVar(F̃h,K(x)) = F (x)(1− F (x)) + hf(0)





c∫

−1

W 2(t)dt

−2

c∫

−1

W (t)W (t− 2c)dt+

−c∫

−1

W 2(t)dt



+ o(h).

(3.3)

The proofs of (3.2) and (3.3) are given in [10]. Similarly we can express the bias and variance

of (3.1) at “interior” points x = c > 1. Note that the contribution of g2 on the bias vanishes

as c → 1. By comparing expressions (2.2), (3.2), (2.3) and (3.3) at boundary points we can

see that the variances are of the same order and the bias of F̂h,K(x) is of order O(h) while

the bias of F̃h,K(x) is of order O(h2). So our estimator removes boundary effects in kernel

distribution estimation since the bias at boundary points is of the same order as the bias at

interior points.

It is clear that there are various possible choices available for the pair (g1, g2). However,

we will choose g1 and g2 so that the condition F̃h,K(0) = 0 will be satisfied because of

the fact that F (0) = 0. A sufficient (but not necessary) condition for the preceding to be

satisfied is that g1 and g2 must be equal. Thus we need to construct a single transformation

function g such that g = g1 = g2. Other important properties that are desirable in the

estimator F̃h,K are the local adaptivity, that is the transformation function g depends on c.

Some discussion on the choice of gc and other various improvements that can be made

would be appropriate here. The trivial choice is gc(y) = y, which represents the “classical”

reflection method estimator. However, it is possible to construct functions gc’s that improve

the bias further under some additional conditions. For instance, if one examines the right

hand side of the bias expansion (3.2) then it is not difficult to see that the terms inside

bracket (i.e., the coefficient of h2) can be made equal to zero if gc is appropriately chosen.
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Set

Ac =





d1
c2

2 +2cI1−I2
c2+2cI1−I2

, for 0 ≤ c < 1

d1
β2

c2+β2
, for c > 1

where d1 = f(1)(0)
f(0) , I1 =

−c∫
−1

W (t)dt, I2 =
c∫

−c

tW (t)dt.

If gc is chosen such that g
(2)
c (0) = Ac then the bias of F̃h,K(x) would be theoretically of

order O(h3). For such a function gc, the second derivative at zero g
(2)
c (0) will be dependent

on the ratio d1 = f(1)(0)
f(0) . Then the problem of estimation of d1 naturally arises as in the

papers of [6], [7], [8] and [9]. For example, the ratio d1 = f(1)(0)
f(0) is estimated in [9] as the

first derivative of natural logarithm of f at zero. For more details, especially for the exact

formula for d̂1 and for some statistical properties, especially for the asymptotic convergence

rate, see the preceding paper.

Summarizing all the assumptions, it is clear now that gc should satisfy the following

conditions:

(i) gc : [0,∞) → [0,∞), gc is continuous, monotonically increasing and g
(i)
c exists, i = 1, 2,

(ii) g−1
c (0) = 0, g

(1)
c (0) = 1

(iii) g
(2)
c (0) = Ac.

Functions satisfying conditions (i) – (iii) are easy to construct. We will consider the

following transformation. For y ≥ 0, let us define

gc(y) = y +
1

2
Âcy

2 + λÂ2
cy

3, (3.4)

where Âc is an estimator of Ac based on an estimator d̂1 of d1, and λ is a positive constant

such that λ > 1
12 . This condition on λ is necessary for gc(y) to be an increasing function of

y. Based on extensive simulations, we find that this transformation adapts well to various

shapes of distribution functions with setting λ = 0.1.
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4 Estimation of hazard rates

Given a distribution F with probability density function f, the hazard rate is defined by

z(t) =
f(t)

1− F (t)
. (4.1)

The hazard rate is also called the age-specific or conditional failure rate. It is useful partic-

ularly in the context of reliability theory and survival analysis and hence in fields as diverse

as engineering and medical statistics. See [2] for a discussion of the role of the hazard rate

in understanding and modeling survival data. [16] provides a survey of some methods for

nonparametric estimation of hazard estimation.

Given a sample X1, ..., Xn from the density f, a natural nonparametric estimator of the

hazard rate is ẑ(t) = f̂(t)/(1−F̂ (t)), where f̂ is a suitable density estimator of f based onX1,

..., Xn and F̂ (t) =
∫ t

−∞
f̂(x)dx estimates F (t). If f̂ is the traditional kernel estimator with a

kernel K and bandwidth h, then F̂ (t) can be obtained by F̂ (t) = n−1
∑n

i=1 K1((t−Xi)/h),

where K1(u) =
∫ u

−∞
K(t)dt. [18] introduced and discussed ẑ(t) and various alternative

nonparametric estimators of z(t). For further properties of ẑ(t) with kernel and other related

estimators see, e.g., [15], [13] (Section 4.3) and [16] (Section 6.5).

It has been observed that consideration of errors involved in the construction of ẑ show

that, to a first approximation, the main contribution to the error will be due to the numerator

of ẑ, i.e., due to the estimator f̂ ; see, e.g., [16] (Section 6.5). Thus, to obtain the best

possible estimate of the hazard rate, one should aim to minimize the error in the estimation

of density f. If the support of f is the interval [0, a], 0 < a ≤ ∞, which is usually the

case in survival and reliability data, then the traditional kernel estimators of density f

suffer from boundary effects. Therefore, it is advisable to use boundary adjusted estimators

of density f and the distribution F in this context. For this purpose here we implement

a boundary adjusted kernel density estimator similar to the one proposed in [6] and the

boundary adjusted distribution function estimator F̃h,K given above. Thus, the proposed

estimator of the hazard rate z(t) is given by, for t = ch, c ≥ 0,

z̃(t) =
f̃(t)

1− F̃h,K(t)
, (4.2)

where F̃h,K is defined by (3.1) and f̃ is defined by

f̃(t) =
1

nh

n∑

i=1

{
K

(
t− ĝ1,c(Xi)

h

)
+K

(
t+ ĝ1,c(Xi)

h

)}
, (4.3)

where

ĝ1,c(x) = x+
1

2
d̂1kcx

2 + λ0(d̂1kc)
2y3, (4.4)
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with d̂1 as defined in [9], λ0 is a positive constant such that 12λ0 > 1, and kc given by, for

c ≥ 0,

kc =
2
∫ 1

c
(u− c)K(u)du

c+ 2
∫ 1

c
(u− c)K(u)du

. (4.5)

Theorem 1. The mean squared error (MSE) of z̃(t) is given by, for t = ch, c ≥ 0,

E(z̃(t)− z(t))2 =

(
1− F (t)

w1w2

)2
f(0)

nh


2

1∫

c

K(t)K(2c− t)dt+ V (K)


+ o

(
1

nh

)
, (4.6)

where wi, i = 1, 2 are finite constants satisfying 1− F̃h,K(t) ≥ w1 > 0 and 1−F (t) ≥ w2 > 0

and V (K) =
1∫

−1

K2(x)dx.

Proof. For a detailed proof see Appendix.

5 A simulation study

To test the effectiveness of our estimator, we simulated its performance against the classical

reflection method. The simulation is based on 1 000 replications. In each replication, the

random variables X ∼ Exp(1) were generated and the estimate of the hazard function was

computed. Let us note that the real hazard function in this case is constant equal to one.

In all replications the sample size of n = 100 was used. In this case, the actual global

optimal bandwidth (see [1]) for F is hF = 0.8479 and for f is hf = 0.7860 (see [16]).

For kernel estimation of both needed functions (distribution and density) we have used the

Epanechnik kernel K(x) = 3
4 (1 − x2)I[−1,1](x), where IA is the indicator function on the

set A.

For each estimated hazard function we have calculated the mean integrated squared Error

(MISE) on the interval [0, hF ] over all 1 000 replications and have displayed the results in

a boxplot in Figure 1. The variance of each estimator can be accurately gauged by the

whiskers of the plot. The values of means and standard deviations for MISE of each method

are given in Table 1. As we can see the reflection method gives the smaller values of MISE

than the classical estimator, but the variance is not so small. From this point of view the

proposed estimator seems to be better.

To get more detailed information about estimators we have calculated the Mean Squared

error (MSE) at four points in the boundary region x = chF , c = 0, 0.25, 0.5, 0.75. The

boxplot of MSE for each estimator over all 1 000 replications is illustrated in Figure 2. The

values of means and standard deviations for MSE at each point for each method are given

in Table 2. These values describe the performance of our proposed method with respect

to MSE when compared with the classical and reflection method estimators. The values of

mean and also of the variance were smallest in the case of our proposed estimator. This is
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1 2 3

Figure 1: MISE for estimates of z(t) for the classical estimator with boundary effects (1),
the reflection method (2) and for our proposed method (3).

Table 1: Means and STD’s for MISE

Method Mean STD

Classical 0.1265 0.0376

Reflection 0.0273 0.0209

Proposed 0.0142 0.0185

80



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.25h 0.5h 0.75h 0 0.25h 0.5h 0.75h 0 0.25h 0.5h 0.75h

classical reflection proposed

Figure 2: MSE at points x = chF , c = 0, 0.25, 0.5, 0.75 for the classical estimator with
boundary effects, the reflection method and for our proposed method.

caused by a local adaptivity of our estimator. On other hand, the classical and reflection

method estimators are not locally adaptive. From the figures and tables it is clear that the

proposed estimator performed the best among the three compared. It captures the features

of the distribution and hazard functions correctly with minimum bias while holding onto a

low variance.

Table 2: Means and STD’s for MSE at x = chF .

Classical Reflection Proposed

c Mean STD Mean STD Mean STD

0.00 0.3103 0.0591 0.0582 0.0369 0.0149 0.0195

0.25 0.1398 0.0528 0.0229 0.0261 0.0144 0.0194

0.50 0.0421 0.0346 0.0140 0.0198 0.0137 0.0198

0.75 0.0140 0.0183 0.0139 0.0210 0.0139 0.0210
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6 Real data

In this section we apply our results to a real data set. For our analysis, we have used the

suicide data from [16]. The proposed hazard rate estimate is given in Figure 3. The solid

line represents our proposed estimator (4.2) and the dashed line is for the traditional kernel

estimator (with boundary effects). When choosing the optimal bandwidths for the density

and distribution function estimation, we used iterative methods described in [5] and [4].

The optimal bandwidths for the density and the distribution function were estimated as

ĥf = 132.01 and ĥF = 144.83, respectively. The proposed estimator of hazard rate again

captures proper features of the actual hazard rate, while the traditional estimator dip near

the left end point due to boundary effects.

0 100 200 300 400 500 600 700 800
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Figure 3: Hazard rate estimates constructed from the suicide data.

7 Conclusion

In this paper we proposed new kernel-type estimators to estimate the distribution and

hazard functions without boundary effects near the endpoints of the support. The technique

implemented is a kind of generalized reflection method involving reflecting a transformation

of the data. The proposed method generates a class of boundary corrected estimators and

it is based on ideas of boundary corrections for kernel density estimators presented in [6], [7]

and [8]. We showed some good properties of our proposed method (e.g., local adaptivity).

Furthermore, it is shown that bias of the proposed estimator is better than that of the

“classical” one. The proposed estimators performed quite well in the numerical studies

compared to the classical and reflection method estimators.
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Appendix: Proof of Theorem 1

Theorem 1 The mean squared error (MSE) of z̃(t) is given by, for t = ch, c ≥ 0,

E(z̃(t)− z(t))2 =

(
1− F (t)

w1w2

)2
f(0)

nh


2

1∫

c

K(t)K(2c− t)dt+ V (K)


+ o

(
1

nh

)
,

where wi, i = 1, 2 are finite constants satisfying 1− F̃h,K(t) ≥ w1 > 0 and 1−F (t) ≥ w2 > 0

and V (K) =
1∫

−1

K2(x)dx.

Proof. The difference z̃(t)− z(t) is equal to, for t = ch, c ≥ 0,

z̃(t)− z(t) =
f̃(t)

1− F̃h,K(t)
−

f(t)

1− F (t)

=
f̃(t) (1− F (t))− f(t)(1− F̃h,K(t)

(1− F̃h,K(t))(1− F (t))
.

Since we are only concerned about the behavior of z̃(t) near the left boundary, i.e.,

t = ch, c ≥ 0, we only need to study the difference near the left endpoint 0. For t = ch,

c ≥ 0 we can assume that 1 − F̃h,K(t) ≥ w1 > 0 and 1 − F (t) ≥ w2 > 0, where wi, i = 1, 2

are finite constants. The preceding conditions are reasonable, since F̃h,K(0) = 0, F (0) = 0

and F̃h,K and F are continuous functions. Therefore we obtain

(z̃(t)− z(t))2 ≤ (w1w2)
−2(f̃(t) (1− F (t))− f(t)(1− F̃h,K(t)))2.

To get the formula for MSE of z̃(t) we need to express E(f̃(t) (1− F (t))−f(t)(1−F̃h,K(t))2.
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E(f̃(t) (1− F (t))− f(t)(1− F̃h,K(t))2

= (1− F (t))2Ef̃2(t) + f2(t)E(1− F̃h,K(t))2 − 2f(t)(1− F (t))Ef̃(t)(1− F̃h,K(t))

= (1− F (t))2
[
varf̃(t) + (Ef̃(t))2

]
+ f2(t)

[
varF̃h,K(t) + (1− EF̃h,K(t))2

]

−2f(t)(1− F (t))

[
Ef̃(t)(1− EF̃h,K(t)) + o

(
1

nh

)]

= (1− F (t))2





f(0)

nh


2

1∫

c

K(u)K(2c− u)du+ V (K)


+ o

(
1

nh

)
+ f2(t) + o(h)





+f2(t)





1

n
F (t)(1− F (t)) +

hf(0)

n




c∫

−1

W 2(u)du− 2

c∫

−1

W (u)W (u− 2c)du

+

−c∫

−1

W 2(u)du


+ o(h) + (1− F (t))2 + o(h2)





−2f(t)(1− F (t)) [f(t) + o(h)]
[
1− F (t) + o(h2)

]
+ o

(
1

nh

)

= (1− F (t))2
f(0)

nh


2

1∫

c

K(u)K(2c− u)du+ V (K)


+ o

(
1

nh

)
.
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Abstract: The Receiver Operating Characteristic (ROC) curve is a statisti-

cal tool for evaluating the accuracy of diagnostics tests. The empirical ROC

curve (which is a step function) is the most commonly used non-parametric

estimator for the ROC curve. On the other hand, kernel smoothing meth-

ods have been used to obtain smooth ROC curves. The preceding process

is based on kernel estimates of the distribution functions. It has been ob-

served that kernel distribution estimators are not consistent when estimat-

ing a distribution function near the boundary of its support. This problem is

due to “boundary effects” that occur in nonparametric functional estimation.

To avoid these difficulties, we propose a generalized reflection method of

boundary correction in the estimation problem of ROC curves. The proposed

method generates a class of boundary corrected estimators.

Zusammenfassung: Die Receiver Operating Characteristic (ROC) Kurve

ist ein statistisches Werkzeug zur Bewertung der Präzision diagnostischer

Tests. Die empirische ROC Kurve (sie ist eine Treppenfunktion) ist der am

weitesten verbreitete nicht-parametrische Schätzer der ROC Kurve. Ander-

erseits wurden Kerngättungsmethoden verwendet, um glatte ROC Kurven zu

erhalten. Der vorangehende Prozess basiert dabei auf Kernschätzungen der

Verteilungsfunktionen. Es wurde beobachtet, dass Kernschätzer der Vertei-

lung nicht konsistent sind falls die Verteilungsfunktion in der Nähe des Ran-

des ihres Trägers geschätzt wird. Dieses Problem beruht auf dem “Randef-

fekt” der in der nicht-parametrischen funktionalen Schätzung auftritt. Um

derartige Schwierigkeiten zu vermeiden, empfehlen wir eine verallgemein-

erte Reflexionsmethode der Randkorrektur im Schätzproblem von ROC Kur-

ven. Die vorgeschlagene Methode generiert eine Klasse von randkorrigierten

Schätzern.

Keywords: Reflection, Distribution Estimation.

1 Introduction

The Receiver Operating Characteristic (ROC) describes the performance of a diagnostic

test which classifies subjects into either group without condition G0 or group with condi-

tion G1 by means of a continuous discriminant score X , i.e., a subject is classified as G1 if

X ≥ d and G0 otherwise for a given cutoff point d ∈ R. The ROC is defined as a plot of

probability of false classification of subjects from G1 versus the probability of true classi-

fication of subjects from G0 across all possible cutoff point values of X . Specifically, let
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F0 and F1 denote the distribution functions of X in the groups G0 and G1, respectively.

Then, the ROC curve can be written as

R(p) = 1 − F1

(
F−1

0 (1 − p)
)

, 0 < p < 1 ,

where p is the false positive rate in (0, 1) as the corresponding cut-off point ranges from

−∞ to +∞ and F−1
0 denotes the inverse function of F0.

A simple non-parametric estimator for R(p) is to use the empirical distribution func-

tions for F0 and F1. The resulting ROC curve is a step function and it is called the

empirical ROC curve. Another type of non-parametric estimator for R(p) is derived from

kernel smoothing methods. Kernel smoothing is most widely used mainly because it is

easy to derive and has good asymptotic and small sample properties. Kernel smoothing

has received a considerable attention in density estimation context; see, for example the

monographs of Silverman (1986) and Wand and Jones (1995). However, applications of

kernel smoothing in distribution function estimation are relatively few. Some theoretical

properties of a kernel distribution function estimator have been investigated by Nadaraya

(1964), Reiss (1981), and Azzalini (1981). Lloyd (1998) proposed a nonparametric esti-

mator of ROC by using kernel estimators for the distribution functions F0 and F1.

Lloyd and Yong (1999) showed that Lloyd’s estimator has better mean squared er-

ror properties than the empirical ROC curve estimator. However, his estimator has some

drawbacks. For example, Lloyd’s estimator is unreliable near the end points of the support

of the ROC curve due to so-called “boundary effects” that occur in nonparametric func-

tional estimation. Although there is a vast literature on boundary correction in density

estimation context, boundary effects problem in distribution function context has been

less studied.

In this paper, we develop a new kernel type estimator of the ROC curve that removes

boundary effects near the end points of the support. Our estimator is based on a new

boundary corrected kernel estimator of distribution functions and it is based on ideas of

Karunamuni and Alberts (2005a, 2005b, 2006), Zhang and Karunamuni (1998, 2000),

(Karunamuni and Zhang, 2008), and Zhang, Karunamuni, and Jones (1999) developed

for boundary correction in kernel density estimation. The basic technique of construction

of the proposed estimator is kind of a generalized reflection method involving reflecting

a transformation of the observed data. In fact, the proposed method generates a class of

boundary corrected estimators. We derive expressions for the bias and variance of the

proposed estimator. Furthermore, the proposed estimator is compared with the “classical

estimator” using simulation studies. We observe that the proposed estimator successfully

remove boundary effects and performs considerably better than the “classical estimator”.

Kernel smoothing in distribution function and ROC curve estimation is discussed in

the next section. The proposed estimator is given in Section 3. Simulation results are

given in Section 4. A real data example is analyzed in Section 5. Finally, some concluding

remarks are given in Section 6.
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2 Kernel Smoothing

2.1 Kernel ROC Estimator

Suppose that independent samples X01, . . . , X0n0 and X11, . . . , X1n1 are available from

some two unknown distributions F0 and F1, respectively, where F0 ∈ G0 and F1 ∈ G1

and G0 and G1 denote two groups of continuous distribution functions. Then a simple

nonparametric estimator of the ROC curve R(p) = 1 − F1

(
F−1

0 (1 − p)
)
, 0 < p < 1, is

known as the empirical ROC curve given by

R̃E(p) = 1 − F̃1

(
F̃−1

0 (1 − p)
)

, 0 ≤ p ≤ 1 ,

where F̃0 and F̃1 denote the empirical distribution functions of F0 and F1 based on the

data X01, . . . , X0n0 and X11, . . . , X1n1 , respectively; that is

F̃0(x) =
1

n0

n0∑

i=1

I(X0i ≤ x) , F̃1(x) =
1

n1

n1∑

i=1

I(X1i ≤ x) .

Note that R̃ is not a continuous function. In fact, it is a step function on the interval [0, 1].

This is a notable weakness of the empirical ROC curve R̃(p). Since the ROC curve is a

smooth function of p, we would expect to have an estimator that is smooth as well. Lloyd

(1998) proposed a smooth estimator using kernel smoothing techniques. His idea is to

replace unknown distribution F0 and F1 by two smooth kernel estimators. Specifically,

he employed following kernel estimators of F0 and F1:

F̂0(x) =
1

n0

n0∑

i=1

W

(
x − X0i

h0

)
, F̂1(x) =

1

n1

n1∑

i=1

W

(
x − X1i

h1

)
,

where W (x) =
∫ x

−1
K(t)dt, h0 and h1 denote bandwidths (h0 → 0 and h1 → 0 as

n0 → ∞ and n1 → ∞, respectively), and K is a unimodal symmetric density function

with support [−1, 1]. The corresponding estimator of the ROC curve R(p) is then given

by

R̂(p) = 1 − F̂1

(
F̂−1

0 (1 − p)
)

, 0 ≤ p ≤ 1 .

An example of a smooth estimate of R(p) using R̂(p) is illustrated in Figure 1.

When G0 and G1 contain distributions with finite support then the estimator R̂ exhibits

boundary effects near the endpoints of the support due to the same boundary effects that

occur in the uncorrected kernel estimators F̂0 and F̂1. The main purpose of this article

is to improve the kernel distribution estimators and thereby to avoid boundary effects of

smooth kernel ROC estimators. Details of the boundary problem with F̂0 and F̂1 are

described in the next section.

2.2 Kernel Distribution Estimator and Boundary Effects

Let f denote a continuous density function with support [0, a], 0 < a ≤ ∞, and consider

nonparametric estimation of the cumulative distribution function F of f based on a ran-

dom sample X1, . . . , Xn from f . Suppose that F (j), the j-th derivative of F , exists and is
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Figure 1: Smooth estimate of R(p).

continuous on [0, a], j = 0, 1, 2, with F (0) = F and F (1) = f . Then the traditional kernel

estimator of F is given by

F̂h,K(x) =
1

n

n∑

i=1

W

(
x − Xi

h

)
, W (x) =

∫ x

−1

K(t)dt ,

where K is a symmetric density function with support [−1, 1] and h is the bandwidth

(h → 0 as n → ∞). The basic properties of F̂h,K(x) at interior points are well-known

(e.g. Lejeune and Sarda, 1992), and under some smoothness assumptions these include,

for h ≤ x ≤ a − h,

E
(
F̂h,K(x)

)
− F (x) =

1

2
β2f

(1)(x)h2 + o(h2)

nvar
(
F̂h,K(x)

)
= F (x) (1 − F (x)) + hf(x)

∫ 1

−1

W (t) (W (t) − 1) dt + o(h) .

The performance of F̂h,K(x) at boundary points, i.e., for x ∈ [0, h)∪ (a− h, a], however,

differs from the interior points due to so-called “boundary effects” that occur in nonpara-

metric curve estimation problems. More specifically, the bias of F̂h,K(x) is of order O(h)

instead of O(h2) at boundary points, while the variance of F̂h,K(x) is of the same order.

This fact can be clearly seen by examining the behavior of F̂h,K inside the left boundary

region [0, h]. Let x be a point in the left boundary, i.e., x ∈ [0, h]. Then we can write
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x = ch, 0 ≤ c ≤ 1. The bias and variance of F̂h,K(x) at x = ch are of the form

E
(
F̂h,K(x)

)
− F (x) = hf(0)

∫
−c

−1

W (t)dt (1)

+ h2f (1)(0)

{
c2

2
+c

∫
−c

−1

W (t)dt−

∫ c

−1

tW (t)dt

}
+ o(h2)

nvar
(
F̂h,K(x)

)
= F (x)(1 − F (x)) + hf(0)

{∫ c

−1

W 2(t)dt − c

}
+ o(h) . (2)

From expression (1) it is now clear that the bias of F̂h,K(x) is of order O(h) instead of

O(h2). To remove this boundary effect in kernel distribution estimation we investigate a

new class of estimators in the next section.

3 The Proposed Estimator

In this section we propose a class of estimators of the distribution function F of the form

F̃h,K(x) =
1

n

n∑

i=1

{
W

(
x − g1(Xi)

h

)
− W

(
−

x + g2(Xi)

h

)}
, (3)

where h is the bandwidth, K is a symmetric density function with support [−1, 1], and

g1 and g2 are two transformations that need to be determined. The same type of esti-

mator in density estimation case has been discussed in Zhang et al. (1999). As in the

preceding paper, we assume that gi, i = 1, 2, are nonnegative, continuous and monoton-

ically increasing functions defined on [0,∞). Further assume that g−1
i exists, gi(0) = 0,

g
(1)
i (0) = 1, and that g

(2)
i exists and is continuous on [0,∞), where g

(j)
i denotes the j-th

derivative of gi, with g
(0)
i = gi and g−1

i denoting the inverse function of gi, i = 1, 2. We

will choose g1 and g2 such that F̃h,K(x) ≥ 0 everywhere. Note that the i-th term of the

sum in (3) can be expressed as

W

(
x − g1(Xi)

h

)
− W

(
−

x + g2(Xi)

h

)
=

∫ x+g2(Xi)

h

−x+g1(Xi)

h

K(t)dt .

The preceding integral is non-negative provided the inequality −x+g1(Xi) ≤ x+g2(Xi)
holds. Since x ≥ 0, the preceding inequality will be satisfied if g1 and g2 are such that

g1(Xi) ≤ g2(Xi) for i = 1, . . . , n. Thus we will assume that g1 and g2 are chosen such

that g1(x) ≤ g2(x) for x ∈ [0,∞) for our proposed estimator. Now, we can obtain the
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bias and variance of (3) at x = ch, 0 ≤ c ≤ 1, as

E
(
F̃h,K(x)

)
− F (x) = h2

{
f (1)(0)

(
c2

2
+ 2c

∫
−c

−1

W (t)dt −

∫ c

−c

tW (t)dt

)

−f(0)g
(2)
1 (0)

∫ c

−1

(c − t)W (t)dt (4)

−f(0)g
(2)
2 (0)

∫
−c

−1

(c + t)W (t)dt

}
+ o(h2)

nvar
(
F̃h,K(x)

)
= F (x)(1 − F (x)) + hf(0)

{∫ c

−1

W 2(t)dt

−2

∫ c

−1

W (t)W (t − 2c)dt +

∫
−c

−1

W 2(t)dt

}
+ o(h) . (5)

The proofs of (4) and (5) are given in the Appendix. Note that the contribution of g2 on

the bias vanishes as c → 1. By comparing expressions (1), (4), (2), and (5) at boundary

points we can see that the variances are of the same order and the bias of F̂h,K(x) is of

order O(h) whereas the bias of F̃h,K(x) is of order O(h2). So our proposed estimator

removes boundary effects in kernel distribution estimation since the bias at boundary

points is of the same order as the bias at interior points.

It is clear that there are various possible choices available for the pair (g1, g2). How-

ever, we will choose g1 and g2 so that the condition F̃h,K(0) = 0 will be satisfied because

of the fact that F (0) = 0. A sufficient (but not necessary) condition for the preceding

condition to be satisfied is that g1 and g2 must be equal. Thus we need to construct a sin-

gle transformation function g such that g = g1 = g2. Other important properties that are

desirable in the estimator F̂h,K are the local adaptivity (i.e., the transformation function

g depends on c) and that F̃h,K(x) being equal to the usual kernel estimator F̂h,K(x) at

interior points. For the latter, g must satisfy that g(y) → y as c → 1. In order to display

the dependance of g on c, 0 ≤ c ≤ 1, we shall denote g by gc in what follows.

Summarizing all the assumptions, it is clear now that gc should satisfy the conditions

(i) gc : [0,∞) → [0,∞), gc is continuous, monotonically increasing and g
(i)
c exists,

i = 1, 2.

(ii) g−1
c (0) = 0 and g

(1)
c (0) = 1.

(iii) gc(y) → y for c → 1.

Functions satisfying conditions (i) to (iii) are easy to construct. The trivial choice is

gc(y) = y, which represents the “classical” reflection method estimator. Based on ex-

tensive simulations, we observed that the following transformation adapts well to various

shapes of distributions:

gc(y) = y +
1

2
Icy

2 , (6)

for y ≥ 0 and 0 ≤ c ≤ 1, where Ic =
∫
−c

−1
W (t)dt.

Remark: Some discussion on the above choice of gc and other various improvements

that can be made would be appropriate here. It is possible to construct functions gc that

improve the bias further under some additional conditions. For instance, if one examines
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the right hand side of bias expansion (4) then it is not difficult to see that the terms inside

bracket (i.e., the coefficient of h2) can be made equal to zero if gc is appropriately chosen.

Indeed, if gc is chosen such that

f(0)g(2)
c (0)

{∫ c

−1

(c − t)W (t)dt +

∫
−c

−1

(c + t)W (t)dt

}

= f (1)(0)

(
c2

2
+ 2c

∫
−c

−1

W (t)dt −

∫ c

−c

tW (t)dt

)
,

then the bias of F̃h,K(x) would be theoretically of order O(h3). For such a function gc,

the second derivative at zero, g
(2)
c (0), will depend on the ratio d1 = f (1)(0)/f(0). In this

case, the function gc would probably be some cubic polynomial; see e.g. Karunamuni and

Alberts (2005a, 2005b, 2006). Then the problem of estimation of d1 naturally arises as in

the preceding paper. Another problem that one would face is that the second derivative

g
(2)
c (0) may not go to 0 when c → 1 as in the case of density estimation context. Thus

one may not be able to find any function gc which satisfies condition (iii) and hence the

estimator F̃h,K loses the property of “natural extension” to the classical estimator outside

the boundary points. These are basically the main reasons why we decided to implement

a quadratic function defined in (6) as our choice of transformation.

4 Simulation

To test the effectiveness of our estimator, we simulated its performance against the re-

flection method. The simulation is based on 1000 replications. In each replication, the

random variables X0 ∼ Exp(2) and X1 ∼ Gamma(3, 2) were generated and the estimate

of the ROC curve was computed. The probability distributions of both groups G0 and G1

are illustrated in Figure 2.

In all replications sample sizes of n0 = n1 = 50 were used. In this case, the actual

global optimal bandwidths (see Azzalini, 1981) for F0 and F1 are hF0 = 2.9149 and

hF1 = 5.8298, respectively. For the kernel estimation of the cumulative distributions we

used the quartic kernel K(x) = 15
16

(1 − x2)2I[−1,1], where IA is the indicator function on

the set A. In our experience, the quality of estimated curve by using this kernel is not

too sensitive to an optimal bandwidth choice. Hence we used this kernel also in the next

section.

For each ROC curve we have calculated the mean integrated squared error (MISE) on

the interval [0, 1] over all 1000 replications and have displayed the results in a boxplot in

Figure 3. The variance of each estimator can be accurately gauged by the whiskers of the

plot. The values of means and standard deviations for MISE of each method are given in

Table 1.

We also obtained 10 typical realizations of each estimator and displayed these in Fig-

ure 4 for comparison purposes with the theoretical ROC curve. The solid line represents

the theoretical ROC curve and the dotted lines illustrate the 10 realizations.

The final estimate of the ROC curve depends on estimates of the cumulative distribu-

tion functions F0 and F1. While boundary effects cause problems by estimating F0 and
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Figure 2: The probability distribution of groups G0 and G1.

Table 1: Means and standard deviations of the MISE.

Method Mean STD

Proposed 0.0053 0.0047

Reflection 0.0065 0.0050

Classical 0.0084 0.0054

F1 inside the left boundary region, the quality of the final estimate of the ROC can also

be influenced by these effects near the right boundary of the interval [0, 1] as well. As we

can see in Figure 4, the biggest difference between the above mentioned methods is in the

second half part of the interval [0, 1]. Table 1 describes the performance of our proposed

method with respect to the MISE. The values of the mean and the standard deviation for

the MISE were smallest in case of our proposed estimator. Although the theoretical bias

of our estimator is of the same order as in the case of the reflection method, the numerical

results of estimators of the ROC curves were better for our estimator in the simulation. In

our opinion, this is due to the fact that our estimator is locally adaptive.

5 Consumer Loans Data

In this example we used some (unspecified) scoring function to predict the solidity of a

client. The goal here is to determine which clients are able to pay their loans. We consid-

ered a test set of 332 clients; 309 paid their loans (group G0) and 22 had problems with
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Figure 3: Boxplots of the MISE over [0, 1] for our proposed method (1), the reflection

method (2), and the classical estimator with boundary effects (3).
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Figure 4: Estimates of the ROC for our proposed method (1), the reflection method (2),

and the classical estimator with boundary effects (3).

payments or did not pay (group G1). We used the ROC curve to assess the discrimination

between clients with and without a good solidity. It is of interest for us to know here if

our scoring function is a good predictor of the solidity.

Estimates of ROC are illustrated in Figure 5. The dashed line represents the estimate

obtained by our proposed method and the solid line is for the kernel ROC with boundary

effects. When choosing the optimal bandwidths for distribution function estimation, we

used the method described in Horová, Koláček, Zelinka, and El-Shaarawi (2008). A

somewhat similar method for density estimation is given in Sheather and Jones (1991).

The optimal bandwidths for distribution functions F0 and F1 were estimated as ĥF0 =
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Figure 5: The estimate of the ROC for consumer the loans data.

0.0068 and ĥF1 = 0.0286, respectively.

From the estimates of the ROC one can see that the scoring function is not a good

predictor of the solidity of a client. This fact could be also affected by the different sizes

of both groups. When group G1 is too small it causes larger boundary effects. It is clearly

visible that the estimate of the ROC obtained by the classical estimator (solid line) has

some values under the diagonal of the unit square. However, this situation does not show

up theoretically. Thus there is a larger influence of boundary effects to the quality of final

estimates of the ROC.

6 Conclusion

In this paper we proposed a new kernel-type distribution estimator to avoid the difficulties

near the boundary. The technique implemented is a kind of generalized reflection method

involving reflecting a transformation of the data. The proposed method generates a class

of boundary corrected estimators and it is based on ideas of boundary corrections for ker-

nel density estimators presented in Karunamuni and Alberts (2005a, 2005b, 2006). We

showed some good properties of our proposed method (e.g., local adaptivity). Further-

more, it is shown that bias of the proposed estimator is smaller than that of the “classical”

case.



J. Koláček and R. Karunamuni 27

Acknowledgements
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Appendix

Proof of (4). For x = ch, 0 ≤ c ≤ 1, using the property W (t) = 1 − W (−t) we obtain

E(F̃h,K(x)) = E

(
W

(
x − g1(Xi)

h

))
− E

(
W

(
−

x + g2(Xi)

h

))

=

∫
∞

0

W

(
x − g1(y)

h

)
f(y)dy −

∫
∞

0

W

(
−

x + g2(y)

h

)
f(y)dy

= h

∫ c

−1

W (t)
f

(
g−1
1 ((c − t)h)

)

g
(1)
1

(
g−1
1 ((c − t)h)

)dt − h

∫
−c

−1

W (t)
f

(
g−1
2 ((−c − t)h)

)

g
(1)
2

(
g−1
2 ((−c − t)h)

)dt

= h

∫
−c

−1

W (t)

{
f

(
g−1
1 ((c − t)h)

)

g
(1)
1

(
g−1
1 ((c − t)h)

) −
f

(
g−1
2 ((−c − t)h)

)

g
(1)
2

(
g−1
2 ((−c − t)h)

)
}

dt

+h

∫ c

−c

(1 − W (−t))
f

(
g−1
1 ((c − t)h)

)

g
(1)
1

(
g−1
1 ((c − t)h)

)dt

= h

∫
−c

−1

W (t)

{
f

(
g−1
1 ((c − t)h)

)

g
(1)
1

(
g−1
1 ((c − t)h)

) −
f

(
g−1
2 (−c − t)h)

)

g
(1)
2

(
g−1
2 ((−c − t)h)

)
}

dt

+F
(
g−1
1 (2ch)

)
− h

∫ c

−c

W (t)
f

(
g−1
1 ((c + t)h)

)

g
(1)
1

(
g−1
1 ((c + t)h)

)dt .

Using a Taylor expansion of order 2 on the function F
(
g−1
1 (·)

)
we have

F
(
g−1
1 (2ch)

)
= F (0) + f(0)2ch +

(
f (1)(0) − f(0)g

(2)
1 (0)

)
2c2h2 + o(h2) .

By the existence and continuity of F (2)(·) near 0, we obtain for x = ch

F (0) = F (x) − f(x)ch +
1

2
f (1)(x)c2h2 + o(h2)

f(x) = f(0) + f (1)(0)ch + o(h)

f (1)(x) = f (1)(0) + o(1) .

Therefore,

F
(
g−1
1 (2ch)

)
= F (x) + f(0)ch +

(
3

2
f (1)(0) − 2f(0)g

(2)
1 (0)

)
c2h2 + o(h2) . (7)

Now, (7) and a Taylor expansion of order 1 of the functions

f
(
g−1
1 (·)

)

g
(1)
1

(
g−1
1 (·)

) and
f

(
g−1
2 (·)

)

g
(1)
2

(
g−1
2 (·)

)
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give

E
(
F̃h,K(x)

)
− F (x)

= h

∫
−c

−1

W (t)
{

2f (1)(0)ch − f(0)h
(
(c − t)g

(2)
1 (0) + (c + t)g

(2)
2 (0)

)
+ o(h)

}
dt

+ f(0)ch +

{
3

2
f (1)(0) − 2f(0)g

(2)
1 (0)

}
c2h2 + o(h2)

− h

∫ c

−c

W (t)
{

f(0) +
(
f (1)(0) − f(0)g

(2)
1 (0)

)
(c + t)h + o(h)

}
dt

= h

{
f(0)c − f(0)

∫ c

−c

W (t)dt

}
+ h2

{
3

2
f (1)(0)c2 + 2f (1)(0)c

∫
−c

−1

W (t)dt

− 2f(0)g
(2)
1 (0)c2 − f(0)g

(2)
1 (0)

∫
−c

−1

(c − t)W (t)dt − f(0)g
(2)
2 (0)

∫
−c

−1

(c + t)W (t)dt

−
(
f (1)(0) − f(0)g

(2)
1 (0)

) ∫ c

−c

(c + t)W (t)dt

}
+ o(h2) .

From the symmetry of K and the definition W (x), one can write W (x) = 1
2

+ b(x),
where b(x) = −b(−x) for all x such that |x| ≤ 1. Thus

∫ c

−c
W (t)dt = c and therefore the

coefficient of h is zero. So after some algebra we obtain the bias expression as

E
(
F̃h,K(x)

)
− F (x) = h2

{
f (1)(0)

(
c2

2
+ 2c

∫
−c

−1

W (t)dt −

∫ c

−c

tW (t)dt

)

−f(0)g
(2)
1 (0)

∫ c

−1

(c − t)W (t)dt − f(0)g
(2)
2 (0)

∫
−c

−1

(c + t)W (t)dt

}
+ o(h2) .

Proof of (5). Observe that for x = ch, 0 ≤ c ≤ 1, we have

nvar
(
F̃h,K(x)

)
=

1

n
var

{
n∑

i=1

[
W

(
x − g1(Xi)

h

)
− W

(
−

x + g2(Xi)

h

)]}

= E

{
W

(
x − g1(Xi)

h

)
− W

(
−

x + g2(Xi)

h

)}2

−

{
E

[
W

(
x − g1(Xi)

h

)
− W

(
−

x + g2(Xi)

h

)]}2

= A1 − A2 ,
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where

A1 = E

{
W

(
x − g1(Xi)

h

)
− W

(
−

x + g2(Xi)

h

)}2

=

∫
∞

0

{
W

(
x − g1(y)

h

)
− W

(
−

x + g2(y)

h

)}2

f(y)dy

=

∫
∞

0

{
W 2

(
x − g1(y)

h

)
+ W 2

(
−

x + g2(y)

h

)}
f(y)dy

−

∫
∞

0

2W

(
x − g1(y)

h

)
W

(
−

x + g2(y)

h

)
f(y)dy

= h

∫
−c

−1

W 2(t)

{
f

(
g−1
1 ((c − t)h)

)

g
(1)
1

(
g−1
1 ((c − t)h)

) +
f

(
g−1
2 ((−c − t)h)

)

g
(1)
2

(
g−1
2 ((−c − t)h)

)
}

dt

+h

∫ c

−c

W 2(t)
f

(
g−1
1 ((c − t)h)

)

g
(1)
1

(
g−1
1 ((c − t)h)

)dt

−

∫
∞

0

2W

(
x − g1(y)

h

)
W

(
−

x + g2(y)

h

)
f(y)dy

= A1,1 + A1,2 − A1,3 .

Using a Taylor expansion as in the last proof, it can be shown that

A1,1 = h

∫
−c

−1

W 2(t)

{
f

(
g−1
1 ((c − t)h)

)

g
(1)
1

(
g−1
1 ((c − t)h)

) +
f

(
g−1
2 ((−c − t)h)

)

g
(1)
2

(
g−1
2 ((−c − t)h)

)
}

dt

= h

∫
−c

−1

W 2(t) (2f(0) + o(1)) dt .

For A1,2 we use the identity W (t) = 1 − W (−t) and similarly as in the last proof we get

A1,2 = h

∫ c

−c

W 2(t)
f

(
g−1
1 ((c − t)h)

)

g
(1)
1

(
g−1
1 ((c − t)h)

)dt

= h

∫ c

−c

(
1 − 2W (−t) + W 2(−t)

) f
(
g−1
1 ((c − t)h)

)

g
(1)
1

(
g−1
1 ((c − t)h)

)dt

= h

∫ c

−c

f
(
g−1
1 ((c − t)h)

)

g
(1)
1

(
g−1
1 ((c − t)h)

)dt − 2h

∫ c

−c

W (t)
f

(
g−1
1 ((c + t)h)

)

g
(1)
1

(
g−1
1 ((c + t)h)

)dt

+h

∫ c

−c

W 2(t)
f

(
g−1
1 ((c + t)h)

)

g
(1)
1

(
g−1
1 ((c + t)h)

)dt

= F
(
g−1
1 (2ch)

)
− 2h

∫ c

−c

W (t) (f(0) + o(1)) dt + h

∫ c

−c

W 2(t) (f(0) + o(1)) dt

= F (x) − f(0)ch + hf(0)

∫ c

−c

W 2(t)dt + o(h) .

Using the continuity of g
(2)
i , gi(0) = 0, and g

(1)
i (0) = 1, i = 1, 2, and by a Taylor
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expansion of order 2 on g2

(
g−1
1 (·)

)
, we have

g2

(
g−1
1 ((c − t)h)

)
= g2

(
g−1
1 (0)

)
+

g
(1)
2

(
g−1
1 (0)

)

g
(1)
1

(
g−1
1 (0)

)(c − t)h + o(h)

= (c − t)h + o(h) .

With the preceding expansion we obtain

A1,3 =

∫
∞

0

2W

(
x − g1(y)

h

)
W

(
−

x + g2(y)

h

)
f(y)dy

= 2h

∫ c

−1

W (t)W

(
−

x

h
−

g2

(
g−1
1 ((c − t)h)

)

h

)
f

(
g−1
1 ((c − t)h)

)

g
(1)
1

(
g−1
1 ((c − t)h)

)dt

= 2h

∫ c

−1

W (t)W

(
−ch − (c − t)h − o(h)

h

)
(f(0) + o(1)) dt

= 2hf(0)

∫ c

−1

W (t)W (t − 2c)dt + o(h) .

Now we can express A1 as

A1 = A1,1 + A1,2 − A1,3

= 2hf(0)

∫
−c

−1

W 2(t)dt + F (x) − f(0)ch + hf(0)

∫ c

−c

W 2(t)dt

−2hf(0)

∫ c

−1

W (t)W (t − 2c)dt + o(h)

= F (x) + hf(0)

{
2

∫
−c

−1

W 2(t)dt − c +

∫ c

−c

W 2(t)dt − 2

∫ c

−1

W (t)W (t − 2c)dt

}

+o(h) .

With the expression obtained for the bias we obtain the expression for A2 as

A2 =

{
E

[
W

(
x − g1(Xi)

h

)
− W

(
−

x + g2(Xi)

h

)]}2

=
{

E
(
F̃h,K(x)

)}2

= F 2(x) + o(h) .

Finally, we obtain the variance of the estimator as

nvar
(
F̃h,K(x)

)
= A1 − A2

= F (x) + hf(0)

{
2

∫
−c

−1

W 2(t)dt − c +

∫ c

−c

W 2(t)dt − 2

∫ c

−1

W (t)W (t − 2c)dt

}

−F 2(x) + o(h)

= F (x)(1 − F (x))

+hf(0)

{
2

∫
−c

−1

W 2(t)dt − c +

∫ c

−c

W 2(t)dt − 2

∫ c

−1

W (t)W (t − 2c)dt

}
+ o(h) .
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Abstract The problem of bandwidth selection for non-parametric kernel regression

is considered. We will follow the Nadaraya–Watson and local linear estimator espe-

cially. The circular design is assumed in this work to avoid the difficulties caused by

boundary effects. Most of bandwidth selectors are based on the residual sum of squares

(RSS). It is often observed in simulation studies that these selectors are biased toward

undersmoothing. This leads to consideration of a procedure which stabilizes the RSS

by modifying the periodogram of the observations. As a result of this procedure, we

obtain an estimation of unknown parameters of average mean square error function

(AMSE). This process is known as a plug-in method. Simulation studies suggest that

the plug-in method could have preferable properties to the classical one.

Keywords Bandwidth selection · Fourier transform · Kernel estimation ·
Nonparametric regression

1 Introduction

In nonparametric regression estimation, a critical and inevitable step is to choose

the smoothing parameter (bandwidth) to control the smoothness of the curve esti-

mate. The smoothing parameter considerably affects the features of the estimated

curve. Although in practice one can try several bandwidths and choose a bandwidth

subjectively, automatic (data-driven) selection procedures could be useful for many

situations; see Silverman (1985) for more examples.
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64 J. Koláček

Several automatic bandwidth selectors have been proposed and studied in Craven

and Wahba (1979), Härdle (1990), Härdle et al. (1988), Droge (1996), and references

given therein. It is well recognized that these bandwidth estimates are subject to large

sample variation. The kernel estimates based on the bandwidths selected by these

procedures could have very different appearances. Due to the large sample variation,

classical bandwidth selectors might not be very useful in practice.

In the simulation study of Chiu (1990), it was observed that Mallows’ criterion gives

smaller bandwidths more frequently than predicted by the asymptotic theorems. Chiu

(1990) provided an explanation for the cause and suggested a procedure to overcome

the difficulty. By applying the procedure, we introduce a new method for bandwidth

selection which gives much more stable bandwidth estimates.

2 Kernel regression

Consider a standard regression model of the form

Yt = m(xt ) + εt , t = 0, . . . , T − 1, T ∈ N,

where m is an unknown regression function, xt are design points, Yt are measurements

and εt are independent random variables for which

E(εt ) = 0, var(εt ) = σ 2 > 0, t = 0, . . . , T − 1.

The aim of kernel smoothing is to find suitable approximation m̂ of the unknown

function m.

In next we will assume

1. The design points xt are equidistantly distributed on the interval [0, 1], that is

xt = t/T, t = 0, . . . , T − 1.

2. We use a “cyclic design”, that is, suppose m(x) is a smooth periodic function and

the estimate is obtained by applying the kernel on the extended series Ỹt , where

Ỹt+kT = Yt for k ∈ Z. Similarly xt = t/T , t ∈ Z.

Lip[a, b] denotes the class of continuous functions satisfying the inequality

|g(x) − g(y)| ≤ L|x − y| ∀x, y ∈ [a, b], L > 0, L is a constant.

Definition Let κ be a nonnegative even integer and assume κ ≥ 2. The function

K ∈ Lip[−1, 1], support(K ) = [−1, 1], satisfying the following conditions

(i) K (−1) = K (1) = 0

(ii)
1∫

−1

x j K (x)dx =

⎧
⎨
⎩

0, 0 < j < κ

1, j = 0

βκ �= 0, j = κ,

is called a kernel of order κ and a class of all these kernels is marked S0κ .

These kernels are used for an estimation of the regression function (see Wand and

Jones 1995).
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Plug-in method for nonparametric regression 65

Let K ∈ S0κ , set Kh(.) = 1
h

K ( .
h
), h ∈ (0, 1). A parameter h is called a bandwidth.

Commonly used non-parametric methods for estimating m(x) are the kernel esti-

mators

1. Nadaraya–Watson estimator (Nadaraya 1964; Watson 1964)

m̂ N W (x; h) =
∑2T −1

k=−T Kh(xk − x)Ỹk∑2T −1
k=−T Kh(xk − x)

2. Local linear estimator (Stone 1977; Cleveland 1979)

m̂L L(x; h) = 1

T

2T −1∑

k=−T

{ŝ2(x; h) − ŝ1(x; h)(xk − x)}Kh(xk − x)Ỹk

ŝ2(x; h)ŝ0(x; h) − ŝ1(x; h)2

where

ŝr (x; h) = 1

T

2T −1∑

k=−T

(xk − x)r Kh(xk − x).

In the cyclic design, the kernel estimators can be generally expressed as

m̂(x; h) =
2T −1∑

k=−T

W
( j)

k (x)Ỹk,

where the weights W
( j)

k (x), j ∈ {N W, L L} correspond to the weights of estimators

m̂ N W , m̂L L . The assumption of the circular model leads to the fact, that the weights

of Nadaraya–Watson and local linear estimator are identical at design points, that is

W
(L L)
k (xt ) = W

(N W )
k (xt ),

for k ∈ {−T,−T − 1, . . . , 2T − 1}, t ∈ {0, 1, . . . , T − 1}, so in next, we will write

only Wk(xt ) without upper index.

Let K ∈ S0κ , h ∈ (0, 1), t ∈ {0, . . . , T −1}. Then the sum
∑2T −1

k=−T Kh(xk − xt ) =∑T −1
k=−T +1 Kh(xk) is independent on t . Set CT :=

∑T −1
k=−T +1 Kh(xk). We can simply

write the value of weight functions at design points xt , t = 0, . . . , T − 1

Wk(xt ) = 1

CT

Kh(xk − xt ).

The optimal bandwidth considered here is hopt, the minimizer of the average mean

squared error

(AM SE) RT (h) = 1

T
E

T −1∑

t=0

{m(xt ) − m̂(xt ; h)}2.
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66 J. Koláček

Let K ∈ S0κ . Under some mild conditions, AM SE converges to

RT (h) = σ 2V (K )

T h
+ h2κ

(κ!)2
β2

κ Aκ , (1)

where

V (K ) =
1∫

−1

K 2(x)dx, βκ =
1∫

−1

xκ K (x)dx, Aκ =
1∫

0

(
m(κ)(x)

)2
dx .

This function has an unique minimum hopt

hopt =
(

σ 2V (K )(κ!)2

2κTβ2
κ Aκ

) 1
2κ+1

(2)

(for more details, see Wand and Jones 1995).

There exist many estimators of this error function, which are asymptotically equiv-

alent and asymptotically unbiased (see Härdle 1990; Chiu 1990, 1991). However, in

simulation studies, it is often observed that most selectors are biased toward unders-

moothing and give smaller bandwidths more frequently than predicted by asymptotic

results. Most bandwidth selectors are based on the residual sum of squares

(RSS) RSST (h) = 1

T

T −1∑

t=0

{Yt − m̂(xt ; h)}2.

For example Rice (see Rice 1984) considered

R̂T (h) = RSST (h) − σ̂ 2 + 2σ̂ 2w0, (3)

where σ̂ 2 is an estimate of σ 2

σ̂ 2 = 1

2T − 2

T −1∑

t=1

(Yt − Yt−1)
2. (4)

The estimate ĥopt of optimal bandwidth is defined as

ĥopt = arg min R̂T (h).

3 Use of Fourier transformation

Let Mt = m(xt ), t = 0, . . . , T − 1. The periodogram of the vector of observations

YYY is defined by IYλ

IYλ
= |Y −

λ |2/2πT,
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where

Y −
λ =

T −1∑

k=0

Yke− i2πkλ
T

is the finite Fourier transform of the vector YYY . This transformation is denoted by

YYY − = DFT −(YYY ).

The periodograms and Fourier transforms of the series εεε and MMM are defined sim-

ilarly. Under mild conditions, the periodogram ordinates Iεt on Fourier frequencies
2π t
T

, for t = 1, . . . , N =
[

T −1
2

]
, are approximately independently and exponentially

distributed with means σ 2

2π
. Here [x] means the greatest integer less or equal to x .

Definition Let xxx = (x0, . . . , xT −1), yyy = (y0, . . . , yT −1) ∈ C
T ;

zt =
T −1∑

k=0

x〈t−k〉T
yk,

where 〈t − k〉T marks (t − k)mod T . Then zzz = (z0, . . . , zT −1) is called the discrete

cyclic convolution of vectors xxx and yyy; we write zzz = xxx ⊛ yyy.

Let us define a vector www := (w0, w1, . . . , wT −1), where

wt = W0(xt − 1) + W0(xt ) + W0(xt + 1).

Let h ∈ (0, 1), K ∈ S0κ , t ∈ {0, . . . , T − 1}. Then we can write m̂(xt ; h) as a discrete

cyclic convolution of vectors www and YYY .

m̂(xt ; h) =
T −1∑

k=0

w〈t−k〉T
Yk . (5)

Applying Parseval’s formula yields

RSST (h) = 4π

T

N∑

t=1

IYt

{
1 − w−

t

}2
, (6)

where w−
t =

∑T −1
k=−T +1 W0(xk)e

− i2πkt
T is the finite Fourier transform of www (see Chiu

1990, for details). From (3) and (6) we arrive at the equivalent expression for R̂T (h)

R̂T (h) = 4π

T

N∑

t=1

IYt {1 − w−
t }2 − σ̂ 2 + 2σ̂ 2w0. (7)
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Similarly,

RT (h) = 4π

T

N∑

t=1

{
IMt + σ 2

2π

}
{1 − w−

t }2 − σ 2 + 2σ 2w0. (8)

4 The motivation and the plug-in method

Let D(h) = R̂T (h) − RT (h). From previous expressions we obtain

D(h) = 4π

T

N∑

t=1

{
IYt − IMt − σ 2

2π

}
{1 − w−

t }2. (9)

The periodogram ordinates IMt decrease rapidly for smooth m(x). So IYt do not con-

tain much information about IMt at high frequencies (for the rigorous proof see Rice

1984). This leads to the consideration of the procedure proposed by Chiu (1991). The

main idea is to modify RSS to make it less variable. We find the first index J1 such

that IYJ1
< cσ̂ 2/2π for some constant c > 1, where σ̂ 2 is an estimate of σ 2. The

constant c sets a threshold. In our experience, setting 1 < c < 3 yields good results.

The modified residual sum of squares is defined by

MRSST (h) = 2π

T

T −1∑

t=0

ĨYt {1 − w−
t }2,

where

ĨYt =
{

IYt , t < J1

σ̂ 2/2π, t ≥ J1,

(see Figs. 1, 2).

Thus, the proposed selector is

R̃T (h) = MRSST (h) − σ̂ 2 + 2σ̂ 2w0 (10)

and the new estimate of optimal bandwidth

ĥopt = arg min R̃T (h)

[for more details see Chiu (1990, 1991)].

To simplify the discussion below, set c = 2 and rewrite (10) to the formula in next

lemma.

Lemma 1 Let J1 be the least index, that IYJ1
< σ̂ 2/πT . Then

R̃T (h) = σ̂ 2

T

T −1∑

t=0

(w−
t )2 + 4π

T

J1−1∑

t=1

{
IYt − σ̂ 2

2π

}
{1 − w−

t }2.

123



Plug-in method for nonparametric regression 69

a

0 5 10 15 20 25 30 35 40
0

0.02

0.06

0.08

0.1

0.12

0.14

0.16

Fig. 1 The periodogram ordinates IYt as a function of t , a = 2 σ̂2

2π
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Fig. 2 The modified periodogram ordinates ĨYt as a function of t , a = 2 σ̂2

2π
, b = σ̂2

2π

The main idea of plug-in method is to estimate unknown parameters σ 2 and Aκ in the

expression (2) for the optimal bandwidth hopt, which is the minimum of RT (h)

RT (h) = σ 2V (K )

T h
+ h2κ

(κ!)2
β2

κ Aκ .

As an estimate of σ 2 we can use (4), but for Aκ the situation is more complicated. From

the previous considerations we can replace the error function RT (h) by the selector

R̃T (h) expressed in Lemma 1. If we compare these two error functions, we arrive at

results described in next theorems.

Theorem 1 Let www− be the discrete Fourier transformation of vector www. Then it holds

T −1∑

t=0

(w−
t )2 = 1

h
V (K ) + O(T −1). (11)
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The previous theorem implies that the first term of R̃T (h) estimates the first term of

RT (h), that is

σ̂ 2

T

T −1∑

t=0

(w−
t )2 = σ 2V (K )

T h
+ O(T −2).

In next, we will compare the second terms in these error functions to obtain an estimator

for Aκ .

Let ε > 0, h ∈ (0, 1), set J2 the last index from {0, . . . , T − 1} for which

J2 ≤
κ+1
√

ε(κ + 1)!
2πh

.

Let’s remark that the parameter ε is an error of Taylor’s approximation used in the

proof of Theorem 2 and the parameter h is some “starting" approximation of hopt.

In our experience, setting ε = 10−3 and h = κ
T

yields good results. In next we will

request both conditions for indexes J1 and J2 hold at the same time, so we will define

the index J

J = min{J1, J2 + 1}. (12)

Theorem 2 Let J be the index defined by (12). Then for all j ∈ N, 1 ≤ j ≤ J − 1, it

holds
1

(2π j)κ
(1 − w−

j ) = (−1)
κ
2 +1 hκ

κ! βκ + c + O(T −1), (13)

where c is a constant satisfying |c| < ε.

By using the result of this theorem we can deduce the estimator of unknown param-

eter Aκ .

Definition Let J be the index defined by (12). Then the estimator of the parameter

Aκ is of the form

Âκ = 4π

T

J−1∑

j=1

(2π j)2κ

{
IY j

− σ̂ 2

2π

}
.

So we can estimate the error function (1)

R̂T (h) = σ̂ 2V (K )

T h
+ h2κ

(κ!)2
β2

κ Âκ , (14)

and its minimum

ĥopt =
(

σ̂ 2V (K )(κ!)2

2κTβ2
κ Âκ

) 1
2κ+1

. (15)
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Table 1 Kernels of class S0κ κ K (x)

2 − 3
4 (x2 − 1)

4 15
32 (x2 − 1)(7x2 − 3)

6 − 105
256

(x2 − 1)(33x4 − 30x2 + 5)

Table 2 Summary of sample means and standard deviations of bandwidth estimates

κ = 2; hopt = 0.1374 κ = 4; hopt = 0.3521 κ = 6; hopt = 0.5783

E(ĥopt) std(ĥopt) E(ĥopt) std(ĥopt) E(ĥopt) std(ĥopt)

Rice 0.1269 0.0402 0.3354 0.0938 0.4432 0.1078

Plug-in 0.1383 0.0074 0.3422 0.0348 0.5604 0.0623

The parameter ĥopt given by (15) is the estimator of the theoretical optimal bandwidth

hopt obtained by plug-in method. We would like to point out the computational aspect

of the plug-in method. It has preferable properties to classical methods, because there

is no problem of minimization of any error function. Also the sample size necessary

to compute the estimation is far less than for classical methods. On the other side, a

small disadvantage could be the fact, that we need some “starting” approximation of

unknown parameter h.

5 A simulation study

We carried out a small simulation study to compare the performance of the bandwidth

estimates. The observations, Yt , for t = 0, . . . , T − 1 = 74, were obtained by adding

independent Gaussian random variables with mean zero and variance σ 2 = 0.2 to the

function

m(x) = sin(2πx).

Table 1 describes kernels used in our simulation study. The theoretical optimal band-

width (see Wand and Jones 1995; Koláček 2005) for these cases are given in Table 2.

Two hundred series were generated. Table 2 summarizes the sample means and

the sample standard deviations of bandwidth estimates, E(ĥ) is the average of all 200

values and std(ĥ) is their standard deviation.

Figure 3 illustrates the histogram of results of all 200 experiments for κ = 2.

As we can see, the standard deviation of all results obtained by plug-in method is

less than the value of case of Rice’s selector and also the mean of these results is closer

to theoretical optimal bandwidth.
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Fig. 3 The histogram of results of all 200 experiments obtained by Rice’s selector (grey) and by plug-in

method (black)

6 Examples

In this section, we will solve some practical examples. We used the data from Eurostat1

and followed the count of marriages in Austria and Switzerland in May in 1950–2003.

We transformed the data to the interval [0, 1] and used two selectors to get the optimal

bandwidth. Firstly, we found the optimal bandwidth by the Rice’s selector R̂T (h),

which is the classical bandwidth selector. Then we used our proposed selector R̂T (h).

We made estimations of the regression function with both bandwidths by using the

kernel of order (0, 4)

K (x) =
{

15
16

( 7
2

x4 − 5x2 + 3
2
), |x | ≤ 1

0, |x | > 1.

We used Nadaraya–Watson estimator to obtain final result.

1 see http://epp.eurostat.cec.eu.int.
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Fig. 4 Estimation of the regression function (solid line). The parameter h = 0.0740 was found by Rice’s

selector R̂T (h)
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Fig. 5 Estimation of the regression function (solid line). The parameter h = 0.2180 was found by plug-in

method R̂T (h)

Marriages in Switzerland

In this example we followed the count of marriages in Switzerland in May in 1950–

2003.

In this case, the bandwidth obtained by Rice’s selector is too small and the final

curve is undersmoothed (Figs. 4, 5).

Marriages in Austria

In this example we followed the count of marriages in Austria in May in 1950–2003.

In this case, we think that the value of the bandwidth obtained by Rice’s selector is

too large and the final curve is oversmoothed (Figs. 6, 7). If we compare results of both

examples we can see, that the plug-in method is more stable then the classical one.

7 Conclusion

The problem of bandwidth selection for non-parametric kernel regression is consid-

ered. In many studies, there was often observed that classical methods give smaller
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Fig. 6 Estimation of the regression function (solid line). The parameter h = 0.4084 was found by Rice’s

selector R̂T (h)
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Fig. 7 Estimation of the regression function (solid line). The parameter h = 0.2945 was found by plug-in

method R̂T (h)

bandwidths more frequently than predicted by the asymptotic theorems. Chiu (1990)

provided an explanation for the cause and suggested a procedure to overcome the diffi-

culty. By applying the procedure, we introduced a new approach to estimate unknown

parameters of average mean square error function (AMSE) (this process is known as a

plug-in method). Let us remark that Chiu’s procedure was proposed for Pristley–Chao

estimator and for a special class of symmetric probability density functions from S02

as kernels. We followed the Nadaraya–Watson and local-linear estimator especially

and extended the procedure to these estimators. It was shown they are identical in

circular model (see Koláček 2005). In this paper, this approach has been generalized

for kernels from the class S0κ , κ even. The main result of this work is in Theorem 2 and

in the resulting definition, where the unknown parameter Aκ is estimated. Simulation

study and practical examples suggest that our proposed method could have preferable

properties to the classical one.

We remark that the proposed method is developed for a rather limited case: circular

design and equally spaced design points. Further research is required for more general

situations.
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8 Appendix

Lemma 1 Let J1 be the least index, that IYJ1
< σ̂ 2/πT . Then

R̃T (h) = σ̂ 2

T

T −1∑

t=0

(w−
t )2 + 4π

T

J1−1∑

t=1

{
IYt − σ̂ 2

2π

}
{1 − w−

t }2.

Proof

R̃T (h) = 4π

T

N∑

t=1

ĨYt {1 − w−
t }2 − σ̂ 2 + 2σ̂ 2w0

= 4π

T

J1−1∑

t=1

IYt {1 − w−
t }2 + 4π

T

N∑

t=J1

σ̂ 2

2π
{1 − w−

t }2 − σ̂ 2 + 2σ̂ 2w0

= 4π

T

J1−1∑

t=1

{
IYt − σ̂ 2

2π

}
{1 − w−

t }2 + σ̂ 2

T

T −1∑

t=0

{1 − w−
t }2 − σ̂ 2 + 2σ̂ 2w0

= 4π

T

J1−1∑

t=1

{
IYt − σ̂ 2

2π

}
{1 − w−

t }2 + σ̂ 2

T

(
T − 2T w0 +

T −1∑

t=0

(w−
t )2

)

− σ̂ 2 + 2σ̂ 2w0

= 4π

T

J1−1∑

t=1

{
IYt − σ̂ 2

2π

}
{1 − w−

t }2 + σ̂ 2

T

T −1∑

t=0

(w−
t )2.

Lemma 2 Let t ∈ {0, . . . , T − 1}, then

W0(xt ) = 1

T
Kh(xt ) + O(T −2).

Proof

W0(xt ) = 1

T CT

Kh(xt ),

where

CT = 1

T

T −1∑

k=−T +1

Kh(xk).

We can express this constant in another way

CT =
1∫

−1

K (x)dx + O(T −1) = 1 + O(T −1)
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and after substitution we arrive at the result

W0(xt ) = 1

T (1 + O(T −1))
Kh(xt ) = 1

T
Kh(xt ) + O(T −2).

Theorem 1 Let www− be the discrete Fourier transformation of vector www. Then it holds

T −1∑

t=0

(w−
t )2 = 1

h
V (K ) + O(T −1).

Proof

T −1∑

t=0

(w−
t )2 =

T −1∑

t=0

|w−
t |2 =

T −1∑

t=0

w−
t w−

t

=
T −1∑

t=0

T −1∑

j=−T +1

T −1∑

k=−T +1

W0(x j )W0(xk)e
i2π(k− j)t

T

=
T −1∑

j=−T +1

T −1∑

k=−T +1

W0(x j )W0(xk)

T −1∑

t=0

e
i2π(k− j)t

T

= T

T −1∑

k=−T +1

W 2
0 (xk) =

T −1∑

k=−T +1

1

T
K 2

h (xk) + O(T −1)

=
1∫

−1

K 2
h (u)du + O(T −1) = 1

h

1∫

−1

K 2(x)dx + O(T −1).

Theorem 2 Let J be the index defined by (12). Then for all j ∈ N, 1 ≤ j ≤ J − 1, it

holds
1

(2π j)κ
(1 − w−

j ) = (−1)
κ
2 +1 hκ

κ! βκ + c + O(T −1), (16)

where c is a constant satisfying |c| < ε.

Proof

1

(2π j)κ
(1 − w−

j ) = 1

(2π j)κ

{
1 − 2

T −1∑

t=0

W0(xt ) cos

(
2π t j

T

)}

= 1

(2π j)κ

{
1 − 2

T −1∑

t=0

1

T
Kh(xt ) cos

(
2π t j

T

)}
+ O(T −1)
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= 1

(2π j)κ

⎧
⎨
⎩1 − 2

1∫

0

Kh(u) cos(2π ju)du

⎫
⎬
⎭ + O(T −1)

= 1

(2π j)κ

⎧
⎨
⎩

1∫

−1

Kh(u)du −
1∫

−1

Kh(u) cos(2π ju)du

⎫
⎬
⎭ + O(T −1)

= 1

(2π j)κ

1∫

−1

{1 − cos(2π ju)}Kh(u)du + O(T −1).

We can replace the function 1 − cos(2π ju) by Taylor’s polynomial of degree κ . Let

Rκ is an error of this approximation

1

(2π j)κ
(1 − w−

j ) = 1

(2π j)κ

1∫

−1

{
(2π ju)2

2
− (2π ju)4

24
+ · · · + (−1)

κ
2 +1(2π ju)κ

κ!

}

×Kh(u)du + Rκ

(2π j)κ
+ O(T −1)

= (−1)
κ
2 +1

κ!

1∫

−1

uκ Kh(u)du + Rκ

(2π j)κ
+ O(T −1)

= (−1)
κ
2 +1 hκ

κ!

1∫

−1

xκ K (x)dx + Rκ

(2π j)κ
+ O(T −1).

The last two terms are negligible, because O(T −1) tends to zero with T → ∞ and

from the assumptions for index j holds

∣∣∣ Rκ

(2π j)κ

∣∣∣ ≤ ε
(2π)κ

for any ε > 0.
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Kernel Smoothing
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Abstract: The problem of boundary effects for nonparametric kernel regres-

sion is considered. We will follow the problem of bandwidth selection for

Gasser-Müller estimator especially. There are two ways to avoid the difficul-

ties caused by boundary effects in this work. The first one is to assume the

circular design. This idea is effective for smooth periodic regression func-

tions mainly. The second presented method is reflection method for kernel of

the second order. The reflection method has an influence on the estimate out-

side edge points. The method of penalizing functions is used as a bandwidth

selector. This work compares both techniques in a simulation study.

Keywords: Bandwidth Selection, Kernel Estimation, Nonparametric Regres-

sion.

1 Basic Terms and Definitions

Consider a standard regression model of the form

Yi = m(xi) + εi , i = 1, . . . , n , n ∈ N ,

where m is an unknown regression function, xi are design points, Yi are measurements

and εi are independent random variables for which

E(εi) = 0 , var(εi) = σ2 > 0 , i = 0, . . . , n .

The aim of kernel smoothing is to find suitable approximation m̂ of an unknown function

m.

In next we will assume the design points xi are equidistantly distributed on the interval

[0, 1], that is xi = (i − 1)/n, i = 1, . . . , n.

Lip[a, b] denotes the class of continuous functions satisfying the inequality

|g(x) − g(y)| ≤ L|x − y| , ∀x, y ∈ [a, b] , L > 0 , L is a constant.

Definition. Let κ be a nonnegative even integer and assume κ ≥ 2. The function K ∈
Lip[−1, 1], support(K) = [−1, 1], satisfying the following conditions

1. K(−1) = K(1) = 0

2.
∫ 1

−1
xjK(x) dx =





0, 0 < j < κ
1, j = 0
βκ 6= 0, j = κ,

is called a kernel of order κ and a class of all these kernels is marked S0κ. These kernels

are used for an estimation of the regression function (see Wand and Jones, 1995). Let

K ∈ S0κ, set Kh(·) = 1
h
K( ·

h
), h ∈ (0, 1). A parameter h is called a bandwidth.

1Supported by the GACR: 402/04/1308
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2 Kernel Estimation of the Regression Function

Commonly used non-parametric methods for estimating m(x) are the kernel estimators

Gasser–Müller estimators (1979)

m̂GM(x; h) =
n∑

i=1

Yi

∫ si

si−1

Kh(t − x) dt ,

where

si =
xi + xi+1

2
, i = 1, . . . , n − 1 , s0 = 0 , sn = 1 .

The kernel estimators can be generally expressed as

m̂(x; h) =
n∑

i=1

Wi(x)Yi ,

where the weights Wi(x) correspond to the weights of the estimators m̂GM .

The quality of the estimated curve is affected by the smoothing parameter h, which is

called a bandwidth. The optimal bandwidth considered here is hopt, the minimizer of the

average mean squared error

(AMSE) Rn(h) =
1

n
E

n∑

i=1

(m(xi) − m̂(xi; h))2 .

Let K ∈ S0κ. There exist many estimators of this error function, which are asymptotically

equivalent and asymptotically unbiased (see Chiu, 1991, 1990; Härdle, 1990). Most of

them are based on the residual sum of squares

(RSS) RSSn(h) =
1

n

n∑

i=1

[Yi − m̂(xi; h)]2 .

We will use the method of penalizing functions (see Koláček, 2005, 2002) for choosing

the smoothing parameter. So the prediction error RSSn(h) is adjusted by some penalizing

function Ξ(n−1Wi(xi)), that is, modified to

R̂n(h) =
1

n

n∑

i=1

[m̂(xi; h) − Yi]
2 · Ξ(n−1Wi(xi)) .

The reason for this adjustment is that the correction function Ξ(n−1Wi(xi)) penalizes

values of h too low. For example Rice (see Rice, 1984) considered

ΞR(u) =
1

1 − 2u
.

This penalizing function will be used.
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Figure 1: Demonstration of boundary effects.

3 Boundary Effects

In the finite sample situation, the quality of the estimate in the boundary region [0, h] ∪
[1− h, 1] is affected since the effective window is [x− h, x + h] 6⊂ [0, 1] so, that the finite

equivalent of the moment conditions on the kernel function does not apply any more.

There are several methods to avoid the difficulties caused by boundary effects.

3.1 Cyclic Model

One of possible ways to solve problem of boundary effects is to use a cyclic design. That

is, suppose m(x) is a smooth periodic function and the estimate is obtained by applying

the kernel on the extended series Ỹi, where Ỹi+kn = Yi for k ∈ Z. Similarly xi = (i−1)/n,

i ∈ Z.

In the cyclic design, the kernel estimators can be generally expressed as

m̂(x; h) =
2n∑

i=−n+1

Wi(x)Ỹi ,

where the weights Wi(x) correspond to the weights of estimators m̂GM

Wi(x) =

∫ si

si−1

Kh(t − x)dt,

where

si =
xi + xi+1

2
, i = −n + 1, . . . , 2n − 1 , s−n = −1 , s2n = 2 .
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Let us define a vector www := (w1, . . . , wn), where

wi = W1(xi − 1) + W1(xi) + W1(xi + 1) .

Let h ∈ (0, 1), K ∈ S0κ, i ∈ {1, . . . , n}. Then we can write m̂(xi; h) as a discrete cyclic

convolution of vectors www and YYY .

m̂(xi; h) =
n∑

k=1

w<i−k>n
Yk , (1)

where < i − k >n marks (i − k)mod n. We write

m̂̂m̂m = www ⊛ YYY ,

where m̂̂m̂m = (m̂(x1; h), . . . , m̂(xn; h)).
As the bandwidth selector the method of Rice’s penalizing function will be used. In

the case of cyclic model, we can simplify the error function R̂n(h), because the weights

Wi(xi) are independent on i. Set

I(h) :=

∫ 1/2n

−1/2n

Kh(x)dx .

Then we can express R̂n(h) as

R̂n(h) =
n

n − 2 I(h)
RSSn(h) (2)

and the estimate ĥopt of optimal bandwidth is defined as

ĥopt = arg min
h∈(0,1)

R̂T (h) .

3.2 Reflection Technique

Let’s have observations (xi, Yi), i = 1, . . . , n, regression model described in Section 1

and design points xi ∈ [0, 1] such that

0 = a ≤ x1 ≤ · · · ≤ xn ≤ b = 1 .

Now, technique for design points reflection will be discussed. We may begin by estimating

the function m at edge points a and b with corresponding bandwidth for these points, ha

and hb, and edge kernels KL, KR ∈ S02:

m̂(a) =
1

ha

n∑

i=1

Yi

∫ si

si−1

KL

(
a − u

ha

)
du ,

m̂(b) =
1

hb

n∑

i=1

Yi

∫ si

si−1

KR

(
b − u

hb

)
du .
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For the bandwidth choice ha, hb and the edge kernels KL, KR for m̂(a), m̂(b) see Poměnková

(2005). Further data reflection will be made. We proceed from original data set (xi, Yi),
i = 1, . . . , n. For obtaining left mirrors point (a, m̂(a)) and following relations

xLi = 2a − xi ,

YLi = 2m̂(a) − Yi

are used. For obtaining right mirrors point (b, m̂(b)) and following relations

xRi = 2b − xn−i+1 ,

YRi = 2m̂(b) − Yn−i+1

are used. Then original data set (xi, Yi) is connected with left mirrors (xLi, YLi) and with

right mirrors (xRi, YRi). By this connection new data set which is called pseudodata and

denoted as (xj, Y j), j = 1, . . . , 3n.

How to find the bandwidth for an estimate on pseudodata at the design points will

be in next. Finally, the function m in design points including points a and b using the

pseudodata is estimated.

Let K ∈ S02 be a symmetric second-order kernel with support [−1, 1]. The final

estimate of function m̂ at points of plan xi, i = 0, . . . , n + 1, where x0 = a, xn+1 = b on

pseudodata xj , j = 1, . . . , 3n, with kernel K and bandwidth h is defined

m̂(x) =
1

h

3n∑

j=1

Y j

∫ sj

sj−1

K

(
x − u

h

)
du ,

where

sj =
xi + xi+1

2
, j = 1, . . . , 3n − 1 , s0 = −1 , s3n = 2 .

Bandwidth selection for pseudodata

In this part an estimate of the bandwidth for pseudodata will be searched. Note that

estimates at edge points m̂(a), m̂(b) are functions of h. Therefore, for any chosen value

h ∈ H = [1/n, 2] values m̂(a), m̂(b) have to be enumerated, then data reflection is made

and pseudodata are obtained. Hereafter, on this pseudodata minimum of the function is

searched.

To find value h using a Rice penalization function is proposed. Consider pseudodata

(xj, Y j), j = 1, . . . , 3n, x̄j ∈ [−1, 2], m̂(x) defined as above. Then

R̂n(h) =
1

n

n∑

i=1

[m̂(xi; h) − Yi]
2 ·

1

1 − 2xi

.

The resulting bandwidth h = ĥopt is the value h that corresponds to the minimum of the

function R̂n(h), i.e.

ĥopt = arg min
h∈H

R̂n(h) . (3)
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4 A Simulation Study

We carried out a small simulation study to compare the performance of the bandwidth es-

timates. The observations Yi, for i = 1, . . . , n = 75, were obtained by adding independent

Gaussian random variables with mean zero and variance σ2 = 0.2 to the function

m(x) = cos(9x − 7) − (3 + x12)/6 + 8x−1 .

We made estimations of the regression function by using the kernel of order 2

K(x) =

{
−3

4
(x2 − 1), |x| ≤ 1

0, |x| > 1 .

In this case, there was selected ĥ = 0.0367 by using an estimate without any elimination

of boundary effects (Figure 2). At the second, there was selected ĥ = 0.0867 by using

the method of cyclic model (Figure 3) and at the third, there was selected ĥ = 0.2036 by

using the reflection method (Figure 4).

From the figures it can be seen that both, cyclic model and reflection method, are very

useful for removing problems caused by boundary effects.

5 A Practical Example

We carried out a short real application to compare the performance of the bandwidth

estimates. The observations Yi, for i = 1, . . . , n = 230, were average spring temperatures

measured in Prague between 1771 – 2000. The data were obtained from Department of

Geography, Masaryk University. We made estimations of the regression function by using

the kernel of order 2

K(x) =

{
−3

4
(x2 − 1), |x| ≤ 1

0, |x| > 1 .

In this case, there was selected ĥ = 0.0671 by using an estimate without any elimination

of boundary effects (Figure 5). At the second, there was selected ĥ = 0.0671 by using

the method of cyclic model (Figure 6) and at the third, there was selected ĥ = 0.2211 by

using the reflection method (Figure 7). These figures show that both, cyclic model and

reflection method, are very useful for removing problems caused by boundary effects.
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Figure 2: Graph of smoothness function with bandwidth h = 0.0367, the real regression

function m, an estimate of m.
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Figure 3: Graph of smoothness function with bandwidth h = 0.0867, the real regression

function m, an estimate of m.
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function m an estimate of m.
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Figure 5: Graph of smoothness function with bandwidth h = 0.0671, an estimate of m.
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Figure 6: Graph of smoothness function with bandwidth h = 0.0671, an estimate of m.
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Figure 7: Graph of smoothness function with bandwidth h = 0.2211, an estimate of m.
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Jan Koláček, Jitka Pomněnková
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