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Commentary:

The habilitation thesis deals with applications of nonlinear dynamics and
related phenomena in various fields of science. It presents both the basic
types of bifurcations of equilibria and cycles that are common in applica-
tion due to their wide range of existence in nature and advanced types of
local and non-local bifurcations of equilibria, cycles and tori that are more
complex and may lead even to an unpredictable dynamics. Typical non-
linear phenomena are the disappearance of equilibria and cycle, bistability
in the broader sense of more attractors coexistence, hysteresis phenomena,
cycle and tori births, and breaks that correspond to system destabilization
mechanisms that may lead to abrupt regime shifts analogously to hysteresis.
Moreover, we discuss the synchronization phenomenon as well as chaotic
dynamics and routes to chaos.

The attached or linked published articles show applications of bifurca-
tion theory on specific models to explain dynamical phenomena and their
consequences. These original articles have my full or significant authorship.
For the paper [22] published with co-author Robert Mař́ık as a correspond-
ing author, I made the bifurcation analysis related to the generalized Hopf
bifurcation. For other articles where I am not the corresponding and lead
author, these are articles published in collaboration with my students where
I am a co-author and supervisor. The last published paper [11] in Nonlinear
Dynamics appeared online in September 2022 and includes results made in
collaboration with André Botha from the University of South Africa, a spe-
cialist on Josephson junctions. The idea of embedding near the Hopf-Hopf
bifurcation is mine. We wrote the text equally.

The approach to the description of nonlinear phenomena using bifurca-
tion theory is presented in five chapters, which end with a summary of the
author’s contributions to published scientific papers. Chapter 6, Collection
of author’s published articles concerning nonlinear phenomena, describes
and includes all papers that are relevant to the habilitation thesis. The
Appendix is only supplementary part of the habilitation thesis1.

In all papers relevant to the habilitation thesis, nonlinear phenomena
related to equilibria bifurcations are included. The analysis of local bi-
furcations of equilibria usually precedes a more advanced analysis of the
dynamical system. Nevertheless, in some cases, it is very substantial it-
self, either in terms of hysteresis and bistability or loss of stability. The

1I include it because I consider this application of dynamical systems modelling rele-
vant in the last three years, given my position as the head of the Analysis Group of the
National Institute for Pandemic Control and given the number of my publications and
other scientific activities during the period of the covid-19 pandemic.
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hysteresis phenomenon studied in [27] is related to the mechanism of a trait-
dependent cycle in an eco-evolutionary slow-fast system. Another interest-
ing analysis of a biochemical model of hematopoietic stem cells provided in
[29] connected a pitchfork bifurcation and its symmetry breaking with the
differentiation of erythroid and myeloid cell types from the priming stage
through a biochemical switch.

In the field of applied nonlinear phenomena in population biology I
made some significant results in predator-prey models with predator infer-
ence [28] or foraging facilitation [30]. Both papers study complex dynamics
of predator-prey systems with a generalized family of encounter rates that
includes a big range of standard functional responses such as Beddington-
DeAngelis, Hassel-Varley, or Cosner types. We found a threshold for preda-
tor extinction, some kind of inner Allee effect, and confirmed destabiliza-
tion analogous to the paradox of enrichment due to the increase in predator
cooperation. The paper [22] deals with a predator-prey model with an age-
structured population of the predator with cannibalism and generalized
Hopf bifurcation with respect to the food availability of the adult preda-
tor is found. The paper [16] introduced the predator-prey model with the
Allee effect in prey and in which individual predators can use Hawk and
Dove tactics in fighting over caught prey, which caused a division into two
submodels. We analyzed also another age-structured model, the discrete
LPA model, with very complex behavior in [13] in the non-chaotic part of
the parameter space.

My colleague Veronika Eclerová and I proposed and published in [14]
a useful method based on Gröbner basis to partly automate the analytical
computation of typical bifurcation manifolds in full parameter space. The
approach was implemented in Maple by Veronika Eclerová as a part of her
dissertation thesis under my supervision.

Paper [24] studies the route to chaos in a macroeconomic model with
foreign capital investment. Even for common economic parameters and
for common values of the capital-output ratio, a big range of parameters
allows chaotic unpredictable regimes. Another macroeconomic application
was a generalization of the neoclassical one-sector Solow-Swan model and
its modification of the Kaldor-Pasinetti type with a non-constant labor
growth rate published in [25]. This model reveals more complex and even
chaotic dynamics.

A useful insight into bifurcations in the complex domain was published
in Springer Proceedings in Complexity [26]. This seems to be a perspective
approach when applied to bifurcations of limit cycles since it generalizes
period doubling to the m-fold bifurcation associated with Arnold tongues
and synchronization.
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My recent scientific work focuses on a bifurcation theory approach in
systems that can exhibit synchronizations. The paper [11] introduces an
embedding approach that can be successfully used for harmonically driven
systems. Artificial parameters give birth to a torus where the synchro-
nizations and route to chaos may be studied by means of local bifurcation
theory, Arnold tongues and m-fold cusps of the m-fold branches of cycles
in their neighborhood. This approach is perspective in many other areas.
My team already presented some results in neuronal modeling and syn-
chronization of coupled neurons [39], [33]. We started to study seasonality
effects on population dynamics of predator-prey models and epidemiologic
models with a new team member Deeptajyoti Sen and Veronika Eclerová.
Deeptajyoti Sen received MSCA grant from the EU under my supervision.
We have just submitted a new paper with our recent interesting results
on the effect of seasonal changes in the Allee effect, which are likely due
to climate change, on population dynamics. The most promising part of
applied bifurcation theory on synchronization is modeling coupled neural
networks and neuronal mass networks with possible new approaches to
study focal epilepsy. Our team started to analyze EEG data with very
and ultra high-frequency oscillations provided by prof. Brázdil’s research
group. Our collaboration could lead to interesting results in the future, we
are submitting together a proposal for the GAMU Interdisciplinary Project
this year.
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Chapter 1

Introduction

The dynamically changing world around us can be described reasonably
well by the interrelationships between quantifiable variables in many cases.
In general, a dynamical system can be defined as a trinity {T,X,ϕt}, where
T is a number set (at least a monoid) that represents the time (it can be
discrete or continuous or more generally be represented by a topological
monoid), X is a metric space called a state space or a phase space, and
ϕt is a family of evolution operators depending on a time parameter t ∈ T
defined as ϕt : X → X that map the initial state x0 ∈ X to a state xt =
ϕtx0 ∈ X. Such a definition of a dynamic system covers almost anything
that we can quantify. Imagine a cooling cup of coffee on a table described by
Newton’s law of cooling using a differential equation; motions of celestial
bodies defined by laws of gravity; protein production in a cell described
by kinetic chemical equations; a number of infected subjects during the
COVID-19 epidemic described by a system of difference equations or stock
market movements described by stochastic differential equations. These all
are examples of such dynamical systems.

For the simplicity of the model of the observed dynamical process, we
often use a deterministic system, where ϕ0 = id. This property says that
the system does not change its state spontaneously. Such a model is not
always suitable, but it is in many cases. If we work with physical quantities
such as the model of cooling coffee or the motion of celestial bodies, the
laws of physics are relentlessly deterministic until a randomly flying comet
comes across or a random movement of a hand awkwardly overturns the cup
of coffee. However, we can often omit the randomness even with completely
randomly behaving systems. For example, in a multi-particle system such
as molecules involved in a chemical reaction or people meeting during an
epidemic, the system can be modeled deterministically - using aggregation.

However, in my scientific work, as well as in the following text, I focus on
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10 CHAPTER 1. INTRODUCTION

even more specific deterministic dynamical systems, so-called autonomous
systems. For autonomous systems, the rules of evolution do not change
over time. The notation of a deterministic system as autonomous is rather
technical. We can transform time or embed the system in a suitable hyper-
space.

An autonomous dynamical system is a deterministic dynamical system
{T,X,ϕt} that satisfies ϕt+s = ϕt ◦ ϕs, i.e., ∀x ∈ X : ϕt+sx = ϕt(ϕsx)
whenever both sides of the equation are defined.

A typical example of an autonomous system is a continuously time-
dependent state x = x(t) ∈ Rm, for t ∈ R, that is changing according to a
system of ordinary differential equations

ẋ = f(x, εεε) (1.1)

or an iterative process

xn+1 = f(xn, εεε), n ∈ N, or n ∈ Z, (1.2)

where f : Rm+p → Rm is a smooth enough function and εεε ∈ Rp are given
parameters. Thus, these are dynamical systems where the time dependence
is not explicit, only through changing state variables.

It would seem that such restrictions on dynamical systems would be
too big to describe and explain the complexity of the world around us.
But the opposite is true. Not only that a large number of dynamical sys-
tems in various fields can be described this way, but the dynamics of such
systems themselves are so diverse that typical dynamical phenomena can
be modeled very well. Even such systems can describe phenomena with
unpredictable dynamics, i.e., chaotic.



Chapter 2

Bifurcations of equilibria
and related phenomena

The simplest dynamics allowed by equations (1.1) or (1.2), respectively,
is near equilibrium dynamics. An equilibrium is given implicitly in the
state-parameter space Rm × Rp since it is given by the manifold

f(x, εεε) = 0, or f(x, εεε)− x = 0, respectively.

These zero loci in state variable x are called equilibrium manifolds. At
this place, it is worth noting the difference in the definition of a manifold
as a topological space that is locally Euclidean and an algebraic variety.
The term manifold is used in dynamical systems theory, although the term
variety may be more appropriate. However, the Czech language does not
distinguish between the names. An affine algebraic variety is defined as a
set of solutions of a system of polynomial equations over complex numbers1.
A variety can also contain singular points, where tangent space cannot be
defined (in contrast, a manifold is regular at each point). The equilibrium
manifold of the system (1.1) or (1.2), respectively, can also contain singular
points in the state-parameter space. However, we most often use terms as
branches of equilibria or branches of the equilibrium manifold in such a
case.

At this point, we finally come to the concept of bifurcation and gradually
to the promised applications.

The implicit equilibrium can be locally defined in the neighborhood of
a fixed parameter value εεε0 thanks to the implicit function theorem as a
function εεε 7→ βββ(εεε) satisfying βββ(εεε0) = x0 and f(βββ(εεε), εεε) ≡ 0 or f(βββ(εεε), εεε) ≡

1In applications, we are of course interested in its real part, basic dynamic phenomena
are described using systems of polynomial equations.
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12 CHAPTER 2. BIFURCATIONS OF EQUILIBRIA

βββ(εεε), respectively. Simply put, βββ(εεε) corresponds to the equilibrium for
given parameter εεε.

However, neither the existence nor the uniqueness of the equilibrium
βββ(εεε) is guaranteed if Jacobi matrix Df(x0, εεε0) has a zero eigenvalue in the
continuous case or equal to 1 in the discrete case. A small parametric
perturbation may cause the disappearance of the equilibrium point (in any
neighborhood of εεε0), or create a new branch of equilibrium solutions (hence
the name, branching = bifurcation) and of course, the equilibrium may
change its stability during the transition through εεε0. In other words, the
perturbation may cause a general qualitative change in system behavior.

By a local bifurcation of the system (1.1) or (1.2), respectively, near
equilibrium x0 = βββ(ε0ε0ε0) with the critical value of the parameter εεε = εεε0,
we understand the qualitative change of dynamics in the neighborhood of
the critical value εεε0, that is, the phase portraits near equilibrium x0 while
crossing the bifurcation parameter εεε0 are not locally topologically equiva-
lent, i.e., no homeomorphism maps the phase portraits near the equilibrium
to each other. A local change in dynamics (bifurcation) can occur when
an eigenvalue of the Jacobi matrix Df(x0, εεε0) has zero real part in the
continuous case or modulus equal to 1 in the discrete case.

Obviously, local bifurcations will play an important role in applications
because they cause changes in dynamics with a slight change in the pa-
rameter value. It can be a change in the rate of a chemical reaction that
makes a cell start to produce a specific protein; it can be a reduction in
the average number of contacts between people that causes the outbreak
of an epidemic; it can be a slight percentage increase in catches of fish
that causes their extinction; or an increase in the average ocean tempera-
ture that causes a change in the dynamics of sea currents and the Earth’s
ecosystem.

2.1 Fold of the equilibrium manifold

The simplest local bifurcation is the fold of an equilibrium manifold, or
fold bifurcation, sometimes called the saddle-node bifurcation2. This is the
case when the Jacobi matrix Df(x0, εεε0) has exactly one eigenvalue λ = 0
and no other eigenvalue with zero real part in the continuous case or λ = 1
and no other eigenvalue with modulus equal to 1 in the discrete case. In
applications, other eigenvalues have typically negative real parts in the
continuous case or moduli less than 1 in the discrete case, since in such

2This name is based on the frequent situation where the saddle and node merge in
the fold, which is not always necessary. The name tangent bifurcation is sometimes used
as well as a limit point.
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a case, the bifurcation guarantees a change of stability – from a stable
equilibrium to an unstable one. The system can then be reduced to the
so-called central manifold, which always exists locally in the neighborhood
of the equilibrium and is an invariant set to which close trajectories are
attracted. To give the reader an idea of the generality of the results of
the bifurcation theory, I present here the elementary local bifurcation of
an equilibrium in a continuous case with respect to one parameter. It is
possible to work analogously with the system of iterations (maps) (1.2).

Theorem 2.1.1. Suppose a one-parametric one-dimensional equation

ẋ = f(x, ε), x ∈ R, ε ∈ R, (2.1)

where f is a smooth function, has equilibrium x = x0 for ε = ε0 and
λ = fx(x0, ε0) = 0. Suppose that conditions

fxx(x0, ε0) 6= 0 non-degeneracy condition,

fε(x0, ε0) 6= 0 transversality condition.

are satisfied. Then the system (2.1) is locally topologically equivalent near
equilibrium x0 and parameter ε0 with one of four fold bifurcation normal
forms

ẋ = ±α± x2

with parameter α near zero.

An example of a fold bifurcation diagram for the case (choice of signs)
ẋ = α − x2 is in Fig. 2.1. The critical point of the fold bifurcation is
most often labeled LP (limit point) in the bifurcation diagrams, and for
this normal form, it is the vertex of the parabola α = x2, i.e., the origin of
the parameter-state space. Despite its simplicity, this bifurcation is related
to many nonlinear phenomena and can be applied in many situations.

2.2 Switches and hysteresis

A typical example of an abrupt change caused by the fold bifurcation is a
biochemical switch. A very simplified kinetic equation of genetic protein
production in a cell has the form

ġ = k1
g2

1+g2
− k2g,

where g quantifies the amount of protein and k1, k2 are positive parameters

related to the rates of chemical reactions. The first term k1
g2

1+g2
corresponds
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Figure 2.1: Bifurcation diagram for the fold bifurcation normal form.

to gene expression through transcription and translation. The protein is
formed by an autocatalytic reaction, which is not mentioned here and is
described by the so-called Hill function. The second term k2g corresponds
to the degradation of the protein.

The new variable x(t) = g( t
k1

) and parameter a = k2
k1

transforms equa-
tion to much more simpler form

ẋ = x2

1+x2 − ax. (2.2)

Any equilibrium satisfies

x
(

x
1+x2 − a

)
= 0.

We get two branches of equilibrium manifolds (depending on parameter a):
the trivial equilibrium and the non-trivial manifold

a = x
1+x2 .

We are only interested in non-negative protein concentration values and the
positive ratio of reaction rates (parameter a). But the origin is important
since it is the intersection of two branches of equilibria (so-called transcrit-
ical bifurcation). The point [a∗, x∗] = [12 , 1] is the limit point, or fold of the
non-trivial equilibrium manifold (shown in Fig. 2.2). At this point, fold
bifurcation occurs, with the upper part of this equilibrium branch stable
and the lower unstable.
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Figure 2.2: Rovnovážné variety rovnice (2.2) v závislosti na parametru a.

If the parameter a = k2
k1

exceeds the critical value 1
2 , the gene stops being

produced and a biochemical switch to the zero branch of the equilibrium
occurs.

Very often, two such switches occur in dynamical systems. This creates
a phenomenon called hysteresis. A system with hysteresis typically exhibits
a kind of delay or prevention of return to the original state. Hysteresis is
well known in ferromagnetic materials (sketch in Fig. 2.3), which, after
exposure to a magnetic field, exhibit magnetic properties for some time,
after which the internal magnetic field disappears.

However, this phenomenon also appears in applications in other fields
– biology, medicine, economics, etc. In fact, it is the fold of the equilibria
manifold depending on two parameters. In bifurcation theory, the critical
point of this equilibrium variety is called the two-parameter local bifurca-
tion of the cusp equilibrium.

In this case, the system can be reduced near the equilibrium to a central
manifold and written in the form of the normal form of the two-parametric
cusp bifurcation

ẏ = ε1 + ε2y ± y3. (2.3)

Equilibria lie on the variety M : ε1 + ε2y ± y3 = 0, which is shown in
Fig. 2.4. The first derivative according to y vanishes (the fold bifurcation
condition) on the curve satisfying ε2 ± 3y2 = 0, which has two branches
and the cusp that connects them. Hence the name of this bifurcation.

The branches T1, T2 correspond to the extinctions of the pair equi-
librium points in the fold of the manifold M , i.e. they are the bifurcation
boundaries of the fold bifurcation (LP). If we exclude y from these two equa-
tions, we get the projection of the folds into the parameter plane (ε1, ε2),
which is a curve of a typical V-shape with a point of return at the origin.
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Figure 2.3: Sketch of hysteresis in a ferromagnetic material as a function
of the magnitude of the external magnetic field.
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Figure 2.4: Equilibrium manifold of the equation (2.3) depending on two
parameters ε1 and ε2.
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Figure 2.5: Bifurcation diagram of the cusp bifurcation normal form ẏ =
ε1 + ε2y − y3.

For the minus sign, it is shown in Fig. 2.5 and is of the form

27ε21 − 4ε32 = 0.

The areas marked 1 and 2 are structurally stable3, in which the system has
three or a single stable equilibrium, respectively. The manifolds T1 and T2
correspond to a one-parametric fold bifurcation, they have codimension 1
in the 2-dimensional parameter space. Their intersection is the cusp point,
which has dimension 0, i.e. codimension 2 in the 2-dimensional parameter
space. The cusp bifurcation point is therefore called a local two-parameter
bifurcation or a codimension-2 bifurcation point. This typical phenomenon
does not depend on the form of the equations and arises generically in the
situation when two branches of the fold bifurcation touch. There are, of
course, exact conditions (the so-called non-degeneracy and transversality
conditions similar to the 2.1.1 theorem) under which the general system
undergoes a cusp bifurcation, but the geometric idea of the two-folding of
the equilibrium manifold depicted in Fig. 2.4 is much more useful for our
purposes.

3Structural stability means the preservation of the existence of three equilibria or a
single stable equilibrium, respectively, even with a small change of parameters
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Hysteresis thus appears in a situation where sigmoid-type nonlinearity
is present. Such systems are very common in nature. Examples are popula-
tion models where the nature of the sigmoid is determined by, for example,
predation functions or other environment-dependent functions. The ap-
petite of a predator is limited by some upper bound, and other functions
affecting the prey population are often also sigmoidal in nature, precisely
because of the lower and upper bounds, which are determined by the ca-
pacity of the environment or the size of other interacting populations. In
biochemistry it is similar. Especially, Hill functions that are common in
biochemistry are sigmoidal in nature. They are also encountered in the
above simple model of a biochemical switch. Such functions describe the
kinetics in chemical reactions that typically arise for autocatalytic reac-
tions in living cells, while chemical reactions outside living organisms, on
the other hand, are typically sigmoid-free so that they lead to equilibrium
states without giving rise to more complex phenomena.

Fold bifurcation and hysteresis are not the only phenomena related to
the singularity of the equilibrium manifold. Other generic one-parameter
bifurcations are the transcritical bifurcation (generic intersection of two
branches of equilibrium manifolds) and the pitchfork bifurcation, which
exhibits some symmetry and its applications appear, for example, in evo-
lutionary branching models. In fact, in the pitchfork bifurcation, the in-
tersection of two branches of equilibria occurs just at the fold of one of
the branches. In applications, this makes it possible to model precisely
the phenomena of branching, where one stable equilibrium disappears (and
becomes unstable) and at the same time two other stable branches arise in
its vicinity, see Fig. 2.6.

2.3 Author’s contribution to the field

In fact, the basic types of bifurcations of equilibria are included in all my
scientific papers and contributions. Equilibria disappearance, hysteresis,
and pitchfork branching are ubiquitous and present as basic phenomena
in all systems I ever studied in my carrier. They are usually continued to
more advanced analysis of at least two-parametric bifurcations and that’s
why I will choose more interesting phenomena described in my works later.
Here, I would like to mention hysteresis phenomena first of all. I stud-
ied and explained in [27] a hysteresis-related mechanism of trait-dependent
cycle in the eco-evolutionary slow-fast system and hysteresis caused by a
double fold of the equilibrium manifold in a population model with re-
spect to the predator encounter rate change, more precisely a change in
predator interference strength [28]. Another partial result of my paper [25]
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[0, 0]

x

ε

Figure 2.6: Bifurcation diagram of the pitchfork bifurcation normal form
ẋ = εx− x3.

that dealt mainly with the emergence of chaotic dynamics was bistabil-
ity in a continuous Solow-Swan model. And an interesting example was
a pitchfork bifurcation and its symmetry breaking (sometimes called an
imperfect bifurcation) in a biochemical model of hematopoietic stem cells
studied in [29] that can cause a switch due to the pitchfork bifurcation.
One branch of equilibria corresponds to the differentiation of erythroid and
megakaryocytic cells and the other branch corresponds to the differenti-
ation of myeloid and lymphoid cells. Such a model explains the priming
stage of hematopoietic stem cells as well as the biochemical switch since
the basins of attraction of the two equilibrium branches are separated by
the unstable branch merging from the pitchfork bifurcation, together with
continuation of this phenomenon into the imperfect non-symmetric part of
the parameter space that is probable in nature. Moreover, the disorder in
hematopoietic differentiation could be caused by a shift out of this near
pitchfork region.
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Chapter 3

Bifurcations of cycles and
related phenomena

One can certainly expect cycles, i.e. oscillations, to be another important
dynamic with interesting applications. Pendulums, electromagnetic waves,
alternating currents, heart muscle activity or the motion of planets are all
examples of cyclic dynamics. It is also very interesting that one of the
fundamental nonlinear phenomena, the origin of oscillations, is associated
with the local bifurcation mentioned in the previous text.

3.1 Birth of cycles by Hopf bifurcation

For simplicity, we will deal only with the continuous system (1.1) with a
smooth enough right side. If the two complex eigenvalues of the Jacobi
matrix Df(x0, εεε0) for a given equilibrium x0 change so that their real parts
cross the imaginary axis when the parameter changes, the equilibrium man-
ifold is given uniquely with respect to the parameter εεε, but the stability
changes. Generically, a so-called Hopf bifurcation occurs, when a stable
focus turns into an unstable focus. Trajectories close to equilibrium thus
exhibit damped or gradual oscillations. It can be shown that in the generic
case (under certain conditions of non-degeneracy and transversality) this
bifurcation is necessarily associated with the formation of a limit cycle.
Either a stable cycle can arise near an unstable focus (we speak of a super-
critical Hopf bifurcation) or an unstable one near a stable focus (we speak
of a subcritical bifurcation). As in the case of fold bifurcation, the decision
on the type of bifurcation is given by the sign of a certain term in the
normal form. The description of the cycle is simpler in complex or polar
normal form. Here we give the complex normal form of the supercritical

21
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ρ ρ ρ

x x x

y y y
µ < 0 µ = 0 µ > 0

0 0 0
√
µ

Figure 3.1: Supercritical Hopf bifurcation.

Hopf bifurcation
ż = (µ+ i)z − z |z|2,

where the Euler form of the complex number z = ρeiϕ gives the polar form

ρ̇ = ρ(µ− ρ2), (3.1)

ϕ̇ = 1.

The equation (3.1) is the pitchfork bifurcation normal form. So for µ ≤ 0
the origin is the only stable equilibrium. For µ > 0, there is another
equilibrium point ρ =

√
µ (we can omit the negative value, it is meaningless

in this representation, it is a distance). The origin is unstable in this case
for µ > 0, the equilibrium ρ =

√
µ is stable. This point corresponds to

the stable limit cycle near the origin (see Figure 3.1). From the complex
normal form, it can be seen that the complex conjugated eigenvalues are
µ± i. For simplicity, the parameter ε is replaced here directly by the real
part of the eigenvalue µ which is the origin of the qualitative change in the
dynamics.

In terms of applications, these two types of Hopf bifurcation are very dif-
ferent. If we imagine a supercritical bifurcation on some real phenomenon,
we find that it is not a very significant change. In the small neighborhood
of the critical parameter value, although the equilibrium loses stability, it
is replaced by small oscillations (the amplitude of the oscillations increases
with the square root of the parameter). An example of this is the emergence
of a tone when playing the flute or when the tea kettle whistles. At low air
velocity, no tone is produced, but when a certain threshold is exceeded, it
is very quiet. A strong tone (large amplitude of the same frequency) is pro-
duced by a strong full breath into the instrument. The whistle of a kettle
boiling water also starts gently and gradually gains in strength. Conversely,
subcritical bifurcation is usually associated with catastrophic phenomena
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such as the aeroelastic phenomenon of the wings of an airplane fluttering,
which may break due to the wind gust that exceeds a certain threshold [34].
Similarly, there are known cases of bridge collapses [10] (”the most famous”
is probably the collapse of the Tacoma Bridge), the occurrence of engine
vibrations when turbines are shutting down or during aircraft landing [3].
In this case, it is the disappearance of stable equilibrium (surrounded by an
unstable cycle) and the rapid emergence of strong oscillations with a large
amplitude.

In real applications, this phenomenon is similar to hysteresis and is
similarly related to the two-parameter bifurcation, when another stable
cycle is present near the unstable cycle. It is also called bistability, i.e. the
simultaneous appearance of two stable attractors. Thus, a subcritical Hopf
bifurcation can be non-catastrophic. In neurons, this is the most typical
way for lasting oscillations (bursting) to arise. In fact, when the threshold
is crossed, a cycle with progressively increasing amplitude does not arise as
in the supercritical bifurcation, but the system jumps directly to the stable
branch of the other cycle with a large amplitude. As an example, consider
the simplest FitzHugh–Nagumo model of a neuron.

V̇ = V − 1

3
V 3 −W + i,

Ẇ = a (bV − cW + d) ,

where V is the membrane potential, W is the return-related variable, i is the
delivered current, and a, b, c, d are the parameters. Note that the change
in voltage V across the axon membrane described by the first equation
is a sigmoid curve. The other parameters and the state variable W are
based on the description of the kinetics of chemical reactions at the axon
membrane (transfer signal is mediated by changes in the concentrations of
ions K+, Na+, Cl− and protein anions), a, b, c > 0. The second equation
is a restoring equation, has a slower response (hence the parameter a, which
has a small value, is retained) and allows for the generation of a pulse that
subsequently terminates.

Figures 3.2 and 3.3 demonstrate why the neuron responds by send-
ing an oscillating signal only for certain values of the supplied current i.
The equilibrium plotted with respect to the parameter i as the red curve
[V (i),W (i)] passes through two subcritical Hopf bifurcations. However, the
pink cycles are unstable and the system does not stabilize on them, so we
never observe them. We only observe significant oscillations corresponding
to the blue cycles or equilibria. Until the current is increased to a sufficient
value (threshold), the neuron does not respond; if the current is too large,
it does not either.
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Figure 3.2: Phase portraits for a = 0.2, b = 1, c = 0.8, d = 0.7. From
conference poster CMSB 2018, computed by Veronika Eclerová (Hajnová)
in Matcont.
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Figure 3.3: Cycles occurring near equilibrium manifold a = 0.2, b = 1, c =
0.8, d = 0.7. From conference poster CMSB 2018, computed by Veronika
Eclerová (Hajnová) in Matcont.

3.2 Extinction of oscillations on the saddle

Limit cycles are commonly observed in predator-prey population models.
Systems of this type often have a saddle point in the admissible non-
negative region of the state space. Significant trajectories that approach
limit equilibrium near the saddle point for t → ±∞ are also important in
terms of applications, regardless of whether the system is continuous or
discrete. These trajectories can separate parts of the state space and thus
separate regions in which the trajectories have completely different dynam-
ical properties. Saddle trajectories also got their name - separatrices. Thus
a limit cycle can (and often must) split on a saddle separatrix loop. Thus,
for example, in predator-prey models, large oscillations can suddenly cease
and lead to a significant change in population size, even to the extinction
of a species; a multitude of factors ranging from the mode of predation to
evolutionary pressure can play a role in such a change in dynamics, and
bifurcation theory is able to disentangle some of these links. Some ap-
plications in papers of which I am an author or co-author related to this
phenomena [28], [30], [13], [27] are be briefly described in subsection 3.4.
The study of such global bifurcations is more difficult and uses mostly con-
tinuation numerical methods. However, due to their close connection with
local bifurcations of higher codimension, there are also methods that use
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an analytical approach, e.g., by using Gröbner bases [14]. This approach
makes it possible to partially automate the finding of important bifurca-
tion manifolds for systems (1.1) and (1.2) with function f in the form of
a polynomial or rational function, and to allow a wider range of people,
not just specialized mathematicians, to perform at least partial bifurcation
analysis of dynamical systems. Indeed, it turns out that just such systems
appear in descriptions of biochemical reactions in cells or in the aforemen-
tioned models of population biology or neuroscience, and understanding
the dependence of changes in dynamics on changes in the parameters of
the dynamical system is crucial.

3.3 Fold of the cycle manifold

You have probably noticed that in the example of the subcritical Hopf
bifurcation in the neuron model, a fold of the manifold that belonged to
limit cycles was present. In fact, one can move from the study of cycles in
a clever way to the study of equilibria – fixed points of maps. Indeed, if
we make a transversal section through a limit cycle (in the space of state
variables), we can look at the trajectories in its neighborhood as iterations
of the representation given by the intersection of the trajectory with this
section. This idea is brilliant, and its author Henri Poincaré was equally
brilliant. He was many decades ahead of his time in the study of dynamical
systems.

We can apply the local bifurcation theory for fixed points (equilibria)
of the Poincaré map1 to cycles. Thus, the appearance or disappearance of
a pair of fixed points (usually one stable and one unstable) of the Poincaré
map by a generic fold bifurcation gives rise or disappearance to the corre-
sponding cycles exactly as we see in Fig. 3.3.

3.4 Author’s contribution to the field

Much of my scientific work has been in the field of applied nonlinear phe-
nomena in population biology and specifically predator-prey models. De-
scribed nonlinear phenomena are related to various bifurcations, some of
these bifurcations are advanced and not mentioned in the above text. I
studied predator-prey models with predator inference [28] or foraging fa-
cilitation [30] that is with a specific type of the encounter rate of preda-
tor that is dependent on the predator density. Predator inference is the

1Poincaré map is that ingenious first return map defined on the transversal section of
a cycle described above
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case when the encounter rate function λ of the predator is decreasing with
predator density and on the other hand, foraging facilitation describes the
situation when the predators cooperate and λ increases with the preda-
tor density. Both cases are common in nature. The mostly used Holling
type II functional response is a neutral case. Our generalized family of
encounter rates included, except the Rosenzweig-MacArthur predator-prey
model [31] with paradox of enrichment, also many other commonly used
functional responses as Beddington-DeAngelis [1], [9], Hassel-Varley [15] or
Cosner types [4].

In the case of predator interference more complex dynamics appear –
from cusp, bistability of equilibria, and hysteresis phenomenon that can
abruptly switch the population levels in both predator and prey popula-
tions, to both types of Hopf bifurcation. Supercritical Hopf bifurcation
is analogous to the paradox of enrichment in the Rosenzweig-MacArthur
predator-prey model [31] when the increase of availability in prey popula-
tion destabilizes the predator population while crossing the Hopf bifurca-
tion threshold. It can be similarly observed with respect to the strength
of the predator interference. In the case of the Rosenzweig-MacArthur
model [31], the predator nullcline is vertical, intersects the prey nullcline
(at most) once, and a supercritical Hopf bifurcation with the appearance
of stable limit cycles occurs once the predator nullcline crosses the vertex
of the prey nullcline from right to left. When the Holling type II functional
response is replaced by the Beddington–DeAngelis one [1, 9] the predator
nullcline stays straight but leans to the right. As a consequence, the para-
dox of enrichment occurs for larger carrying capacities when compared to
the Holling type II functional response, if at all, which has given rise to the
notion that predator interference is a major stabilizing factor of predator-
prey dynamics [9, 36].Finally, for sufficiently strong predator interference
functional responses from the family, we consider the cause of the predator
nullcline to bend to the right, and if sufficiently bent, it may intersect the
prey nullcline at three points, thus giving rise to hysteresis and fold and
cusp bifurcations. Fold and cusp bifurcations have not been observed in
the previous two cases. Moreover, stable limit cycles that may appear on
the lower branch of the hysteresis curve due to the Hopf bifurcation may
break up on its middle branch due to a homoclinic bifurcation and stabilize
the dynamics on a higher level, see Figure 3.4. The existence of generalized
Hopf bifurcation and subcritical Hopf bifurcation gives birth to an abrupt
change in stability, a switch onto a large amplitude stable cycle that en-
counters also a neighborhood of zero, and a small exogenous perturbation
may lead to a transition to extinction. Interestingly, the most complex
behavior appears at the middle values of the interference strength.
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Figure 3.4: A homoclinic cycle break (left), a subcritical Hopf bifurcation
and a large amplitude outer cycle (right). From [28].

Bistability is possible also for the foraging facility case [30]. We studied
two types of encounter rates - unbounded and bounded. We found a thresh-
old for predator extinction, some kind of inner Allee effect, destabilization
analogous to the Rosenzweig-MacArthur paradox of enrichment due to the
increase in predator cooperation and typical extinction phenomenon on the
homoclinic bifurcation of the saddle loop.

Similar results can be found in our papers [22] and [16]. The first paper
analyzed a system proposed in [21] as a predator-prey model with an age-
structured population of the predator with cannibalism. Both supercritical
and subcritical Hopf bifurcations occur with respect to the food availability
of the adult predator. The second paper introduced the predator-prey
model with the Allee effect in prey and in which individual predators can
use Hawk and Dove tactics in fighting over caught prey, which caused a
division into two submodels. The bifurcation analysis revealed the existence
of saddle-node bifurcation, two supercritical Hopf bifurcations, and two
Bogdanov-Takens bifurcations in the aggregated model. Moreover, we have
shown the existence of fold of limit cycles, which is in neither submodel
alone.

We analyzed also another age-structured model and its complex behav-
ior in [13]. It was a discrete population model for a flour beetle Tribolium
castaneum called LPA model introduced and partly studied in [5, 7, 8].
We studied the non-chaotic part of the parameter space with very complex
behavior, non-local bifurcations related to multistability, Neimark-Sacker
bifurcation, symmetry of 1:2 resonance bifurcation, Chenciner bifurcation,
and the cusp of the invariant loop. We showed that slight perturbations
(variability, white noise) in initial conditions lead to similar unpredictability
in this non-chaotic part of the parametric space as the ”usual” deterministic
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Figure 3.5: Survival of the prey and predator populations in case of for-
aging facilitation. Extinction regions are shown in white, stable survival
in grey. Vertical stripes correspond to the existence of two stable equilib-
ria. White-grey stripes show regions where the population may go extinct
(when the initial conditions are out of the basin of attraction of the stable
coexistence equilibrium); while the light and dark grey stripes correspond
to two levels of population equilibria. Waves correspond to oscillations and
the checkerboard pattern corresponds to areas where the trajectories pass
very close to the extinction point and survival of the population may be a
matter of chance. From [30].
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Figure 3.6: Two time series simulating the number of adults for the same
initial parameters and the same initial conditions near Chenciner bifurca-
tion. From [13].

chaos itself.
Over time, my colleague Veronika Eclerová and I proposed a useful

method to partly automate the analytical computation of typical bifurca-
tion manifolds in full parameter space using Gröbner basis method for some
types of dynamical systems [14] and presented it on International Confer-
ence on Computational Methods in Systems Biology 2018. The approach
was implemented in Maple by Veronika Eclerová on Maplesoft Application
Center2

https://www.maplesoft.com/Applications/Detail.aspx?id=154567 and
therefore it can be used in applied research as a supporting autonomous
computation even by non-experts in bifurcation theory.

2This is a part of her successfully defended dissertation thesis under my supervision.

https://www.maplesoft.com/Applications/Detail.aspx?id=154567


Chapter 4

Chaotic dynamics

Chaos theory is another important area with applications. The emergence
of chaos is closely linked to discrete dynamics. First of all, the Poincaré
map of a limit cycle can go through various types of discrete bifurcations.
The folding corresponds to the eigenvalue equal to 1 of the Poincaré map
(we often speak of a cycle or Floquet multiplier), but changes in dynamics
also occur in other cases when some eigenvalue crosses the unit circle. If
the eigenvalue crosses −1, a so-called flip bifurcation of the Poincaré map
occurs. A flip bifurcation of a map is a local bifurcation of a fixed point
where the eigenvalue of the map is equal to one after precisely two itera-
tions. Therefore, a cycle of the Poincaré map of period 2 is born from a
cycle of period 1, in other words, the fixed point of the map breaks into an
oscillating pair of points. If we study continuous oscillations using Poincaré
maps, then this emergence of a 2 cycle of the Poincaré map implies that
the limit cycle of a continuous dynamical system also undergoes a period
doubling, and from a topological point of view the doubled cycle is the
boundary of the Möbius strip. However, the generic flip bifurcation does
not end with a single doubling. If, as the parameter changes, an eigen-
value crosses −1 from the inside the unit circle to the outside, then the
multiplier of the doubled cycle will also decrease in value from 1 and may
again cross −1 to form a 4-cycle, then an 8-cycle, and in this way a pe-
riod doubling will gradually occur – the so-called Feigenbaum cascade of
bifurcations, which is a very common way to produce chaotic unpredictable
behavior in parameter-dependent dynamical systems. Chaotic dynamics is
very sensitive to initial conditions. In fact, a small change in the initial
conditions leads to an exponentially increasing change in the distances of
the original and perturbed trajectories, and this phenomenon has come to
be known as the butterfly effect. In one of his lectures, the creator of the
famous model that brought the new concept of instability of the Earth’s

31
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atmosphere, mathematician and meteorologist Edward Lorenz, used this
metaphor to explain the phenomenon in weather dynamics: the flapping
of a butterfly’s wings in Brazil can cause a tornado in Texas. It should
be added that this very phenomenon makes both long-term weather fore-
casts and many other predictions impossible. The degree of divergence of
nearby trajectories can, however, be measured by the so-called maximum
Lyapunov exponent, and thus obtain at least some predictability horizon
m, i.e., a time interval over which we can accept the prediction error. The
emergence of deterministic chaotic dynamics by cascading period doubling
is typical and can be found in many applications.

A famous and historically very important experiment was that of Al-
bert Libchaber. In 1977, he created a stainless steel cylinder into which he
inserted liquid helium and heated the bottom surface of the cylinder. Af-
terward, he verified experimentally that the turbulent flow of liquid helium
that arises after the breakdown of the convective flow produces this cas-
cade of period doubling. In 1982, he published a similar experiment with
mercury1 [20], where he even measured an estimate of the Feigenbaum the-
oretically derived constant, which does not depend on the precise form of
the system and is general for period-doubling cascades.

Over the last 5 decades, the discovery of the ubiquity of chaos has
led to a new perspective on many areas. For example, see the articles
on chaotic dynamics in neuroscience. It seems that in the brain, chaos
is desirable (!) and, conversely, stable periodic dynamics is an undesirable
state – an epileptic seizure [32]. The excitable cells in the heart muscle work
synchronously periodically and the chaotic dynamics lead to fibrillation of
the heart [35]. The chaotic dynamics in the Universe and the Solar System
had been touched upon in advance by Poincaré himself, although he did not
and could not yet suspect its extent. Today, the chaotic rotation of Saturn’s
moon Hyperion and the axis of rotation of Mars is described and explained,
NASA used its knowledge of chaotic dynamics to send the ISEE-3/ICE
spacecraft on a nearly fuel-free journey to a comet back in 1985, Saturn’s
rings are being studied for their fractal structure of chaotic attractor [19],
even the maximum Lyapunov exponent for the Solar System is calculated
[18]. Based on the Lyapunov exponent, the predictability of the system can
then be estimated as 36 days for the rotation of Hyperion and 5 million
years for the stability of the Solar System.

If you want to play at home, you can try the tap experiment. It’s
not so easy, a lever faucet is not suitable, but a good old (ideally even
dripping) tap is sufficient laboratory equipment. If the faucet is almost

1A magnetic field is induced in the rotating mercury convective currents, which was
measurable by damping the electrical oscillators using the principle of frequency analysis.
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closed, and very slightly leaks, the water drips. Plink, silence, plink, silence,
plink, silence. It can be quite a disturbing periodic sound. The same
plink, the same silence. Plink and... that’s a cycle (of length 1). If you’re
dexterous enough to loosen the tap just a little, it will drip differently.
Plink, plink, silence, plink, plink, silence. Then maybe you can set up
a four-drop cycle... Because it will quickly start dripping aperiodically.
You’re seeing and hearing a chaotic attractor. If you don’t believe me, look
in [38].

4.1 Routes to chaos

Feigenbaum’s period-doubling cascade is not the only route to chaos, al-
though it is certainly the most studied. Chaotic dynamics can occur in other
ways as well. We can mention some: Shilnikov route to spiral chaos related
to Shilnikov bifurcation, Ruelle–Takens–Newhouse route to the quasiperi-
odic onset of chaos that is born from the break of a quasiperiodic torus,
crisis route to chaos near collision of a chaotic attractor with an unstable
invariant set, etc.

One important chaotic phenomenon (of a boundary crisis type) is in-
termittency. Intermittency is a special type of dynamics where almost
periodic behavior is randomly interrupted. In applications, we most of-
ten encounter intermittency appearing near the fold bifurcation of some
stable cycle whose Poincaré section is an odd-period cycle, most often a
3-cycle. In this case, we are at the boundary of the stable window and the
dynamics exhibit so-called intermittency of type I. The transient behavior
is dominated by ’ghosts’ of the merged cycles. There are type II and III
intermittencies associated with complex unit eigenvalues and −1.

a

x

fold of 
the 3-cycle

Stable 3-cycle of the logistic map x→ ax(1−x) for a = 1+
√

8+0.0001:
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Intermittency appears in models of mechanical systems as irregular be-
havior that very often needs to be removed. For example, in robotics, stabi-
lization possibilities of biped robot walking [40] are analyzed using models
that exhibit both period-doubling and intermittency routes to chaos [12].

4.2 Author’s contribution to the field

Some of my papers are related to chaotic dynamics and bifurcations that
lead to it. One of them is a system that can be interpreted as a macroeco-
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nomic model with foreign capital investment introduced in [37] or an ideal-
ized economic model in [2]. In [24], I studied the route to the chaos in this
system through the period doubling of a cycle together with other bifur-
cations as generalized Hopf bifurcation, Bogdanov-Takens, and of course
period doubling of a cycle. Moreover, I was able to detect the unstable
three-cycle in the chaotic area that (according to theory, Sharkovski or
Yorke theorems) implies the existence of full chaos. I also measured chaos
using the maximal Lyapunov exponents and by a method of 0-1 test for
chaos to confirm the results of bifurcation analysis.

The bifurcation analysis thus revealed flaws in the conclusion of the
original paper [37] that claims that if the capital inflow/savings ratio is less
than double the ratio of capitalized profit then the system is in a stable
state. Even for common economic parameters and for common values of
capital-output ratio v � 1, the first Lyapunov coefficient is positive for a
quite big range of parameters, there can exist trajectories corresponding
to unstable trade cycles that may even change into non-periodic bounded
chaotic unpredictable regime.

Another macroeconomic application was a generalization of the neo-
classical one-sector Solow-Swan model and its modification of the Kaldor-
Pasinetti type with a non-constant labor growth rate. Bistability due to
a fold bifurcation in the continuous-time model may lead to a switch in
capital-labor ratio published in [25]. Discrete-time models reveal more
complex and even chaotic dynamics for Beverton-Holt and logistic type
modeling of the labor dynamics. We found that instabilities and complex
dynamics may be driven by the capital-labor ratio dynamics, labor dynam-
ics, or both together. Usually saving rate is crucial for the stabilization of
the capital dynamics. Complex behavior may arise in the case that share-
holders saving rate exceeds the workers saving rate, moreover, it does not
depend on how high or low the rates are, so for the stabilization policy we
should differentiate them. There may be also cases of instabilities (cycles
or chaos) such that saving rates cannot influence the dynamics at all, since
it is based on the behavior of the labor.

Another part of my research is theoretical. Most of the work is in
progress till now, but some results were already presented and published
in Springer Proceedings in Complexity [26]. It shows that the common
bifurcations in real systems can be viewed more generally in the complex
domain. This insight is particularly useful when applied to bifurcations
of limit cycles, not only for a narrow group of period doubling, but in
general for the m-fold associated with Arnold tongues and synchronization.
Supplementary worksheets were published on Maplesoft Application Center
https://www.maplesoft.com/Applications/Author.aspx?id=357540.

https://www.maplesoft.com/Applications/Author.aspx?id=357540
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Chapter 5

Synchronization

Synchronization is generally understood as the adaptation of the dynami-
cal behavior of objects based on some interaction between them. Christi-
aan Huygens is considered to be the first scientist to observe and describe
this phenomenon. In a nautical experiment to determine longitude, he
found that a pair of pendulum clocks suspended from a common wooden
beam synchronized their swings. And it was Christiaan Huygens who con-
tributed to accurate time-measuring by using the pendulum clock, which
he patented.

The simplest type of synchronization is the synchronization of two os-
cillators. Driven oscillators are being used for a very long time and all of us
have tried such a synchronized system on a swing, swinging a child. This
is a case of an oscillator driven by an external periodic force. The external
periodic force (driver or master) affects the frequency of another oscillator
(slave). Except swinging a child on a swing, let’s mention circadian rhythms
of living organisms regulated by the rotation of the Earth, the beat of the
heart rate controlled by a pacemaker, or various electrotechnical equipment
to mention but a few. Huygens’s clocks are a case of mutual coupling, that
is a pair of coupled oscillators that influence each other. Another example
of synchronization is the synchronized dynamics in a network of coupled
neurons in the heart or brain. It is known that also stimulation of a group
of non-interacting nearly identical oscillators by external noise can lead to
their synchronization [23].

From the perspective of bifurcation theory, synchronization or partial
synchronization of a group of oscillators can be understood as a type of
bifurcation on a multidimensional torus that breaks it into a lower dimen-
sion, even into a limit cycle. Limit cycles and tori in continuous systems
are so frequent that we can say that such systems are almost ubiquitous.
The applications are significant in physics (astronomy, cosmology, elec-
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tromagnetism, optics), geophysics, evolutionary and population biology,
hydrology, climatology, neuroscience (neuronal excitations, bursting, neu-
ronal synchronization), biochemistry (autocatalytic reactions in cells, feed-
back systems, gene expression, cell cycles, circadian rhythms), engineering
(aeroelastic phenomena, structural engineering), computer science and nu-
merical methods, economics and epidemiology (endogenous cycles), etc.

The simplest bifurcation that allows the birth of a torus from a cycle is
the Neimarck-Sacker bifurcation of a limit cycle. It is originally a discrete
bifurcation of a fixed point associated with the existence of a unit complex
conjugated pair of eigenvalues, in this case, the fixed point of the Poincaré
map of the limit cycle. Similarly to the Hopf bifurcation, it gives birth
to a new invariant set around the equilibrium. Dynamics and bifurcations
on and near a torus are much more complicated but can be understood
using the Poincaré section, maps on a circle, transformation into a complex
domain, etc. That’s why it is important to put these bifurcations and re-
lated phenomena in the context of discrete dynamics. This is because the
Poincaré section of an attractor of a continuous system is an attractor of a
related discrete system, and so the changes in discrete dynamics can repre-
sent typical changes of continuous attractors. In the case of the emergence
of chaotic trajectories, they are even used to distinguish the typical routes
to chaos.

5.1 Author’s contribution to the field

Systems, where a bifurcation theory approach is useful for understanding
synchronizations, are externally driven oscillators in the form

ẋ = f(x, A sinωt,εεε), (5.1)

where similarly to (1.1) f : Rm+p+1 → Rm is a smooth enough function and
εεε ∈ Rp are given parameters and the term A sinωt is a harmonic external
force. If the values of amplitude A and the frequency ω are suitable, the
external oscillation forces the oscillator with some other natural frequency1

to oscillate synchronously - or in some rational ratio. The explanation of
this phenomenon is possible by fold bifurcation of cycles on the torus.

The system (5.1) can be embedded into the autonomous system

1We assume that the system without external driving force exhibits stable oscillatory
dynamics itself since we want to explain the origin of synchronized oscillations.
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ẋ = f(x, u2, εεε),

u̇1 = ω
(
µu1 − u2 − u1(u21 + u22)

)
,

u̇2 = ω
(
u1 + µu2 − u2(u21 + u22)

)
,

(5.2)

where the added 2-dimensional driving system for u = (u1, u2)
T is a normal

form of a supercritical Hopf bifurcation with a stable equilibrium at the
origin for negative µ and with a stable limit cycle S = {(u1, u2) : u21 +u22 =
µ} for positive µ. So for µ = A2, the dynamics of (5.2) on the invariant
manifold Rm×S are identical (topologically equivalent) to the dynamics of
the system (5.1). Moreover, the asymptotic stability of the cycle S implies
good numerical properties for the continuation of bifurcation manifolds of
the system. In the driving system, the artificial parameter µ gives birth to
a stable limit cycle at zero, but in the system (5.2), the manifold µ = 0
gives birth to a torus since the natural oscillations exist in the original
system. The torus birth is also called the Neimark-Sacker bifurcation since
the related Poincaré map undergoes this bifurcation. Synchronization of
the original oscillations and the driving oscillations is born here and is
present in stable regions of so-called Arnold tongues. Boundaries of these
regions are fold bifurcation of the limit cycles manifolds that live on the
invariant torus. Stable and unstable cycles merge on the invariant torus at
the limit point manifolds. The stable cycle is an attractor of the system and
it has a special property – the ratio of frequency ω of the driving system
and the frequency of the driven system (5.1) is exactly rational. The reason
is deeper and is related to the discrete dynamics on a circle. The Arnold
tongues are born at so-called resonances at the Neimark-Sacker manifold
that are cusps of the fold branches in their neighborhood.

A similar approach can be used for systems that arise in Josephson
junctions modeling2. The model equations in the form of an autonomous
system are given by

V̇ = I − sinϕ− βV +A sin θ,

ϕ̇ = V, (5.3)

θ̇ = ω,

where ϕ is the phase difference between the macroscopic wave functions of
the two superconducting layers (S-layers) and V is the voltage across the
insulating barrier (I-layer) of the S-I-S layers forming the junction.

2Josephson junctions generate stable voltages that depend only on an applied fre-
quency and fundamental constants, so it is used as the most accurate method to generate
or measure voltage. By international agreement in 1990, it is the basis for voltage stan-
dards around the world. Josephson junctions are widely used in science and engineering.
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More generally we can write such a system as

ẋ = f(x,A siny, εεε),

ẏ = g(x, εεε),
(5.4)

where f and g are smooth enough functions and εεε are given parameters
and part of the system is driven by harmonic and dynamically coupled
oscillations. You can see that such a system is a generalization of (5.1) too.
Analogously to the previous method used for externally driven oscillators
(that can be also viewed as a special case of this type), we can embed the
system into an autonomous system

ẋ = f(x,v, εεε),

u̇ =
(
µµµu− v − u(u2 + v2)

)
· g(x, εεε),

v̇ =
(
u +µµµv − v(u2 + v2)

)
· g(x, εεε),

(5.5)

where the dot product · is understood as element-by-element multiplication
(using the chain rule).

Let’s say y,u,v ∈ Rk. One can easily check that the k-dimensional
torus {[x,u,v] |u2i +v2i = µi for i ∈ {1, . . . , k}} is an invariant set of system
(5.5) for µi = A2

i . We can set

ui = Ai cos yi, vi = Ai sin yi for i ∈ {1, . . . , k}
or equivalently u = A cosy, v = A siny for any solution (x,y) of system
(5.4). At the moment

ẋ = f(x,v, εεε), u̇ = −vg(x, εεε), v̇ = ug(x, εεε)

is the exact dynamics on the embedded invariant k-dimensional torus and
all solutions of the system (5.4) are mapped to it.

Generalization of the system (5.4) into this form and reformulation of
the problem in terms of bifurcation theory gives a new possibility to study
such systems semi-analytically with the support of numerical continuation
software, and avoid problems with unbounded phase variables and stiffness
of the system.

The Josephson junction model (5.3) can be embedded into the following
system

V̇ = I − y − βV + w,

ẋ =
(
px− y − x

(
x2 + y2

))
V,

ẏ =
(
x+ py − y

(
x2 + y2

))
V,

u̇ =
(
au− w − u

(
u2 + w2

))
ω,

ẇ =
(
u+ aw − w

(
u2 + w2

))
ω.

(5.6)
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We explained the Shapiro steps origin in Josephson junctions, the route to
chaos inside Arnold tongues, and the bistability phenomenon in the paper
[11] using this bifurcation theory approach to the generalization (5.6). The
method allows analysis and stable numerical continuations in the system
which is stiff in the original form.
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  0
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Limit point
Period doubling
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(a)

Figure 5.1: (a) Bifurcation manifolds of the system (5.6) in the (I, a) pa-
rameter space at p = 1, β = 0.2, and ω = 0.5 (near strong 1:3 resonance).
The figure shows the manifold of period-doubling bifurcation of (1,3)-cycle,
which is part of the inner structure of the (1,3)-cycle Arnold tongue. (b) Pe-
riodicity in V of the system (5.3) relative to the drive cycle for parameters
β = 0.2, and ω = 0.5, note reparameterization a = A2. The dashed white
line reparameterizes the period doubling curve in (a), the black regions
indicate chaos, and zero periodicity (blue) indicates the superconducting
(zero average voltage) state. From [11].

Figure 5.1(b) depicts periods of V relative to the driving in the sys-
tem (5.3) computed for each point of the parametric space as a period
of a solution of (5.3) for fixed initial conditions. The continuation of the
Arnold tongue that belongs to a fold bifurcation of a 3-cycle on an invariant
torus near 1:3 resonance point is depicted at 5.1(a). You can see it nicely
corresponds to 5.1(b) with reparametrization a = A2 in the lower part of
the Figure while the upper blue part disturbs the Arnold tongue. The blue
area in Figure 5.1 belongs to a synchronized state with zero average voltage
(superconducting state). This phenomenon can be explained by proximity
to the Hopf-Hopf bifurcation in system (5.5). There is bistability present
in the system (5.3) or (5.6), respectively. The invariant torus born from
the resonance cusp point is not the only invariant stable set in the system,
there is a stable torus and a stable cycle. Their basins of attraction de-
termine the initial conditions in the state space that are attracted to one
of the two attractors (so the blue area in Figure 5.1(b) inside the Arnold
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tongue according to Figure 5.1(a) were computed for initial conditions in
the cycle basin of attraction and not the torus basin). It is the Hopf-Hopf
bifurcation [17] that give birth to bistable dynamics for some parameters
– a limit cycle near zero (synchronized stable cycle colored red at Figure
that belongs to zero average voltage) and a torus with higher frequency
dynamics (inside the Arnold tongues, colored green at Figure ). Moreover,
a rigorously derived bifurcation diagram near Hopf-Hopf bifurcation (see
[17]) implies the existence of an additional phenomenon, called cycle blow-
up, when the torus breaks into a heteroclinic trajectory tending to a limit
cycle.

To sum up the important nonlinear phenomena present in the system,
there are infinitely many Arnold tongues (in the parameter space) with
period doubling structures inside and routes to chaos on each torus belong-
ing to a given Arnold tongue and there is also a bistability present and
that divides the state space initial conditions into two sets with completely
different dynamical behaviors.

This approach seems to be very perspective in many other areas from
applications in physics to ecological or epidemiological models with season-
ally varying parameters. Embedding helps to study birth and break of the
torus, synchronization onset due to m-folding of cycles and also to visualize
the dynamics on the torus or near the torus.
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allee effect and fast strategy evolution dynamics of predators using
hawk and dove tactics. Tatra Mountains Mathematical Publications,
50(1):13–24, 2011.

[17] Yuri A Kuznetsov. Elements of Applied Bifurcation Theory, volume
112 of Applied Mathematical Sciences. Springer, New York, 2nd edi-
tion, 1998.

[18] Jacques Laskar. Large scale chaos and marginal stability in the solar
system. Celestial Mechanics and Dynamical Astronomy, 64(1):115–
162, 1996.

[19] Jun Li and Martin Ostoja-Starzewski. Edges of Saturn’s rings are
fractal. SpringerPlus, 4(1):1–8, 2015.

[20] A Libchaber, C Laroche, and Stephan Fauve. Period doubling cascade
in mercury, a quantitative measurement. Journal de Physique Lettres,
43(7):211–216, 1982.

[21] Kjartan G Magnússon. Destabilizing effect of cannibalism on a struc-
tured predator–prey system. Mathematical biosciences, 155(1):61–75,
1999.



BIBLIOGRAPHY 45

[22] Robert Marik and Lenka Pribylova. An age-structured model of canni-
balism. Electronic Journal of Differential Equations (EJDE)[electronic
only], 2006:Paper–No, 2006.

[23] Alexander B Neiman and David F Russell. Synchronization of noise-
induced bursts in noncoupled sensory neurons. Physical review letters,
88(13):138103, 2002.

[24] Lenka Pribylova. Bifurcation routes to chaos in an extended van der
pol’s equation applied to economic models. Electronic Journal of Dif-
ferential Equations (EJDE)[electronic only], 2009:Paper–No, 2009.
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AN AGE-STRUCTURED MODEL OF CANNIBALISM

ROBERT MAŘÍK, LENKA PŘIBYLOVÁ

Abstract. We investigate the predator-prey model with cannibalism in the
predator population, suggested by Magnusson [5] in 1995. We explore the

model by a theory of bifurcations, based mainly on the results of Bautin.

Among others, we show that the limit cycle appearing in the model due to the
Andronov-Hopf bifurcation may be stable or unstable.

1. Introduction

Magnusson [5] introduced the predator-prey system with age structure and can-
nibalism in the predator population in the form

Ẋ = AY − µaX + γSXY + V CXZ,

Ẏ = λX −AY − µjY − SXY,

Ż = LZ −QZ2 − V ZX,

(1.1)

where X is the population of adult predators, Y the population of juvenile preda-
tors, Z the population of prey, T is the time and the dot denotes derivative with
respect to T .

In model (1.1) the Lotka–Volterra type of interspecific interaction is considered.
The parameters µa and µj describe the natural death rate of the adult and juvenile
predators, respectively. The constant λ is the birth rate of predators and A is
the rate at which juvenile predators mature into adults. The term V XZ describes
the rate at which adult predators kill the prey and the constant C ∈ (0, 1) is an
efficiency of conversion of sources obtained by killing the prey to the increase of the
fitness of population of adult predators. In a similar way, the term SXY is the rate
at which adult predators kill juvenile predators and the corresponding increase of
fitness of adult predators is proportional to this term by the constant γ ∈ (0, 1).

Remark that the population of prey is subjected to the logistic growth in the
absence of predators. Magnusson in [5] used Q = 0 and proved that for suitable
values of parameter S an Andronov-Hopf bifurcation occurs and the increase of
the cannibalism rate can destabilize the system. This result is in the same paper
extended to small values of Q, i.e. for the logistic growth with large carrying
capacity, when the competition in the prey population is not significant.
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Later Kaewmanee and Tang [3] reexamined model (1.1) (with general Q) and
obtained similar results.

As pointed out already in [2], it is usually much easier to show that the Andronov-
Hopf bifurcation appears in a particular model than to distinguish whether the
periodic solution is stable or whether it is unstable and does not describe a state
which may really appear in nature. In both papers [3], [5], authors prove that the
Andronov-Hopf bifurcation takes place, but the stability of the limit cycle is not
analyzed. All authors provide numerical results showing the stable limit cycle and
in this sense some of the results are rough.

The aim of this paper is to continue in the study of dynamical system (1.1) and
to obtain deeper results concerning its stability, topological properties and types
of bifurcations (especially stability and uniqueness of limit cycles using Lyapunov
coefficients and theory developed in [1, 4]). Among others, we focus our attention
to more parameters, not only to the parameter S. In order to make the compu-
tations manageable we consider Q = 0 (as in [5]), i.e., we suppose no intraspecific
competition in the prey population.

The paper is organized as follows. The next chapter recalls some facts concerning
the theory of bifurcations. The Magnusson’s mathematical model is studied in
Section 3. Section 4 contains some numeric results and a discussion about possible
phase portraits for various values of parameters in the model. Among others, we
show that an unstable limit cycle exists for suitable values of parameters.

2. Preliminaries

2.1. Mathematical models. Many problems of natural science can be solved
using mathematical models. Some of deterministic models can be described by
dynamical systems of autonomous differential equations. These systems contain
studied variables and coefficients given by internal attributes of the problem or
by the external conditions. Values of this type (constant according to time) are
parameters, since the studied variables and behavior of the whole dynamical system
depend on them. General mathematical model can be represented by the following
system

ẋ = F (x, α), (2.1)

where x ∈ Rn are studied phase variables, α ∈ Rm are parameters and F is suffi-
ciently smooth.

2.2. Bifurcation diagrams and normal forms. Changing parameters α, the
phase portrait of the system (2.1) changes. There are two possibilities of the change:
the phase portrait stays topologically equivalent to the previous one or not. Gen-
erally the space of parameters can be divided into structurally stable domains with
topologically equivalent phase portraits. This division together with related phase
portraits is called a bifurcation diagram of the system (2.1). Structurally unstable
boundaries correspond with some particular type of bifurcation that can be found
by transforming the system (2.1) to its normal form. Some typical systems (al-
ready in the normal form) describing particular types of bifurcations were studied
as model systems for many types of bifurcations.

2.3. Andronov-Hopf bifurcation. Now let us turn our attention to the bifurca-
tion which will be proved in the age-structured model of cannibalism, the Andronov-
Hopf bifurcation. First of all, recall some basic facts about this bifurcation. This
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bifurcation is related to an existence of a pair of purely imaginary eigenvalues. By
crossing the imaginary axis and changing the real part of eigenvalues from negative
to positive value a stable focus changes to an unstable focus. This change is ac-
companied by a birth of a cycle. The model system for Andronov-Hopf bifurcation

ẋ1 = µx1 − x2 − x1(x
2
1 + x22)

ẋ2 = x1 + µx2 − x2(x
2
1 + x22)

(2.2)

possesses a unique stationary point x1 = 0 = x2 for every real µ. The eigenvalues
at this stationary points are λ = µ ± i. Introducing complex-valued variable z =
x1+ ix2 the system (2.2) takes the form ż = (µ+ i)z−z|z|2 which becomes in polar
coordinates to a system

ρ̇ = ρ(µ− ρ2)

φ̇ = 1.
(2.3)

From here it follows that the stationary point is a stable focus for µ < 0 and an
unstable focus for µ > 0. If µ > 0 then a solution ρ =

√
µ presents a limit cycle

around the origin.

Figure 1. Hopf-Andronov bifurcation.

An important problem is whether the limit cycle stable or unstable. One of the
concepts which enables us to decide which of these two possibilities really arises
is the concept of Lyapunov coefficient l1, shortly introduced in the following para-
graphs.

Lemma 2.1. Consider general one-parameter system

ẋ = f(x, µ), x ∈ R2, µ ∈ R (2.4)

which possesses a stationary point x = 0 for every sufficiently small |µ| and let

λ1,2(µ) = ψ(µ)± iω(µ),

where ψ(0) = 0, ω(0) = ω0 > 0, be the eigenvalues of this stationary point.
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There exists an invertible transformation depending on the parameter µ which
converts system (2.4) into the complex form

ż =
(
ψ(µ) + iω(µ)

)
z + c1(µ)z|z|2 +O(|z|4)

Remark 2.2 (stability of limit cycle in Andronov-Hopf bifurcation). The number

l1(µ) =
Re c1(µ)

ω(µ)
− ψ(µ)

Im c1(µ)

ω2(µ)

is called the first Lyapunov coefficient. The sign of l1(0) determines stability or
instability of the limit cycle. A stable limit cycle appears near the equilibrium in
the case l1(0) < 0 for µ close to zero. This process is referred as “supercritical bifur-
cation”, since an equilibrium at stationary point is replaced by small oscillations.
On the contrary, if l1(0) > 0, then “subcritical bifurcation” takes place, since the
stable equilibrium enclosed by an unstable limit cycle changes to an unstable focus.

Bautin [1] introduced the terms “subcritical” and “supercritical” bifurcation
and derived formulas for the first Lyapunov coefficient for systems of two and three
equations with analytical coefficients. These formulas are too long to repeat them
on this place. For some special systems these formulas take simpler forms than
presented in [1].

Another approach which enables to distinguish between the stable and unstable
limit cycle is presented in [2]. In this book the first Lyapunov coefficient is replaced
by the quantity µ2 which is the first nonvanishing term of an infinite series, see [2,
Chapter 1] for more details.

Finally, recall that the period of the limit cycle approaches 2π
ω(0) as the parameter

approaches the critical value.

2.4. Shoshitaishvili theorem.

Lemma 2.3. Let for the system (2.1) be α ∈ R1 and x = 0 be a stationary point
for α = 0 with n0 6= 0 purely imaginary eigenvalues. Then there exists a local
invariant manifold W c(α) in the neighbourhood of zero. The manifold is attractive,
if all other eigenvalues have positive real parts.

The system (2.1) can be restricted to W c(α) for small |α| by a local projection of
W c(α) to T c (generalized eigenspace corresponding to the union of purely imaginary
eigenvalues). On this so-called central manifold, the system (2.1) can be represented
in the new coordinates by a system

u̇ = Φ(u, α), u ∈ Rn0 .

Theorem 2.4 (Shoshitaishvili theorem). The system (2.1) is locally topologically
equivalent to a suspension of the central manifold, which can be represented by a
system

u̇ = Φ(u, α),

ẏ = −y,
ż = z,

where u ∈ Rn0 , y ∈ Rn− and z ∈ Rn+ (n± is the number of eigenvalues with positive
or negative real parts).

For the proof of the above theorem, see [6].
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3. Mathematical model

Let us return our attention to the system (1.1). First of all, we non-dimensionalise
the system and obtain a smaller amount of parameters. Remark that we are inter-
ested especially in the interspecific parameters V and S and from this reason we
perform the transformation which preserves these parameters.

Lemma 3.1. Transformation X = A
γ x, Y = A

γ2 y, Z = A
Cγ z, T = γ

A t transforms

the dynamical system (1.1) with Q = 0 into

ẋ = y −mx+ Sxy + V xz,

ẏ = nx− oy − Sxy,

ż = pz − V xz,

(3.1)

where the dot, ˙ represents d
dt , m = µaγ

A > 0, n = λγ2

A > 0, o = γ
(
1 +

µj

A

)
> 0,

p = Lγ
A > 0.

For o 6= 1 and m 6= n, System (3.1) possesses three stationary points S0 =
[x0, y0, z0], S1 = [x1, y1, z1] and S2 = [x2, y2, z2], where

x0 =
p

V
, y0 =

np

oV + pS
, z0 =

(mo− n)V + p(m− n)S

V (oV + pS)
, (3.2)

x1 =
om− n

S(n−m)
, y1 =

1

S
· om− n

o− 1
, z1 = 0, (3.3)

x2 = y2 = z2 = 0. (3.4)

The statements of this lemma follow immediately.
From a practical point of view, the most interesting stationary point is the point

S0.
The absence of prey in the stationary point S1 is explained in [3] and [5] as

the existence of an alternative food for the predator. This alternative food is not
incorporated in our model. However, the existence of an alternative food is not
necessary for real interpretation of the system. Particularly, there are lakes in
nature with predator fishes only. In such ecosystems, the juvenile predators are the
major food for adults.

In fact, the set z = 0 is an invariant set of the system. In this set system (3.1)
becomes

ẋ = y −mx+ Sxy,

ẏ = nx− oy − Sxy
(3.5)

and describes the states with no prey. However, the main aim is to study the steady
states in which all populations are present. Therefore we focus our attention to the
stationary point S0.

3.1. Stationary point S0. We will focus our attention to the stationary point S0.
This point is in the first octant if

(mo− n)V + p(m− n)S > 0. (3.6)

This condition covers three mutually different cases

(1) mo− n > 0, m− n > 0 and V , S are arbitrary positive numbers

(2) mo− n > 0, m− n < 0 and V > S(n−m)p
mo−n

(3) mo− n < 0, m− n > 0 and V < S(n−m)p
mo−n
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The transformation

x′ = x− x0,

y′ = y − y0,

z′ = z − z0

moves the stationary point S0 into the origin in new coordinates. In the new
variables [x′, y′, z′] system (3.1) reads as

ẋ′ = y′ −mx′ + S(x′y′ + x′y0 + y′x0) + V (x′z′ + x′z0 + x0z
′),

ẏ′ = nx′ − oy′ − S(x′y′ + x′y0 + x0y
′),

ż′ = pz′ − V (x′z′ + x′z0 + x0z
′),

(3.7)

where dot is the derivative with respect to t. The Jacobi matrix of system (3.7)
evaluated at the origin is

J(0, 0, 0) =



−m+ Sy0 + V z0 1 + Sx0 V x0

n− Sx0 −o− Sx0 0
−V z0 0 p− V x0




=




− y0

x0
1 + Sx0 V x0

o y0

x0
−nx0

y0
0

−V z0 0 0




(3.8)

and the characteristic polynomial of this matrix is

|J(0, 0, 0)− νI| =

∣∣∣∣∣∣

− y0

x0
− ν 1 + Sx0 V x0

o y0

x0
−nx0

y0
− ν 0

−V z0 0 −ν

∣∣∣∣∣∣
= −(ν3 +Aν2 +Bν + C), (3.9)

where

A =
y0
x0

+ n
x0
y0
,

B = n− o
y0
x0

(1 + Sx0) + V 2x0z0,

C = V 2n
x20z0
y0

.

Consider the most important case, when the point S0 is in the interior of the
first octant. In this case clearly A > 0 and C > 0. Let us examine the expression
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AB − C. An evaluation shows that

AB − C =
( y0
x0

+ n
x0
y0

)(
n− o

y0
x0

(1 + Sx0) + V 2x0z0

)
− V 2n

x20z0
y0

=
y0
x0

(
n− o

y0
x0

(1 + Sx0) + V 2x0z0

)
+ n2

x0
y0

− no(1 + Sx0)

=
[
1 + n

(x0
y0

)2][
n− o

y0
x0

− Soy0
] y0
x0

+ V 2y0z0

=
[
1 + n

(x0
y0

)2][
Sy0 − Soy0

] y0
x0

+ V 2y0z0

=
[
1 + n

(x0
y0

)2]y20
x0
S(1− o) + V 2y0z0

=
1

x0

[
(y20 + nx20)S(1− o) + V py0z0

]
.

(3.10)

Hence if o < 1, then AB − C is positive. In this case all real parts of eigenvalues
are negative and the stationary point S0 is stable.

The only possibility which allows the point S0 become to be unstable is for o > 1.
Under this condition the point S0 lies in the first octant if and only if either

mo > m > n,

or

mo > n > m and V > Sp
n−m

mo− n
.

3.2. Case o > 1. We have to write the expression AB −C in terms of parameters
of system (3.1) to obtain correct conclusions concerning the influence of parameters
on stability. (Remember that all x0, y0 and z0 depend on the parameters and hence
(3.10) cannot be used to obtain correct conclusions. This step seems to be omitted
in [3].) A direct computation shows that the expression AB −C can be written in
the form of the product of a positive factor and the three-degree polynomial P (·)
in variable V

S as follows:

AB − C =
pnS3

V (oV + pS)2
P
(V
S

)
, (3.11)

where

P (τ) = (mo−n)τ3+
[
p(m−n)+(1−o)(n+o2)

)
]τ2+2op(1−o)τ+(1−o)p2 . (3.12)

According to the Descarte’s rule of signs, the polynomial P (τ) possesses a unique
positive zero. An evaluation shows that P

(
p n−m
mo−n

)
is negative. Really

P
(
p
n−m

mo− n

)
=p3

(n−m)3

(mo− n)2
+
[
p(m− n) + (1− o)(n+ o2)

] (n−m)2

(mo− n)2
p2

+ 2op(1− o)p
n−m

mo− n
+ (1− o)p2

=(1− o)p2
[
(n+ o2)

(n−m)2

(mo− n)2
+ 2o

n−m

mo− n
+ 1
]

=(1− o)p2
[
n
(n−m)2

(mo− n)2
+
(
o
n−m

mo− n
+ 1
)2]

.

(3.13)

We summarize the above computations in the following theorem.
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Theorem 3.2. Let either mo > m > n or mo > n > m hold. Denote by τk the
unique positive zero of the polynomial (3.12).

(1) If V
S > τk, then all real parts of eigenvalues of Jacobi matrix at S0 are

negative and S0 is a stable singular point in the first octant.
(2) If either

mo > m > n and
V

S
< τk

or

mo > n > m and p
n−m

mo− n
<
V

S
< τk,

then at least one of the eigenvalues of Jacobi matrix at S0 has a positive
real part and S0 is an unstable singular point in the first octant.

(3) If mo > n > m and V
S < p n−m

mo−n , then S0 is a singular point outside the
first octant.

Proof. From the assumptions it follows that o > 1. From equality (3.13) it follows
that τk > p n−m

mo−n . Now Theorem follows from (3.11), (3.13) and from the well
known Ruth–Hurwitz criterion. �
Remark 3.3. Note that if o < 1, then AB−C is always positive and the point S0

is stable. No bifurcation occurs if o < 1.
If n > mo > m, then z0 < 0 for all positive values of V and S and the point z0

lies outside the first octant.
If mo > n > m, then V

S > p n−m
mo−n is a necessary and sufficient condition for

min(x0, y0, z0) > 0.

4. Andronov-Hopf bifurcation of the system (3.1)

In this section we consider system (3.1) with positive parameters m,n, p, S, V
and o > 1 (according to the previous remark). We make a natural assumption
min(x0, y0, z0) > 0.

Corollary 4.1. Let τk be the zero of the polynomial (3.12) for arbitrary fixed
positive parameters m,n, o, p, S. Then Vk = τkS is the critical value of Andronov-
Hopf bifurcation of the system (3.1) for the stationary point S0.

Proof. Follows immediately from the Theorem (3.2), since the characteristic poly-
nomial (3.9) has two purely imaginary eigenvalues, if AB − C = 0 (notice that
A > 0 and C > 0), that is while P (τ) = 0. �
Remark 4.2. Both the supercritical and the subcritical bifurcation types occur in
the system (3.1). The type of Andronov-Hopf bifurcation is determined by the first
Lyapunov coefficient l1, as Remark 2.2 shows. This coefficient can be calculated
numerically for given critical parameters.

For example, let m = 7, n = 3, o = 3, p = 5 and S = 1. The polynomial (3.12)
has a unique zero τk

.
= 2.251 and Vk = τk is a critical value of Andronov-Hopf

bifurcation. Following [1, Chapter III], we transfer the stationary point S0 to the
origin and find that l1

.
= −1.683π. In this case the supercritical bifurcation takes

place and the existence of a stable limit cycle in the neighborhood of an unstable
focus for V < Vk near Vk is proved. Figure 2 shows parts of two ω-limit trajectories
(with initial conditions [x(0) = 10, y(0) = 1, z(0) = 14] and [x(0) = 1, y(0) =
1.5, z(0) = 2]) converging to the central manifold for V = 1.9. The limit cycle lies
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on the central manifold in the free space between them. This free space arose due
to stoping calculating the trajectories.

Figure 2. A stable limit cycle.

On the other hand, let m = 4, n = 3, o = 3, p = 5 and S = 1. The polynomial
(3.12) has a unique zero τk

.
= 4.079 and Vk = τk is a critical value of Andronov-

Hopf bifurcation. Calculating the first Lyapunov coefficient for Vk we get l1
.
=

0.317π, so the subcritical bifurcation takes place. In this case, there exists an
unstable limit cycle in the neighborhood of a stable focus for V > Vk near Vk.
Figure 3 shows parts of two trajectories for V = 5.5. One trajectory (with initial
conditions [x(0) = 2, y(0) = 1, z(0) = 2]) is converging to the stable focus S0 on
the central manifold and the other is a stable separatrix (with initial conditions
[x(0) = 2, y(0) = 2, z(0) = 0], z = 0 is an invariant set) of the saddle point in the
origin. These trajectories are very close to each other and they are converging to
the central manifold, so we can suppose that the unstable limit cycle is somewhere
in between on the central manifold (unlike the planar phase space, in the 3d phase
space it is very hard to find the unstable limit cycle by drawing trajectories).

In view of the above computations, we can see that another type of bifurcation
must take place here. Changing parameter m from 7 to 4 and counting the critical
value Vk we got two qualitatively different phase portraits. You can verify that
for m

.
= 4.254, the critical value Vk

.
= 3.792 and l1 = 0. The figure 4 shows the

trajectories near the center (initial conditions [x(0) = 2, y(0) = 2, z(0) = 2], [x(0) =
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Figure 3. An unstable limit cycle.

2, y(0) = −2, z(0) = 2] [x(0) = 2, y(0) = −2, z(0) = 1], [x(0) = 2, y(0) = 1, z(0) =
2], [x(0) = 2, y(0) = 2, z(0) = 0] ).

This is so called generalized Hopf (Bautin) bifurcation and more limit cycles can
arise in the neighbourhood of the stationary point S0.

Conclusion. We investigated the system introduced by Magnusson [5] as a model
of cannibalism. We derived the conditions under which the Andronov-Hopf bifur-
cation takes place. These conditions are derived in terms of the parameters of the
original model and among others, we provide an equation which describes the crit-
ical value for which the bifurcation occurs. Using theory of Bautin we proved that
both subcritical and supercritical bifurcations may take place in this model and
hence the limits cycle enclosing the stationary point need not to be stable. This
phenomenon was not mentioned in any of previous works on this system.
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A PREDATOR-PREY MODEL WITH ALLEE EFFECT

AND FAST STRATEGY EVOLUTION DYNAMICS OF

PREDATORS USING HAWK AND DOVE TACTICS

Jitka Kühnová — Lenka Přibylová

ABSTRACT. In this work we present the predator-prey model with Allee effect
and Hawk and Dove tactics in fighting over caught prey implemented as fast

strategy evolution dynamics. We extend the work of Auger, Parra, Morand and
Snchez (2002) using the prey population embodying Allee effect and analogously
to this work we get two connected submodels with polymorphic and monomorphic
predator population. We get much richer dynamics, in each submodel we find local
bifurcations (saddle-node, supercritical Hopf caused by Allee effect and Bogdanov-
Takens) and a global bifurcation of limit cycles caused by the strategy evolution

that is not possible in any of the submodels that can lead to a bluesky extinction
of both populations.

1. The model

In our model, we expect the prey is limited by a carrying capacity and a thre-
shold of survivance, which means that prey becomes extinct when its density is
lower than θ. It is typical for a lot of populations — only few could grow up from
just one or two individuals. This so called Allee effect is not considered in [1].

The predator population is divided into two types related to the predator
behaviour. Whenever two predators meet after catching the prey, they choose
their behaviour strategy. They can initiate aggressive behaviour and fight over
the prey (we expect they are equally likely to be injured) or they retreat. The
first predators are so called Hawks, the second are Doves. From the game theory
it is known as the Hawk and Dove game. Whenever two Hawk predators meet,
they both initiate aggressive behaviour, the conflict results and one of them gets
the prey (gain G > 0). The cost of the conflict (C — given effort and got injuries)
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evolution.
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reduces individual fitness of the other by some positive constant value C. When
a Hawk meets a Dove, the Dove immediately retreats and the Hawk obtains the
resource and when two Doves meet the resource is shared equally between them.
The fitness payoffs for the Hawk-Dove game can be summarized according to
the following matrix

A =

( G−C
2 G

0 G
2

)
. (1)

Let the function p in time t be the function of the number of predators which
is the sum of Hawk pH(t) and Dove pD(t) predators. Let x(t) and y(t) be the
proportions of predators with Hawks and Doves tactics

x(t) =
pH(t)

p(t)
, y(t) =

pD(t)

p(t)
= 1− x(t),

respectively.

Now we need to create a model in fast time scale by using replicators equations

dx

dτ
= x(∆H −∆),

dy

dτ
= y(∆D −∆),

where ∆H is the gain of an individual always using the Hawk strategy, ∆D is
the gain of an individual always using the Dove strategy and ∆ is the average
gain of an individual playing the two tactics. Using the fact that x + y = 1 in
any time t and after some algebra we get single equation:

dx

dτ
=

x

2
(1− x)(G− Cx). (2)

The stationary points are 0, 1 a G/C = x∗. When G < C we denote x∗ = G
C .

This stationary point is asymptotically stable, population of the predators is
polymorphic with proportion G/C Hawks and 1−G/C Doves. When G > C we
denote x∗ = 1, and this stationary point is asymptotically stable, population of
the predators is monomorphic (there are only Hawks).

For model in slow time scale we need the equation for population of the prey.
Because of Allee effect in prey population, intraspecific competition and constant
harvesting by predator we get

dn

dt
= rn

(n
θ
− 1

)(
1− n

K

)
− anp ,

where θ is the threshold of survivance, r is the growth rate of prey population,
K is the carrying capacity and a is a predation force parameter.

2
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For equations of predator populations we use assumptions from [1] and we get

dpH
dt

= −bpH +

(
α

(
G− C

2

)
pH
p

+ αG
pD
p

)
pH ,

dpD
dt

= −bpD + α
G

2

pD
p
pD ,

where b is the mortality rate of the predator (without prey predator becomes
extinct), α is a conversion coefficient of gain and cost into biomass of predators.
All coefficients are positive.

We assume that the model in fast time scale is established in the stationary
point x∗ and by using the theory of aggregated model [1] we get:

dn

dt
= rn

(n
θ
− 1

)(
1− n

K

)
− anp ,

dp

dt
= −bp+

αG

2
p− αC

2
(x∗)2p .

If the gain depends on the prey density as G(n) = an, we obtain two different
aggregated models:

Model I, n < C
a ,

dn

dt
= rn

(n
θ
− 1

)(
1− n

K

)
− anp ,

dp

dt
= −bp+

αa

2
np− αa2

2C
n2p .

Model II, n > C
a ,

dn

dt
= rn

(n
θ
− 1

)(
1− n

K

)
− anp ,

dp

dt
= −bp+

αa

2
np− αC

2
p .

Now denote:

P (n) = r
(n
θ
− 1

)(
1− n

K

)
,

Q(n) = −b+
αa

2
n− αa2

2C
n2 for n <

C

a
,

= −b+
αa

2
n− αC

2
for n >

C

a
.

We get:
dn

dt
= n[P (n)− an] ,

dp

dt
= Q(n)p .

(3)

3
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2. Analysis of the model

Nullclines of the system:

• nullclines for both models: n = 0, p = 0, p = 1
aP (x).

• nullclines for the first model: n∗
1,2 = C

2a

(
1∓

√
1− 8b

αC

)
.

• nullcline for the second model: n∗
3 = C

a + 2b
αa .

For n∗
1, n

∗
2, n

∗
3 it is always true:

0 < n∗
1 ≤ C

2a
≤ n∗

2 <
C

a
< n∗

3 . (4)

Figure 1

Function Q(n).

nn∗
1 θ C

2a n∗
2

C
a n∗

3 K

p

Figure 2

Phase portrait of the combined model.

It is clear that, there are six stationary points:

(0, 0), (θ, 0), (K, 0), (n∗
1, p

∗
1), (n

∗
2, p

∗
2) and (n∗

3, p
∗
3).

The last three points exist only when

n∗
1, n

∗
2, n

∗
3 ∈ (θ,K).

For finding out the type and stability of all stationary points it is necessary to
examine Jacobian matrix for all of them. The general Jacobian matrixJ(n∗, p∗) =

(
P (n∗)− ap∗ + n∗P ′(n∗) −an∗

p∗Q′(n∗) Q(n∗)

)

1. (0, 0): always stable node or focus. Because of that, in every situation
there are trajectories that end at beginning. That means both the prey
and the predator become extinct.

4
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2. (θ, 0): saddle for θ ∈ (0, n∗
1) ∪ (n∗

2, n
∗
3), unstable node or focus, other-

wise.

3. (K, 0): saddle for K ∈ (n∗
1, n

∗
2)∪ (n∗

3,∞), stable node or focus, other-
wise.

4. (n∗
1, p

∗
1): for n∗

1 < K+θ
2 unstable, for n∗

1 > K+θ
2 stable node or focus.

5. (n∗
2, p

∗
2): always saddle.

6. (n∗
3, p

∗
3): for n∗

3 < K+θ
2 unstable, for n∗

3 > K+θ
2 stable node or focus.

At the first sight there could be five different situations:

1. only (0,0) is locally stable stationary point,

2. (0,0) and (K, 0) are locally stable stationary points,

3. (0,0) and (n∗
1, p

∗
1) are locally stable stationary points,

4. (0,0), (K, 0) and (n∗
1, p

∗
1) are locally stable stationary points,

5. (0,0) and (n∗
3, p

∗
3) are locally stable stationary points.

The first two situations are not interesting - neither population survive, there
is nothing to examine; the prey could not satisfy predator, predator becomes
extinct and prey is stabilized on its carrying capacity. The third and the fifth
situations have stable stationary point of coexistence of both populations, the
fourth has either coexistence point or extinction of predator and prey stabilized
on its carrying capacity.

From the analysis one could see that stationary points

(n∗
1, p

∗
1) and (n∗

3, p
∗
3)

could be stable or unstable focuses which implies there could be two Hopf bifur-
cations.

To examine stability of the limit cycle it is necessary to translate the system to
the normal form of the Hopf bifurcation. First, we shift the system to the origin,
second, we make linear transformation to the normal form and consequently we
find the first Lyapunov coefficient whose sign determines the stability of the limit
cycle.

Generally, our system (3) has the stationary point (n∗, p∗). Let us transform the
variables:

n = ξ1 + n∗,

p = ξ2 + p∗.

We get the new system

ξ′ = f (ξ) (5)

that could be rewritten as

ξ′ = A0 · ξ + F (ξ), ξ = (ξ1, ξ2)
T,

5
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where A0 is Jacobian matrix of the system (5) in the origin, denote detA0 = ω2.

Now we change variables with matrix T of real eigenvectors of A0 :

ξ = T · µ,
µ′ = T−1A0Tµ + T−1F (Tµ),P(µ) = T−1F (Tµ),

µ′ = J · µ+ P(µ).J is in the real Jordan form, in detail

(
µ1

µ2

)′
=

(
0 −ω
ω 0

)(
µ1

µ2

)
+

(
P (µ1, µ2)
R(µ1, µ2)

)
.

The stability of the limit cycle is determined by the first Lyapunov coefficient

l1(0) =
1
8ωL1 +

1
8ω2L2

with

L1 = P111 + P122 +R112 +R222 ,

L2 = P12(P11 + P22)−R12(R11 +R22)− P11R11 + P22R22 ,

where the lower indices mean partial derivatives of P respective to components
evaluated at µ = 0.

We have the eigenvectors of A0 :(
1

− iω
an∗

i

)
,

(
1
iω
an∗

i

)
,

and matrix T (
1 0
0 ω

an∗
i

)
, i = 1, 3.

For (n∗
1, p

∗
1) we have the functions P (µ1, µ2), R(µ1, µ2):

P (µ1, µ2) = −rµ1
3

θK
+

r(K + θ − 3n∗
1)

θK
µ2
1 −

ω

n∗
1

µ1µ2 +
r

Kθ
(K + θ − 2n∗

1)n
∗
1µ1 ,

R(µ1, µ2) =
αa

2C

[
(C − 2an∗

1)µ1µ2 − a

(
an∗

1p
∗
1

ω
+ µ2

)
µ2
1

]
.

6
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After some algebra we get the first Lyapunov coefficient

l1(0) = −rαa2n∗
1p

∗
1

4CKθω3
(C − an∗

1),

and because the stationary point (n∗
1, p

∗
1) is from the first model, where

n <
C

a
, then l1(0) < 0

and the limit cycle which appears in this Hopf bifurcation is stable and Hopf
bifurcation is supercritical.

For (n∗
3, p

∗
3), we have the functions P (µ1, µ2), R(µ1, µ2):

P (µ1, µ2) = − r

Kθ
µ3
1 −

rn∗
3

Kθ
µ2
1 −

ω

n∗
3

µ1µ2 ,

R(µ1, µ2) =
αa

2
µ1µ2 .

It is easy to see that the first Lyapunov coefficient is

l1(0) = − r

2Kθω
< 0.

The limit cycle which appears in this Hopf bifurcation is stable and Hopf bifur-
cation is supercritical.

Hopf bifurcation corresponding to the stationary point (n∗
1, p

∗
1) comes up for

n∗
1 =

K + θ

2

and according to (4) it must hold

K + θ <
C

a
.

That means the second model has no influence in contrast with Hopf bifurcation
corresponding to the stationary point (n∗

3, p
∗
3), where because of the influence

of the first model it appears the global bifurcation with appearance of the new
unstable limit cycle (see Figure 3).

7
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b

n

θ

K

n∗
1

n∗
2

n∗
3

Unfolding of limit cycles

Hopf bifurcation

Figure 3. Stable cycle branch is presented by filled circles, unstable by
unfilled circles. Unstable cycle branch splits on (θ, 0) and (K, 0).

When

n∗
1 =

C

2a
,

we get saddle-node bifurcation and in combination with Hopf bifurcation we
have Bogdanov-Takens bifurcation. By using analogous normalizing process like
in computing of the first Lyapunov coefficient with assuming the condition for
n∗
1 we transform the system into the normal form of the Bogdanov-Tankens

bifurcation.

We get the eigenvectors of A0

(
1
0

)
,

(
0

− 1
an∗

1

)
,

matrix T (
1 0
0 − 1

an∗
1

)
,

8
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and functions P (µ1, µ2), R(µ1, µ2):

P (µ1, µ2) = −rµ1
3

θK
+

r(K + θ − 3n∗
1)

θK
µ2
1 +

µ1µ2

n∗
1

+
r

Kθ
(K + θ − 2n∗

1)n
∗
1µ1 ,

R(µ1, µ2) = −αa2n∗
1

2C

[
p∗1(C − 2an∗

1)− (C − 2an∗
1)

µ2

an∗
1

− a

(
p∗1 −

µ2

an∗
1

)
µ1

]
µ1.

The genericity condition for Bogdanov-Tankens bifurcation according to [2] is

s = sgn
(
b20(a20 + b11)

)
6= 0,

where

P (µ1, µ2) = a20µ
2
1 + P1(µ1, µ2),

R(µ1, µ2) = b20µ
2
1 + b11µ1µ2 +R1(µ1, µ2).

Since

s = sgn

(
αa3

2C
n∗
1p

∗
1

(
−rn∗

1

Kθ
+

αa

2C
(C − 2an∗

1)
))

,

s is nonzero variable when θ 6= K, which is satisfied since θ < K in a common
situation.

Another Bogdanov-Takens bifurcation is possible when

lim
b→0

n∗
2 = lim

b→0
n∗
3 =

C

a
,

it is caused by combinations of two models. This implies possibility of splitting
of the unstable limit cycle on the saddle point (n∗

2, p
∗
2) see Figure 4.

Near the Bogdanov-Takens bifurcation there is a unique smooth curve corre-
sponding to a saddle homoclinic bifurcation, where the limit cycle splits on the
separatrix loop of the saddle. In our case, see the bifurcation diagram Figure 3,
the supercritical Hopf bifurcation curve of the stable limit cycle has a limit point,
where the stable cycle turns to be unstable one. It is a typical fold bifurcation of
the limit cycles. In a small parameter area there coexist two nearby cycles - sta-
ble and unstable one. The unstable one then splits on the separatrix homoclinic
loop of one of the saddles (see Figure 3 and 4).

9
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b

n

θ

K

n∗
1

n∗
2

n∗
3

Unfolding of limit cycles

Hopf bifurcation

Figure 4. Stable cycle branch is presented by filled circles, unstable with
unfilled circles. Unstable cycle branch splits on (n∗

2, p
∗
2).

Let us look closer to this in some phase portraits (Figure 5). As it can be seen
in Figure 5(a) for a small value of parameter b there is a huge unstable area, where
both populations become extinct. As the parameter b increases there is unfolding
of the stable cycle that arises from the supercritical Hopf bifurcation. This causes
appearance of a small stable area “from nothing”. When the parameter b crosses
the critical value of the local supercritical Hopf bifurcation at the maximum of
the parabola nullcline, the stable limit cycle vanishes and the branch of the
unstable cycle around the stable focus continues until it splits at the separatrix
loop of one of the saddle points. The green area is the basin of attraction of the
stable limit cycle or the stable focus, respectively. It is a large area that maintains
the populations. On the other hand, decreasing of the value of parameter b
(mortality rate of the predator) causes disappearance of the stable green area
and there is a global bifurcation—a bluesky catastrophe, extinction of both
populations “from nothing”.

10
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(a) Complete unstable area (b)Appearance of the small
stable area by unfolding of

the limit cycles.

(c) Stable limit cycle van-

ished, the unstable limit cy-
cle around the stable focus.

(d)Saddle-node bifurcation
of the stationary point
(n∗

1, p
∗
1) and (n∗

2, p
∗
2).

(e) Spreading of the stable area. (f)Unstable limit cycle split
at the separatrix loop.

Figure 5. Phase portraits.
11
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3. Conclusion

In this paper, we have introduced the predator-prey model with Allee effect in
prey and in which individual predators can use Hawk and Dove tactics in fight-
ing over caught prey, that caused division into two submodels. We have shown,
by bifurcation analysis and respective phase portraits, existence of saddle-node
bifurcation, two supercritical Hopf bifurcations and two Bogdanov-Takens bifur-
cations in this aggregated model. Moreover, we have shown existence of global
bifurcation of unfolding of two limit cycles, which is in neither submodel alone.
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1. Introduction

Behavioral interaction among the entities of predator or prey
populations, both positive and negative, may change and modify
the basic findings of population biology and theory of ecology and
may also have a substantial effect on the individual’s foraging
success (Skalski and Gilliam, 2001). The importance of the
inclusion of predator behavior into the predator–prey interaction
models has been recognized (e.g. Abrams and Ginzburg, 2000;
Arditi and Akcakaya, 1990; Lima, 2002) but little is known about
the nonlinear phenomena that may appear in predator–prey
systems with interaction due to bifurcations. Empirical studies and
observations have shown the presence of interacting behavior in
animal populations; lions or baboons are very often subjects of
such observations (Heinsohn and Packer, 1995). Interacting
predator–prey systems especially with cooperative or foraging
behavior are often modeled as a social dilemma in game theory

with several strategies of behavior to adopt (Iwasa, 1982; Packer
and Ruttan, 1988; Brown et al., 1999; Doebeli and Hauert, 2005).
The motives and evolution even of human cooperative behavior is
not thoroughly known currently; Richerson and Boyd (2001) argue
that deeper understanding of human behavior may lead to a better
explanation of other species.

Predator functional response, that is, the per capita feeding rate
of predators upon their prey, is a basic concept in the predator–
prey theory from its beginning. There is a variety of functional
response types, almost every textbook (e.g. Begon et al., 1990;
Krebs, 2001) refers to the traditional classification of the three
density-independent types (Holling, 1959): Holling type I (linear),
Holling type II (concave increase) and Holling type III (sigmoid
increase) functional responses. There is a wide range of different
functional relations of feeding rate with respect to the predator
population density (Skalski and Gilliam, 2001). The most illustra-
tive choices are an increasing or a decreasing feeding rate. One may
interpret the decreasing feeding rate as a predator population
where the entities interfere. Predator interference is a collective
term that includes a number of specific mechanisms from stealing
subdued prey to mechanisms connected with territorial behavior
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of the predator or the prey. There is a wide range of literature
available on interference, such as (Arnqvist et al., 2006; Ruxton
et al., 1992; Ruxton, 1995).

Increasing feeding rate, on the other hand, represents foraging
facilitation among the entities of the predator population.
Although foraging facilitation is the opposite process to predator
interference, contemporary predator–prey theory often overlooks
this aspect despite the fact that an inclusion of the facilitation in
ecology theory may influence the results and the learnings gained
so far in predator–prey theory (Giraldeau and Caraco, 2000; Bruno
et al., 2003). Foraging facilitation can manifest in different ways, it
can be an ability to locate or capture the prey in a bigger group
(Cosner et al., 1999), intraspecific cooperation (Courchamp and
Macdonald, 2001), protecting mechanisms against other species
(Krause and Ruxton, 2002), or accessibility of public information
on the availability of food (Bijleveld et al., 2015).

Recent studies devoted to density dependent functional
responses and their effects on predator–prey dynamics (e.g.
Nilsson et al., 2006; Fryxell et al., 2007; Boukal et al., 2008; Berec,
2010; Pribylova and Berec, 2014) show that density dependent
functional responses bring about new stabilizing and destabilizing
mechanisms of predator–prey dynamics. The aim of the present
paper is to build on the findings of Berec (2010) and Pribylova and
Berec (2014) and analyze these mechanisms for a family of
functional responses representing positive interaction among the
entities of the predator population. While Berec (2010) gives a brief
overview on the number and the character of the coexistence
equilibria, we present a complete and thorough analysis of the
system with foraging facilitation. In Berec (2010), Berec calls for
further, more detailed studies on the models with predator
facilitation and interference, with special attention on the limit
cycle behavior. A step towards the understanding of the
phenomena that may occur in systems with interacting predators
was the analysis of interfering predators in Pribylova and Berec
(2014). However, the picture is not complete without the predator
facilitation case, which is the question we address in the recent
paper. While the notation is similar to that in Pribylova and Berec
(2014), the approach of our analysis is different and so are our
findings. We have considered the family of functional responses
suggested in Berec (2010) with unbounded above encounter rate
and a more realistic family of functional responses with bounded
above encounter rate. The latter corresponds with the findings of
several empirical studies (Bijleveld et al., 2015) and studies on
game theory models (Packer and Ruttan, 1988). While Berec (2010)
considers only the number and character (i.e. stability) of the
coexistence equilibria, our analysis goes deeper and examines the
bifurcations that may occur. We concentrate on the conditions of
appearance of multi-stable regions.

Observations of cooperative behavior, mainly cooperative
hunting, have been published several times (Packer and Ruttan,
1988; Creel and Creel, 1995; Heinsohn and Packer, 1995). A general
rule of cooperative hunting strategy is that the benefits of group
hunting for each hunter have to outweigh the benefits of solitary
hunting. Packer and Ruttan (1988) showed that cooperative
hunting can be the evolutionarily stable strategy for species
hunting a single small prey, a small group size of the hunters
hunting a single large prey, or for a large group of hunters hunting
multiple large preys. Species with cooperative hunting strategy
have an increasing above bounded hunting success function with
respect to the hunter group size. Packer’s findings validate the
consideration of an increasing above bounded encounter rate at
least for several specific predator–prey populations (such as lions
and hyenas).

The analyzed model is a modification of the classic
Rosenzweig–MacArthur predator–prey model (Rosenzweig,
1971) with Holling type II functional response of predators. The

Rosenzweig–MacArthur model demonstrates the paradox of
enrichment where stable oscillations bifurcate out of a stable
equilibrium once the environmental carrying capacity of the prey
exceeds a critical value (Kot, 2001). We show that our model keeps
this very typical behavior after the encounter rate functions for
foraging facilitation are introduced. Another destabilization may
appear due to the homoclinic bifurcation that causes splitting of
the stable cycle, thus ending the oscillations and consequently
causing the extinction of the predators. This phenomenon
influences the prey density as well.

2. Model

2.1. Generic model with predator foraging facilitation

Let us consider the following modified Rosenzweig–MacArthur
predator–prey model with the predator-dependent functional
response

dN

dt
¼ rN 1�N

K

� �
�Pf ðN; PÞ;

dP

dt
¼ ePf ðN; PÞ�mP:

(1)

In this model, N and P are prey and predator densities, respectively,
r is the intrinsic per capita growth rate of the prey, K is the
environmental carrying capacity of the prey, m is the per capita
predator mortality rate, and e is the efficiency with which the
consumed prey is transformed into new predators. The density of
the prey increases logistically in the absence of the predator, while
the predator dies out exponentially in the absence of the prey. The
predator functional response f(N, P) is a generalized Holling type II
functional response with the predator encounter rate l being a
smooth and increasing function of the predator density P

f ðN; PÞ ¼ lðPÞN
1þ hlðPÞN ; (2)

where l(0) � 0, l0(P) > 0, and h denotes the predator handling
time of one prey. The general assumption of foraging facilitation is
that higher predator densities give rise to an increased foraging
efficiency and hence increase encounter rate for any member of the
foraging party.

Combining the generic model (1) with the functional response
(2), our primary model is

dN

dt
¼ rN 1�N

K

� �
� lðPÞN

1þ hlðPÞN P;

dP

dt
¼ e

lðPÞN
1þ hlðPÞN P�mP:

(3)

2.2. Specific models

Berec (2010) considers a specific encounter rate function

lðPÞ ¼ l0ðbþ PÞw; (4)

where b � 0, l0 > 0. For a positive w, l(P) is increasing. Encounter
rate (4) is an increasing unbounded above function, concave for
w2 ð0;1Þ and convex for w>1. Note that for w<0, encounter rate
(4) models a negative interaction. Varying w in (4) produces a
family of functional responses, whereas varying b or l0 does not
qualitatively change the functional response. Substituting
b = 0 and v ¼ �w into (4) leads to the Hassel–Varley functional
response

f ðN; PÞ ¼ l0ðN=PvÞ
1þ hl0ðN=PvÞ : (5)
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Setting b = 0 and w ¼ 1 one obtains the form used by Cosner
et al. (1999)

f ðN;PÞ ¼ l0NP

1þ hl0NP
: (6)

Encounter rate function (4) covers the Beddington–DeAngelis
functional response if b > 0 and w ¼ �1 (Beddington, 1975;
DeAngelis et al., 1975). For w ¼ 0 the function simplifies to a
constant l(P) = l0 and the functional response f(N, P) is of the
Holling type II.

The generalized model (3) for w2R has been studied partly by
Berec (2010). Bifurcation analysis has been presented for the
interference case (w<0) in Pribylova and Berec (2014) showing
that sufficiently strong predator interference may bring stabilizing
mechanisms. In the model with foraging facilitation we complete
the analysis that was left to be done. We focus to the cases with bi-
stable regions and cyclic behavior. The emergence and additional
disappearance stand in our special interest, because the effect of
limit cycles on the persistence of the populations can be fatal. Our
findings about the role and effect of the Bogdanov–Takens
bifurcation along with the generic topological structure of the
parametric space of the carrying capacity and the rate of
facilitation are novel and unique. Apart from the general analysis
of the model (3) we present our findings for two specific types of
encounter rate functions, function (4) and a function first
introduced in this paper to the best of our knowledge

lðPÞ ¼ L� l0

ðbþ PÞw
; (7)

where b � 0, l0 > 0, w>0, and l(0) � 0. Encounter rate (7) is
increasing, concave and bounded above. It represents a more
realistic assumption corresponding with the findings of several
empirical and theoretical studies on cooperative behavior, such as
Packer and Ruttan (1988) and Bijleveld et al. (2015). For a large
population density of predators, (7) saturates at L and the
functional response f(N, P) asymptotically approaches that of the
Holling type II. In both specifically chosen encounter rate forms (4)
and (7), one may interpret the parameter w as a measure of the
facilitation rate among the predator population. For w ¼ 0 there is
no facilitation and the encounter rate is not dependent on predator
population density. With increasing w the encounter rate for the
same predator population density increases. The additional
parameter L, of course, make the analysis more complicated than
the case of the form (4) and that’s why the manifolds derivations
for the form (7) are not as much analogous to those published in
Pribylova and Berec (2014) as for the form (4).

In the following, we focus on the coexistence equilibria of the
primary model (3) and on the characterization of the local
bifurcations that may occur. These include limit point equilibrium
disappearance, appearance of a limit cycle due to the Hopf
bifurcation, and disappearance of a stable limit cycle due to the
homoclinic bifurcation. Another non-local phenomenon connected
to the transcritical bifurcation near the Hopf bifurcation causes
persistence of a huge stable limit cycle or a huge homoclinic saddle
separatrix orbit which leads to the extinction of the predator
population even for increasing facilitation.

3. Model analysis

This part is based on bifurcation theory. We derive the existence
conditions of the listed non-linear phenomena and describe their
consequences on the dynamics of the predator–prey populations.
The analysis of the model goes along the lines of Pribylova and
Berec (2014) but additional information have to be considered,
especially in the case of model (3) with the above bounded

encounter rate function. We have decided to present a thorough,
step-by-step bifurcation analysis and empower the reader to
follow the idea behind the steps. Readers familiar with Pribylova
and Berec (2014) may go through this part very quickly except for
the nullclines description in the first part and the transcritical
bifurcation manifold derivation. Qualitatively the results are
summarized and biological consequences are presented in
Section 4.

3.1. Multiple coexistence equilibria

The invariant nullclines N = 0 and P = 0 of the primary model (3)
correspond to the exponential extinction of the predators with
absent prey and to the logistic dynamics of the prey with absent
predator, respectively. The stability properties of the two boundary
equilibria [0, 0] and [K, 0] related to the logistic dynamics of the
prey with absent predator were studied by Berec (2010). He found
that the extinction equilibrium [0, 0] is always a saddle point and
the prey-only equilibrium [K, 0] changes its stability due to the
transcritical bifurcation.

The non-zero nullclines of system (3) are

F1ðN; PÞ ¼ r 1�N

K

� �
� lðPÞ

1þ hlðPÞN P ¼ 0 for N0 ¼ 0;

F2ðN; PÞ ¼ e
lðPÞN

1þ hlðPÞN�m ¼ 0 for P0 ¼ 0:

One may easily obtain that the slope of the F2(N, P) = 0 nullcline is
negative ((dP/dN) =� (l(P)/Nl0(P)) < 0) and the nullcline is a
decreasing function P = f2(N) in the first quadrant. The nullcline
F1(N, P) = 0 intersects the coordinate axes in [K, 0] and [0, P0], where
P0 > 0 denotes the only solution of r

P ¼ lðPÞ. Since in the first
quadrant

dF1

dP
ðN; PÞ ¼ �lðPÞ þ hNl2ðPÞ þ Pl0ðPÞ

ð1þ hlðPÞNÞ2
<0;

the nullcline is a continuous function P = f1(N). The described
behavior is a generic feature of the nullclines, therefore it does not
depend on the specific form of the encounter rate functions. Fig. 1
shows possible intersections of the nullclines.

A coexistence equilibrium E*
[1_TD$DIFF] = [N*, P*] of model (3) has to satisfy

N� ¼ K
C2

lðP�Þ ; (8)

P� ¼ C1
lðP�Þ�C2

l2ðP�Þ
; (9)

where C1 = (er/(e � hm)) and C2 = (m/(K(e � hm))). If e � hm � 0, no
coexistence equilibrium exists. Therefore, e � hm > 0 is a valid
assumption implying also C1 > 0 and C2 > 0, while

lðP�Þ>C2: (10)

Eq. (9) defines the implicit function

FðP�Þ :¼ P�l2ðP�Þ�C1ðlðP�Þ�C2Þ ¼ 0 (11)

of the non-zero predator equilibrium P* (having one-to-one
correspondence to the non-zero prey equilibrium N* via (8)). In
a limit point related to merging and disappearance of two
equilibria on a fold of the equilibrium manifold, the value of P*

satisfies F0(P*) = 0, which can be equivalently expressed as

l3ðP�Þ�C1ð2C2�lðP�ÞÞl0ðP�Þ ¼ 0: (12)
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Analogously to the results published in Pribylova and Berec (2014)
it can be proven that condition (12) is both necessary and sufficient
for vanishing of the Jacobian of model (3) at the coexistence
equilibrium [N*, P*]. It is obvious that for P* to be a limit point, it has
to satisfy l(P*) < 2C2 since l0(P*) > 0 and Eq. (12) holds.

Crossing the fold bifurcation manifold, the coexistence
equilibria disappear leading to the extinction of the predator
population while the prey survives at the carrying capacity K as
shown in Fig. 2. The phase portraits of system (3) with encounter
rate (7) are presented for varying prey growth rate r with other
parameters fixed. A decrease in growth rate r of the prey causes
shrinking of the basin of attraction of the stable coexistence
equilibrium (the grey area) and brings about the extinction of the
predators at the fold bifurcation critical value. All trajectories
starting in the white area end in EK. The parameter values K = 8,
w ¼ 0:06, e = 1, m = 1, h = 0.25, L = 5, l0 = 5.1783, b = 2 satisfy
equation (12) for a growth rate of r = 1.2095. Below this rate the
predator population can never survive. The merging equilibria E�1
and E�2 are marked as equilibrium E* ¼: [5.7997, 1.9294]. For a
relatively high prey birth rate r, two stable states are present in the
system: coexistence and the extinction of the predators (as the
prey population does not represent a sufficient supply for the
predators). With decreasing birth rate, the prey population
stabilizes on the level of the carrying capacity K while the
predator population goes extinct. The disappearance of multiple
stable coexistence states caused by decreasing prey birth rate is
influenced by the predator foraging facilitation rate. The expres-
sion representing the fold bifurcation manifold for system (3)
with the encounter rate functions (4) and (7) may be obtained as

described below. Denoting L = l(P*) in (9) and using the
expressions (14a) or (14b), the fold bifurcation manifolds can
be written in polynomial form as

[TD$INLINE]

The encounter rate differentials are
[TD$INLINE]

Note that the coefficients of the polynomials (13a) and (13b) are
independent of l0. Any positive root L* of these polynomials
fulfilling the condition of the fold bifurcation (12) has to satisfy

E� ¼ ½N�; P�� ¼ K
C2

L�
;C1

L��C2

L�2

� �

for a critical bifurcation value of the parameter l0 ¼ l�0. The
parameter values for the two studied encounter rates are

[TD$INLINE]

[(Fig._1)TD$FIG]

Fig. 1. Nullclines of the system (3) with encounter rate function (7) for L = 5, l0 = 5.1783, e = 1, m = 1, h = 0.25, b = 2. Parameters of the subplots are: (A) w ¼ 0:055, K = 20,

r = 0.05, (B) w ¼ 0:055, K = 20, r = 0.17, (C) w ¼ 0:055, K = 30, r = 2.5, (D) w ¼ 0:09, K = 40, r = 2.5.
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3.2. Coexistence equilibrium Hopf bifurcation

The coexistence equilibrium can undergo Hopf bifurcation
meaning that a local qualitative change of the phase space becomes
visible. A periodic solution emerges or dies out from the
equilibrium as the bifurcation parameter crosses a critical value
where the real parts of both of the eigenvalues transversally cross
zero and two purely imaginary eigenvalues of the Jacobian
evaluated at the coexistence equilibrium appear. Assuming that
for w ¼ 0 the encounter rate simplifies to a constant and therefore
system (3) simplifies to the classic Rosenzweig–MacArthur model
exhibiting the well-analyzed paradox of enrichment caused by the
Hopf bifurcation. We expect the Hopf bifurcation to appear in our
system with foraging facilitation as well.

Necessary conditions of the Hopf bifurcation at a coexistence
equilibrium [N*, P*] are

l0ðP�Þ ¼ ðeC2�mhðlðP�Þ�C2ÞÞl2ðP�Þ
emðlðP�Þ�C2Þ

; (16)

l3ðP�Þ�C1ð2C2�lðP�ÞÞl0ðP�Þ>0; (17)

where (16) is the necessary and sufficient condition for vanishing
of the trace of the Jacobian of model (3) at a coexistence
equilibrium. The positivity of the Jacobian at the equilibrium is
guaranteed by (17).

Substituting l0(P*) from (16) into (17), the condition (17) can be
rewritten as

lðP�Þ l P�ð Þ�C2ð Þ> rh

e�hm
l P�ð Þ�2C2ð Þ l P�ð Þ�C2

eþ hm

hm

� �
: (18)

A graphical solution of inequality (18) is presented in Fig. 3
where the convex parabolas represent the left-hand and the right-
hand sides of expression (18) and lH(P*) is the unique point that
belongs to their intersection in the interval (C2, 2C2). Since we focus
to the case of predator–prey coexistence where the condition (10)
holds, it is obvious that the condition (18) is valid for all l(P*)
between the roots of the right-hand side of expression (18) and for

(rh/(e � hm)) � 1 always (that is for low enough r). It is worth to
mention, that the Hopf bifurcation necessary condition and the
fold bifurcation condition both can be fulfilled for l(P*) � 2C2 (the
grey hatched area in Fig. 3), therefore one may expect to detect the
Bogdanov–Takens bifurcation at this area. The coexistence
equilibrium with l(P*) 2 (C2, 2C2) is prone to undergo some very
significant qualitative changes that are important especially for the
biological interpretation the model.

The analysis of the Hopf bifurcation manifold uses analogous
steps to those used in the case of the fold bifurcation manifold.
Substituting (4) and (7) into expression (16), we obtain a
polynomial equation whose coefficients do not depend on the
parameter l0. For L ¼ l P�ð Þ the polynomial takes the form

AL3 þ BL2 þ CLþ D ¼ 0 for encounter rate ð4Þ; where (19)

A ¼ K2hbðe�hmÞ3 >0;

B ¼ Kðe�hmÞ2ðhKer�bðeþ hmÞ þwKeðe�hmÞÞ;
C ¼ �Keðe�hmÞðwmðe�hmÞ þ rð2hmþ eÞÞ<0;
D ¼ emrðeþ hmÞ>0

(20)

[(Fig._2)TD$FIG]

Fig. 2. Phase portrait of system (3) with the encounter rate function (7) for parameters K = 8, w ¼ 0:06, e = 1, m = 1, h = 0.25, L = 5, l0 = 5.1783, b = 2, and decreasing r.

[(Fig._3)TD$FIG]

Fig. 3. Graphic solution of inequality (18).
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or

AL3 þ BL2 þ CLþ D ¼ 0 forencounterrateð7Þ;where (21)

A ¼ K2hbðe�hmÞ3 >0;

B ¼ Kðe�hmÞ2ðhKer�bðeþ hmÞ�wKeðe�hmÞÞ;
C ¼ Keðe�hmÞðwmðe�hmÞ�rð2hmþ eÞ þwLKðe�mhÞ2Þ;
D ¼ emðrðeþ hmÞ�KLwðe�hmÞ2Þ:

(22)

There is a correspondence between the roots L* of (19) or (21)
and the critical value of l0 described by the expressions of the
equilibrium point (8) and (9). Because of the biological interpreta-
tion of the model, only cases where L* > 0 and l0 > 0 are of our
interest. The effect of the Hopf bifurcation on the model with
predator encounter rate (7) is shown in Fig. 4 for K = 7 (left) and
K = 11 (right). All other parameters are fixed at w ¼ 0:07, e = 1,
m = 1, h = 0.25, L = 5, l0 = 5.1783, b = 2, r = 3. We have chosen K as
the bifurcation parameter of the Hopf bifurcation but any other
parameter (except l0) is a valid choice. K has been chosen in order
to respect traditions as the paradox of enrichment was described
with respect to K (Rosenzweig, 1971). A periodic solution appears
for w>wHB. The critical value wHB separates the region of locally
stable focus coexistence equilibrium and the region of unstable
focus coexistence equilibrium with a stable limit cycle. For weak
foraging facilitation w<wHB the populations can coexist. Higher
foraging facilitation leads to non-stability and oscillations in
densities of the populations.

3.3. Coexistence equilibrium and predator extinction equilibrium

transcritical bifurcation

Due to the transcritical bifurcation, a coexistence equilibrium
merges with the prey-only equilibrium EK for l(P*) = C2 on the
manifold defined by l(0) = C2, that is for

[TD$INLINE]

This phenomenon has a huge effect especially on the population
of the predator. The prey-only equilibrium EK remains the only
stable equilibrium after K crosses the critical bifurcation value, this
leads to predator extinction.

3.4. Coexistence equilibrium Bogdanov–Takens bifurcation

Bogdanov–Takens bifurcation is connected to a non-linear
phenomenon of merging equilibria with a nearby limit cycle. There
are various regimes in the neighborhood of the Bogdanov–Takens

bifurcation manifold and the dynamic transition between these
regions may be stabilizing, destabilizing or even fatal – depending
on which of the one-parameter manifold is crossed or on the
direction of the shift. A generic Bogdanov–Takens manifold is a two
parametric manifold (with codimension 2) that connects the one-
parametric fold and Hopf bifurcation manifolds (with codimension
1) and another one-parametric manifold of a non-local bifurcation
called homoclinic, since it belongs to a homoclinic trajectory.
Typical regime shifts near the Bogdanov–Takens point can be
deduced from the bifurcation diagram 5: coexistence equilibria
disappearance on the fold bifurcation manifold, destabilizing of the
stable coexistence equilibrium to oscillations or split of a stable
cycle on the separatrix loop of homoclinic bifurcation. All of these
phenomena have significant effect on population persistence and
stability. For deeper insight see Kuznetsov (1998).

A necessary condition for the Bogdanov–Takens bifurcation to
occur in system (3) is a concurrent fold and Hopf bifurcation. This
condition can be expressed as a quadratic equation combining
conditions (12) and (16)

AL2 þ BLþ C ¼ 0; (24)

[(Fig._4)TD$FIG]

Fig. 4. Phase portrait of system (3) with encounter rate function (7) for K = 7 (left) and K = 11 (right). All other parameters are fixed at w ¼ 0:07, e = 1, m = 1, h = 0.25, L = 5,

l0 = 5.1783, b = 2, r = 3.

[(Fig._5)TD$FIG]

Fig. 5. Bifurcation diagram near Bogdanov–Takens bifurcation point [0, 0] for its

normal form y1̇ ¼ y2; y2̇ ¼ e1 þ e2y1 þ y2
1�y1y2. T+ is the fold bifurcation curve

with one zero and one positive eigenvalue, T� is the fold bifurcation curve with one

zero and one negative eigenvalue, H is the Hopf bifurcation curve with two purely

imaginary eigenvalues, and P is the homoclinic bifurcation curve. See also

Kuznetsov (1998).
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where the coefficients are

A ¼ K2 e�mhð Þ2 h mþ rð Þ�eð Þ;
B ¼ K e�mhð Þ m e�mhð Þ�r eþ 3mhð Þð Þ;
C ¼ 2mr eþmhð Þ:

(25)

The specific form of the encounter rate functions do not influence
the solution of this equation. The necessary condition of the
Bogdanov–Takens bifurcation is identical for the cases with
functions (4), (7), and even for predator interference. The
parameter values of (4) and (7) have to be chosen to meet several

[(Fig._7)TD$FIG]

Fig. 7. Dynamics of model (3) with the bounded encounter rate function (7) for e = 1, m = 1, h = 0.25, r = 3, L = 5, l0 = 5.1783, b = 2. I: unstable focus E�2 and stable node EK for

w ¼ 0;06, K = 23. II: two unstable equilibria EK and E�2 and a stable limit cycle for w ¼ 0;15, K = 7. III: unstable focus E�2 and a stable limit cycle with its basin of attraction for

w ¼ 0;06, K = 11. IV: one stable node EK and two coexistence equilibria: stable equilibrium E�2 with its basin of attraction (grey) and saddle point E�1 for w ¼ 0:06, K = 6.5. V: one

stable coexistence equilibrium E�2 for w ¼ 0;2, K = 4. VI: one stable node EK for w ¼ 0:07, K = 4.

[(Fig._6)TD$FIG]

Fig. 6. Bifurcation diagram in parameter space w versus K with the fold, Hopf, homoclinic, and transcritical bifurcation curves and the Bogdanov–Takens point for parameter

values e = 1, m = 1, h = 0.25, r = 3, L = 5, l0 = 5.1783, and b = 2. A close-up of the grey rectangular area is also shown.
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conditions. In case of the unbounded encounter rate (4), the
existence of a positive root of (24) implies the existence of an
appropriate l0. In case of (7), the condition l P�ð Þ>0 has to
be fulfilled. The effect of the Bogdanov–Takens bifurcation on the
evolution of the population densities is described in Section 4. The
numerical continuation has been carried out for the bounded
above encounter rate function (7). Even though the Bogdanov–
Takens bifurcation point has no relevant biological interpretation
for this specific continuation, the one-parameter bifurcation
manifolds continued from this point divide the parametric space
into domains with significant features. These domains correspond
to qualitatively different dynamical regimes that are biologically
highly important. Regime shifts near the above mentioned
bifurcation manifolds are predictable and continuable. The
topological features of the manifolds in the neighborhood of the
Bogdanov–Takens manifold does not depend on the specific form
of the encounter rate function. That implies that the pure existence
of the Bogdanov–Takens bifurcation guarantees wild changes of
the behavior of the model nearby the bifurcation manifold for
biologically significant parameters. These changes represent a
generic feature.

4. Results of the bifurcation analysis

In Section 3 we have described the nonlinear phenomena we
have found in system (3) with foraging facilitation. In this section
we provide complete description of the dynamical changes that
may occur in system (3) with the bounded above encounter rate
function (7). The bifurcation diagram in Fig. 6 shows the
equivalence partitioning of the parameter space w versus K into
separate regions with topologically different phase space proper-
ties. The corresponding phase portraits are shown in Fig. 7. The
bifurcation diagram in Fig. 6 expresses a generic property of
system (3) with foraging facilitation. Different parameter values
and different encounter rate functions generate quantitatively
slightly different results but the qualitative topological features are
equivalent. Qualitative equivalence is guaranteed by the fact that
one may continuate all bifurcation manifolds from the Bogdanov–
Takens bifurcation manifold. Our results show the genericity of the
described phenomena in the sense, that if the Bogdanov–Takens
bifurcation is present in the predator–prey model with predator
facilitation, all of the consequent phenomena are detectable as
well. The bifurcation analysis was created by the MatCont
continuation software.

The survival diagram depicted in Fig. 8 summarizes the
obtained information on the predator and prey populations in
scenarios that may take place for varying values of parameters w

and K. There are six different scenarios that may occur – the
corresponding phase portraits are shown in Fig. 7.

For low carrying capacity of the prey K (area VI in Fig. 6), no
matter how high or low the predator foraging facilitation rate w is,
only the prey survives. This finding corresponds with Courchamp
et al. (1999) and with empirical studies such as Creel and Creel
(1995) and Creel (1997)). For higher values of K, after passing the
fold bifurcation manifold (into area IV), the system has two stable
states. The prey-only equilibrium EK is still stable and a stable
coexistence equilibrium appears. The prey density at this coexis-
tence equilibrium is lower than K. How the populations evolve in
time depends on the initial conditions. For slightly larger values of K

and larger w the basin of attraction of the coexistence equilibrium
gets bigger, which means that the predator population is prone to
survive. There is a minimum predator population density to prevent
extinction, which can be explained as a type of an inner Allee effect.
Such a type of the Allee effect mechanism has been mentioned
already in Courchamp et al. (2008) and Berec (2010). Crossing the
transcritical bifurcation manifold (into area V), the coexistence

equilibrium becomes globally stable for higher facilitation w. For
parameter values from this area the positive interaction among the
predator population stabilizes the densities in a coexistence
equilibrium.

The Hopf bifurcation curve separates the stable co-equilibrium
area (area IV and V) from the area with a stable limit cycle (area III
and II). The higher the carrying capacity K, the bigger the amplitude
of the limit cycle. This phenomenon corresponds with the findings
about the paradox of enrichment – increasing the carrying capacity
evokes periodic behavior of the population densities, destabilizes
the system, and may lead even to extinction. The population
densities oscillate for parameter values from area III, but the
populations survive. However, for high enough K, the limit cycle
gets bigger and the population densities can reach extremely low
levels. Due to unpredictable events this may lead to the extinction
of the predator or to the extinction of both populations. The prey-
only equilibrium is still stable; some initial conditions lead to the
survival of the prey and the extinction of the predator. Crossing the
transcritical bifurcation curve (from area III into area II) changes
stability of the prey only equilibrium. For higher foraging
facilitation rates w the population densities oscillate. Area III

[(Fig._8)TD$FIG]

Fig. 8. Survival of the prey and predator populations according to the dynamics of

system (3) with encounter rate (7) for various facilitation rates w and

environmental carrying capacities K. All other parameters are fixed at e = 1,

m = 1, h = 0.25, r = 3, L = 5, l0 = 5.1783, and b = 2. Extinction regions are shown in

white, stable survival in grey. Vertical stripes correspond to two stable equilibria.

White-grey stripes show regions where the population may go extinct (when the

initial conditions are out of the basin of attraction of the stable coexistence

equilibrium); while the light and dark grey stripes correspond to two levels of

population equilibria. Waves correspond to oscillations and the checkerboard

pattern corresponds to areas where the trajectories pass very close to extinction

point and survival of the population may be a matter of chance.
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and area I are separated by the homoclinic bifurcation curve, on
which the stable limit cycle splits and the prey-only equilibrium
becomes the only stable state. The predator population becomes
overpopulated first followed by extinction while the prey
population can survive at the carrying capacity. However, the
trajectories pass so close to the trivial equilibrium that a small
perturbation would lead to the extinction of both populations (see
Fig. 9). Added Allee effect in the prey population may stabilize the
trivial equilibrium. This phenomenon could motivate further
studies. The provided bifurcation analysis has shown that although
for specific facilitation rates the positive interaction of the
predators may be beneficial, in most of the cases it can have fatal
consequences for the predators themselves.

5. Summary

Several papers have emphasized the influence of interactions,
both intra- and interspecific, on predator–prey populations (e.g.
Abrams and Ginzburg, 2000; Arditi and Akcakaya, 1990; Lima,
2002). Observations and empirical studies have given information
about interacting behavior in real populations; negative (interfer-
ence) and positive interaction (facilitation) can be observed on
different trophic levels (Packer and Ruttan, 1988; McCarthy and
Ginzburg, 1995; Creel and Creel, 1995; Bertness et al., 1999;
Bijleveld et al., 2015). Intraspecific predator interference has
received quite some attention in the literature (e.g. Arnqvist et al.,
2006; Ruxton et al., 1992; Ruxton, 1995), less is known about
predator facilitation. Facilitation or cooperation is often modeled
as a social dilemma in game theory. Packer and Ruttan (1988)
claimed, that cooperation is not always the evolutionarily stable
strategy for the predator. In the present paper, by means of
bifurcation analysis of a predator–prey model we have proved that
predator facilitation is not always beneficial for the predator
population.

We have introduced an increasing encounter rate function
based on our assumption that the predator encounter rate is higher
for higher predator densities. In this paper we study the
coexistence equilibria and the bifurcations they may undergo
for specific parameter values; the fold, Hopf, transcritical, and
Bogdanov–Takens bifurcations are all present in our model. We
have derived the necessary and sufficient conditions of these
phenomena as well as the formulae describing the bifurcation

manifolds for a system with a general encounter rate function and
also two specifically chosen encounter rate functions. The
unbounded encounter rate function was proposed by Berec
(2010), while the bounded above encounter rate function
introduced in this paper corresponds with game theory models
(Packer and Ruttan, 1988). This function has never been studied
before to the best of our knowledge. The accomplished bifurcation
analysis of the system shows that predator facilitation or predator
cooperation is not always beneficial for the predator. We have
found that foraging facilitation is fatal for predators in case of low
prey densities. The density threshold is given by the fold
bifurcation manifold (12). This result is in agreement with
previously published works (e.g. Courchamp et al., 1999, 2008;
Berec, 2010); these state that predator foraging facilitation is a
mechanism that invokes the Allee effect on the side of the predator.
In case of high prey carrying capacities, low predator foraging
facilitation is dangerous for both populations. The threshold is
given by the homoclinic bifurcation manifold that can be
continued only numerically from any point of the Bogdanov–
Takens bifurcation manifold given by (25). For some middle level of
carrying capacity, a very high rate of predator foraging facilitation
is the safest and most stable. This stable area is bounded by the
transcritical (23b) and the Hopf (16) bifurcation manifolds
satisfying (18).

Our most important finding that predator facilitation is not
beneficial in most cases may explain why predator cooperation in
nature is only observed in specific scenarios. Cooperating only in
certain conditions seems to be an evolutionary advantage in many
species. In the future, we intend to continue our research by
including the Allee effect in our model and by studying additional
interference dominant at high population densities [8_TD$DIFF].
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A B S T R A C T

The paper concerns with regime shifts between multiple attractors in ecological predator–prey models and
hysteresis phenomena caused by evolution. We present a survey of eco-evolutionary models with an adaptive
trait affecting the prey defence or activity that influence predator functional response and give overview of
typical consequences of the trait evolution to the predator–prey dynamics together with important references to
related adaptive dynamics research. The selection and mutation process is modelled by a resident-mutant model
(possible mutant invasion into a monomorphic resident population). Model derivations are given in detail for all
of the common functional responses (Holling’s type I, II, III and generalized). Different types of adaptive trait
value dependences with respect to transient dynamics are distinguished according to the effect to the eco-system:
we prove that if the prey adaptive trait evolution influence only the functional response of the predator, stable
dynamics and irreversible abrupt regime changes are typical, whereas reversible regime shifts or more complex
dynamics caused by adaptivity of the prey trait occur for trait adaptations that bring an advantage against
predator together with intraspecific competition asymmetry. We confirm possibility of hysteresis eco-evolu-
tionary cycle, persistent oscillations between different attractors of the ecological subsystem driven by adaptive
trait dynamics.

1. Introduction

Population dynamics is an important part of biology. Population
growth and ecological interactions are still studied throughout last
decades enormously although the basic principles and ideas are known
for more than a century. The fundamental works that concern the laws
of exponential and logistic population growth of one-species popula-
tions or the basic interaction models have been modified, generalized
and reformulated many times. Google Scholar returns almost 5 million
links for the search phrase “population growth model”! A considerable
part of the research on population dynamics addresses the question of
the determinants of population growth and of the interactions among
populations. Apart from this general qualitative approach more specific
models are used, especially for the purposes of management and con-
trol, see e.g. coral-algae growth models (Mumby et al., 2007)), specific
food-chain models (Kuznetsov et al., 2001) and so on. New effective
technologies allow us to study individual-based models, see e.g.
Grimm et al. (2003) and to accomplish computer simulation models as
in e.g. Boit et al. (2012).

A typical system that describes a dynamical population model
(when spatial distribution is omitted) is a system of parameter depen-
dent ordinary differential equations

=n ϕ n a˙ ( , ), (1)

where n is a population density vector of species in the ecosystem and a
is a vector of parameters as birth rates of particular species, their car-
rying capacities and so on. There is a plenty of studies of such systems
that analyse dependence of the long-term behaviour on parameters (see
e.g. Boukal et al., 2007; Kar, 2006; Mohammed et al., 2018; Mumby
et al., 2007; Rinaldi et al., 1993; Scheffer et al., 1997 and many others).
These works give insight to the principles involved, give possibilities to
manage and control the systems, but also show that rapid changes and
unexpected behaviour can happen. As a good and well-known example
may serve the spruce budworm model introduced in
Ludwig et al. (1978) that explains hysteresis loops in the dynamics of
the population density of the budworm or variety of prey–predator
models with stable limit cycles (Abrams and Walters, 1996; Boukal
et al., 2007; Rosenzweig and MacArthur, 1963; Steele and Henderson,
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1992 and others). Besides the multiple equilibria and the limit cycles,
more complex behaviour can be observed in some models: multiple
cycles and other attractors are studied in e.g. González-Olivares and
Rojas-Palma (2011) and the presence of chaotic dynamics in ecological
models is shown in some ecological models (see e.g. Hastings and
Powell, 1991; Huisman and Weissing, 2002; Kuznetsov et al., 2001).

Evolution as a change in the inherited traits of biological popula-
tions give the species possibility to adapt to their environments by
means of natural selection. During the last two decades techniques
based on game theory were developed and they are referred to as
adaptive dynamics techniques (see e.g. Dercole and Rinaldi, 2008;
Dieckmann and Law, 1996; Geritz et al., 1997; Metz et al., 1995). They
link population dynamics to evolutionary dynamics for understanding
the long-term ecological and evolutionary consequences of small mu-
tations in the traits expressing the phenotype. Although the adaptive
dynamics theory is still in development (for new results see e.g.
Della Rossa et al., 2015; Dercole, 2005; Dercole, 2016; Dercole et al.,
2016; Geritz et al., 2016), already obtained results have often been
surprising and have given a very promising insight into the complexity
of nature. There are also possibilities to use the adaptive dynamics
techniques in other fields as economics, since for example innovations
of products may be viewed as adaptive traits and the market equilibria
existence and stability depend on the innovation dynamics (see
Dercole et al., 2008).

In this paper an ecosystem (1) is considered in this eco-evolutionary
context. The species are affected by adaptive change in the trait that
creates feedback between the evolutionary and population dynamics.
Generally, the adaptive changes in traits are described by so called
canonical equation (Dieckmann and Law, 1996), a system of equations

=x g n a x˙ ɛ ( , , ), (2)

where x is generally a vector of traits of the resident species. Hereafter,
only one main trait is considered, so the equation is scalar. The evo-
lution process does not have the same timescale as the population dy-
namics, so the parameter ε>0 scales the rate of evolutionary change.
Usually ε≪ 1 and Eq. (2) is slow with regard to the ecological timescale
of Eq. (1). Function g is explained in more detail in the next section, for
now it is enough to mention that it covers the feedback of the popu-
lation dynamic process and that it is generally nonlinear. This feature is
responsible for bifurcations.

Bifurcations connected to adaptive trait can be responsible for re-
gime shifts in ecosystem (1). Trait value x may affect the vector para-
meter a and so it can be (at least locally) considered as a function

=a a x( ). The trait value influences the population dynamics
throughout this dependence. If ecosystem (1) reaches a stable equili-
brium for a specific trait value xr of the monomorphic resident popu-
lation, the system stays at the stable equilibrium until that trait value
belongs to an evolutionarily stable strategy. This condition may be
violated and the feedback between population and adaptive dynamics
can cause transitions from one regime to another (Dercole, 2003),
abrupt and unexpected changes of population densities (Dercole, 2005;
Parvinen, 2005), diversification of the species to polymorphic popula-
tions (Dercole et al., 2016; Gallien et al., 2018; Landi et al., 2013 or
Hui et al., 2017) and so on.

In this study we focus on monomorphic populations with slow
adaptive change of the trait that is strongly connected to some para-
meters of the population dynamic model (1). Of course that it is not
sufficient to answer even basic questions about the persistence of the
population or its stabilization at some equilibrium or attractor by
analysis of the eco-system alone if mutations are taken into account (for
example in Dercole et al., 2003; Landi et al., 2013 Rosenzweig-Ma-
cArthur model was transformed into a resident-mutant model by adding
a third equation for the mutant population and it was shown that the
evolutionary model is much richer than the resident population model).
The aim of this survey is not only to present different types of ecological
regime transitions between multiple ecological attractors caused by

adaptive dynamics, but also to distinguish typical cases when ecosystem
stays stable and when the evolution causes reversible or irreversible
transients. We prove that for one specialized adaptive trait changes (for
example if the trait adapts specially to prevent the prey against pre-
dators and does not significantly affects other parameters of the eco-
system), only the stable case or an irreversible regime shift is possible,
whereas reversible regime shifts or more complex dynamics caused by
adaptivity of the prey trait occur for trait changes that bring in ad-
vantage against predator together with intraspecific competition
asymmetry.

The analysis of a population dynamic model is, of course, a first step
to understand the long-term behaviour of an ecosystem, especially in
cases of more complex dynamics with multiple or chaotic attractors.
Quasi-equilibria and quasi-attractors of the fast subsystem are essential,
but the transitions between them depend on the adaptive dynamics (the
slow system) strongly. Generally, the trait values are not the parameters
of the population dynamic model, but the parameters are functions of
the trait values. Adaptive dynamics works according to evolutionary
game theory principles and that explains why additional slow non-
linear equations give feedback to the population dynamics. The slow
dynamics shift the parameters of the fast population dynamic sub-
system that tends to stabilize on quasi-attractors, but different types of
regime transitions may happen. These transitions are not the same as
the transitions caused by parameter shifts at the population dynamic
subsystem (usually described by bifurcation diagrams of population
models). As a prototype example of an evolving community, a prey–-
predator community with multiple attractors at the population dynamic
subsystem is taken. The adaptive dynamics involve one trait of the prey
that affects the parameters of the functional response of the predator.
Such a model serves as a good demonstrative example, because the
modelled situation is easy to imagine and also to explain. One may
imagine the mutant prey phenotype change as getting stronger through
a genetic mutation and selection process and therefore the new resident
prey with adapted trait is able to defend itself more effectively from a
predator. It is clear from this example, that the handling time, the en-
counter rate parameters or other parameters in the functional response
may be influenced and varied by the trait value. This parametric change
may significantly affect population dynamics near local bifurcation of
the resident equilibrium.

We present cases with qualitatively preserved eco-dynamics and
also cases with expected irreversible regime transitions. We also present
an example of a system, when adaptive dynamics induce hysteresis and
periodic regime shifts. The presented results are in agreement with
Dercole et al. (2002) and Muratori and Rinaldi (1991). More complex
dynamics may occur (see Dercole et al., 2010; Wilsenach et al., 2017 or
Dercole and Rinaldi, 2010).

2. Adaptive dynamics and slow-fast eco-evolutionary system

We assume the resident population model as the system (1) of the
form

=n ϕ n a˙ ( , ),

where = ⋯n n n( , , )N1 is a population density vector for an arbitrary
number N of species (the species are characterized by an index

= ⋯i N1, , ) and = ⋯a a a( , , )m1 is a vector of parameters. The change
in the population size or density is described by function

→+ϕ: ,N m N  that is a smooth enough function dependent on para-
meters such as the birth and the death rates of the species, carrying
capacities and various parameters of functional responses. The para-
meters =a a x( ) of the system (1) are functions of the resident trait
value =x xr . We assume that system (1) dynamics is fast, so the re-
sident population settles in a dynamical equilibrium =n n x* * ( ).

Mutations are assumed to be sufficiently rare, but once a mutant has
entered the population, it may grow or go extinct according to the in-
vasion exponent (fitness) of mutants in the resident population. The
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invasion exponent can be interpreted as the initial exponential growth
rate of mutants (Diekmann et al., 2004; Metz et al., 1992 or Hui et al.,
2016). The mutant population trait value is labelled as xm. The invasion
exponent is a function W(xm, xr, n*) of the mutant and resident trait
values, the population densities at the ecosystem and parameter a.
Parameter a is assumed to be a function of the trait value, that is a(xr)
for the resident population and a(xm) for the mutant population. If the
mutant population invades with a positive invasion exponent, it be-
comes a new resident (Dercole and Geritz, 2016). An evolutionary
change of an adaptive trait caused by a slightly different growing mu-
tant population occurs on a much longer timescale than that of in-
dividuals’ births, interactions and deaths, which determine the ecolo-
gical dynamics of population. The approach of adaptive dynamics
theory provides a deterministic approximation of the underlying sto-
chastic processes of mutation and selection and the final result is that
the trait values x vary in accordance with canonical equation

=x n s n x˙ ɛ * ( *, ), (3)

where

= ∂
∂ =

s n x W x x n
x

( *, ) ( , , *)
r

m r

m x xm r (4)

is the selection gradient in the resident equilibrium n* and x denotes the
adaptive trait value of the dynamically resident population, indexed xm
and =x xr distinguish between mutant and resident trait values, non-
negative ε≪ 1 scales the rate of evolutionary change. For more details
see e.g. Dercole and Rinaldi (2008) or Dieckmann and Law (1996).

Together this yields a slow-fast eco-evolutionary system

=x n s n x˙ ɛ ( , ), (5)

=n f n x˙ ( , ) (6)

with positive ε≪ 1.
A typical property of a slow-fast system is that nullclines or at-

tractors of the fast system are reached much faster than attractors of the
whole system. Consequently the fast subsystem (6) that corresponds to
the population dynamics is highly important to study. The long-term
behaviour of the adaptive eco-evolutionary system is determined by the
stable attractors of the fast subsystem (6). On the other hand, the slow
dynamics of the adaptive trait may cause these attractors to lose their
stability in the long evolutionary timescale, so the partial analysis of the
fast subsystem is not sufficient to answer basic questions about the
extinction or persistence of the populations, stabilizing of population
densities, periods of oscillations and so on. It is obvious that the an-
swers to these questions are influenced by many factors, even if we
assume very simple eco-evolutionary models. For example, various
types of functional responses of predator in the predator–prey model
may pose various attractors of the fast subsystem, but also various de-
pendences on parameters and adaptive trait values and various selec-
tion gradients. It depends on the situation, which model is more ap-
propriate.

In the next sections, we would like to present typical eco-evolu-
tionary regime shifts connected to local bifurcations of equilibria with
aim to answer the questions that arose in the text above. Firstly, what
types of the adaptive trait value dependences do not influence the po-
pulation dynamics massively. Secondly, whether or when abrupt re-
gime changes caused by adaptive dynamics are possible, expectable or
predictable. And thirdly, we will show more complex dynamics, than
the irreversible regime shifts: persistent oscillations between different
attractors of the fast ecological subsystem driven by adaptive trait dy-
namics as a hysteresis eco-evolutionary cycle.

All these typical dynamics will be demonstrated on well-known and
standard examples of population models: a one-species model with
Holling’s type I, II and III functional response and generalized func-
tional responses. What can be useful to the readers is the fact that re-
sident-mutant models and the corresponding eco-evolutionary systems

for all these functional responses are derived properly. We will assume
that the prey trait adapts to increase the protection against predators, so
it influences the predation rate and the handling time. We may interpret
the increasing protection as a more efficient defence, or getting
stronger, bigger, or as many other mechanisms. This adaptive trait
value may also cause trait-dependent intraspecific competition between
the resident and mutant prey and this case is also studied and found
important to distinguish.

3. Resident-mutant model in the prey population

Let us consider a resident prey population model

= − −( )n rn Nφ n˙ 1 ( ),n
K (7)

where r is a specific growth rate, K is the carrying capacity of the en-
vironment, N is predator population density and φ(n) is the functional
response of the predator, that is a number of prey killed by predator per
predator per a unit of time. Function φ depends on other parameters
that will be specified later. Functional responses used in standard po-
pulation models are usually the Holling’s type responses or their gen-
eralized types and that is the reason why we focus on Holling’s type
functional responses in this paper. The population of the prey is mod-
elled by a logistic function in the absence of the predator, but it can be
changed. The Allee effect or any other appropriate growth function can
be implemented easily.

The derivation of the resident-mutant model follows the method
described in Dercole and Rinaldi (2008). The derivation of the model
with Holling’s type I or II functional responses is relatively simple, but
that is not the case with the Holling’s type III and the generalized
functional responses. That’s why we present a proper derivation of the
generalized Holling’s type III functional response for resident nr and
mutant population nm here. For detailed explanation of Holling’s type
functional responses derivations see Dawes and Souza (2013). To keep
the resident-mutant models derivations simple, it is assumed that only
the encounter rate depends on the adaptive trait of the prey, but the
handling time is not. This case with non-adaptive handling time is also
used for simulations later. The resident-mutant model for the case of
simultaneous encounter rate and handling time adaptivity is analogous
and its functional responses (15) are presented without derivation.

Let Δnr and Δnm be the number of resident and mutant prey con-
sumed by one predator, Δtt is the total time for predator to encounter a
prey and Δts is time available for searching. In case of the type I re-
sponse, Δnr and Δnm depend linearly on prey densities. The linear de-
pendence coefficient is the probability of a given predator encountering
prey in a fixed time interval =t tΔ Δt s in some fixed area, predators
spend no time to handle the prey or this is omitted. This probability
generally depends on the adaptive trait. In cases of Holling’s type II, III
and generalized functional responses, the searching time is the total
time decreased by the handling time of the encountered prey, that is

= − +t t h n nΔ Δ ·(Δ Δ ),s t r m (8)

where h is the handling time of one prey (assumed here as non-de-
pendent on the adaptive trait). Now

= =n n n x n t n n n x n tΔ Λ( , , )· ·Δ , and Δ Λ( , , )· ·Δ ,r r m r r s m r m m m s (9)

where the function Λ is the encounter rate that depends on the adaptive
trait of the prey and possibly on the prey population. It is assumed that
the predator encounters the prey with some efficiency rate that is as-
sumed to be a constant λ for Holling’s type II functional response or
linearly growing with the prey density λn in the case of Holling’s type
III functional response. This is motivated by the assumption that
learning behaviour occurs in the predator population with a consequent
increase in the discovery rate as more encounters with prey occur, see
Dawes and Souza (2013). Generalized Holling’s type III functional re-
sponse is derived for an encounter rate −λnk 1 for k>1 that is increasing
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with n, while =k 1 gives Holling’s type II functional response (and
Holling’s type I functional response is the case of =h 0). Herein, it will
be assumed that the efficiency rate λ depends on the adaptive trait,
k≥ 1 and h>0 and the learning in the predator population is affected
by the whole population = +n n nr m. The derivation is different, if the
learning process is diversified.

Putting (8) and (9) together with the encounter rate derivation gives

= + − +−n λ n n n t h n nΔ ( ) · ·(Δ ·(Δ Δ )),r r r m
k

r t r m
1 (10)

= + − +−n λ n n n t h n nΔ ( ) · ·(Δ ·(Δ Δ )),m m r m
k

m t r m
1 (11)

where λr and λm stay for the efficiency rates on the prey resident and
mutant populations. Consequently after division by Δtt, the functional
responses =φ n( )r

n
t

Δ
Δ

r
t
for the resident and =φ n( )m

n
t

Δ
Δ

m
t
for the mutant

population satisfy a set of equations

= + − +
= + − +

−

−

φ n λ n n n h φ n φ n
φ n λ n n n h φ n φ n

( ) ( ) · ·(1 ·( ( ) ( ))),
( ) ( ) · ·(1 ·( ( ) ( ))),

r r r m
k

r r m

m m r m
k

m r m

1

1 (12)

for φ(nr) and φ(nm) that gives solutions

=
+

−
φ n λ n n

hλ n
( )

1
,r

r
k

r
k

1

(13)

=
+

−
φ n λ n n

hλ n
( )

1m
m

k
m
k

1

(14)

with = +n n nr m and the mean efficiency value = +λ λ λr
n
n m

n
n

r m . An
analogous derivation with the handling time codependence on the
adaptive trait leads to functional responses

=
+

=
+

−

−

φ n λ n n
hλn

φ n λ n n
hλn

( )
1

,

( )
1

,

r
r

k
r
k

m
m

k
m
k

1

1

(15)

where = +hλ h λ h λr r
n
n m m

n
n

r m is the mean value of the handling time
times efficiency rate.

The resident-mutant model with no trait-dependent intraspecific
competition in the prey population is

= − −
+

= − −
+

+ −

+ −

( )
( )

n rn N λ n n
hλ n

n rn N λ n n
hλ n

˙ 1
1

,

˙ 1
1

.

r r
n n

K
r

k
r
k

m m
n n

K
m

k
m
k

1

1

r m

r m

(16)

The resident-mutant model with a trait-dependent intraspecific
competition in the prey population is

= − − −
+

= − − −
+

−

−

( )
( )

n rn α x x N λ n n
hλ n

n rn α x x N λ n n
hλ n

˙ 1 ( , )
1

,

˙ 1 ( , )
1

,

r r
n
K r m

n
K

r
k

r
k

m m m r
n
K

n
K

m
k

m
k

1

1

r m

r m

(17)

where α(xr, xm) is called the competition function (see MacArthur, 1970
or Gatto, 1990). The competition is said to be symmetric if

=α x x α x x( , ) ( , )r m m r for all possible trait values xr and xm and asym-
metric otherwise. A natural assumption on the competition function is

=α x x( , ) 1 for any x. Intraspecific competition is trait-independent in
the case of α(xr, xm)≡ 1 for any possible trait values xr and xm.

4. Eco-evolutionary model for prey population with trait-
independent intraspecific competition

In this section we use principles of the adaptive dynamics theory to
model (16). The basic concept is the invasion exponent that is the ex-
pected growth rate of an initially rare mutant in the environment set by
the resident. The invasion exponent can be interpreted as the fitness in
evolutionary game theory. The selection gradient is the slope of the
invasion exponent at trait value =x x ,m r that is in the moment when

the mutation appears in the resident monomorphic population. The sign
of the selection gradient determines an increase or a decrease in trait
values of the invasion successful mutants that become a new resident
population according to (5). Let’s remind that the resident fast system
starts at the equilibrium =n n*.

Let us follow the analysis of the resident-mutant model with trait-
independent intraspecific competition. The invasion exponent in the
prey population (16) is

= = − −
+→

−( )W x x n r Nλ n
hλ n

( , , ) 1
1

,m r
n
n

n

n
K m

k

r
k

˙

0

1
m
m

m

where =n nr is the resident population and it is assumed that the ef-
ficiency rate =λ λ x( )m m is a locally defined smooth function at least
near =x xm r (the trait value is a measurable real quantity such as the
prey escape speed). The selection gradient (4) is the slope of the inva-
sion exponent of the mutant population in the monomorphic resident
population

= ∂
∂

= − ′
+=

−
s n x W x x n

x
Nλ x n

hλ x n
( , ) ( , , ) ( )

1 ( )
,r

m r

m x x
r

k

r
k

1

m r (18)

where ′ =λ x( ) d λ x
d x

( ) . Consequently, the slow-fast eco-evolutionary
system (5) and (6) has the form

= − ′
+

−
x n x λ x n N

hλ x n
˙ ɛ * ( ) ( )

1 ( )
,

k

k

1

(19)

= − −
+( )n rn λ x n N

hλ x n
˙ 1 ( )

1 ( )
,n

K

k

k (20)

where =h 0 and =k 1 for Holling’s type I functional response, h>0
and =k 1 for Holling’s type II functional response, h>0 and =k 2 for
Holling’s type III functional response and h>0 and k>1 for gen-
eralized Holling’s type functional response.

Let us assume that =x xr and the fast equation (20) has a stable
equilibrium n*(xr). The slow evolution equation (19) is in equilibrium
for ′ =λ x( ) 0r and it is clear that this equilibrium is stable if λ(xr) is a
local minimum. It models the most effective prey mutant strategy
against the predator. An evolution process that minimizes the predator
encounter efficiency is advantageous and the minimum is the evolu-
tionary stable strategy of the prey. If the evolution equation (19) is out
of the equilibrium, the state of the eco-evolutionary system will copy
the nullcline in the direction of − ′λ x( ). That explains why the quasi-
equilibria have to be studied.1 It is very helpful that the ecological
model equilibria are already well-studied in population biology models.

Let us focus on population models that exhibit multiple equilibria
(for example using Holling’s type III functional response for =k 2).
What kind of impact will the evolutionary process have on the prey trait
and equilibrium density? We assume that there exists a local minimum
λ(xmin ) for a trait value xmin .2 The slow equation (19) has a vertical
nullcline =x xmin (see Fig. 1), while <ẋ 0 on the right side of the
nullcline and >ẋ 0 on the left side of the nullcline. The fast equation
(20) nullcline that corresponds to quasi-equilibria is non-linear with
possibly multiple stable equilibria on =x xmin . Fig. 1 presents the ex-
ample of model with an S-shaped quasi-equilibrium manifold (e.g. for
Holling’s type III functional response), where stable quasi-equilibria
tend to the stable equilibrium on the upper branch of the S-shaped
nullcline or on the lower branch of the S-shaped nullcline. Obviously,

1 This is known very well for slow-fast systems in neuroscience or biochemistry, where
the notion of quasi-equilibrium is commonly used.

2 This seems to be a natural assumption, since the adaptive trait change has got some
limits. For example, an increase of the handling time or a decrease of the encounter rate
by getting the prey more strong or agile take costs in return, the prey is getting tired
quickly and can be caught more easily after some time. Of course, some adaptive traits
can have infimum at infinity, but this case can be treated in analogous way since also
different trait quantification may be taken, for example infinity can be shifted to zero on
the x-axes by its reciprocal value.
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the S-shape of the nullcline can be distorted, mirrored or doubled due to
reparametrization (the hysteresis is usually displayed in parameter
versus population axes), the representation of the parameter λ as a
function of the trait x modify the S-shape in x versus n axes, but mul-
tiple quasi-equilibria generally appear. Fig. 1 is just a draft of this
phenomenon. Specific simulations are in Figs. 2 and 3. Slight and slow
changes of the trait value due to evolutionary dynamics may cause
abrupt changes in the population if the quasi-equilibrium nullcline
folding crosses the path of the adaptive dynamics of mutating trait
value. In the left part of the Fig. 1 the minimum xmin lies in the multiple
equilibria area and the adaptive dynamics keeps the quasi-equilibria on
the same branch with no ecological regime shift. On the other hand, in
the right part of the Fig. 1 the minimum xmin lies out of the multiple
equilibria area and the adaptive dynamics can cause abrupt change
while the quasi-equilibria branch disappears due to fold bifurcation.
This is a regime shift that is not reversible afterwards.

Simulated eco-evolutionary dynamics with impossible (Fig. 2) and
possible (Fig. 3) regime shifts are presented for the model (19) and (20)
with =k 2 and = + −λ x λ λ x x( ) ( )0 1 min

2 . The encounter rate is taken
as the most simple function with a minimum in xmin , but any other
function with a minimum in xmin can be used (or its Taylor expansion
near xmin ). Since the trajectories start from a quasi-equilibrium, n* can
be replaced by n. Parameters used in simulations are =r 0.95, =K 10,

=N 1, =ɛ 0.001, =λ 1,1 =x 2min and =h 0.4. Parameter λ0 is used to
set the level of the encounter rate and it shifts the S-shaped λ versus n
equilibrium manifold of a population model according to xmin . In case

=λ 1,0 xmin is situated in the multiequilibria area of the =ṅ 0 null-
cline. More precisely λ(xmin ) lies between the two fold bifurcation
points of the λ versus n population equilibrium manifold. There is no
possibility to shift the regime to a different branch for =λ 10 (Fig. 2)
since no fold is left in the direction of the evolution. On the contrary,
abrupt irreversible regime shift is simulated for =λ 0.50 (Fig. 2) when
the fold bifurcation point is present.

These simulations are examples of a general phenomenon for sys-
tems with adaptive traits that cause no intraspecific competition. The
presented results can be generalized. A resident-mutant model with
trait-independent intraspecific competition has the form

= −n ρ n Nφ˙ r r r r (21)

= −n ρ n Nφ˙ ,m m m m (22)

where the growth functions ρr and ρm does not depend on the mutant
trait value, whereas the predator (or other) functional responses φr and
φm do, so the selection gradient has to be in the form of a multiplication
and the x-nullcline will be a vertical line. That implies the evolution
dynamics cannot affect the globally stable equilibrium of the fast po-
pulation dynamics if intraspecific competition is trait-independent, that
is in the case that the mutant trait value affects only the predator
functional response or more generally, in case that the adaptive trait is

getting highly specialized to a specific functional response. In the case
of multiple equilibria it can cause abrupt changes from one regime to
another and these changes are irreversible and stable in the eco-evo-
lutionary context. More precisely ecosystems with quasi-equilibria
manifolds that depend on an adaptive parameter and exhibit folds
(typically near cusp bifurcation points) will stay on the same slowly
changing branch tending to an equilibrium on it or the adaptive para-
meter will irreversibly cross the bifurcation point of the folded manifold
and jump to a different branch (level) with a new stable equilibrium.
The theory of bifurcations provides good tools to find the fold bi-
furcation points of the population dynamic models even for big systems
with a lot of parameters and variables and the position of the adaptive
parameter minimum together with the critical fold bifurcation manifold
of quasi-equilibria give a strong tool to expect or even predict these
dynamic transitions. Let us mention here that also new software tools
are being developed to handle forecasting bifurcation-induced regime
shifts by computing of the so called distance to bifurcation (see for
example Dobson, 1993 or Tamba, 2015 with developed MATLAB
Toolkit).

5. Eco-evolutionary model for prey population with trait-
dependent intraspecific competition

It is very common that the trait value influences the population
growth function too. Imagine a bird that has increased its escape speed.
This mutant is possibly quicker in feeding too. Imagine a bug that has
increased its shard hardness, possibly it took some costs that decrease
its breeding or it has become heavier and that makes flying or feeding
more difficult. This explains that trait-dependent intraspecific compe-
tition should be taken into account in a lot of cases.

The slow-fast eco-evolutionary system (5) and (6) with trait-de-
pendent intraspecific competition has the form

⎜ ⎟= − ⎛
⎝

∂
∂

+ ′
+

⎞
⎠=

−
x n x n r

K
α x x

x
λ x n N

hλ x n
˙ ɛ * ( ) ( , ) ( )

1 ( )
,m

m x x

k

k

2

m (23)

= − −
+( )n rn λ x n N

hλ x n
˙ 1 ( )

1 ( )
,n

K

k

k (24)

where α is the intraspecific competition function from the resident-
mutant model (17) and xm stays for mutant and =x xr for resident trait
values. The Taylor series representation of the function α in variable xm
at = =x x xm r has the form

= + − + − + …α x x α x x α x x( , ) 1 ( ) ( )m m m1 2
2

and the term with = ∂
∂

=
α α x x

x
x x

1
( , )m

m
m

vanishes for symmetric trait-de-

pendent intraspecific competition, since it has to be an even function of
−x x( )m . Consequently, the model and the results stay the same for the

case of symmetric competition as in the case of trait-independent

xmin x

n

ṅ = 0

ẋ = 0

xmin x

n

ṅ = 0

ẋ = 0
regime shift

Fig. 1. A model with multiple quasi-equilibria with trait-independent intraspecific competition. Population density n versus trait value x on axes with nullclines and
phase-diagram present stable (left figure) and transient (right figure) eco-evolutionary dynamics.
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intraspecific competition. This is natural, since the trait value change
for symmetric intraspecific competition gives no advantage over the
resident population to the mutant population except of the advantage
mediated by the predator population. But in case of an asymmetric
competition, the trait value change gives advantage or disadvantage to
the mutant population (for example in the carrying capacity or the birth
rate change with regard to the resident population) and in that case

≠∂
∂

=
0α x x

x
x x

( , )m
m

m

generally. In this case the eco-evolutionary dynamics

can change in a more complex way, since the evolutionary nullcline
need not stay vertical.

5.1. Hysteresis caused by the trait change

Let us consider the slow-fast eco-evolutionary system (23) and (24)
with = +λ λ

x 1
0 and with an asymmetric intraspecific competition, where

= >∂
∂

=
α 0α x x

x
x x

( , )
1

m
m

m

. This specific form of λ was used since it is a

monotonic function for λ0≠ 0 and x>0 and it can represent depen-
dence of the encounter rate on such a simple quantified trait value as
the strength or the speed of the prey. The simulation in Fig. 4 shows
that such a system exhibits a hysteresis cycle, continual dynamical
transitions from one branch of the S-shaped quasi-equilibria manifold
to another. Parameters used for the simulation were =r 0.375, =K 3.3,

=N 1, =λ 10,0 =h 3, =α 0.31 and =ɛ 0.01. But which specific para-
meter values are used is not so important, since the same phenomenon

Fig. 2. Simulation of a model with multiple quasi-equilibria and trait-independent intraspecific competition and symmetric λ(x) at level =λ 10 .
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happens any time the unstable branch of the eco-quasi-equilibria null-
cline crosses the evolutionary nullcline. The stable eco-evolutionary
limit cycle existence can be proved by methods of bifurcation theory.

6. Discussion

The impact of the evolutionary process on the ecosystem in case of
population models that exhibit multiple equilibria depends on the in-
fluence of the trait to intraspecific competition. The evolutionary pro-
cess may induce stability, regime shifts, hysteresis, cycles or more
complex dynamics caused by the trait change. More complex eco-evo-
lutionary dynamics are impossible in the case of trait-independent or
symmetric intraspecific competition, where the eco-system stays qua-
litatively unaffected and only near fold points of equilibria manifold

irreversible regime shifts can happen (abrupt changes in population
density or even extinction is possible, see e.g. Dercole, 2005). In the
case of asymmetric intraspecific competition more complex dynamics
can occur, for example a sequence of regime shifts. The asymmetry in
intraspecific competition as a consequence of a trait mutation induced
by evolutionary advantage of the mutant relative to predator is the
driving force of complexity. Intraspecific competition as well as inter-
specific competition create new qualitative features of the ecosystem.
The more adaptive traits are considered, the more complex dynamics
can occur. These results are in agreement with recent research pre-
sented in Dercole et al. (2010) and Dercole and Rinaldi (2010), where
authors introduced first example of evolutionary chaos. Their tri-
trophic food chain system with three adaptive traits and asymmetric
intraspecific competition evince a period-doubling bifurcation cascade

Fig. 3. Simulation of a model with multiple quasi-equilibria and trait-independent intraspecific competition and symmetric λ(x) at level =λ 0.50 .
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with respect to a changing parameter (mutational rate), the Hopf bi-
furcation brings in a stable cycle that goes through a cascade of flip
bifurcations (of a cycle) which is a typical route to chaotic dynamics.

Methods used in this study are based on the assumption that the
ecosystem is settled at an equilibrium attractor, but models of eco-
systems show also emergence of limit cycles and various other attrac-
tors (also chaotic). The slow evolutionary equation (3) is derived with
the assumption that the resident population settles to a point attractor.
Out of equilibria eco-system state variables should be replaced by their
temporal mean value at the resident attractor. For detailed explanation
see Dieckmann and Law (1996). This is still an open problem and
usually nothing more than numerical simulations can be done except
some special cases where explicit calculation of the attractor is possible
as for slow-fast prey–predator dynamics presented by
Dercole et al. (2006). On this place I have to mention that AD canonical
equations in the chaos evincing model from Dercole and Rinaldi (2010)
are considered without this temporal mean value of resident population
(since ecological and evolutionary timescales are completely separated,
so evolution is infinitely slower than ecology). On the other hand, there
are examples of ecosystems with evolutionary dynamics on the same

timescale, see e.g. Thompson (1998). It would be also interesting to find
out whether emergence of chaotic behaviour is sensitive to the time-
scale variance.

7. Conclusion

Adaptive dynamics was surely influenced by the brave, fascinating
and impressive ideas of Prigogine’s self-organization through non-
equilibrium dynamics in Nicolis and Prigogine (1977) and by Kauff-
man’s origins of order with autonomous agents interlocked in a highly
complex biosystem (see Kauffman, 1993). While modelling the eco-
system we usually assume given relationships between species (with
changeable parameters of course), since in the short time scale it is
possible. It is - usually. But that relationships may change much more
due to adaptivity. The resident-mutant relationship can bring in the
intraspecific competition as a new feature that has to be included into
the model. And the model can get more complex, the dynamics is
changing with an increase in the number of variables, parameters and
relations. The eco-evolutionary dynamics are non-linear with all their
features, bifurcation manifolds, basins of attraction and attractors, so it

Fig. 4. Simulation of a model with multiple quasi-equilibria and asymmetric intraspecific competition.
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can produce order, but also cycles, bifurcations and chaotic behaviour
as well (see recent research Dercole et al., 2010; Dercole and Rinaldi,
2010; Wilsenach et al., 2017). There is that important word - can.
Adaptive dynamics for specialized adaptive traits can be considered as
the source of order or stability (but also the source of possible danger of
abrupt irreversible change in population density, even a species ex-
tinction). More complex systems with less specialized adaptive traits
that influence more entities of the system produce more complex dy-
namics and the selection and mutation process brings no order, only the
slow-fast dynamics makes it less visible. As the complexity of entities
increases, the power of selection is limited and complexity catastrophes
occur, since selection cannot climb to the fitness landscape peaks (cited
from Kauffman, 1993). This is exactly what bifurcation and catastrophe
theories claim. The slow-fast system tends to quasi-attractors of the fast
system, but as the whole it can be very complex and unpredictable as
well, the order may be seeming, just caused by the slow-fast feature
primarily. Indeed, laboratory experiments confirm that prey evolution
can substantially alter predator–prey dynamics on similar timescales,
see Yoshida et al. (2003). Focusing on multiple timescales should be
very useful in future research. These contemplations correspond with
the ideas about the importance of transient dynamics indicated by
many nowadays biologists, see for example Hastings (2004). What is
clear is that the ecosystems cannot be studied separately from evolu-
tion, but on the other hand, to understand the quasi-attractors and
transient dynamics, ecosystems have to be studied separately also. It
appears that our models are not good enough in a deeper way. An in-
crease in number of the variables, relations and parameters used in the
model violates the types of possible dynamics and the evolving eco-
systems are getting more complex as well as their inner relations. The
relevance of ecosystem models and modelling process itself crucially
depends on information whether and how the evolution dynamics in-
fluence the ecosystem dynamics.
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A B S T R A C T

Many natural processes studied in population biology, systems biology, biochemistry, chemistry or physics are
modeled by dynamical systems with polynomial or rational right-hand sides in state and parameter variables.
The problem of finding bifurcation manifolds of such discrete or continuous dynamical systems leads to a
problem of finding solutions to a system of non-linear algebraic equations. This approach often fails since it is not
possible to express equilibria explicitly. Here we describe an algebraic procedure based on the Gröbner basis
computation that finds bifurcation manifolds without computing equilibria. Our method provides formulas for
bifurcation manifolds in commonly studied cases in applied research – for the fold, transcritical, cusp, Hopf and
Bogdanov–Takens bifurcations. The method returns bifurcation manifolds as implicitly defined functions or
parametric functions in full parameter space. The approach can be implemented in any computer algebra system;
therefore it can be used in applied research as a supporting autonomous computation even by non-experts in
bifurcation theory. This paper demonstrates our new approach on the recently published
Rosenzweig–MacArthur predator–prey model generalizations in order to highlight the simplicity of our method
compared to the published analysis.

1. Introduction

The aim of this paper is to describe a method of finding bifurcation
manifolds using the Gröbner basis computation. The approach is pre-
sented on the Rosenzweig–MacArthur model generalizations. The ori-
ginal model was published in 1963 in [21] as a generalization of Lot-
ka–Voltera model. Dynamics of two interacting populations is described
by the following system of differential equations:

= =

= =

N
t

rN N
K

g N P P f N P

P
t

eg N P P mP f N P

d
d

1 ( , ) : ( , ),

d
d

( , ) : ( , ),

1

2 (1)

where the state variables N, P denote prey population and predator
population density and t is time. A common notation is used - parameter
r denotes the growth rate of the prey, K is carrying capacity of the prey,
m is the death rate of the predator and e is the conversion efficiency of
the predator. We assume that all parameters are positive. Function g(N,
P) is a specific functional response. Models with number of different
types of functional responses g(N, P) are studied in current research, see
for example [3,19,20,22] or others.

All parameters of a dynamical system such as (1) can fluctuate over
time. External factors typically cause these fluctuations. Bifurcation theory

provides a background to describe the consequences of those fluctuations.
More precisely, bifurcation theory brings in tools to analyze qualitative
changes in dynamics of a given family of differential equations. The to-
pological structure of the state–parameter space is described by a bi-
furcation diagram, usually presented in parameter space as a partition of
the parameter space to structurally stable domains with topologically
equivalent dynamics, while their boundaries are given by the bifurcation
manifolds. That is why the computation of bifurcation manifolds is crucial
in applied research. Let us recall that biochemical switches and bistability
are related to fold or cusp bifurcations, see e.g. [7,11,17,23]. Chemical
oscillations and current research of network phenomena such as syn-
chronization or chimera states are related to Hopf bifurcation, see e.g.
[1,18,24]. Control methods of harvesting or preserving populations,
sudden population extinction explanation are related to fold or Bogda-
nov–Takens bifurcations, see [8,9,13] or [19]. However, the analysis itself
is often very complicated and usually requires numerical continuation
methods and software, for example, Matcont [14] or Auto [25]. In case of
a differential system with polynomial or rational right-hand sides, where
the problem of finding bifurcation manifolds leads to a problem of solving
a system of polynomial equations, see [12], we can avoid numerical
continuation and derive the results analytically. We present our approach
that allows us to analyse the system algorithmically and compute
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bifurcation manifolds as implicit or parametric functions in full parameter
space using known algorithms to compute the Gröbner basis of the poly-
nomial system1 There are several known algorithms implemented in cur-
rent mathematical software, such as the Buchberger algorithm, see [6].

System (1) has polynomial or rational right-hand sides if function g
(N, P) is rational or polynomial. This approach was already used in
[15,16], but to the best of our knowledge, it is not a commonly used
procedure despite its apparent advantages.

To obtain the system of algebraic equations described in previous
paragraph, let us consider a general dynamical system with continuous
time in the form

= =x x f x
t

d
d

( , ). (2)

where x n,n is a vector of state variables, l,l is a
vector of parameters, and t is time. The Jacobi matrix of system (2) is
denoted by J(x, ε). If (x*, ε*) is a fold or a transcritical bifurcation
point, then (x*, ε*) is a solution of the system

=
=

f x
xJ

0( , ) ,
det( ( , )) 0. (3)

A proof can be found in [12]. Similarly, if (x*, ε*) is a Hopf bi-
furcation point, then (x*, ε*) is a solution of the system

=
=

f x
xJ I

0( , ) ,
det(2 ( , ) ) 0,n (4)

where In stands for an n dimensional identity matrix and ⊙ denotes the
bialternate matrix product, for its definition see [12], page 486. In
special case =n 2 we obtain commonly known conditions

=
=

f x
xJ

0( , ) ,
trace( ( , )) 0.

Previous statements described necessary conditions for existence of the
Hopf and the fold one-parameter bifurcations. Those conditions are not
sufficient to classify the bifurcation type. Generally solutions of systems
of algebraic equations (3) or (4) consist of fold or Hopf bifurcation points,
multi-parameter bifurcation points or degenerated bifurcation points.

Although it might seem that the use of the Gröbner basis method is
only a different approach for computation of bifurcation points, it is not
the case. Opposed to the commonly used analysis of a dynamic system,
this method enables the computation of the bifurcation manifolds
without the need to calculate equilibria explicitly. Therefore, we can
also present some new results for the Rosenzweig–MacArthur model
generalizations. In our paper we applied the method to models derived
and studied in [3,19,20] or [22]. For Gröbner basis computations we
used Maple package Groebner, see [27].

2. Model analysis and results

2.1. The Rosenzweig–MacArthur model with predator interference

In this section we focus on the Rosenzweig–MacArthur model in form
(1). The functional response g(N, P) is considered in following form:
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+
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+
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where parameter h>0 is handling time and function Λ(P) is an attack
rate with Λ0>0, b>0. Functional response g(N, P) is a generalization of
Holling type II functional response, see [10]. Function Λ(P) is a de-
creasing function, therefore function g(N, P) is decreasing in P for any
fixed N, and it represents interference among predators. The Ro-
senzweig–MacArthur model with this particular functional response was
studied in [3,19].

Note that it is ineffective to try to find an equilibrium of system (1) with
functional response (5) analytically. Using the standard methods for finding
equilibria of system (1) with functional response (5) we end up with a
polynomial equation, where the leading term is generally fourth-degree.

Assuming a lexicographic order N≻P≻r≻K≻h≻e≻m≻b≻Λ0, it is
possible to find Gröbner basis for the set of polynomials

=S f N P f N Pnumerator( ( , )), numerator( ( , )), numerator det
f P N

N
f P N

P
f P N

N
f P N

P

1 1 2

d 1 ( , )
d

d 1 ( , )
d

d 2 ( , )
d

d 2 ( , )
d

(6)

and by factorization of the first polynomial in the basis we obtain
polynomials

= +
+ +
+ +
+
= +
= +

p N P r K h e m b r K e b r K he m r K e
r Ke mb rKhem b rKe mb
rem b Kh m Khem

Ke m
p N P r K h e m b Khm Ke mb
p N P r K h e m b hm e

( , , , , , , , , ) 16 4 4
128 144 144
256 27 54
27 ,

( , , , , , , , , ) ,
( , , , , , , , , ) .

1 0 3 2 3 2 2 2 0 2 2 3 0
2 2 2 2 0 2 0

2 3 2 3 02 2 02

2 02

2 0 0 0 2

3 0

To eliminate state variables N, P, it is crucial to place them first in
assumed lexicographic order. The overall computation time of com-
putations depends also on ordering within the set of state variables N, P
and the set of parameters r, K, h, e, m, b, Λ0, see [4].

The polynomials vanish at fold or transcritical bifurcation points
and so we get implicit description of the corresponding bifurcation
manifolds. The case where =e hm is not biologically relevant. The
transcritical bifurcation in the intersection of coexistence equilibrium
branch and prey equilibrium [K, 0] without predator branch, see [19],
is described by =p 02 . On the other hand =p 01 implicitly defines the
fold manifold that is derived in full parameter space, which is a new
result not mentioned in [19]. Similarly assuming the same lexico-
graphic order N≻P≻r≻K≻h≻e≻m≻b≻Λ0, it is possible to find the
Gröbner basis for the set of polynomial

=S f N P f N Pnumerator( ( , )), numerator( ( , )), numerator trace
f P N

N
f P N

P
f P N

N
f P N

P

2 1 2

d 1 ( , )
d

d 1( , )
d

d 2 ( , )
d

d 2 ( , )
d

(7)

to obtain Hopf bifurcation manifold (new result). Factorization of the
first polynomial in the basis implies that polynomial

= +
+

+ + +
+ +
+
+ + +
+

+ +
+

+ + +
+ + +

+
+
+ +

+
+

q N P r K h e m b r K h e l r K h e m l r K h e ml
r K he mbl r K he r K e b
r Kh e m b r Kh e mb r Khe b
rK h e m rK h e m rK h e m b

rK h e m rK he m b rK he m
rK e mb rKh m rKh em

rKh e m b rKh e m b rKh e m b
rKh e m b rKh e m rKhe m b
rKhe mb rKhe rKe mb

rKe b
rh m b rh em b rh e m b

rhe mb re b K h e m
K h e m b K h e m K h e m b
K h e m K he m b K he m
K e m b Kh e m b Kh e m b

Kh e m b Khe m b Khe m b
Ke m b Ke m b

( , , , , , , , , ) 4 6
4 2 4
2 4 2
4 16 16
20 32 8
16 2
4 2 12
2 2 4
2 12

2
4 6

4 8
16 24 48
24 48 8
16 8 16
8 32 8
16 8

0 3 2 2 4 2 2 2 3 3 2 2 2 2 2 4 2

2 2 5 2 2 5 02 2 2 6 0
2 3 2 2 02 2 2 3 02 2 4 02

2 4 2 4 02 2 3 3 3 02 2 2 4 3 0
2 2 4 2 02 2 5 2 0 2 5 02

2 6 0 5 4 03 4 3 03

3 2 4 2 0 3 2 3 02 2 3 3 2 0
2 3 2 02 2 3 03 4 2 2 0

4 02 4 03 5 2 0
5 02

4 4 2 02 3 3 2 02 2 2 2 2 02

3 2 02 4 2 02 2 4 2 5 02

2 3 3 5 0 2 3 3 4 02 2 2 4 4 0
2 2 4 3 02 2 5 3 0 2 5 2 02

2 6 2 0 3 2 5 2 0 2 3 5 3

2 3 4 2 0 4 4 3 4 3 2 0
5 3 3 5 2 2 0

1 The Gröbner basis elimination method can be likened to the Gauss elim-
ination method - it is, in fact, its generalization. The original set of polynomials
is transformed into another set with the same properties, in our case the
Gröbner basis generates the vanishing ideal of the original polynomial set. So
similarly to Gauss elimination, the original problem is transformed into an
equivalent problem, but the algorithm provides a variable elimination.
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vanishes at Hopf bifurcation points. Figs. 1 and 2 depict the fold
bifurcation manifold implicitly defined by =p 01 and the Hopf bi-
furcation manifold implicitly defined by =q 0. It is crucial to point out
that the vanishing ideal of (7) does not account for the scenario, where
the Jacobi matrix determinant is positive. Therefore the expressed
manifold consists of Hopf bifurcation points as well as neutral saddle
points. Additional analysis of the manifold subset that satisfies det J>0
is necessary to avoid spurious results. This could be done numerically,
analytically or using Gröbner basis with an additional parameter

= Jdet and an additional polynomial Jdet . The Hopf bifurcation
manifold in parametric space border is the contour = 0, so the border
is usually the Bogdanov–Takens bifurcation manifold (see the next ex-
ample below).

A cusp bifurcation, denoted by CP in Fig. 1, is a two-parameter bi-
furcation of equilibria. For the normal form of this bifurcation see [12].
A cusp bifurcation manifold is a co-dimension two manifold, sub-
manifold of the fold bifurcation manifold. At cusp points, two branches
of fold bifurcation manifolds of co-dimension 1 meet tangentially in a
typical V-shape, see Fig. 1. Let us assume that we are interested in
parameter m and h analysis and we seek hysteresis or transient

dynamics. Because generally, as well as in this example, cusp bifurca-
tion points can be found as points where the implicitly defined function
has no derivative, according to the implicit function theorem, cusp
points are solutions of a set of polynomial equations = 0p

h
1 and

= 0p
m

1 . Eliminating h and m respectively using the Gröbner basis
method again, we get the cusp bifurcation points explicitly as

=

=

m Ker
b

h br b
Kr

1
12

,

4
3

(9 32 ) .0

0

The bifurcation analysis provided in this paper is not complete, for
more see [19]. Dynamical model in form (1) with functional response
(8) is in fact a special case of model studied in [19]. In [19] function
Λ(P) is considered in form = +P( ) b P( )w

0 . In our paper parameter w is
set to critical value 2. The Hopf curve passes directly through the cusp
bifurcation point (CP), which is a degenerate situation, see Fig. 1.

Such computations, made for example in Maple, may serve as quick
support to more in-depth analysis or simulations. Following code shows
all necessary computations in Maple.

fold bifurcation
Hopf bifurcation
cusp bifurcationCP

CP

Fig. 1. The fold bifurcation manifold, implicitly defined by equation =p 0,1 and the Hopf bifurcation manifold, implicitly defined by equation =q 0, in the
generalized Rosenzweig–MacArthur model depending on m (a death rate of a predator) and h (handling time) with = = = = =K r e b5, 28, 3.5, 1, 1.30 . Note that
the solid bifurcation manifold consists of both neutral saddle points and Hopf bifurcation points.
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2.2. The Rosenzweig–MacArthur model with a functional response
increasing in both predator and prey densities

This section is again devoted to the Rosenzweig–MacArthur model
in form (1). The functional response g(N, P) is considered in the fol-
lowing form:

=
+

=

g N P P N
P hN

P Ce P

( , ) ( )
( ) 1

,

( ) ,0 (8)

where parameter h>0 is the handling time and function Λ(P) is an
attack rate with Λ0> 0. C>0 is the amount of prey captured by a
predator per encounter and e0 is the total encounter coefficient between
the predator and the prey. Function g(N, P) is increasing in P for any
fixed N, and it represents cooperation of predators in foraging. The
Rosenzweig–MacArthur model with this particular functional response
was studied in [22] or in a general form that included the special case of
foraging facilitation among predators in [20].

In the remainder of the section we use the same scaling and notation
as [22] to simplify connections between results in [22] and those ob-
tained in our paper. The rescaling is

= = = = = =rt T N
K

x hCe KP y
Ce hK r

e
rh

m
r

, , , 1
( )

, ,0
0

2

and the system simplifies to
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: ,

d
d 1

: .

2

3

2

4 (9)

Using the same technique as in the previous section, assuming a
lexicographic order x≻y≻γ≻β≻α we obtain fold and Hopf bifurcation
manifolds:

+ =fold: 27 4 4 02 2 (10)

+ + +
+ + + +

+ + + + =

Hopf : 4 6 4 5 9
7 2 3

3 2 5 4 0

5 4 2 3 3 2 4 5 5 4 3 2

2 3 4 3 2

2 3 4 3 2 2 3 3 2

(11)

Using the same lexicographic order x≻y≻γ≻β≻α, it is possible to
find Gröbner basis for set of polynomials

=S f x y f x y

f x y
N

f x y
P

f x y
N

f x y
P

f x y
N

f x y
P

f x y
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f x y
P
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d
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d ( , )
d
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,

numerator trace

d ( , )
d

d ( , )
d

d ( , )
d
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d

2 3 4

3 3

4 4

3 3

4 4

(12)

to obtain polynomials that define to Bogdanov–Takens bifurcation
manifold. There are four polynomials in the Gröbner basis that have
state variables x, y eliminated:

=
= +
= + +
=

p
p
p
p

81 243 108 9 4
81 54 6 6 2
27 6 6 2
81 54 4 .

1
2 2

2
2 2 2 2

3
2 2 2

4
3 2

Assuming all parameters are non-zero we obtain following simpli-
fication:

=
+

=
+

4
27

3 1
( 2 3 )

(3 1)
2 3

.

2

(13)

Fig. 3 shows the fold bifurcation manifold and the Hopf bifurcation
manifold, described implicitly by (10), (11) and the Bogdanov–Takens
bifurcation manifold in their intersection, described explicitly by (13).
These results correspond to those published in [22]. Notice that there is
no need to find equilibria of a cubic equation, and further results are
received. For example, critical αβγ is derived in [22] as a function of β
and γ. Not only is our method straightforward, it also provides full-
parameter expression of the Bogdanov–Takens manifold where α and β
are parameterized by γ variable, so it explains the statements in [22]
very clearly and simply.

Following code shows all necessary computations in Maple. Note
that variable γ is denoted by c because symbol γ is protected in Maple.

3. Conclusion

Our paper focuses on the use of Gröbner basis to find bifurcation
manifolds in the generalized Rosenzweig–MacArthur model. This ap-
proach allows us to find implicit formulae for bifurcation manifolds in
whole parameter space for systems of differential equations without
computing equilibria analytically. An analogous procedure can be used
for difference equations.

The problem of finding bifurcation manifolds of a system of
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differential (or difference) equations generally leads to a system of non-
linear equations. Gröbner basis method can be used for a system of
algebraic equations, and this requirement is fulfilled for systems of
differential or difference equations with polynomial or rational right-
hand sides.

Several issues related to our proposed method need to be con-
sidered. Firstly, it is not possible to easily distinguish computed bi-
furcation manifold parts that belong to different equilibria or different
domains of topological equivalence, since we get manifold expression
in parameter space without the direct equilibria correspondence.

Secondly, it is not possible to assume additional properties of state
variables such as positivity, so these questions have to be studied
afterward. Lastly, in many practically relevant cases it is not possible to
obtain Gröbner basis in reasonable time due to the computational
complexity of the algorithm. Despite the mentioned disadvantages, the
method has a considerable advantage because it can be applied to nu-
merous cases and bifurcation manifolds can be computed automatically
by a computer, not only by experts in non-linear dynamics. The main
advantage from the expert point of view is that full-parameter space
representation of bifurcation manifolds is provided. That can provide

Fig. 2. The top figure: the fold bifurcation manifold (black), implicitly defined by =p 0,1 and the Hopf bifurcation manifold (gray), in the generalized
Rosenzweig–MacArthur model depending on m (a death rate of a predator), h (handling time) and K (capacity of environment), with = = = =r e b28, 3.5, 1, 1.30 .
The bottom figure: the cusp bifurcation manifold (black) and the Hopf bifurcation manifold (gray) for the same setting. Note that the depicted bifurcation manifold
consists of both neutral saddle points and Hopf bifurcation points.
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new results as we presented here for the generalized
Rosenzweig–MacArthur models.

As for future research, we believe it could be interesting to in-
vestigate how the proposed techniques can be combined with formal
methods, [2], or with results published in [5].

In our paper, we used software Maple for Gröbner basis computa-
tion. There are other software options; for example, it is implemented in
Matlab or Mathematica, see [26,28].
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Asymptotic Behaviour and Existence of a LimitCycle of Cubic Autonomous SystemsBy Lenka Baráková
(Received 2000)
Abstract. In this paper a 2-dimensional real autonomous system with polynomial right-handsides of a concrete type is studied. Hopf bifurcation is analysed and existence of a limit cycle isproved. A new formula to determine stability or unstability of this limit cycle is introduced. Apositively invariant set, which is globally attractive, is found. Consequently, existence of a stablelimit cycle around an unstable critical point is proved and also a su�cient condition for non-existenceof a closed trajectory in the phase space is given. Global characteristics of the system are studied. Anapplication in economics to the dynamic version of the neo-keynesian macroeconomic IS-LM modelis presented.1. IntroductionThere is a lot of papers dealing with asymptotic properties and existence of a limitcycles of 2-dimensional polynomial autonomous di�erential systems. A great deal ofscienti�c e�ort was devoted to quadratic systems, see e.g. [4], [5], [12], [13]. In thepresent paper we shall consider the real dynamical autonomous system in the plane_x1 = �(a0 + a1x1 + bx2 + a2x21 + a3x31);(1.1) _x2 = �(c0 + cx1 + dx2);where x1 2 IR, x2 2 IR, �; � > 0 are real parameters and a0; a1; b; a2; a3; c0; c; d arereal coe�cients satisfying following assumptions:b < 0; a3 < 0; c > 0; d < 0(1.2)and the quadratic equationa1 + 2a2x+ 3a3x2 = 0 has two real roots.(1.3)1991 Mathematics Subject Classi�cation. 34C05, 34D45, 34C23, 90A16Keywords and phrases. limit cycle, invariant set, Hopf bifurcation



104 CHAPTER 6. COLLECTION OF PAPERS22. Null curves of the system (1.1)1. x1 - null curve x2 = '(x1) of the system (1.1) is de�ned for all x1 2 IR and satis�es:'(x1) = �a0 + a1x1 + a2x21 + a3x31b :It follows that d'dx1 = �a1 + 2a2x1 + 3a3x21b :That yields d'dx1 < 0 for x1 2 (�1;M) [ (N;1);d'dx1 > 0 for x1 2 (M;N);where M = �a2+pa22�3a3a13a3 ; N = �a2�pa22�3a3a13a3 .2. x2 - null curve x2 =  (x1) of the system (1.1) is de�ned for all x1 2 IR and satis�es: (x1) = �c0 + cx1d :It follows that d dx1 = � cd = const: > 0:Critical points of (1.1) are the intersections of these null curves. Obviously, the con-ditions (1.2) assure that there exists at least one critical point of (1.1).3. Linearization of the system (1.1)Let A = � �(a1 + 2a2x1 + 3a3x21) �b�c �d � ;trA = �(a1 + 2a2x1 + 3a3x21) + �d;detA = ���d(a1 + 2a2x1 + 3a3x21)� cb�;pA(�) = det(A� �I) = �2 � � trA+ detA:Assume that A is a regular matrix. The matrix A is a matrix of a linearized system(1.1). The matrixA, its trace trA, its determinant detA and its characteristic polynompA(�) are functions of x1. The system (1.1) has at least one critical point. Let (x�1; x�2)be any critical point of the system (1.1). In the following part we will discuss the type



105Baráková, Asymptotic Behaviour and Existence of a Limit Cycle 3of the critical point (x�1; x�2) and we will write trA, detA instead of trA(x�1; x�2) anddetA(x�1; x�2) to make the computation clearer.Denoting �1; 2 roots of the characteristic polynom, we obtain�1;2 = trA2 � pD2 ;where D = (trA)2 � 4 detA.1) The point (x�1; x�2) is a positive attractor in the case that x�1 2 (�1;Mi[ hN;1) .d'dx1 (x�1) < 0 implies trA < 0. Two cases are possible:(i) If D is negative, (trA)2 < 4 detA, then the critical point (x�1; x�2) is a stablefocus.(ii) If D is non-negative, (trA)2 � 4 detA, then the critical point (x�1; x�2) is a stablenode.2) In the case that x�1 2 (M;N), three types can occur at the point (x�1; x�2).Positive attractor:trA < 0; that is �(a1 + 2a2x�1 + 3a3x�12) + �d < 0;(3.1) detA > 0; that is ���d(a1 + 2a2x�1 + 3a3x�12)� cb� > 0:(3.2)Similarly to the previous case 1) we obtain either a stable node or a stable focus.Negative attractor:trA > 0; that is �(a1 + 2a2x�1 + 3a3x�12) + �d > 0;(3.3) detA > 0; that is ���d(a1 + 2a2x�1 + 3a3x�12)� cb� > 0:This can be either an unstable node or an unstable focus.Saddle point:The case of a saddle point occurs if and only ifdetA < 0:(3.4)It is seen that it coresponds to the inequalityd'dx1 (x�1) = �a1 + 2a2x�1 + 3a3x�12b > � cd = d dx1 (x�1):4. Hopf Bifurcation in the system (1.1)Here we will show that Hopf bifurcation can occur for � = ~� in the case thatx�1 2 (M;N) holds at the critical point P = (x�1; x�2) . According to the Hopf theoremon existence of a limit cycle (see [1], chap. 26, page 406), these two conditions haveto be ful�lled at the critical point P :



106 CHAPTER 6. COLLECTION OF PAPERS4 (i) trA = 0 and detA > 0 | the eigenvalues are purely imaginary:�1;2 = �p(trA)2 � 4 detA2 = �p� detA;(ii) trA satis�es d trAd� j�=~�> 0:Suppose that coe�cients of the right-hand side of (1.1) are �xed and let � and� be parameters. With respect to the previous results, changes of stability in thephase space caused by changes of parameters can occur only if x�1 2 (M;N) (notethat detA > 0 in condition (i) excludes a saddle point). Furthermore, stability orunstability of the critical point depends on the proportion of parameters � and �, sowe can �x � = ~� > 0 arbitrary. Since� > 0; ~� > 0; b < 0; d < 0; d'dx1 (x�1) > 0;there exists � = ~� > 0 such thattrA = ~�(a1 + 2a2x�1 + 3a3x�12) + ~�d = 0:If the value of parameter � is moved, the value of trA changes. 0 < � < ~� impliestrA < 0 and the critical point P is stable; � > ~� implies trA > 0 and the criticalpoint P is unstable. The condition (i) is ful�led for � = ~�. Sinced'dx1 (x�1) = �a1 + 2a2x�1 + 3a3x�12b > 0;which impliesd trAd� j�=~�= d[�(a1 + 2a2x�1 + 3a3x�12) + ~�d]d� = a1 + 2a2x�1 + 3a3x�12 > 0;the condition (ii) is also ful�lled.The critical value of �, where Hopf bifurcation occurs is~� = � ~�da1 + 2a2x�1 + 3a3x�12 :According to Hopf theorem, if for � = ~� the critical point P is not a centre, then forvalues of � su�ciently close to ~� there exists a periodic solution in some neighbourhoodof P .We proved existence of a limit cycle, but that is not enough to describe the asymp-totic behaviour of the solutions of (1.1). To �nd the type of bifurcation, we are goingto use Hopf theorem on stability of the limit cycle (see [10], chap. 4, page 344). Herewe will cite a simpli�ed version to make clear the further calculation.Hopf theorem (on stability)



107Baráková, Asymptotic Behaviour and Existence of a Limit Cycle 5Consider a general planar analytic system_x = ax+ by + p(x; y);_y = cx+ dy + q(x; y);with parameter a+ d (the trace of the linearized matrix), wherep(x; y) = Xi+j�2 aijxiyj ; q(x; y) = Xi+j�2 bijxiyjare analytic functions. The origin is a critical point.If a+ d = 0, � = ad� bc > 0, then the type of Hopf bifurcation with the parametera+ d is given by the sign of the Lyapunov number �:� = � 3�2b�3=2�ac(a211 + a11b02 + a02b11) + ab(b211 + a20b11 + a11b02) ++c2(a11a02 + 2a02b02)� 2ac(b202 � a20a02)� 2ab(a220 � b02b20)��b2(2a20b20 + b11b20) + (bc� 2a2)(b11b02 � a11a20)��(a2 + bc)�3(cb03 � ba30) + 2a(a21 + b12) + (ca12 � bb21)�	:If � < 0, then for a + d > 0 su�ciently close to 0, there exists a stable limit cycle,supercritical Hopf bifurcation occurs.If � > 0, then for a + d < 0 su�ciently close to 0, there exists an unstable limitcycle, subcritical Hopf bifurcation occurs.Proof. See [1] or [10], older theory can be found in [2] and [3].So the sign of � determines the asymptotic behaviour of those solutions of (1.1),whose !-limit set is the limit cycle guaranteed by Hopf bifurcation.To �nd the formula for �, we have to translate the system (1.1) to the origin. Afterthe transformation y1 = x1 � x�1; y2 = x2 � x�2we obtain the system (1.1) in the form:_y1 = �[(a1 + 2a2x�1 + 3a3x�12)y1 + by2 + (a2 + 3a3x�1)y21 + a3y31 ];(4.1) _y2 = �(cy1 + dy2):After some arrangements, we obtain the following formula for the system (4.1) with� = ~�, � = ~�: � = 3�2�3=2 ~�3M21 �2M22M1 � 3a3�1� bM1 cd�� ;(4.2)where M1 = a1 + 2a2x�1 + 3a3x�12 > 0, M2 = a2 + 3a3x�1, � = ~�~�[(a1 + 2a2x�1 +3a3x�12)d � cb]. It is seen that the sign of � does not depend on parameters � and �.The sign of � can be both plus or minus as it is shown in the following two examples:Example 1. Let a0 = 40; a1 = �9:64; a2 = 1; a3 = �0:033;b = �0:8; c0 = �3; c = 0:7; d = �0:3



108 CHAPTER 6. COLLECTION OF PAPERS6and �x � = 1:The system (1.1) with this coe�cients satis�es assumptions (1.2) and (1.3) and theonly critical point is (x�1; x�2):x�1 := 9:9526; x�2 := 13:2228The critical value of the parameter �, where Hopf bifurcation occurs is ~� := 0:6538.According to the formula (4.2), we get� := �1:2612 < 0:A stable limit cycle occurs for those values of �, which are su�ciently close to ~� andsuch that trA > 0.
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x1Fig. 1 � = 0:67 > ~�: a stable limit cycle around an unstable focusExample 2. Let a0 = 1; a1 = 2; a2 = 3; a3 = �0:1;b = �1; c0 = 2; c = 100; d = �2and �x � = 1:The system (1.1) with this coe�cients satis�es assumptions (1.2) and (1.3) and theonly critical point is (x�1; x�2). x�1 = 0; x�2 = 1:



109Baráková, Asymptotic Behaviour and Existence of a Limit Cycle 7The critical value of the parameter �, where Hopf bifurcation occurs is ~� = 1. Ac-cording to the formula (4.2), we get� := 0:0180 > 0:An unstable limit cycle occurs for those values of �, which are su�ciently close to ~�and such that trA < 0.
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x1Fig. 2 � = 0:93 < ~�: an unstable limit cycle around a stable focus.In the second example, Theorem 5.3 of the next section guarantees existence of a stablelimit cycle, which contains the unstable cycle.5. Existence of a globally attractive setIn this section a positively invariant set, which is globally attractive will be foundusing a suitable Lyapunov-like function. This result is usefull partly to characterizationof the global behaviour of solutions of (1.1) and partly for the application of thePoincaré-Bendixson theorem. These give more precise statements about the phaseportrait, which are presented in the section 6.Theorem 5.1. If (4.1) is the previous translated system belonging to the system(1.1) and satisfying assumptions (1.2) and (1.3), then�[y1; y2] 2 IR2 j �c2 y21 � �b2 y22 � R�



110 CHAPTER 6. COLLECTION OF PAPERS8is a positively invariant set of the system (4.1) for each R � � %2�d , where% = maxy12IR���cy21(a3y21 + (a2 + 3a3x�1)y1 + a1 + 2a2x�1 + 3a3x�12 � ��d)� :(5.1)Proof. Here, to make the further calculations clearer, we will write the system (4.1)with simpli�ed coe�cients:_y1 = Py1 �Qy2 + Sy21 � Ty31;_y2 = Uy1 �Wy2;where we denote P = �(a1 + 2a2x�1 + 3a3x�12);Q = ��b > 0;S = �(a2 + 3a3x�1);T = ��a3 > 0;U = �c > 0;W = ��d > 0:Let g(y1) = �Uy21(Ty21 � Sy1 � P �W ). Notice that function g(y1) is bounded fromabove on IR, since g is continuous andlimy1!�1 g(y1) = �1:This together with g(0) = 0 yields% = maxy12IR g(y1) � 0:Let R � %2W � 0be arbitrary.Put y = (y1; y2) and consider the function V (y) = U2 y21 + Q2 y22 = �c2 y21 � �b2 y22 .If R = 0, then the set given by the inequality V (y) � R is the origin, which is acritical point of (4.1) and the statement is proved in this case.If R > 0, then V (y) = R� is an ellipse for any R� � R and the set V (y) � R�contains the origin and the ellipse V (y) = R. Let y = y(t) = (y1(t); y2(t)) be anynon-trivial solution of (4.1). If V (y(t)) = R�, the solution y = y(t) intersects theellipse V (y) = R� at the time t. Then the following relations hold for any t such thatV (y(t)) = R�:V 0(y(t)) = Uy1 _y1 +Qy2 _y2 == U(Py21 �Qy1y2 + Sy31 � Ty41) +Q(Uy1y2 �Wy22) == �W (Uy21 +Qy22) + U(P +W )y21 + USy31 � UTy41 == �2WR� + Uy21(�Ty21 + Sy1 + P +W ) �� �2WR� + % � 0:



111Baráková, Asymptotic Behaviour and Existence of a Limit Cycle 9Clearly the last inequality is strict for R� > R. This implies that trajectories of (4.1)intersect the ellipses V (y) = R�, R� > R, in the direction from their exteriors totheir interiors. Consequently, if y(t�) is an element of V (y) � R for some t�, i.e. ifV (y(t�)) � R, then the trajectory corresponding to the solution y(t) cannot leave theset V (y) � R for t � t�. Hence V (y) � R is a positively invariant set and the proof iscompleted.Theorem 5.2. Let (x�1; x�2) be a critical point of the system (1.1) with assumptions(1.2) and (1.3) and let % be de�ned by (5.1). Then the setE = �[x1; x2] 2 IR2 j �c2 (x1 � x�1)2 � �b2 (x2 � x�2)2 � � %2�d�is globally attractive.Proof. In view of Theorem 5.1, any set�[x1; x2] 2 IR2 j �c2 (x1 � x�1)2 � �b2 (x2 � x�2)2 � R� ;where R � � %2�d , is positively invariant. Thus every solution x(t) of (1.1) is boundedand therefore de�ned for all t � t0, where t0 is an initial value of t for the solution x(t).Denote x� = (x�1; x�2) and y(t) = x(t)� x�. Then y(t) is a solution of (4.1) de�ned fort � t0. From the proof of Theorem 5.1, we can easily see that V 0(y(t)) < 0 for anyt � t0 for which the inequality V (y(t)) > � %2�d is valid. This implies that V (y(t)) isdecreasing for all t � t0 with the mentioned property.Choose " > � %2�d arbitrary. Since any set V (y) � R, where R � � %2�d , is positivelyinvariant, it is su�cient to show that there exists a t� � t0 such that V (y(t�)) < ".Suppose on the contrary that there is not such a t�. Then, in view of the mono-tonicity of V (y(t)), the limit limt!1V (y(t)) =: �exists and V (y(t)) � � � "for all t � t0. Calculating the derivative V 0(y(t)) similarly as in the proof of Theorem5.1, we obtain the estimationV 0(y(t)) � �2WV (y(t)) + % � 2W� + % = 2�d� + % =: � < 0for t � t0. The integration over [t0; t] yieldsV (y(t))� V (y(t0)) � �(t� t0)for all t � t0. Consequently V (y(t)) ! �1 for t ! 1, which is contradiction withthe non-negativity of V (y(t)).Corollary 5.3. Let x� = (x�1; x�2) be a critical point of the system (1.1). Ifmaxy12IR y21�a3y21 + (a2 + 3a3x�1)y1 + a1 + 2a2x�1 + 3a3x�12 � ��d� = 0;



112 CHAPTER 6. COLLECTION OF PAPERS10then the unique solution corresponding to the critical point x� is globally asymptoticallystable.Proof. If (5.1) holds, then % = 0 using the notation from the proof of Theorem 5.1.Note R � 0 is �xed, but arbitrary. Then the inequalityV 0(y(t)) � �2WR+ % = �2WRyields that the orbital derivative of V is negative de�nite and this guarantees globalasymptotical stability of the trivial solution.Remark 5.4. Since the globally attractive set E from the Theorem 5.2 is dependson the critical point P = (x�1; x�2), we denote E = E(x�1; x�2) the globally attractive setrelated to the point P in the further section.De�nition 5.5. Let _x = f(x)(5.2)be an autonomous system, where x = (x1; : : : ; xn) 2 
 � IRn and the vector functionf = (f1; : : : ; fn) : 
 ! IRn has continuous derivative. Let x� be a critical point of(5.2) and Df(x�) be the Jacobi's matrix of the right-hand side of the system (5.2)at the point x�. If the real parts of all eigenvalues of Df(x�) are non-zero, then thecritical point is called hyperbolic.6. Global properties of the system (1.1)Attributes of a structurally stable system (1.1) are studied in this section. Forthe precise de�nition of structural stability see [9]. Structural stability guaranteesespecially that all critical points are hyperbolic (see Peixoto's theorem in [9]). Themain reason for studying the structurally stable system (1.1) is its potential applicationin economics (see the section 7), because the economic values cannot be measuredprecisely. Studying a structurally unstable system is purposeless in these applications,since small changes in the system make even qualitative changes of the phase portraitand di�erent behaviour of described variables occures.Lemma 6.1. If the system (1.1) with assumptions (1.2) and (1.3) is structurallystable, then the following three statements hold.(i) The system has one or three critical points.(ii) If there is exactly one critical point (x�1; x�2), then (x�1; x�2) is a node or focus.(iii) If there are three critical points (x11; x12), (x21; x22) and (x31; x32), such that x11 <x21 < x31, then (x21; x22) is a saddle point and (x11; x12), (x31; x32) are unstable nodesor foci.



113Baráková, Asymptotic Behaviour and Existence of a Limit Cycle 11Proof. (i) Critical points of the system (1.1) are the intersections of null-curvesx2 = '(x1), x2 =  (x1). Since the �rst one is a cubic parabola and the second oneis a line, the null-curves can intersect at three points at most. The condition (1.2)guarantees existence of at least one critical point.Suppose there are exactly two critical points. Then the null curves are tangent toeach other at some critical point (x�1; x�2), i.e.d'dx1 (x�1) = �a1 + 2a2x�1 + 3a3x�12b = � cd = d dx1 (x�1):It follows that detA = 0at the point (x�1; x�2) and the characteristic polynom satis�espA(�) = �2 � � trA+ detA = �(� � trA):That is a contradiction with structural stability, since zero is an eigenvalue of thematrix A at the point (x�1; x�2) and therefore the critical point (x�1; x�2) is not hyperbolic.Hence, null curves intersects at one or at three points.(ii) Let (x�1; x�2) be a unique critical point of (1.1). If x1 lies outside the interval(M;N), then d'dx1 (x�1) < 0and that implies trA < 0. Hence, (x�1; x�2) can be a stable node or focus.If x1 lies inside the interval (M;N), then it is evident that the following inequalityis satis�ed d'dx1 (x�1) = �a1 + 2a2x�1 + 3a3x�12b � � cd = d dx1 (x�1):(6.1)
M N

(x�1; x�2)'(x1)  (x1)
Fig.3The inequality (6.1) holds if and only if detA � 0 at the point (x�1; x�2). Similarly asin the proof of (i), structural stability of the system (1.1) excludes detA = 0 and thecondition (3.2) holds therefore. Suppose trA = 0, then the characteristic polynompA(�) = �2 � � trA+ detA = �2 + detA



114 CHAPTER 6. COLLECTION OF PAPERS12has two purely imaginary eigenvalues. This is a contradiction with the structuralstability of the system (1.1). Consequently, one of the conditions (3.1) or (3.3) holdsand the critical point (x�1; x�2) can be either a node or a focus.(iii) In the case that the null-curves intersect at three points, the \middle" criticalpoint (x21; x22) is a saddle, since the inequalityd'dx1 (x21) = �a1 + 2a2x21 + 3a3x212b > � cd = d dx1 (x21)equivalent to (3.4) holds at this point. The oposite inequality holds for the other twopoints (x11; x12) and (x31; x32), i.e. the determinant detA is positive at these points.Reasonings analogous to the part (ii) of the proof lead to the consequence that theyare nodes or foci necessarily.Theorem 6.2. If the system (1.1) with assumptions (1.2) and (1.3) is structurallystable, then the following three statements hold.(i) If system (1.1) has exactly one critical point P = (x�1; x�2), then either the con-stant solution coresponding with P is globally asymptotically stable, or E(x�1; x�2)contains a stable limit cycle.(ii) If system (1.1) has three unstable critical points P1 = (x11; x12), P2 = (x21; x22) andP3 = (x31; x32), where x11 < x21 < x31, then E(x21; x22) contains a stable limit cycle.(iii) If system (1.1) has exactly one unstable critical point (x�1; x�2), then E(x�1; x�2)contains a stable limit cycle.(iv) If system (1.1) has exactly one critical point (x�1; x�2) and there exists R > � %2�d ,% given by (5.1), such that the inequality�(a1 + 2a2x1 + 3a3x21) + �d � 0is ful�lled in the set H = n(x1; x2) 2 IR2 j �c2 (x1 � x�1)2 � �b2 (x2 � x�2)2 < Ro,then the constant solution x1 = x�1, x2 = x�2 is globally asymptotically stable.Proof.(i) Let the system (1.1) has exactly one hyperbolic critical point P = (x�1; x�2).According to Lemma 6.1, part (ii), P is a node or focus. Hence, detA > 0 holdsat P . Since P is hyperbolic, the trace trA is non-zero at the point P .Suppose there is no limit cycle. We will show that then the constant solutioncorresponding with P is globally asymptotically stable. Suppose on the contrarythat there exists a trajectory C such that its !-limit set !(C+) is not equal tothe point P . Since P is the unique critical point of the system (1.1), the !-limitset !(C+) does not contain any critical point. According to Poincaré-Bendixsontheorem, !(C+) is a closed trajectory. Clearly, it is contained in the globallyattractive set E(x�1; x�2) related to the point P . The closed trajectory !(C+)surrounds P (the Poincaré's index of a closed curve is +1 and is equal to the



115Baráková, Asymptotic Behaviour and Existence of a Limit Cycle 13sum of indices of contained critical points). The !-limit set of any trajectoryentering the set E(x�1; x�2) then does not contain any critical point and accordingto the Poincaré-Bendixson theorem there exists a limit cycle inside E(x�1; x�2),which is a contradiction.Otherwise, let there exists a limit cycle. It is contained in the globally attractiveset E(x�1; x�2) related to P and it surrounds P . The assumption of structuralstability gives that there can be either an unstable or a stable limit cycle, semi-stable cycles cannot occur (see [3]). If the inequality trA > 0 holds at P ,condition (3.3), P is a single unstable critical point (a node or a focus). Since Plies inside the globally attractive set E(x�1; x�2) related to P , existence of a stablelimit cycle around P follows from Poincaré-Bendixson theorem. If the inequalitytrA < 0 holds at P , condition (3.1), P is a single stable node or focus. Sincethe limit cycle contains the point P , the !-limit set of any trajectory enteringthe set E(x�1; x�2) does not contain any critical point. According to the Poincaré-Bendixson theorem, there exists a stable limit cycle inside E(x�1; x�2). In thiscase, the structural stability implies co-existence a stable and an unstable limitcycle around the stable critical point P .(ii) Since E(x21; x22) is globally attractive, P1, P2 and P3 are contained in E. Accord-ing to Lemma 6.1, part (iii), P2 is a saddle point, P1 and P3 are unstable nodesor foci. Therefore, there exists a trajectory C which remains in E(x21; x22) and its!-limit set !(C+) does not contain any critical point. From Poincaré-Bendixsontheorem follows that E(x21; x22) contains a stable limit cycle.(iii) Follows from (i).(iv) Let f1; f2 be the right-hand sides of (1.1). Using the Bendixson criterion onnon-existence of closed trajectories (see [16]), we have@f1@x1 + @f2@x2 = �(a1 + 2a2x1 + 3a3x21) + �d � 0in H , which is a simply connected domain. Hence, any limit cycle in H cannotexist. Since the globally attractive set E(x�1; x�2) is a subset of H , there are nolimit cycles in E(x�1; x�2). The statement follows from (i).7. Applications in EconomicsIn this section, a possible application of the previous statements to the neo-keynesianmacroeconomic model IS-LM is given. The point is to summarize the purpose of eachsection and show the possibilities of using the presented results.Neo-keynesian macroeconomic model IS-LM can be formulated as a planar dynamicsystem given by equations _y = �[i(y; r) � s(y; r)];(7.1) _r = �[l(y; r) �m];



116 CHAPTER 6. COLLECTION OF PAPERS14where �; � > 0 are parameters and the following notation is used:Y : : : real net product, Y 2 IR+,y : : : y = lnY , y 2 IR,r : : : real interest rate, r 2 IR,I(Y; r) : : : real investments,i(y; r) : : : propensity to invest or real investment-real net product ratio i.e. IY ,S(Y; r) : : : real savings,s(y; r) : : : propensity to save or real saving-real income ratio i.e. SY ,L(Y;R) : : : demand for money,l(y; r) : : : l(y; r) = L(ey; r),m : : : real supply of money.The continuity of all functions and their �rst derivatives in both variables y and r isassumed. In general, i and s are non-linear analytical functions. The derivatives of i,s, l functions are assumed to have the usual propertiesiy > 0; ir < 0; sy > 0; sr > 0; ly > 0; lr < 0:(7.2)Economic observations yields that the i, s functions are of a sigmoid form (S-shaped)for any �xed r (for more economic details see [7], pages 442{443, or [15], pages 144{145). Furthermore, it is assumed that for some �xed r0 curves i, s intersects at threepoints. That corresponds to existence of two pointsM , N , where �1 < M � N <1such that @(i(y;r)�s(y;r))@y < 0 for y 2 (�1;M) [ (N;1);@(i(y;r)�s(y;r))@y > 0 for y 2 (M;N):isi; s
yM NFig.4These assumptions on shape and position of functions i(y; r), s(y; r) are called theCaldor's assumption in economics.This neo-keynesian model IS-LM has been studied by many economists. In theirworks, existence of an economic equilibrium is implicitly presumed although non ofthe above assumptions guarantees this existence. Such assumption can be representedby following two natural conditions:



117Baráková, Asymptotic Behaviour and Existence of a Limit Cycle 15limr!1[i(y; r)� s(y; r)] = �1; limr!�1[i(y; r)� s(y; r)] =1;for arbitrary �xed y 2 (�1;1);and(7.3) limy!1 l(y; r) =1; limy!�1 l(y; r) = �1;for arbitrary �xed r 2 (�1;1):Since null-curves of (7.1) correspond to the points of equilibrium on the goods marketand money market, they are called the IS curve and LM curve in economy.The IS-LM model (7.1) with assumptions (7.2), (7.3) and the Caldor's assumption istoo general for precise mathematical analysis. In spite of it, some general results havebeen published, especially, we have to mention the proof of existence of a limit cycle byTorre (see [14]). Torre's results are direct applications of Andronov's theorems aboutbifurcation (see [2] and [3]).Many economists and mathematics tried to apply the Poincaré-Bendixson theoremto the general system (7.1), but they never succeeded. In order to obtain the neededresults, they had to choose one of two alternatives: either they changed some of theeconomic assumptions, or they had to specialize the situation by adding some otherconditions. The �rst way was used by Chang and Smyth, who assumed sr < 0 in (7.2)and that was why their work has not been accepted by economists. To the secondgroup of works belong for example [11].The applications of the results of this paper are of this second type too. The aproxi-mation of the functions i(y; r) and s(y; r) by a cubic polynom and by a linear function,respectively, can give more precise information about the behaviour of economy thanthe general model. In concrete applications, the above general formulation of the dy-namical IS-LM model together with related assumptions can be simpli�ed to the formof the system (1.1), where x1 = y; x2 = r;i(y; r)� s(y; r) = a0 + a1x1 + bx2 + a2x21 + a3x31;l(y; r)�m = c0 + cx1 + dx2:It is seen that assumption (1.2) of the system (1.1) corresponds with the assump-tion (7.2) of the system (7.1), the Caldor's assumption can be formulated into (1.3),while (7.3) are also ful�lled. Results from the previous sections lead to the followingconsequences.The division from the section 3 speci�es types of critical points. A critical point of(7.1) corresponds to an aggregate equilibrium in economy. The type of this equilibriumdoes not say anything more than how the economy will behave \near" the equilibrium.That is usually not su�cient, since we do not know whether we are su�ciently closeto the equilibrium or not beforehand.More useful consequences give results of sections 4, 5 and 6. We proved existenceof a limit cycle in section 4 (using other apparatus, Torre have already done it in[14] for a general neo-keynesian model IS-LM). A limit cycle (especially a stable limitcycle) of (7.1) represents a business cycle in economy. In economic terminology, there



118 CHAPTER 6. COLLECTION OF PAPERS16is no di�erence between oscilations with �xed or mildly varialble amplitude or period,tending to some constant amplitude or period. All these situations are called businesscycles. Applying results of section 4, we get:If the economy equilibrium P = (y�; r�) satis�es y� 2 (M;N), then the conditions(i) and (ii) from the section 4 are su�cient conditions for existence of a businesscycle, which is not evoked by external in
uences, but which is entirely determined byinternal structure of the system. The formula (4.2) then replies to the question, howthe economy will behave if the initial values of y and r are su�ciently close to the limitcycle. Hence, the inner-determined business cycle occurs for values � < 0, since in thiscase the limit cycle is stable and for all initial values of y and r in some neighbourhoodof the cycle, the trajectory tends to it - a business cycle occurs in economy for all thesesituations.Applying statements of section 5 and 6, we get essential consequences which neednot the assumption y� 2 (M;N). According to the Theorem 5.1, we can boundthe level of product y and interest rate r. If the initial values of y and r lie insidethe positively invariant set, they will stay there in the future. Corollary 5.3 gives acondition for global stability of the aggregate equilibrium. Another such conditionis given by Theorem 6.2, part (iv). (Many economists presume that the economicequilibrium is globally stable always, i.e. they assume there exists some mechanismof adaptation in economy. This is true for a linear IS-LM model, with a2 = 0, a3 = 0.If the economy satis�es the Caldor's assumption, such mechanism need not exist.)Theorem 5.2 and Theorem 6.2 give a very useful and e�ective economic tool then.If, for example, the central bank contemplates a monetary expansion (increase ofthe real supply of money m), the set E computed for this considered situation mayhelp to predict the reaction of economy, although we do not presume existence of anymechanism of adaptation. Theorem 6.2 may be used for more profound descriptionof this reaction. For example, (i) says that if there is exactly one critical point (IScurve and LM curve intersect in one point, it is a normal situation), then the economygives signs of stability and there exists a kind of mechanism of adaptation, althoughthe equilibrium may be unstable. The part (iii) then says that in this case a stablebusiness cycle occurs. Parts (ii) or (iv) may be used in a similar way.In section 6, we assume that the system (1.1), and hence (7.1), is structurally stable.This assumption is necessary in the economic model, since otherwise even small mis-takes in econometric estimation of functions i, s and l could lead to incorrect results.Except the mentioned Torre's results about existence of a limit cycle in IS-LMmodel,all economic applications are new to the best of my knowledge.References[1] Amann H., Ordinary Di�erential Equations: An Introduction to Nonlinear Analysis, de GruyterStudies in Mathematics 13, ed. Walter de Gruyter, Berlin, New York, 1990[2] Andronov A.A., Leontovicz E.A., Gordon I.I., Maier A.G., Theory of Bifurcations of Dy-namical Systems in the Plane, Nauka, Moskva, 1967 (in Russian)[3] Andronov A.A. and Chaikin C.E., Theory of Oscillations, English Language Edition, PrincetonUniversity Press, Princeton, New Jersey, 1949[4] Cherkas L.A. and Zhilevich L.J., Limit Cycles of a Quadratic Di�erential Equation, Di�er-entsial'nye Uravnenija 10, (1974), 947{949 (in Russian)
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BIFURCATION DIAGRAM OF A CUBIC THREE-PARAMETER

AUTONOMOUS SYSTEM
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Abstract. In this paper, we study the cubic three-parameter autonomous

planar system

ẋ1 = k1 + k2x1 − x3
1 − x2,

ẋ2 = k3x1 − x2,

where k2, k3 > 0. Our goal is to obtain a bifurcation diagram; i.e., to divide

the parameter space into regions within which the system has topologically

equivalent phase portraits and to describe how these portraits are transformed
at the bifurcation boundaries. Results may be applied to the macroeconomical

model IS-LM with Kaldor’s assumptions. In this model existence of a stable
limit cycles has already been studied (Andronov-Hopf bifurcation). We present

the whole bifurcation diagram and among others, we prove existence of more

difficult bifurcations and existence of unstable cycles.

1. Introduction

In the present paper we shall consider the real dynamical autonomous system

ẋ1 = k1 + k2x1 − x31 − x2,

ẋ2 = k3x1 − x2,
(1.1)

where x1, x2 ∈ R and K = {(k1, k2, k3) ∈ R3 : k2 > 0, k3 > 0} is a parameter space.
Note that if x1(t), x2(t) are solutions of (1.1), x̃1(t) = −x1(t), x̃2(t) = −x2(t) are
solutions of the system

ẋ1 = −k1 + k2x1 − x31 − x2,

ẋ2 = k3x1 − x2.

This implies that the bifurcation sets of (1.1) are symmetric with respect to the
plane k1 = 0, because the phase portraits of (1.1) with the parameters (k1, k2, k3) =

(k̃1, k̃2, k̃3) and (k1, k2, k3) = (−k̃1, k̃2, k̃3) are symmetric about the origin. We
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denote

A =

(
k2 − 3x21 −1

k3 −1

)
,

trA = k2 − 3x21 − 1,

detA = 3x21 − k2 + k3,

pA(λ) = det(A− λI) = λ2 − λ trA+ detA,

where A is Jacobi’s matrix of the system (1.1), its trace trA, determinant detA
and characteristic polynomial pA(λ) are functions of variable x1.

All equilibrium points (ξ1, ξ2) of the system (1.1) have to be solutions of the
equations

k1 + k2x1 − x31 − x2 = 0,

k3x1 − x2 = 0,

which gives that ξ1 has to satisfy the equality

k1 + (k2 − k3)ξ1 − ξ31 = 0 (1.2)

and ξ2 = k3ξ1. System (1.1) has from one to three equilibrium points.

Lemma 1.1. Let (ξ1, ξ2) be an equilibrium point of (1.1). Then the set

{(x1, x2) ∈ R2 : k3(x1 − ξ1)
2 + (x2 − k3ξ1)

2 ≤ R},
where

R = −k3 min
x1∈R

{x21(x21 + 3ξ1x1 − k2 + 3ξ21 − 1)}

is globally attractive.

For the proof of the above lemma se [2, Theorems 5.1 and 5.2] .

Remark 1.2. A planar dynamical system

ẏ = α[i(y, r)− s(y, r)],

ṙ = β[l(y, r)−m],
(1.3)

where α, β > 0, may represent a macroeconomical model IS-LM (see [2]). The
variable y = lnY is the logarithm of the product (GNP), r is the interest rate.
Functions i and s are propensities to invest and save, l and the constant m -
demand and supply of money. Using basic economic properties of the functions i,
s and l (including Kaldor’s assumptions), we can concretize the system (1.3) to the
most simple one - a cubic system

ẏ = α(a0 + a1y + br + a2y
2 + a3y

3),

ṙ = β(c0 + cy + dr),
(1.4)

where α > 0, β > 0, b < 0, a3 < 0, c > 0, d < 0 and the quadratic equation
a1 + 2a2x + 3a3x

2 = 0 has two different real roots. System (1.4) can be replaced
by the system (1.1) using some efficient transformation (see [8]).

The aim of this paper is to continue in the study of the dynamical system (1.4)
from [2](the system (1.1) respectively) and to obtain deeper results concerning
its stability, topological properties and types of bifurcations, especially existence
and stability of limit cycles. From the economic point of view stable limit cycles
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correspond to business cycles. Economists are used to presume that economic equi-
librium is globally stable always, i.e. they assume there exists some mechanism of
adaptation in economy. This is true for a linear IS-LM model, with a2 = 0, a3 = 0.
If the economy satisfies the Kaldor’s assumptions, such mechanism need not exist.
This was pointed out already in the original Kaldor’s paper [5], but dealing with
this problem all authors provided just numerical results or made some other specific
assumptions to the model and to the best of my knowledge never found any unsta-
ble cycle. Although the system (1.4) is “only” cubic, we will show that even more
than one cycle can appear and surely it need not be stable. Moreover, the described
cycles are not evoked by external influences, but they are entirely determined by
internal structure of the system, which is a problem passed by so called “invisible
hand” that should lead the economy to the globally stable equilibrium.

2. Local bifurcations

Lemma 2.1. Let (ξ1, ξ2) be an equilibrium point of (1.1) and let

k2 = k3 + 3ξ21 , k3 6= 1.

Then the equilibrium point (ξ1, ξ2) is a saddle-node for ξ1 6= 0. The origin is
topologically equivalent to a node in the case ξ1 = 0.

Proof. After transformation of the equilibrium point (ξ1, ξ2) to the origin by the
change of variables u1 = x1 − ξ1, u2 = x2 − ξ2 we get the system

u̇1 = k3u1 − 3ξ1u
2
1 − u31 − u2,

u̇2 = k3u1 − u2.

For k3 6= 1, the following regular transformation

u1 = y1 + y2, u2 = k3y1 + y2

(the matrix of the trasformation is given by the eigenvectors corresponding with
one zero and one non-zero eigenvalues) and the time change τ = (k3 − 1)t give the
canonical form of system (1.1):

ẏ1 = F (y1, y2),

ẏ2 = y2 − k3F (y1, y2),

where

F (y1, y2) =
3ξ1

(k3 − 1)2
(y1 + y2)

2 +
1

(k3 − 1)2
(y1 + y2)

3.

Let y2 = ϕ(y1) be a solution of the equation

y2 − k3F (y1, y2) = 0

in the neighbourhood of the origin. We approximate this solution corresponding
with the central manifold of the system by a Taylor expansion

ϕ(y1) =
∞∑

i=0

aiy
i
1

in the neighbourhood of the origin and get
∞∑

i=0

aiy
i
1 =

3k3ξ1
(k3 − 1)2

(y1 +
∞∑

i=0

aiy
i
1)

2 +
k3

(k3 − 1)2
(y1 +

∞∑

i=0

aiy
i
1)

3.
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We equate coefficients of equal powers of x on the left and the righthand side and
find

a0 = 0, a1 = 0, a2 =
3k3ξ1

(k3 − 1)2
6= 0.

The equilibrium point (ξ1, ξ2) of the system (1.1) is a saddle-node according to [1,
Theorem 65 (par. 21)].

In the case that ξ1 = 0, the system (1.1) has a unique equilibrium point (0, 0).
We analogically aproximate the central manifold by the Taylor expansion with zero
coefficients up to the second order (including) and get

a3 =
k3

(k3 − 1)2
> 0.

Consequently, the origin is topologically equivalent to a node according to [1, The-
orem 65 (par. 21)]. �

Theorem 2.2. The subset MT of the parameter space K,

MT = {(k1, k2, k3) ∈ K : k1 = −2ξ31 , k2 = k3 + 3ξ21 , k3 6= 1, ξ1 ∈ R− {0}},

is a bifurcation set of codimension 1 - double equilibrium (also called “saddle-node
bifurcation”). The double equilibrium point (ξ1, k3ξ1) is a saddle-node.

Proof. Let (ξ1, ξ2) be an equilibrium point of the system (1.1). The bifurcation
“double equilibrium” occurres in the case that the parameters k1, k2, k3 satisfy the
following condition

3ξ21 − k2 + k3 = 0. (2.1)

In this case two equilibrium points coincide to one. So called non-degeneracy con-
dition is ξ1 6= 0, because the equilibrium point is triple for ξ1 = 0. Conditions
(1.2) and (5) together with the non-degeneracy condition define the subset of K,
where the system (1.1) has exactly two equilibrium points: the double equilibrium
point (ξ1, k3ξ1) and the single equilibrium point (−2ξ1,−2k3ξ1). In the case that
k3 = 1, the double equilibrium point has two zero eigenvalues and bifurcation of
codimension 2 takes place (this case is studied in Theorem 2.7).

The setMT consists of two componentsMTl andMTr. They correspond with the
case ξ1 < 0 (the double equilibrium point lies left of the single one) and ξ1 > 0 (the
double equilibrium point lies right of the single one). These sets are symmetrical
according to the axis k1 = 0.

The closure of the set MT divides the parameter space K into two sets M1, M3

M1 = {(k1, k2, k3) ∈ K : k1 = −2ξ31 , k2 < k3 + 3ξ21 , ξ1 ∈ R},
M3 = {(k1, k2, k3) ∈ K : k1 = −2ξ31 , k2 > k3 + 3ξ21 , ξ1 ∈ R}.

The set M1 contsists of all the parameters from K, for which the system (1.1)
has a unique equilibrium point (non-saddle), the setM3 consists of those, for which
the system (1.1) has 3 equilibrium points (non-saddle, saddle, non-saddle). While
crossing the boundary MT from the set M3 to M1, two equilibrium points coincide
and disappear then. According to Lemma 2.1, the double equilibrium point is a
saddle-node. A qualitative local change of the phase portraits occurres, a local
bifurcation of codimension 1 - “saddle-node”. �
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Figure 1. The set MT .

Figure 2. The section of MT and the parameter space in k3.

Theorem 2.3. The subset MH of the parameter space K,

MH = {(k1, k2, k3) ∈ K : k1 = ξ1(k3 − 1− 2ξ21), k2 = 1 + 3ξ21 , k3 > 1, ξ1 ∈ R},

is a bifurcation set corresponding with Andronov-Hopf bifurcation. The equilibrium
point (ξ1, k3ξ1) is a multiple focus.

Proof. Let (ξ1, ξ2) be an equilibrium point of (1.1). The trace trA = 0 and the
determinant detA > 0 if and only if the Jacobi’s matrix A has two purely imaginary
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eigenvalues. We get the following conditions

k1 + (k2 − k3)ξ1 − ξ31 = 0,

k2 − 3ξ21 − 1 = 0,

3ξ21 − k2 + k3 > 0.

These three conditions define the set MH (see fig. 3).

Figure 3. The set MH .

The eigenvalues are purely imaginary on MH ,

λ1,2 = ±iω, ω =
√
detA(ξ1) =

√
k3 − 1,

and the equilibrium point (ξ1, ξ2) is a multiple focus. While crossing the bound
MH , the equilibrium point may change its stability. We will compute the value of
dReλ1,2

dk2
to describe the change of stability. Since

dpA
dλ

= 2λ− trA,

we have
dpA
dλ

∣∣∣
MH

= ±i2
√
k3 − 1 6= 0 (2.2)

on the set MH and we can apply the implicit function theorem and get

dλ

dk2

∣∣∣∣
MH

= −
dpA

dk2

dpA

dλ

∣∣∣∣
MH

. (2.3)

The coordinates of the equilibrium point depend on the parameters. Let us denote
ξ1 = ϕ(k1, k2, k3). Then we get

dpA
dk2

= −(λ+ 1)
(
1− 6ϕ

∂ϕ

∂k2

)
. (2.4)
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Since the equality (1.2) gives

ϕ+ (k2 − k3)
∂ϕ

∂k2
− 3ϕ2 ∂ϕ

∂k2
= 0,

we can express the partial derivative ∂ϕ
∂k2

on the set MH as

∂ϕ

∂k2
=

ξ1
k3 − 1

.

Using this expression, equalities (2.2) and (2.4) in (2.3), we get

dλ

dk2

∣∣∣∣
MH

=

(
1− 6

ξ21
k3−1

)
(±i

√
k3 − 1 + 1)

±i 2
√
k3 − 1

.

That yields

dReλ

dk2

∣∣∣∣
MH

=
k3 − 1− 6ξ21
2(k3 − 1)

=
k3 + 1− 2k2
2(k3 − 1)

. (2.5)

Taking MH as a parametric function of ξ1, we have

dk1
dξ1

= k3 − 1− 6ξ21 .

The derivative dReλ
dk2

is zero if and only if dk1

dξ1
= 0, that is in the case that the

tangent to MH is parallel to the axis k2. In this situation, there is no crossing of
MH (just a contact) and there is also no change in stability of the focus. In the
case that k3 + 1 > 2k2, a stable focus changes to an unstable focus, while crossing
MH in the direction of the axis k2. In the opposite case, an unstable focus changes
to a stable focus. (These results correspond to Theorem 2.5 on subcritical and
supercritical bifurcation.)

While crossing the bifurcation bound MH , the focus changes its stability and a
limit cycle arises in its neighbourhood. There occurres a local qualitative change
of the phase portraits called Andronov-Hopf bifurcation.

The set MH is divided by the set MT into three parts MHr, MHl and MHu (see
fig. 4).

These sets correspond with Andronov-Hopf bifurcation of the right, left (in the
case of three equilibrium points) and unique equilibrium point. �

Remark 2.4. Stability of the limit cycle depends on stability of the multiple focus
and is determined by the sign of the first Lyapunov number of this multiple focus.
The cycle is stable for l1 < 0 and unstable for l1 > 0. Parameters corresponding
with zero values of the first Lyapunov number l1 determine a subset of codimension
2 of MH - degenerate Andronov-Hopf bifurcation.

Theorem 2.5. The subset MDH of the parameter space K

MDH = {(k1, k2, k3) ∈ K : k1 = 4ξ31 , k2 = 1 + 3ξ21 , k3 = 1 + 6ξ21 , ξ1 ∈ R− {0}}
is a bifurcation set of codimension 2 corresponding with degenerate Andronov-Hopf
bifurcation.

Proof. Let (ξ1, ξ2) be an equilibrium point of the system (1.1). We transform the
system (1.1) by a substitution u = x− ξ1, v = k1 + k2x− x3 − y to an equivalent
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Figure 4. The section of MT and MH in k3 > 1.

system of Lienard’s type

u̇ = v,

v̇ = p(u) + q(u)v ≡ p0 + p1u+ p2u
2 + p3u

3 + (q0 + q1u+ q2u
2)v,

(2.6)

where

p0 = k1 + (k2 − k3)ξ1 − ξ31 , p1 = k2 − k3 − 3ξ21 , p2 = −3ξ1, p3 = −1,

q0 = −1 + k2 − 3ξ21 , q1 = −6ξ1, q2 = −3.
(2.7)

Since (1.2) holds for the equilibrium point (ξ1, ξ2), we have p0 = 0, system (10)
has an equilibrium point at the origin. The origin is a multiple focus if and only if
p1 < 0 and q0 = 0. According to [8] or [3], we can express the first and the second
Lyapunov numbers as

l1 = p2q1 − p1q2, l2 = −p3q2.
Consequently from (2.7)

l1 = 3(k2 − k3 + 3ξ21), l2 = −3.

Since trA = 0 on MH , we get

l1 = 3(1− k3 + 6ξ21) = 3(2k2 − k3 − 1), l2 = −3 6= 0.

The condition l1 = 0 determines the subset MDH on MH (see fig. 5) that cor-
responds with the degenerate Andronov-Hopf bifurcation of codimension 2 (since
l2 6= 0). The curve MDH divides the surface MH into parts MDH− correspond-
ing with the supercritical bifurcation (l1 < 0, a stable limit cycle occurres) and
MDH+ corresponding with the subcritical bifurcation (l1 > 0, an unstable limit
cycle occurres). �
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Figure 5. The set MDH .

Remark 2.6. The set MDH− is entirely contained in the set MHu, which imply
that the stable limit cycle (caused by Andronov-Hopf bifurcation) may occur only
in the case of the unique equilibrium point.

Theorem 2.7. The subset MBT of the parameter space K,

MBT = {(k1, k2, k3) ∈ K : k1 = −2ξ31 , k2 = 1 + 3ξ21 , k3 = 1, ξ1 ∈ R− {0}},
is a bifurcation set of codimension 2 corresponding with Bogdanov-Takens bifurca-
tion.

Proof. Let (ξ1, ξ2) be an equilibrium point of the system (1.1). The bifurcation set
of codimension 2 corresponding with Bogdanov-Takens bifurcation includes such
parameters from K that both eigenvalues of Jacobi’s matrix A are zero. The set
MBT is determined by two conditions detA = 0 and trA = 0. The set MBT lies in
the intersection of the closure ofMH and the setMT . In the case ξ1 = 0, that is for
k1 = 0, k2 = k3 = 1, bifurcation of higher codimension occurres. Further analysis
of this bifurcation is presented in Theorem 3.2. �

Theorem 2.8. The subset MC of the parameter space K,

MC = {(k1, k2, k3) ∈ K : k1 = 0, k2 = k3, k3 6= 1},
is a bifurcation set of codimension 2 - triple equilibrium point. The unique equilib-
rium point (0, 0) of (1.1) is topologically equivalent to a stable node for k3 < 1, or
an unstable node surrounded by a stable limit cycle for k3 > 1.

Proof. The Jacobi’s matrix on MC is

A =

(
k2 −1
k2 −1

)
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and its eigenvalues are λ1 = 0 and λ2 = k2−1. The origin is the unique equilibrium
point of (1.1) and it is stable for k3 < 1, unstable for k3 > 1. The unstable
unique equilibrium is surrounded by a stable limit cycle according to Lemma 1.1
on existence of a globally attractive set and the Poincaré’s theorem. The origin is
topologically equivalent to a node according to Lemma 2.1. �

3. Non-local bifurcations

In contradiction to local bifurcations, where the bifurcation sets could be ex-
pressed explicitly, bifurcation sets corresponding with non-local bifurcations can
only be studied numerically or can be approximated with accuracy to a particular
order in the neighbourhood of some important bifurcation points.

Non-local bifurcation of codimension 1 - multiple cycle. The curve MDH

is a boundary of a surface MD corresponding with non-local bifurcation of codi-
mension 1 - multiple cycle. While crossing the set MD, two limit cycles (stable
and unstable) merge into one semi-stable cycle that disappears then. Closures of
sets MD and MH are tangent to each other in each point of the curve MDH . The
following schematic figure 6 shows the lay-out of the sets MH , MT and MD only.
They are figured by their intersections with the plane k3 = const. > 1. The nu-
merical computations shows, that these sets lie closely to each other and there are
technical problems with their rendering on the same scale.

Figure 6. The section of MDH in k3 > 1 .

Non-local bifurcation of codimension 1 - separatrix loop. The curve MBT

is a boundary of the surface ML corresponding with non-local bifurcation of codi-
mension 1 - separatrix loop. The surface ML is tangent to MT and MH at each
point of MBT . The set ML is contained in the half-space k3 > 1 and consists of
two components MLr and MLl corresponding with existence of the separatrix loop
surrounding the right or the left equilibrium point respectively. While crossing the
bound ML, the unstable limit cycle (originated near MH in consequence of the
subcritical Andronov-Hopf bifurcation) merge into the separatrix loop and splits.
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Let (ξ1, ξ2) be the right double equilibrium point of the system (1.1). Then the
parameters of the system (1.1) lie in the set MBT (Bogdanov-Takens bifurcation)
and the coordinates of the double equilibrium point satisfy

ξ1 =

√
k2 − 1

3
, ξ2 = k3

√
k2 − 1

3

according to Theorem 2.7. Using the following substitution

x = x1 −
√
k2 − 1

3
, y = x2 − k3

√
k2 − 1

3
,

we transform the system (1.1) into a system

ẋ = k1 +

√
k2 − 1

3

(
k2 − k3 −

k2 − 1

3

)
+ x−

√
3(k2 − 1)x2 − x3 − y,

ẏ = k3x− y.

(3.1)

The origin is a double equilibrium point of the system (12) with two zero eigenvalues
for parameters from MBT .

System (3.1) can be transformed by the linear transformation x1 = y, x2 =
k3x− y into the system

ẋ1 = x2,

ẋ2 = h00 + h10x1 +
1

2
h20x

2
1 + h11x1x2 +

1

2
h02x

2
2 +R(x1, x2, k1, k2, k3),

(3.2)

where

h00 = k3

(
k1 +

√
k2 − 1

3

(
k2 − k3 −

k2 − 1

3

))
, h10 = 1− k3,

h20 = − 2

k3

√
3(k2 − 1), h11 = − 2

k3

√
3(k2 − 1),

h02 = − 2

k3

√
3(k2 − 1), R(x1, x2, k1, k2, k3) = − (x1 + x2)

3

k23
.

This transformation keeps the equilibrium point at the origin as well as its zero
eigenvalues. In the further analysis, we will study system (3.2) instead of the
equivalent system (1.1).

Remark 3.1. For (k1, k2, k3) ∈MBT , the following statements hold

h00 = 0, h10 = 0, h11 = h20 = h02 6= 0.

Theorem 3.2. The system (3.2) can be transformed by a smooth non-degenerate
change of parameters to the Bogdanov-Takens normal canonical form

ẋ1 = x2,

ẋ2 = β1 + β2x1 + x21 + x1x2 +O(‖x‖3), (3.3)

where

β1 =
h11

(−h10 + 1
4h02h00 +

1
2 )

3
h00,

β2 =
1

(−h10 + 1
4h02h00 +

1
2 )

2
(h10 − h00h02).

(3.4)
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In the neighbourhood of the Bogdanov-Takens curve MBT corresponding with the
right double equilibrium point, the set MLr can be expressed at the form

MLr =
{
(k1, k2, k3) ∈ R3 : β2 < 0, β1 = − 6

25
β2
2 + o(β2

2)
}
. (3.5)

The set MLl is symmetrical to MLr according to the plane k1 = 0.

Proof. The change of time dt = (1− h02

2 x1)dτ and the substitution

u1 = x1, u2 = x2 −
h02
2
x1x2

eliminates the term with x22. We get a system of the form

u̇1 = u2,

u̇2 = ν1 + ν2u1 + C1u
2
1 + C2u1u2 +O(‖u‖3),

where

ν1 = h00, ν2 = h10 − h00h02, C1 = −h02h10 +
1

4
h202h00 +

1

2
h20, C2 = h11.

Note that C1 = 1
2h20 6= 0 on MBT according to Remark 3.1. Introducing a new

time (denoted again with t)

t =
∣∣C2

C1

∣∣τ
and new variables (denoted again with x1 and x2)

x1 =
C2

2

C1
u1, x2 = sgn

(C2

C1

)C3
2

C2
1

u2,

we get the Bogdanov-Takens normal canonical form (3.3), where

β1 =
h411

(−h02h10 + 1
4h

2
02h00 +

1
2h20)

3
h00,

β2 =
h211

(−h02h10 + 1
4h

2
02h00 +

1
2h20)

2
(h10 − h00h02).

With respect to the fact that h20 = h11 = h02, we get the expressions (3.4).
The coefficient of the term with x1x2 corresponds to

s = sgn
(C2

C1

)∣∣
MBT

= sgn
( h11

−h02h10 + 1
4h

2
02h00 +

1
2h20

)∣∣
MBT

.

According to Remark 3.1, we have s = sgn 2 = 1. The Bogdanov-Takens bifurcation
is non-degenerate, since

h11 = −2
√
3(k2 − 1) = −6ξ1 6= 0

and h20 6= 0 on MBT . The change of parameters is invertible in the neighbour-
hood of the origin. It can be verified by a direct computation of the following
determinants and finding∣∣∣∣∣

∂β1

∂k1

∂β1

∂k2
∂β2

∂k1

∂β2

∂k2

∣∣∣∣∣ 6= 0,

∣∣∣∣∣
∂β1

∂k2

∂β1

∂k3
∂β2

∂k2

∂β2

∂k3

∣∣∣∣∣ 6= 0,

∣∣∣∣∣
∂β1

∂k3

∂β1

∂k1
∂β2

∂k3

∂β2

∂k1

∣∣∣∣∣ 6= 0.

This fact implies that the change of parameters cause no degeneration of the bifur-
cation manifold according to the parameter space. (In the bifurcation theory this
regularity of the parameter transformation is called the transversality condition.)
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The expression for the set ML can be found in [6, Theorem 8.5, Appendix] or in
[4]. The set MLl has to be symmetric to MLr about to the plane k1 = 0. �

Non-local bifurcation of codimension 2 - two separatrix loops. The curve
MLL, which is an intersection of the sets MLr and MLl and lies in the plane k1 = 0
(because of the symmetry of the parameter portrait) corresponds with the non-local
bifurcation of codimension 2 - two separatrix loops. Two separatrix loops surround
both the right and the left equilibrium points (see fig. 7).

Figure 7. Structurally unstable two separatrix loops.

Non-local bifurcation of codimension 1 - “big separatrix loop“. According
to [7], the curve MLL is a boundary of a bifurcation set MBL corresponding with
non-local bifurcation of codimension 1 - ,,big separatrix loop“. While crossing
the set MBL, separatrix loop surrounding both equilibrium points appears and
consequently gives to arise to an unstable limit cycle containing the saddle and
both remaining equilibrium points in its interior (see fig. 8).

Figure 8. A structurally unstable big separatrix loop.
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Figure 9 presents the lay-out of the sets MT , MH , ML and MBL, showing the
section of the parameter space K by the plane k3 = const. > 1, near 1.

Figure 9. The section of ML and MBL in k3 > 1.

4. Global bifurcation diagram

The bifurcation sets described above divide the parameter space K into parts,
where the phase portraits of system (1.1) are topologically equivalent and struc-
turally stable. The bifurcation sets contain those parameters, for which the phase
portraits are structurally unstable.

Figure 10 shows a section of the global bifurcation diagram by the plane k3 =const.
for k3 ∈ (0, 1], and figure 11 this section for k3 > 1. Figure 12 shows the struc-
turally stable phase portraits corresponding to the marked regions for k1 < 0. The
half-space k1 > 0 is symmetrical to the opposite one and the phase portraits are
symmetrical according to the origin.

Figure 10. The section of the bifurcation diagram in k3 ∈ (0, 1].
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Figure 11. The section of the bifurcation diagram in k3 > 1.

Figure 12. Phase portraits corresponding to the marked regions.

References

[1] Andronov A.A., Leontovich E.A., Gordon I.I., Mayer A.G.: Kachestvennaya teoriya di-
namicheskikh sistem vtorovo poryadka, Nauka, Moskva, 1966.
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Mendel University, Dept. of Math., Zemedelska 1, 613 00 Brno, Czech Rep.

E-mail address: barakova@mendelu.cz

Evgenii P. Volokitin

Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
E-mail address: volok@math.nsc.ru



137

Electronic Journal of Differential Equations, Vol. 2009(2009), No. 53, pp. 1–21.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

BIFURCATION ROUTES TO CHAOS IN AN EXTENDED VAN

DER POL’S EQUATION APPLIED TO ECONOMIC MODELS

LENKA PŘIBYLOVÁ

Abstract. In this paper a 3-dimensional system of autonomous differential
equations is studied. It can be interpreted as an idealized macroeconomic

model with foreign capital investment introduced in [9] or an idealized model
of the firm profit introduced in [3]. The system has three endogenous variables

with only one non-linear term and can be also interpreted as an extended

van der Pol’s equation. It’s shown that this simple system covers several
types of bifurcations: both supercritical and subcritical Hopf bifurcation and

generalized Hopf bifurcation as well, the limit cycle exhibits period-doubling

bifurcation as a route to chaos. Some results are analytical and those connected
with chaotic motion are computed numerically with continuation programs

Content, Xppaut and Maple. We present conditions for stability of the cycles,

hysteresis, explore period doubling and using Poincaré mapping show a three
period cycle that implies chaos.

1. Introduction

In this paper we consider the autonomous system of three differential equations

ẋ = ay + px(κ− y2),

ẏ = v(x+ z),

ż = mx− ry,

(1.1)

where x, y, z are real endogenous variables and a, p, v, m and r real exogenous
parameters. This system may be interpreted as an extension of the van der Pol’s
equation

ẋ = ay + px(κ− y2),

ẏ = vx.
(1.2)

1.1. Two economic models. Vosvrda [9] introduced an idealized macroeconomic
model with foreign capital investment in the form

Ṡ = aY + pS(κ− Y 2),

Ẏ = v(S + F ),

Ḟ = mS − rY,

(1.3)
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Key words and phrases. Hopf bifurcation; period doubling; chaos.
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where S(t) are savings of households, Y (t) is the Gross Domestic Product, F (t) is
the foreign capital inflow, t is the time and dot denotes the derivative with respect
to t. Positive parameters represent corresponding ratios: a is the variation of the
marginal propensity to savings, p is the ratio of the capitalized profit, v is the
output/capital ratio, κ is the potential GDP (it can be set to 1, as a unit of GDP
— Y , S, F then represent the percentage part of the potential GDP ), m is the
capital inflow/savings ratio and r is is the debt refund/output ratio. From the
economic point of view, the condition

a

vr
> 1. (1.4)

guarantees the ability of the economy to refund the debt. Another — stronger
condition — can be a > r (v ∈ (0, 1), normally much lower then 1, see [4]), which
implies the condition (1.4). The condition a > r together with (1.4) was used in [9].
We will see that the equilibria are stable for a > r, although orbitally stable and
even unstable cycles can occur in this economically ”normal” case. In the section
8 we let some of the parameters cross the zero axis and accept their negativity to
explain behaviour of trajectories in the positive neighbourhood of zero.

¿From the mathematical point of view, S. Bouali [3] introduced the same system
as an idealized economic model of firm profit in the form

Ṙ = aP + pR(κ− P 2),

Ṗ = v(R+ F ),

Ḟ = mR− rP,

(1.5)

where P is a firm profit, R are reinvestments and F represent debts, coefficients a,
p, v, m and r are corresponding rates or proportions.

2. Equilibria and its stability

The system (1.1) is antisymmetric. If (x(t), y(t), z(t)) is a solution of (1.1), than
(−x(t),−y(t),−z(t)) is also its solution. Solving the system

0 = ay + px(κ− y2),

0 = v(x+ z),

0 = mx− ry,

(2.1)

we find, that the system (1.1) has three equilibria: E0 = (x0, y0, z0) = (0, 0, 0),

E1 = (x1, y1, z1) =
(
−
√
amr + pκr2

pm2
,

√
amr + pκr2

pm2
,

√
am+ pκr

pr

)
,

E2 = (x2, y2, z2) =
(√amr + pκr2

pm2
,−
√
amr + pκr2

pm2
,−
√
am+ pκr

pr

)
.

We will study the equilibria E0 and E1, since results for E2 are analogous to the
antisymmetric equilibrium E1. Since the Jacobian matrix has the form

J =



p(κ− y2) a− 2pxy 0

v 0 v
m −r 0


 , (2.2)
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we can get the corresponding eigenvalues by solving cubic equations. These for-
mulas are very complicated, but we can use them for numerical examples. On the
other hand, we can get information about stability of both equilibria right from the
characteristic polynomial

p(λ) = λ3 + a1λ
2 + a2λ+ a3, (2.3)

where a1 = p(y2 −κ), a2 = v(r− a+2pxy) and a3 = v(pry2 +2mpxy− pκr− am):
1. Equilibrium E0 = (0, 0, 0): Coefficients of the characteristic polynomial are

a1 = −pκ < 0, a2 = v(r − a), a3 = −v(rpκ+ am) < 0. (2.4)

From the Hurwitz criterion it yields that in the case a ≥ r, the characteristic
polynomial has one positive root. In the case that a < r, the polynomial has three
or one positive root. The trivial equilibrium E0 has at least one positive eigenvalue,
so it can never be stable.
2. Equilibrium E1,2: Coefficients of the characteristic polynomial are

a1 =
am

r
> 0, a2 = v(r + a+

2rpκ

m
) > 0, a3 = 2v(rpκ+ am) > 0. (2.5)

Lemma 2.1. Characteristic polynomial is Hurwitzian (that is all eigenvalues have
negative real parts) if and only if a > r.

Proof. The characteristic polynomial is Hurwitzian if and only if the determinant

D3 =

∣∣∣∣∣∣

a1 1 0
a3 a2 a1
0 0 a3

∣∣∣∣∣∣

and all its main subdeterminants are positive. The subdeterminant D1 = a1 =

am/r > 0, subdeterminant D2 =

∣∣∣∣
a1 1
a3 a2

∣∣∣∣ = a1a2 − a3 and the determinant D3 =

a3(a1a2 − a3) are positive if and only if

a1a2 − a3 =
am

r
v(r + a+

2rpκ

m
)− 2v(rpκ+ am)

= (a− r)
(amv

r
+ 2vpκ

)
> 0,

that is if and only if a > r. �

Both the equilibria cannot change its stability on the real axis of the eigenvalues
plane, since the characteristic polynomial cannot have positive real root. It is
possible, if the eigenvalues crossed the imaginary axis. This type of bifurcation is
called Hopf, and it will be discussed in the next section.

3. Hopf bifurcation and stability of limit cycles

If we look for the Hopf bifurcation, we have to find two purely imaginary eigen-
values λ1,2 = iω of the characteristic polynomial. Denote the third real eigenvalue
λ3. Since substituting into (2.3) gives

(λ− iω)(λ+ iω)(λ− λ3) = λ3 − λ2λ3 + λω2 − ω2λ3,

the necessary condition for Hopf bifurcation is

a1a2 = a3. (3.1)
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Solving a system of five equations (2.1), (3.1) with substitution from (2.3) and
a2 = ω2 according to three variables x, y, z and two parameters a,m, we get two
solutions. For the trivial equilibrium E0, we necessarily have

m = −pκ. (3.2)

We can exclude this case since all parameters are positive for now (we will return
to this bifurcation later). The next solution is equilibrium

E1,2 =
(
± r

m

√
m+ pκ

p
,±
√
m+ pκ

p
,∓ r

m

√
m+ pκ

p

)
(3.3)

with parameters satisfying a = r and m = 2vrpκ
ω2−2vr , which gives

ω =

√
2vr(pκ+m)

m
. (3.4)

From the previous results we know that the third real eigenvalue has to be negative
and we get its value λ3 = −m.

We will show that the Hopf bifurcation appears for parameter a while crossing the
critical value r. Using the implicit function theorem we can compute the derivative
of the complex eigenvalue λ with respect to a for the equilibrium E1 (using (2.5)):

dλ

da
= −

dp(λ)
da

dp(λ)
dλ

= − λ2m
r + λv + 2vm

3λ2 + 2λam
r + v(r + a) + 2vrpκ

m

. (3.5)

Substituting a = r and λ1,2 = ±iω into (3.5), we evaluate

Re
dλ

da
|a=r = − (2mv − mω2

r )(−3ω2 + 2vr + 2vrpκ
m ) + 2vω2m

(−3ω2 + 2vr + 2vrpκ
m )2 + 4ω2m2

(3.6)

The denominator of this fraction is positive, substituting (3.4) into the nominator
we have

sgnRe
dλ

da
|a=r = sgn

−4rv2(m+ pκ)(m+ 2pκ)

m
< 0. (3.7)

The transversality condition for Hopf bifurcation is fulfilled and according to [6] the
Hopf bifurcation gives rise to a limit cycle near the equilibria at the critical value
a = r.

According to the Lemma (2.1), the equilibrium E1,2 change its unstability to
stability as the parameter a grows and crosses the critical value r. Locally we can
educe the same result from (3.7). Clearly, the following theorem holds:

Theorem 3.1. Equilibria E1,2 of the system (1.1) are stable for a > r and lose
their stability if a parameter crosses the Hopf bifurcation manifold a = r.

Note that the condition (1.4) is satisfied on the Hopf bifurcation hyperplane,
unlike a > r used in [9].

In contrast to [9], we can prove that the Hopf bifurcation (in both previous cases)
can give rise to both the stable and the unstable cycles. Following the projection
method for center manifold computation (see [6]), we can get formula for the first
Lyapunov coefficient l1. Negative sign of this coefficient implies stability, positive
sign unstability of the arising limit cycle near the equilibrium. Symbolically this for-
mula is very complicated, so we computed the Hopf bifurcation curves numerically
using the continuation program Content.
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The bifurcation border GH of the generalized Hopf bifurcation (l1 = 0) has
typical form presented on figures 1, 2 and 3. The parameter κ can be set to 1 as it
was explained earlier, parameters v, p, m correspond to ratios and the bifurcation
diagrams are similar for all parameter values in the whole interval 〈0, 1〉 (here and
below, the concrete values of the parameters were chosen arbitrarily, but to follow
examples in [9], where misleading results were made).

unstable limit cycle
l >01

GH
l =01

stable limit cycle
l <01

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

-0.05

0.1

0.25

0.4

0.55

0.7

0.85

1

a

v

Figure 1. a = r, p = 0.1, κ = 1, m = 0.19.

unstable limit cycle
l >01

GH
l =01

stable limit cycle
l <01

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-0.2

0.24

0.68

1.12

1.56

2

a

p

Figure 2. a = r, v = 0.5, κ = 1, m = 0.19.
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6 L. PŘIBYLOVÁ EJDE-2009/53

unstable limit cycle
l >01

GH
l =01

stable limit cycle
l <01

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0.05

0.3

0.55

0.8

1.05

1.3

a

m

Figure 3. a = r, v = 0.5, κ = 1, p = 0.1.

For illustrating the diagrams, we present typical diagram 4 of the Hopf bifurca-
tion in the plane a, r.

subcritical
Hopf bif.
l >01

l =01

supercritical
Hopf bif.

l <01
unstable equilibrium

stable equilibrium

-0.2 -0.05 0.1 0.25 0.4 0.55 0.7 0.85 1
-0.2

-0.05

0.1

0.25

0.4

0.55

0.7

0.85

1

a

r

GH

BT

GH

BT

Figure 4. The typical Hopf bifurcation curve.

4. Folding of cycles and period doubling

In this section typical bifurcation diagrams will be presented. The parameters
in examples are chosen to correspond the previous bifurcation diagrams 1, 2, 3 and



143

EJDE-2009/53 CHAOS IN AN EXTENDED VAN DER POL’S EQUATION 7

4. By a convention, solid lines represent stable equilibria, dashed lines are unstable
equilibria, solid circles correspond to orbitally stable cycles and empty circles to
the unstable ones.

Example 1. Let us focus on the example with parameters r = 0.25, p = 0.1,
v = 0.5, κ = 1 and m = 0.19. From (3.7) it yields that sgn dReλ

da

.
= −0.01 and

as parameter a grows and cross r = 0.25, Reλ decreases very slowly. Since the
Lyapunov coefficient is l1

.
= −0.0318, it give rise to an orbitally stable cycle from

the stable equilibrium. The branches of the periodic solutions are presented on the
figure 5.

unstable equilibrium stable
periodic
cycles

mount of
period doubling

stable equilibrium

-3

-2

-1

0

1

2

3

S

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
a

Figure 5. The typical Hopf bifurcation curve with arising stable
cycle and period doubling of the cycle for a

.
= 0.09537.

Example 2. On the other hand, for parameters r = 0.25, p = 0.01, v = 0.031847,
κ = 1 and m = 0.19 (this example was already shown in [9], example 3, but it was
improperly interpreted as supercritical Hopf bifurcation with a stable mounting
cycle) the Lyapunov coefficient is l1

.
= 0.000278 and so the subcritical Hopf bifur-

cation takes place here, an unstable cycle mount from the unstable equilibrium. On
the figure 6 the branches of the periodic solutions are presented.

You can see the Hopf bifurcation critical point (HB) for a = 0.25 (period 48.53)
and unstable cycle branch around a stable equilibrium E1 nearby. This branch
folds (LP ) at a

.
= 0.2695 (period 51.92) and changes its stability. This is the

reason, why some solutions tend to a stable cycle and others to a stable equilibrium.
This coexistence of two attractors (a stable fixed point and a stable cycle) is called
hysteresis. When we continue further, the cycle on the stable cycle branch bifurcates
by period doubling (PD1) at a

.
= 0.1693 (period 61.78). The unstable part of the

branch give rise to a chaotic motion (a strange attractor). This phenomenon will
be discussed in the next section. A stable cycle (period 69.83) mount again for
a
.
= 0.03342 from the stable branch (PD2) near zero.
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stable cycles
unstable cycles

chaotic
motion

HB

LP

PD

PD

1

2

-10

-5

0

5

10

S

-0.1 0 0.1 0.2 0.3 0.4 0.5
a

Figure 6. The typical Hopf bifurcation curve with arising unsta-
ble cycle.

The stable limit cycle surrounding the unstable one near the subcritical bifur-
cation point together with the trajectory tending to the stable equilibrium E1 is
shown on the figure 7. It demonstrates the above Example 2. for a = 0.265.

5. Period doubling route to chaos

Period doubling of the limit cycle can be shown in the previous Example 2
(using continuation programs, for example Xppaut). First branch bifurcates for
a1

.
= 0.1692534 (see figure 6), the next doubling takes place for a2

.
= 0.1415250 (see

figure 8) and then for a3
.
= 0.1346818 (see figure 9), a4

.
= 0.1331614, a5

.
= 0.1328327,

a6
.
= 0.1327623, a7

.
= 0.1327473, . . . .

The ratio of distances between period doubling bifurcation points is δ1 = a1−a2

a2−a3

.
=

0.0277284
0.0068432

.
= 4.052, δ2 = a2−a3

a3−a4

.
= 0.0068432

0.0015204

.
= 4.501, δ3

.
= 4.625, δ4

.
= δ5

.
= 4.669

which is already pretty close to Feigenbaum constant.
This period doubling of the limit cycle lead to a chaotic motion in a bounded

region — existence of a strange attractor. A chaotic region is characterized by a
sensitive dependence on initial conditions, and arbitrarily close initial conditions
lead to evolutions that diverge exponentially fast with time. This divergence is
characterized by the maximal Lyapunov exponent (see precise definition in [1] for
example). Briefly speaking, Lyapunov exponents measure average rate of divergence
of nearby trajectories (for λ > 0) or convergence (for λ < 0) respectively. In
our case of a three dimensional system, we have three Lyapunov exponents (for a
trajectory or an attractor respectively), for a fixed point the signs are (−,−,−), for
a stable cycle (0, 0,−) and for a strange attractor (+, 0,−). The maximal Lyapunov
exponent is negative for a fixed point, zero for a stable cycle and positive for chaotic
strange attractor.

Changing parameter a from 0 to 0.3 (200 stps) in the Example 2, we computed
the maximal Lyapunov exponent as a function of a. We used program Xppaut
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2
12

0

F

S

Y

12

-20

10

Figure 7. The stable cycle and a trajectory (converging to a sta-
ble equilibrium) repelling from the unstable cycle near the sub-
critical Hopf bifurcation due to folding. For a similar figure you
can use parameters from the Example 2. and a ∈ (0.25, 0.2695)
and initial conditions near E1 for a trajectory tending to the sta-
ble equilibrium E1 and for the stable cycle use some farther initial
condition, for example x(0) = 10, y(0) = 10, z(0) = 10 and t >
6000.
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-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
a

Figure 8. Second branch of the period doubling.

(Xppaut computes the maximal Lyapunov exponent along a computed trajectory
by linearizing in each point of the trajectory, advancing one time step using a
normalized vector, computing the expansion, and summing the log of the expansion.
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Figure 9. Third branch of the period doubling.

The average of this over the trajectory is a rough approximation of the maximal
Lyapunov exponent. For further details see methods presented in [2], [11] or [8].)
The maximal Lyapunov exponent is computed numerically (using Xppaut) in finite
number of points on trajectory converging to the equilibrium, periodic orbit or a
strange attractor, starting at some initial point within the basin of attraction with
first amount of transient iterations being discarded to converge to an attractor.
The results are presented on the next figures.

a

λ

-0.04

-0.03

-0.02

-0.01

0

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 10. Estimation of the maximal Lyapunov exponent for
a ∈ 〈0, 0.3〉, r = 0.25, p = 0.01, v = 0.031847, κ = 1 and m =
0.19. Initial conditions for all computed trajectories: x(0) = 0.45,
y(0) = 0.8 and z(0) = 0.35 for t ∈ 〈3000, 6000〉
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On the figure 10 you can see a range, where the maximal Lyapunov exponent is
positive and that implies existence of a chaotic strange attractor for these values of
parameters.

Changing the parameter v from 0 to 0.3 for a = 0.1 we can see a range, where
the maximal Lyapunov exponent is positive again on the figure 11.

v

λ

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 11. Estimation of the maximal Lyapunov exponent for
v ∈ 〈0, 0.3〉, a = 0.1, r = 0.25, p = 0.01, κ = 1 and m = 0.19.
Initial conditions for all computed trajectories: x(0) = 0.45, y(0) =
0.8 and z(0) = 0.35 for t ∈ 〈3000, 6000〉

Changing parameter p from 0 to 1 for fixed parameters a = 0.1, r = 0.25,
v = 0.031847, κ = 1 and m = 0.19 and initial conditions x = 0.45, y = 0.8, z = 0.35
and t ∈ 〈3000, 6000〉, we got different results, since the maximal Lyapunov exponent
is always either positive or zero (numerical programs of course give negative results,
but it’s due to the finite number of computed points and the numerical methods),
that is either chaotic or periodic trajectories occur. For example, for p = 0.2 and
p = 0.24 the maximal Lyapunov exponent is positive, but for p

.
= 0.22 zero (see

figure 12) and the trajectory converges to a stable limit cycle (see figures 13 and
14). This phenomenon is caused by period-doubling route to chaos and a fractal
structure of the bifurcation diagram with stable areas (stable areas of the Poincaré
section more precisely). The maximal Lyapunov exponent is tending to zero from
p
.
= 0.67 (see figure 15) and periodic orbits occur. Maximal Lyapunov exponent

takes positive values for a big range of the (0, 1) interval (see also figure 21) and
that means this parameter cannot be used for controlling the system.

The last figure 16 presents dependence of the maximal Lyapunov exponent on
the parameter m. Maximal Lyapunov exponent takes positive values as m goes to
1 (see also figure 22) and that means this parameter cannot be used for controlling
the system.
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Figure 12. Estimation of the maximal Lyapunov exponent for
p ∈ 〈0.1, 0.3〉, a = 0.1, r = 0.25, v = 0.031847, κ = 1 and m =
0.19. Initial conditions for all computed trajectories: x(0) = 0.45,
y(0) = 0.8 and z(0) = 0.35 for t ∈ 〈3000, 6000〉
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Figure 13. Chaotic orbit for positive maximal Lyapunov expo-
nent for p = 0.2.

6. Poincaré section and a period three orbit

Let us take a look at the Poincaré section. A Poincaré map consists of a discrete
set of values picked whenever one of the variables passes through some prescribed
value. We chose to plot successive maxima of the variable y.

We computed local maxima y(tn) = yn of the trajectory from the Example 2.
with initial conditions x(0) = 0.45, y(0) = 0.8 and z(0) = 0.35 for t ∈ 〈3000, 30000〉



149

EJDE-2009/53 CHAOS IN AN EXTENDED VAN DER POL’S EQUATION 13

F

S

Y
-15

15
-10

10

-20

20

Figure 14. Periodic orbit for p = 0.22
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Figure 15. Estimation of the maximal Lyapunov exponent for
p ∈ 〈0.67, 0.8〉, a = 0.1, r = 0.25, v = 0.031847, κ = 1 and m =
0.19. Initial conditions for all computed trajectories: x(0) = 0.45,
y(0) = 0.8 and z(0) = 0.35 for t ∈ 〈3000, 6000〉

and got a sequence yn. When we plotted this sequence to yn vs. yn+1 plane (Ruelle
plot in Xppaut), we got a black curve on the figure 17. The intersection with the first
quadrant axes is a fixed point yn = yn+1 (FP ) - a period one orbit. The sequence
yn plotted in yn vs. yn+3 plane, gave another curve (blue). The intersections with
the first quadrant axes different from FP are fixed point yn = yn+3 - corresponding
to period three orbits. According to [7], the trajectory is chaotic. An example of
a trajectory with a period three (x(0)

.
= 1.9821, y(0)

.
= 5.8385, z(0)

.
= −1.9821)

found due to this Poincaré mapping is on figure 18.
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Figure 16. Estimation of the maximal Lyapunov exponent for
m ∈ 〈0, 0.3〉, a = 0.1, r = 0.25, v = 0.031847, κ = 1 and p = 0.01.
Initial conditions for all computed trajectories: x = 0.45, y = 0.8
and z = 0.35 for t ∈ 〈3000, 6000〉
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Figure 17. Fixed point of the Poincaré mapping corresponding to
a period one orbit and intersections corresponding to period three
orbits.

Compared to computing maximal Lyapunov exponent, this evidence of chaos
can be used for single trajectories only and we have no image of the parameter
dependence. On the other hand, maximal Lyapunov exponent estimation has an
error, caused by finiteness of computed points and even may break down during
reorthogonalization of the matrix Q (while using the standard QR method of com-
puting submitted by Benettin et al. in [2]), since the computed matrix Q may
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Figure 18. A period three orbit.

deviate from the origin one during the Gram-Schmidt orthogonalization type pro-
cedure. This last mentioned problem has been studied and overcame by Udwadia
and Bremen using Cayley transformation (see [10]).

7. 0-1 test for chaos

Recently, a new test for determining chaos was introduced by Gottwald and
Melbourne. In contrast to the usual method of computing the maximal Lyapunov
exponent, their method is applied directly to the time series data and does not
require phase space reconstruction. We computed time series corresponding to
solutions x of the system 1.1 for parameters a, v, p and m by the fourth-order
classical Runge-Kutta method with timestep 0.25 and initial conditions x = 0.45,
y = 0.8 and z = 0.35. We used sampling time τs = 12 (using τs = 5 the data
are oversampled still) and got time series x(tj), tj = jτs for j = 1, . . . , 2000.
According to [5], we computed 100 times pc(n) =

∑n
j=1 x(tj) cos jc and qc(n) =∑n

j=1 x(tj) sin jc, j = 1, . . . , 2000 for arbitrary chosen c ∈ (0, π) and computed
median K of the asymptotic growth rates Kc of the mean-square-displacement

Mc(n) = lim
N→∞

1

N

N∑

j=1

[pc(j + n)− pc(j)]
2 + [qc(j + n)− qc(j)]

2.

Since N = 2000 and for the estimation of the limit we need n << N , we used the
last ncut = 200. For computing Kc we used the correlation method. The median
K ≈ 0 indicates regular dynamics, K ≈ 1 indicates chaos. Results are displayed
on figures 19, 20, 21 and 22 and correspond to the estimations of the maximal
Lyapunov exponent on figures 10, 11, 12 and 16.
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Figure 19. 0-1 test for chaos: chaos range for the parameter a,
r = 0.25, p = 0.01, v = 0.031847, κ = 1 and m = 0.19.
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Figure 20. 0-1 test for chaos: chaos range for the parameter v,
a = 0.1, r = 0.25, p = 0.01, κ = 1 and m = 0.19.

8. Hopf bifurcation near zero

Now we will turn our attention to the zero neighbourhood. It was already
mentioned above, that for the trivial equilibrium E0 (always unstable), the nec-
essary condition (3.2) for Hopf bifurcation is m = −pκ, while λ = ±iω, where
ω2 = v(r − a) > 0, that is for r > a (since v > 0). The economic system can never
reach the critical value, since we assumed the parameters to be positive. On the
other hand, local behaviour of the trajectories near this critical value may coincide
with the zero neighbourhood and affect the properties of the positive quadrant.
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Figure 21. 0-1 test for chaos: chaos range for the parameter p,
a = 0.1, r = 0.25, v = 0.031847, κ = 1 and m = 0.19.
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Figure 22. 0-1 test for chaos: chaos range for the parameter m,
a = 0.1, r = 0.25, v = 0.031847, κ = 1 and p = 0.01.

Due to this we let some necessary parameters reach and even cross zero to negative
values in the next part.

Using the implicit function theorem we can compute the derivative of the complex
eigenvalue λ according to m for the equilibrium E0 (using (2.4)) ω2 = v(r − a):

dλ

dm
= −

dp(λ)
dm

dp(λ)
dλ

= − −av
3λ2 + 2mλ+ ω2

. (8.1)
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Substituting λ1,2 = ±iω, we evaluate

sgnRe
dλ

dm
= sgn

−av
2(ω2 +m2)

< 0. (8.2)

The transversality condition for Hopf bifurcation is fulfilled and according to [6]
the Hopf bifurcation gives rise to a limit cycle near the trivial equilibrium at the
critical value m = −pκ for a < r.

Theorem 8.1. The limit cycle mounting from the trivial equilibrium near m = −pκ
for a < r is unstable for a > 0, v > 0 and p > 0 (subcritical Hopf bifurcation).
Generalized Hopf bifurcation of the trivial equilibrium occurs on the parametric
manifold

MGH = {(a, p, κ, v,m, r) ∈ R6 : m = −pκ, a = 0, v > 0, r > 0, p > 0} (8.3)

Proof. We already proved the Hopf bifurcation occures for m = −pκ for a < r. To
prove that its a subcritical type, we have to compute the first lyapunov coefficient
l1 using the projection method (see [6]). The Jacobi’s matrix at zero for the Hopf
critical parameters has the form

Jcrit =



−m a 0
v 0 v
m −r 0




and its eigenvalues are (iω,−iω,−m), where ω =
√
v(r − a). From this we get

assumptions v > 0 and r > a (the opposite signs are irrelevant for the economic
model). For an invariant expression for the first Lyapunov coefficient we need to
find eigenvectors Q and P such that JQ = iωQ, JTP = −iωP and 〈P,Q〉 = 1.
One of the eigenvectors corresponding to λ = iω is

Q =
(
a,m+ iω,−r + i

ωm

v

)
.

The corresponding normalized eigenvector is P = 1
c

(
1,− iω

v , 1
)
, where

c = 〈(1,− iω
v
, 1
)
, Q〉 = 2(a− r) + 2i

ωm

v
6= 0

(as in [6] we use an unusual scalar product definition 〈x, y〉 = ∑
xiyi to keep the

Kuznetsov’s notation). According to [6]

sgn l1 = sgn
1

2ω
Re〈P,C(Q,Q, Q̄)〉,

where for i = 1, . . . 3 Fi stays for nonlinear part of the right hand side of (1.1) and
we define

Ci(x, y, z) =
3∑

j,k,l=1

∂3Fi(ξ)

∂ξj∂ξk∂ξl
|ξ=0xjykzl,

that is, C1(x, y, z) = −4p(x1y2z2+x2y1z2+x2y2z1), C2(x, y, z) = 0 and C3(x, y, z) =
0. (The general formula for l1 contains also quadratic members of the nonlinear
part of the right hand side of (1.1), but it vanishes in our case). From that we get

sgn l1 = sgn
apv

ω
.

The generalized Hopf bifurcation occures for l1 = 0, that is only for a = 0. We
have to exclude cases p = 0, when the system (1.1) is strictly linear, and of course
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v = 0, when λ1,2 = ±iω = 0. Consequently, l1 > 0 for r > a > 0, v > 0 and p > 0
and subcritical Hopf bifurcation occurs near zero for m = −pκ. �

As a consequence of (8.2) and the Theorem 8.1 we see, that unstable cycle arises
on the right hand side of m, that is for m > −pκ, since the real part of the complex
conjugate eigenvalues decreases from positive to negative values as m increases
and an unstable equilibrium (0, 0, 0) become stable on the center manifold with
an unstable cycle in its local neighbourhood. This is the reason, why we included
study of the economically impossible Hopf bifurcation of the zero equilibrium into
account - an unstable limit cycle may continue (and already does) in the positive
parametric space. You can see the bifurcation diagram on the figure 23
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-2

0

2

4

6

S

0 0.02 0.04 0.06 0.08
m

Figure 23. The typical Hopf bifurcation diagram with arising
unstable cycle near zero for parameters a = 0.1, r = 0.25, p = 0.01,
v = 0.031847, κ = 1 and m ∈ (−0.02, 0.1).

9. Conclusions

In this paper, we studied several types of bifurcations in the system (1.1) that are
connected with periodic and non-periodic bounded trajectories that may represent
economic cycle and non-periodic chaotic oscillations in macroeconomic quantities.
From the economic point of view, condition (1.4) does not guarantee existence of
a stable equilibrium. Nor even stronger condition a > r, that according to Theo-
rem 3.1 guarantees existence of a stable equilibria, does not guarantee asymptotic
tending towards one of the stable fixed points, since for a set of parameters the
first Lyapunov coefficient is positive and folding of the unstable cycle into a stable
one give rise to a large basin of attraction of a stable periodic solution for a > r
close to r. This result is in the contrary to the conclusions made in [9]. If the
debt/output ratio is less than the variation of the marginal propensity to savings
then the economic equilibrium is locally stable, but the economy near a stable state
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may be on a non-local destabilizing cycle asymptotically tending to a non-local sta-
ble cycle. As we can see from results described by the figure 1, for normal values
of capital-output ratio v << 1, the first Lyapunov coefficient is positive for quite
big range of parameter a, even the less is the value of capital-output ratio v, the
bigger ”unstable” range we get for a. For normal economic parameters a >> r
the equilibria E1,2 are always stable and attracting, no cycles or chaos appear in
the system. But for low v, p or large m, there exist trajectories corresponding
to unstable trade cycles that may even change into non-periodic bounded chaotic
unpredictable regime. Due to this we cannot agree with the conclusion in [9] that
if the capital inflow/savings ratio is less than double the ratio of capitalized profit
then the system is in a stable state. You can see on the figures 2 and 3 (m = 0.19,
p = 0.1) that for low variation of the marginal propensity to savings this is not
true, unstable cycles occurs. As it can be seen from figures 16 and 22, parameter
m, that is capital inflow/savings ratio, cannot be used for controlling the system
at all. Similarly p, the ratio of the capitalized profit, cannot be used for controlling
(see figures 12, 15 and 21). The first conclusion in [9] is true: an increasing of the
capitalization of the profits demonstrates well-known results in economics that the
capitalization of profits causes the stabilization of the system.

It should be taken into account, that the model of foreign financing is highly
simplified and therefore the conclusions may represent possibilities of the real eco-
nomic behaviour only. On the other hand the model is ”nearly linear” - and linear
models are often used in economics to show ”the invisible hand of the market”
that leads the economy to the stable and predictable, equalized quantities. The
one cubic term included in the first equation (also included in the model without
foreign financing with no bifurcations at all, for analysis of this model see [9]) give
rise to a great deal of nonlinear dynamics - to periodic and chaotic motion with no
invisible hand to lead.

The mathematical results may be applied to the second model of firm introduced
by [3] that is based on the Hunt’s hypothesis that the call for loans pushes the
profit ratio of stockholderscapital. Bouali shows various periodicity and chaos in
the system without deeper mathematical background. The results derived here
explain the dynamics in this model of firm. In order to illustrate farther economic
applicability of these results, we cite the economic conclusions made by Bouali.
“. . . rules and principles of finance governance built in static framework may lose
their validity. The findings of a well corporate debt policy connected to a well
dividend policy may lead to an unpredictable and hazardous motion of the profit. In
our 3D system, the rise of the loss level is an endogenous outcome of the borrowing
policy and is not determined by a shock of economic recession. Against the common
sense, the profit motion is worsened by the braking of dividend distribution!”

The existence of hysteresis and various types of bifurcations and chaos open a
question, whether the stabilization policy is efficient. The policy advice is based
mostly on linear models while the economy is actually characterized by significant
nonlinearities. Linear modelling of a system with existence of significant nonlinear-
ity in the data may provide misleading results. In the case of hysteresis, stabilization
policy may lead to destabilizing trade cycles instead of tending to an equilibrium
or to chaos. In the case of various cycle bifurcations the data itself cannot be
correctly analyzed by methods based on linear modelling and in the case of chaos,
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the precision of a forecast with a very small error in the initial conditions worsens
exponentially over time in addition to this previously mentioned failings.
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fication of Kaldor-Pasinetti type are introduced. The generalization is due to non-constant
labor growth rate. Both continuous-time and discrete-time models are derived. Concrete
examples with complex dynamics are presented for models with differential savings of the
Kaldor-Pasinetti type and Beverton-Holt and logistic version of the labor dynamics. We
found that instabilities and complex dynamics may be driven by the capital–labor ratio
dynamics, labor dynamics or both together.
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1. Introduction

The standard dynamic economic one-sector neoclassical Solow-Swan model ([12],
[13] or [2]) show that the system monotonically converges to the equilibrium and
neither cycles nor complex dynamics can be observed.

In standard economic theory, the labor growth rate is assumed to be constant, al-
though this is clearly unrealistic, since the consequence of the constant labor growth
rate is unbounded exponential population growth. In population dynamics it’s usual
to consider some carrying capacity of the environment, the maximal size of the
population that the environment can sustain in the long term (see [11] or [14]).
There are few papers that deal with non-constant labor growth rate (for example
[1] introduced the Solow-Swan model with Richards’ law labor dynamic, [6] used a
continuous logistic growth rate dynamics and [5] tried to deal with Beverton-Holt
discrete labor dynamics, but made a mistaken economic derivation of the equations,
since the Beverton-Holt model describes population (or density), not the growth
rate dynamics).

In this paper the Solow-Swan model and its modification of Kaldor-Pasinetti type
(discrete and continuous) are generalized by implementation of the labor dynamics.

1
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2. The continuous-time model

Let us consider a standard neoclassical one-sector continuous growth model

K̇ = I − δK, (1)

where capital K depreciates at the constant rate δ > 0 and increases with investment
I that is considered to be the saved part of the produced output Y given by the
production function

Y = F (K,L). (2)

In the basic Solow-Swan model the saving rate s ∈ (0, 1) is supposed to be constant
and the equation (1) has the form

K̇ = sF (K,L)− δK. (3)

The production function F satisfy the following conditions:

F (K,L) > 0 for all K > 0 and L > 0, (4)

∂F

∂K
> 0,

∂F

∂L
> 0,

∂2F

∂K2
< 0 and

∂2F

∂L2
< 0 for all K > 0 and L > 0 (5)

and F exhibits constant return to scale

F (λK, λL) = λF (K,L) for all λ > 0. (6)

The constant return to scale condition is also called linear homogenity condition,
since from the Euler’s theorem, the equation F (K,L) = K ∂F

∂K
+ L∂F

∂L
holds for the

marginal product of capital and labor. The constant return to scale condition allows
the intensive form

y =
Y

L
= F (K/L, 1) = f(k),

where k = K
L

is the capital–labor ratio and y is per capita output.
Moreover the production function F usually satisfies Inada conditions

lim
K→0+

FK = lim
L→0+

FL =∞, lim
K→∞

FK = lim
L→∞

FL = 0, (7)

where FK and FL are marginal product of capital and labor respectively (as functions
of K and L). These conditions can be written in the intensive form as

lim
k→0+

f ′(k) =∞, lim
k→∞

f ′(k) = 0. (8)

Weak Inada conditions in the intensive form may be written as

lim
k→0+

f(k)

k
=∞, lim

k→∞
f(k)

k
= 0. (9)

It is clear that differentiable per capita production function f that satisfy Inada
conditions satisfy also weak conditions. It’s not true in the other direction. For
example the per capita production function f(k) = 2 − e−k satisfies weak Inada
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conditions and limk→0+ f
′(k) = 1. Notice that in this case also capital is not essential

for production, that is F (0, L) = Lf(0) > 0 is allowed.
Dividing the equation (3) by L now gives (1) in the intensive form

k̇ = G(k)− (δ + n(t))k, (10)

where G(k) = sf(k) and n(t) = L̇
L

is the population (labor) growth rate. In standard
economic growth theory, n(t) is assumed to be constant which implies unrealistic
exponential growth and the equation (10) doesn’t depend on labor explicitly.

Following Böhm and Kaas [4] a generalized model of Kaldor-Pasinetti type can
be considered. We expect two types of agents, workers and shareholders, with
generally different but constant saving rates sw and sr. Since ∂F

∂K
= f ′(k) > 0 and

∂F
∂L
≡ w(k) = f(k)− kf ′(k) > 0, we can write the intensive form of the equation (1)

as
k̇ = G(k)− (δ + n(t))k, (11)

where G(k) = sww(k) + srkf
′(k). For sw = sr = s, the equation is simplified into

(10).
For both models (10) and (11) we will consider a non-constant labor growth

rate n(t), more precisely the labor dynamics will be described by the equation of
population dynamics

L̇ = n(t)L, (12)

with generally non-constant n(t) and in most population models n(t) > 0. We
will also expect existence of so called carrying capacity L∞ of the environment that
guarantees the upper bound of the labor (population). We will assume 0 < L0 ≤ L∞.
These assumptions are more realistic in the long run than the standard usage of
constant n(t) = n, which implies unlimited growth of the population (see for example
[14], [11] or [3]). Typical growth of the population (labor) is sigmoidal, roughly we
can say that the population grows slowly near zero, for the middle values more
quickly and then it deflates as it tends to the carrying capacity. A common case is
described by logistic differential equation

L̇ = n0L
(

1− L

L∞

)
, (13)

with explicit solution L(t) = L∞L0en0t

L∞+L0(en0t−1) , where L0 is initial labor (population)

and the growth rate n0 is positive. It’s clear that the steady state L(t) ≡ L∞ is
globally asymptotically stable, while n(t)→ 0 as the solution tends to L∞.

Theorem 1. The steady state k∗ of the equation (11) with logistic labor dynamic
satisfy condition

G(k∗)

k∗
= δ.

If sr ≥ sw, the weak Inada conditions (9) guarantee existence of exactly one non-
trivial equilibrium and the steady state is locally asymptotically stable.
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Proof. The long-run dynamics of (11) with logistic labor dynamic is described by
the dynamics on the attractor L = L∞, that is by the equation k̇ = G(k) − δk. If

sr ≥ sw then G(k∗)
k∗ is strictly decreasing since

(
G(k)

k

)′
= sw

f ′(k)k − f(k)

k2
+ (sr − sw)f ′′(k) < 0

and

lim
k→0+

G(k)

k
=∞, lim

k→∞
G(k)

k
= 0,

that guarantees existence and uniqueness of the non-zero equilibrium. If sr ≥ sw
and the weak Inada conditions (9) are satisfied, we have

G′(k∗)− δ = sww
′(k∗) + srf

′(k∗) + srk
∗f ′′(k∗) =

= (sr − sw)k∗f ′′(k∗)− sw
f(k∗)− k∗f ′(k∗)

k∗
< 0.

Consequently the steady state k∗ of the equation k̇ = G(k) − δk is locally asymp-
totically stable.

Notice that if the saving propensities satisfy sr < sw, more equilibria can occur.
This give rise to room for local bifurcations of saddle-node type. The following
example shows a concrete case of near-Leontief production function

f(k) = a
(
k + α ln

(
1 + e

−b
αa

1 + e
ak−b
αa

))
+ c, (14)

as an approximation of Leontief production function f(k) = min(ak, b)+c, a, b, c > 0
for α > 0 near zero. It can be easily verified that this family of functions satisfy the
weak Inada conditions. For parameters α = 0.01, a = 0.2, b = 1, c = 0.01, L∞ = 10,
n0 = 0.4, , δ = 0.1 and sw = 0.8 > sr = 0.4, you can see that nullclines cross three
times, the outer equilibria are stable, the middle one is an unstable saddle. In this
case there is switch (on the saddle separatrix) between behaviour of the trajectories
as you can see on the figure 1.

The saddle-node bifurcation takes place here for both the parameters sw and sr
(see the figure 2).

3. The discrete-time model

A standard neoclassical one-sector discrete growth model has similar form

Kt+1 −Kt = It − δKt, (15)

with the production function Y = F (K,L) and the constant saving rate s ∈ (0, 1)
the form

Kt+1 −Kt = sF (Kt, Lt)− δKt. (16)

Dividing the equation (3) by Lt gives the intensive form of (15)

kt+1nt = G(kt) + (1− δ)kt, (17)
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Figure 1: Nullclines and near starting trajectories

Figure 2: Bifurcation diagram for sr, solid line is for stable, dashed line for unstable
equilibrium.
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where G(kt) = sww(kt) + srktf
′(kt) and nt = Lt+1

Lt
is the population (labor) growth

rate. Besides the general case we will consider two basic discrete labor growth
models. The first one is described by Beverton-Holt equation

Lt+1 =
n1L∞Lt

L∞ + (n1 − 1)Lt

, (18)

for n1 > 1, with explicit solution (see [3])

Lt =
L∞L0

L0 + (L∞ − L0)n
−t
1

.

Because of this structure, the model can be considered as the discrete-time analogue
of the previously mentioned continuous-time logistic equation for population growth
introduced by Verhulst [14]. It is clear that the fixed point Lt = L∞ is globally
asymptotically stable. The second labor growth model is described by the logistic
equation

Lt+1 − Lt = n2Lt

(
1− Lt

L∞

)
(19)

or equivalently in the form analogous to (12)

Lt+1 =
(

1 + n2

(
1− Lt

L∞

))
Lt, (20)

where n2 > 0. Brianzoni, Mammana and Michetti in [5] tried to derive this model
with Beverton-Holt labor dynamics, but they used it in the form

nt+1 =
rh

h+ (r − 1)nt

nt,

where nt = Lt+1−Lt
Lt

was the growth rate (according to the derivation of their intensive
form), h and r positive constants. This dynamics cannot be used for growth rates,
but for labor Lt as we did in (18). It is usually used in biology for describing
population or its density, the model has two steady states nt = 0 and nt = h (so
called carrying capacity, in our case L∞), the second obviously cannot be a growth
rate. If nt meant the labor (and not rates) in [5], then their intensive form of the
capital equation is not correct. In short, their system is mixed up.

Correctly the equations of the generalized model of Kaldor-Pasinetti type with
non-constant labor force growth rate are generally

T :=

{
Lt+1 = T1(Lt) = ntLt

kt+1 = T2(Lt, kt) = 1
nt

(G(kt) + (1− δ)kt) = 1
ϕ(Lt)

(G(kt) + (1− δ)kt), (21)

where nt = ϕ(Lt) 6= 0 (more generally we could take nt = φ(t), but this is not that
case). The Beverton-Holt version of the model is

TBH :=

{
Lt+1 = n1L∞

L∞+(n1−1)LtLt

kt+1 = L∞+(n1−1)Lt
n1L∞

(G(kt) + (1− δ)kt),
(22)
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where nt = ϕ(Lt) = L∞+(n1−1)Lt
n1L∞

, and the logistic version is

Tlog :=





Lt+1 =
(

1 + n2

(
1− Lt

L∞

))
Lt

kt+1 =
(

1 + n2

(
1− Lt

L∞

))−1
(G(kt) + (1− δ)kt),

(23)

where nt = ϕ(Lt) =
(

1 + n2

(
1− Lt

L∞

))
.

4. Near-Leontief production functions

Böhm and Kaas in [4] proved that chaotic behaviour exhibits for the equation

kt+1 =
1

1 + n
(G(kt) + (1− δ)kt) (24)

with constant labor growth rate n and near-Leontief production function

f(k) = a
(
k + α ln

(
1 + e

−b
αa

1 + e
ak−b
αa

))
+ c, (25)

as an approximation of Leontief production function f(k) = min(ak, b)+c, a, b, c > 0
for α > 0 near zero. It can be easily verified that this family of functions satisfy
the weak Inada conditions. Böhm and Kaas presented a typical bifurcation diagram
with period doubling route to chaos. This can be clearly observed for Beverton-Holt
version (22) with n1 = 1 and logistic version (23) with n2 = 0 (see figure 3).

The question to discuss is what happens if nt 6= 0 or constant.

Theorem 2. The Beverton-Holt version (22) of the generalized Solow-Swan model
with non-constant labor growth rate exhibits the same long-run behaviour as the
Böhm and Kaas model (24) with n = 0.

Proof. Since Lt+1 = T1(Lt) has globally asymptotically stable fixed point Lt = L∞,
all solutions tend to the attractor L∞ with nt = ϕ(Lt)→ 1. The long-run dynamics
of (22) is described by the dynamics on the attractor, where nt = 1, and is given
by the second equation kt+1 = T2(L∞, kt) = G(kt) + (1− δ)kt that is equation (24)
with n = 0.

As a consequence of this theorem and Proposition 5 from [4] we have

Corollary 3. For all 0 < δ < 1, sr > 0 and sw = sr − ε with ε > 0, there exists an
open set of near-Leontief production functions (25) such that (22) exhibits chaos.

We get an analogous result for the logistic version (23) with n2 ∈ (0, 2) (µ ∈
(1, 3)), since Lt = L∞ is globally asymptotically attracting fixed point.

Corollary 4. For all n2 ∈ (0, 2), 0 < δ < 1, sr > 0 and sw = sr − ε with ε > 0,
there exists an open set of near-Leontief production functions (25) such that (23)
exhibits chaos.

7
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Figure 3: Bifurcation diagram of Beverton-Holt version (22) with n1 = 1 or logistic
version (23) with n2 = 0 with parameters a = 0.2, b = 1, c = 0.01, sr = 0.8,
sw = 0.4, L∞ = 10 and i.c. k0 = 5, L0 = 1.

The bifurcation diagram for the case of n2 = 1.3 is on the figure 4.You can see
that it’s the same dynamics as on the figure 3 (with constant labor growth rate).

The most interesting behaviour of the system (23) is chaos driven by both equa-
tions - the labor dynamics and the capital dynamics too. You can see such an
example on the next figures. For n2 = 2 a stable 2-cycle of labor dynamics appears
and splits into 4-cycle at n2 =

√
6 (see figures 5 and 6) and period doubling routes

to chaos at n2
.
= 2.5699457 (see figures 7, 8 and 10). A big window with 3-cycle

is around n2 = 2.83 (the figure 9). The bifurcation diagrams show splitting the
stable branch together with the fractal attractor (you can see the self-similarity and
dividing).

Bifurcation diagrams are made in XPPAUT. We varied the parameter δ with
fixed other parameters, usually we counted the attractor for 2000 values of parameter
δ in each figure. For each δ we omitted the first 500 iterates to get close enough to
the attractor and plotted points to the 750th iterate.

5. Conclusions

In this paper we assumed that the labor is proportional to the population and
consequently it can be modelled by Beverton-Holt or logistic growth model. Com-
monly exponential growth model would almost always be used. Arguments that
speak in favour of the first two models are at least two. First is theoretical: ex-
ponential growth implies unlimited growth of population and labor which is surely

8
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Figure 4: Bifurcation diagram of logistic version (23) for n2 = 1.3 with parameters
a = 0.2, b = 1, c = 0.01, sr = 0.8, sw = 0.4, L∞ = 10 and i.c. k0 = 5, L0 = 1.

Figure 5: Bifurcation diagram of logistic version (23) for parameter n2 = 2.3 and
other as previous, 2-cycle

9
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Figure 6: Bifurcation diagram of logistic version (23) for parameter n2 = 2.45 and
other as previous, starting 4-cycle

Figure 7: Bifurcation diagram of logistic version(23) for parameters n2 = 2.57 and
other as previous, starting chaos
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Figure 8: Bifurcation diagram of the logistic version (23) for parameters n2 = 2.6
and other as previous, chaos

Figure 9: Bifurcation diagram of the logistic version (23) for parameters n2 = 2.83
and other as previous, 3-cycle

11
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Figure 10: Bifurcation diagram of the logistic version (23) for parameters n2 = 2.9
and other as previous, chaos

impossible. Second reason is based on real observations, for example population
of Czech republic from 1950 to 2008 has decreasing growth rates and is better to
fit by Beverton-Holt or logistic trend (see World Population Prospects: The 2008
RevisionPopulation Database at http://esa.un.org/unpp/). Modelling the labor dy-
namics by these equations is of course a very simplifying assumption, since the
labor market responds to many other variables, but it is still more realistic than the
assumption of the constant growth rate.

The results of this paper show that the labor dynamics influence the capital–
labor ratio dynamics in more complex way than it is in the basic one-sector models
of economic growth with constant labor growth rate, that is with exponential labor
dynamics. For the case of the labor tending to the globally asymptotically stable
fixed point it proves that the long run behaviour of the capital–labor ratio is the
same as formerly studied models with constant, but zero, labor growth rate. It
has to be mentioned that in the case of constant labor growth rate there is not a
(positive) fixed point of the labor equation (the labor grows exponentially) although
the capital-labor ratio has an equilibrium. This case is structurally unstable, since
varying of the labor directly influence it. That is one of the reasons why the dynamics
of labor should be included in the model.

For the constant labor growth rate complex dynamics caused by the shape of the
production function has already been studied (see [7] or [4]). This paper shows that
labor dynamics should be taken into account, since it influences the capital dynamics
in an essential way (comparing mentioned [7] or [4] examples with kinked production
function it is a different way, complex dynamics may take place even in the case that

12
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is stable if constant labor growth rate is assumed). Usually saving rate is crucial for
the stabilization of the capital dynamics. As we have seen in the Corollaries 3 and
4 even complex behaviour may arise in case that shareholders saving rate exceeds
the workers saving rate, moreover it does not depend on how high or low the rates
are, so for the stabilization policy we should differentiate them. There may be also
cases of instabilities (cycles or chaos) such that saving rates cannot influence the
dynamics at all, since it is based on the behaviour of the labor. The stabilization
policy should influence the labor market in such case instead of interest rate change.
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Appendix A

Collection of author’s work,
published articles, posters
and preprints related to
covid-19 epidemic modeling

Articles in international journals:

� Martin Šmı́d, et al. Protection by vaccines and previous infection
against the Omicron variant of SARS-CoV-2, The Journal of Infec-
tious Diseases, jiac161, 2022.

� Luděk Berec, et al. Protection provided by vaccination, booster doses
and previous infection against covid-19 infection, hospitalisation or
death over time in Czechia, PloS ONE 17.7 : e0270801 2022.
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Real-time model of covid-19 epidemics in the Czech Republic (software):

� Tomáš Pavĺık, et al. MAMES – Monitoring, analysis, and manage-
ment of epidemic situations
https://webstudio.shinyapps.io/MAMES/, 2021.

� Lenka Přibylová and Veronika Eclerová. Model ZSEIAR(S) forecasts
submitted to ECDC Forecast Hub (MUNI DMS-SEIAR), 2021-2022

Conferences and posters:

� Lenka Přibylová and Veronika Eclerová. Model ZSEIAR, In: V4-UK
Frontiers of Science 2021 (Royal Society UK), 2021 invited

� Veronika Eclerová and Lenka Přibylová. Ascertainment rate estimate
from hospital data used in modeling COVID-19 epidemics, In: Epi-
demics8, 2021

Preprints:

� Lenka Přibylová and Veronika Eclerová. SEIAR model with asymp-
tomatic cohort and consequences to efficiency of quarantine govern-
ment measures in COVID-19 epidemic. arXiv preprint arXiv:2004.02601.
2020 Google Scholar citations: 14

� Katharine Sherratt, et al. Predictive performance of multi-model
ensemble forecasts of COVID-19 across European nations. medRxiv
2022.



175

Protection by Vaccines and Previous Infection Against the
Omicron Variant of Severe Acute Respiratory Syndrome
Coronavirus 2
Martin Šmíd,1,2, Luděk Berec,2,3,4 Lenka Přibylová,5 Ondřej Májek,6,7 Tomáš Pavlík,6,7 Jiří Jarkovský,6,7 Jakub Weiner,1,2 Tamara Barusová,8,9

and Jan Trnka10

1Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic; 2Centre for Modelling of Biological and Social Processes, Prague, Czech Republic; 3Centre for
Mathematical Biology, Institute of Mathematics, Faculty of Science, University of South Bohemia, Budjovice, Czech Republic; 4Biology Centre, Institute of Entomology, Department of Ecology, Czech
Academy of Sciences, Budjovice, Czech Republic; 5Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic; 6Institute of Biostatistics and Analyses,
Faculty of Medicine, Masaryk University, Brno, Czech Republic; 7Department of Data Analysis, Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic; 8First
Faculty of Medicine, Charles University, Prague, Czech Republic; 9Department of Statistical Modelling, Czech Academy of Sciences, Institute of Computer Science, Prague, Czech Republic;
and 10Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic

Background. The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades immunity
conferred by vaccines and previous infections.

Methods. We used a Cox proportional hazards model and a logistic regression on individual-level population-wide data from
the Czech Republic to estimate risks of infection and hospitalization, including severe states.

Results. A recent (≤2 months) full vaccination reached vaccine effectiveness (VE) of 43% (95% confidence interval [CI], 42%–
44%) against infection by Omicron compared to 73% (95% CI, 72%–74%) against Delta. A recent booster increased VE to 56% (95%
CI, 55%–56%) against Omicron infection compared to 90% (95% CI, 90%–91%) for Delta. The VE against Omicron hospitalization
of a recent full vaccination was 45% (95% 95% CI, 29%–57%), with a recent booster 87% (95% CI, 84%–88%). The VE against the
need for oxygen therapy due to Omicron was 57% (95% CI, 32%–72%) for recent vaccination, 90% (95% CI, 87%–92%) for a recent
booster. Postinfection protection against Omicron hospitalization declined from 68% (95% CI, 68%–69%) at ≤6 months to 13%
(95% CI, 11%–14%) at .6 months after a previous infection. The odds ratios for Omicron relative to Delta were 0.36 (95% CI,
.34–.38) for hospitalization, 0.24 (95% CI, .22–.26) for oxygen, and 0.24 (95% CI, .21–.28) for intensive care unit admission.

Conclusions. Recent vaccination still brings substantial protection against severe outcome for Omicron.
Keywords. COVID-19; postinfection immunity; vaccine effectiveness; SARS-CoV-2; Omicron variant; hospitalization.

The B.1.1.529 (Omicron) variant of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) was first detected in
South Africa in November 2021, immediately designated a var-
iant of concern by the World Health Organization [1], and
thereafter seen to spread quickly throughout most of the world.
This rapid spread was at least in part brought about by a degree
of immune evasion due to a large number of mutations in the
viral S-protein, which led to changes in epitopes recognized by
antibodies elicited by vaccination or previous infection [2].
Together with nonpharmacological interventions, such as
face masks, distancing, ventilation of interior spaces testing,
and isolating, vaccination is among the most effective means

of individual and collective protection from the impacts of
the pandemic. The immune evasion by the Omicron variant
thus caused concern and led to much interest in both laborato-
ry and real-life epidemiological data that could accurately mea-
sure this phenomenon.
Since 27December 2020 the inhabitants of the CzechRepublic

have been receiving coronavirus disease 2019 (COVID-19) vac-
cines, the largest number vaccinated with the messenger RNA
(mRNA) vaccine BNT162b2 (Pfizer/BioNTech), followed by
mRNA-1273 (Moderna) and the adenovirus-based vector vac-
cines ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.CoV2.S
(Johnson & Johnson) [3]. By the end of our study period on
13 February 2022, 68% of the population had a complete vacci-
nation and 39% had received a booster dose [3].
The first case of the Omicron variant in the Czech Republic

was detected at the end of November 2021; its proportion of re-
corded cases rapidly rose and by 10 January 2022 it became the
dominant variant (Figure 1). An increasing number of infec-
tions among fully vaccinated and reinfections indeed suggests
that immune evasion poses a significant risk to further
COVID-19 development [3].
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In this study, we estimate how the protection due to vaccina-
tion or previous SARS-CoV-2 infection against COVID-19 in-
fection, hospital admission, oxygen therapy and intensive care
unit (ICU) admission varies in relation to the virus variant and
time elapsed for the entire population of the Czech Republic.

METHODS

Study Population and Data Sources

The analyses are based on data from the Czech National
Information System of Infectious Diseases (ISID), which includes
records of all individuals who tested positive for SARS-CoV-2 in
the Czech Republic since the beginning of the COVID-19 pan-
demic, including children [4]. This database is overseen by the
Czech Ministry of Health and operated by the Institute of
Health Information and Statistics of the Czech Republic. Data
are routinely collected in compliance with Czech legal regulations
(Act on the Protection of Public Health). The Director of the
Institute of Health Information and Statistics of the Czech
Republic has granted that there is no need for ethical approval
of the retrospective analyses presented in this article.

The ISID database collects demographic data (age, sex and
region of residence), dates of vaccination, including the vaccine
types for each dose, and dates of infection and potential reinfec-
tion, hospitalization including treatment type, and the date of
potential death with COVID-19. The data recorded in the study
period include information on whether the infection is caused
by the Omicron, Delta, or some other variant, or that a variant
discrimination was not performed (Figure 1). The information
on the variant is based on results of multiplex polymerase chain
reaction (PCR) or viral genome sequencing, which are available
only for a subset of all PCR-positive cases. The variants were
identified using the definition of viral S-protein mutations
according to the European Centre for Disease Prevention
and Control [5]; the algorithm was tailored to multiplex PCR
kits used in the Czech Republic in collaboration with the

National Institute of Public Health and the National
Reference Laboratory [6]. Additional information on deaths
from any cause comes from the Death Certificate System; these
data are used for censoring purposes only.

Study Endpoints

We studied 4 types of events: (1) SARS-CoV-2 infection, de-
fined as a PCR-confirmed positive test of any type of sample re-
gardless of the presence of symptoms; (2) hospital admission of
a person who tested positive on a PCR test within 2 weeks after
the confirmed infection or earlier; (3) use of any type of oxygen
therapy (nasal oxygen, noninvasive ventilation, invasive me-
chanical ventilation, high-flow nasal oxygen, and extracorpore-
al membrane oxygenation); and (4) admission to ICU during
the hospitalization. All events were related to the date of infec-
tion report.
We examined events during the 2-month period from 7

December 2021 to 13 February 2022, during which Delta and
Omicron switched dominance in the Czech Republic (Figure 1).

Statistical Analysis

A Cox regression with time-varying covariates was applied to es-
timate hazard ratios (HRs) for the outcomes of interest separately
for each viral variant. In these analyses, the infections by the var-
iant other than the examined one and the infections lacking var-
iant assignment were censored at the time of infection.
Analogously to Tartof et al [7], we used calendar time instead
of time from event occurrence as the time scale. Thus, the time
course of individual cases was modeled by means of “switching”
dummy variables, corresponding to the development of the im-
mune status after vaccination or past infection in 61-day periods
for vaccination and 121-day periods for the time from the last in-
fection. The control variables included age group and sex.
The protection provided by vaccine (vaccine effectiveness

[VE]) or previous infection is calculated by comparing hazards
of the vaccinated and/or immunized individuals to those of the
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Figure 1. Number of recorded cases with assigned Delta and Omicron variant and the proportion of polymerase chain reaction (PCR)–positive tests tested for viral variants
using multiplex PCR.
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“control group”—those who have not been vaccinated and in-
fected so far and subtracted from 1 using the equation:

Protection(VE) = 1− Hazardprotected
Hazardunprotected

.

Furthermore, we examine the postinfection immunity by esti-
mating HRs of infection of previously unvaccinated individuals
in relation to time elapsed from the infection.

By using calendar time we were able to incorporate automat-
ically the changing conditions of the epidemic, including non-
pharmacological measures, seasonal effects, the ratio of
discriminated samples, and the proportion of the virus variant,
as all of these phenomena can be included in the underlying
baseline hazard function.

To examine the probabilities of hospitalization, oxygen ther-
apy, and ICU admission for an infected individual, we use the
logistic regression with the event of interest as the outcome and
with immunity status at the time of infection, age group, and
sex as the covariates. We compare the probabilities of the out-
come for both variants by means of the dummy corresponding
to the virus variant.

All calculations were performed using the R software. The
algorithm used to transform data from the database into
the package command inputs was coded in C++. See
Supplementary Material 1 for details.

RESULTS

Protection Against Infection

First we looked at the protection conferred by vaccination or a
previous infection against a new infection, since the protection

against infection represents the potential to protect other risk

groups in the population. The protection after vaccination

against the Omicron variant reached 43% (95% confidence in-

terval [CI], 42%–44%) shortly after completing the full vaccina-

tion scheme, falling to 9% (95% CI, 8%–10%) after.2 months.

This protection increased to 56% (95% CI, 55%–56%) shortly

after receiving a booster dose, followed by a decline to 21%

(95% CI, 19%–23%) after.2 months. These numbers strongly

contrast with the protection against the Delta variant, which

was consistently higher at 73% (95% CI, 72%–74%), 57%

(95% CI, 56%–58%), 90% (95% CI, 90%–91%), and 82%

(95% CI, 79%–84%), respectively. Similar degrees of protection

against infection are conferred also by postinfection immunity:

68% (95% CI, 68%–69%) shortly after a previous infection (2–6

months; a positive test during the first 2 months after an infec-

tion is not considered a reinfection by definition) and 13%

(95% CI, 11%–14%) after 6 months for Omicron, compared

with 95% (95% CI, 94%–96%) shortly after infection and 83%

(95% CI, 82%–84%) after 6 months for Delta (Figure 2).

Based on the past prevalence of viral variants, it can be expected

Figure 2. Protection provided by vaccination or previous infection against infection by the Omicron and Delta variants of the severe acute respiratory syndrome coronavirus
2. Point estimates of protection with 95% confidence interval are shown. Abbreviations: Booster2–, booster dose≤2 months ago; Booster2+, booster dose.2 months ago;
CI, confidence interval; Full2–, complete vaccination≤2 months ago; Full2+, complete vaccination.2 months ago; Inf6–, previous infection≤6 months ago; Inf6+, previous
infection .6 months ago.
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that the infections older than 6 months were mostly due to the
original Wuhan, D614G, and Alpha variants, whereas the more
recent ones were predominantly due to Delta. As we show in
SupplementaryMaterial 2, Sections 11 and 12, explicit accounting
for the vaccine type (BNT162b2 by Pfizer/BioNTech and
mRNA-1273 by Moderna) gave values of effectiveness compara-
ble with the analyses of pooled data reported here in themain text.

We had enough data to examine all the combinations in
which a previous infection preceded vaccination. As expected,
protection declined with time elapsed from the previous infec-
tion or vaccination (Table 1). Regarding protection against the
Delta variant, any combination provided ≥95% protection
against infection (Table 1). This protection also remained quite
high against Omicron when the previous infection was recent,
falling to lower values for an older previous infection, but even
then the protection was significantly higher than that provided
by a vaccination or previous infection alone (Table 1). We also
analyzed cases when a vaccination preceded an infection fol-
lowed by a reinfection. In the case of reinfections caused by
Delta, against which the achieved protection was generally
high at 96% (95% CI, 90%–98%), the exact order of events
did not appear to matter. For reinfections caused by
Omicron, against which protection is generally lower, the cases
where a previous infection followed a vaccination appeared to
provide a higher level of protection than the inverse sequence:

Protection provided by the complete vaccination .2 months
ago/previous infection ≤6 months ago combination was 89%
(95% CI, 88%–91%) as compared to 86% (95% CI, 85%–88%)
for the previous infection≤6months ago/complete vaccination
.2 months ago combination.
A finer-grained analysis of temporal dynamics of immunity

waning after a previous infection was then conducted specifi-
cally for individuals who were previously infected but remained
nonvaccinated. Against Omicron, the protection was estimated
as 69% (95% CI, 68%–69%) for 2–6 months after previous in-
fection, 48% (95% CI, 46%–50%) for 7–10 months, 34% (95%
CI, 33%–35%) for 11–14 months, and 17% (95% CI, 15%–

18%) for ≥14 months after previous infection. For Delta, in
contrast, these numbers were 93% (95% CI, 91%–94%), 91%
(95% CI, 90%–92%), 86% (95% CI, 85%–86%), and 79%
(95% CI, 77%–81%), respectively.

Protection Against Hospitalization

A qualitatively similar pattern yet quantitatively consistently
higher protection is seen against hospitalization, a need for ox-
ygen therapy, and a need for intensive care (Table 2). For exam-
ple, a recent booster dose provides 86% protection against
hospitalization, 90% against a need for oxygen therapy, and
83% against a need for intensive care when infected by the
Omicron variant. Moreover, all combinations of previous

Table 1. Protection Due to Various Combinations of Past Infection Preceding Vaccination Against Infection for the Omicron and the Delta Variants of the
Severe Acute Respiratory Syndrome Coronavirus 2

VOC Infection

Vaccination

Booster2− Full2− Booster2+ Full2+
Omicron Inf6− 92% (89%–94%) 82% (75%–87%) 82% (72%–89%) 86% (85%–88%)

Inf6+ 74% (73%–75%) 77% (76%–78%) 48% (45%–52%) 45% (44%–46%)

Delta Inf6− 95% (66%–99%) 100% (no case) 100% (no case) 97% (94%–98%)

Inf6+ 98% (98%–99%) 98% (97%–98%) 94% (89%–97%) 96% (95%–96%)

Data show protection by vaccination following past infection (95% confidence interval).

Abbreviations: Booster2–, booster dose≤2months ago; Booster2+, booster dose.2months ago; Full2–, complete vaccination≤2months ago; Full2+, complete vaccination.2months ago;
Inf6–, previous infection ≤6 months ago; Inf6+, previous infection .6 months ago; VOC, variant of concern.

Table 2. Vaccine Effectiveness and Protection Provided by Postinfection Immunity Against a Need for Hospitalization, Oxygen Therapy, or Intensive Care,
for the Omicron and Delta Variants of the Severe Acute Respiratory Syndrome Coronavirus 2

Vaccination
or Infection

Hospitalization Oxygen Therapy Intensive Care

Omicron Delta Omicron Delta Omicron Delta

Full2− 45% (29%–57%) 73% (69%–76%) 57% (32%–72%) 82% (76%–87%) 58% (3%–82%) 84% (72%–91%)

Full2+ 29% (21%–37%) 77% (76%–79%) 32% (20%–43%) 82% (80%–83%) 37% (12%–55%) 86% (83%–88%)

Booster2− 86% (84%–88%) 97% (97%–98%) 90% (87%–92%) 98% (98%–98%) 83% (75%–89%) 98% (97%–99%)

Booster2+ 79% (75%–82%) 96% (94%–97%) 85% (80%–88%) 97% (95%–98%) 60% (37%–74%) 97% (92%–99%)

Inf6− 73% (55%–84%) 100% (no case) 81% (40%–94%) 100% (no case) 83% (0–98%) 100% (no case)

Inf6+ 66% (54%–75%) 94% (91%–96%) 88% (72%–94%) 98% (95%–99%) 66% (15%–86%) 97% (90%–99%)

Data show vaccine effectiveness or protection by postinfection immunity (95% confidence interval) against need for hospitalization, oxygen therapy, or intensive care.

Abbreviations: Booster2–, booster dose≤2months ago; Booster2+, booster dose.2months ago; Full2–, complete vaccination≤2months ago; Full2+, complete vaccination.2months ago;
Inf6–, previous infection ≤6 months ago; Inf6+, previous infection .6 months ago.
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infection and recent vaccination present in our data appear to
provide nearly complete protection against Omicron as regards
hospitalization (Table 3) as well as oxygen therapy or intensive
care (often no cases have been observed for such situations; see
Supplementary Material 2, Sections 7–10).

Risk of a Severe Outcome for Omicron vs Delta

Finally, our logistic regression analyses show that once infected,
the odds ratio is 0.36 (95% CI, .34–.38) for hospitalization with
Omicron relative to Delta; 0.24 (95% CI, .22–.26) for a need of
oxygen therapy with Omicron relative to Delta; and 0.24 (95%
CI, .21–.28) for a need of intensive care with Omicron relative
to Delta. Moreover, once hospitalized, the odds ratio is 0.44
(95% CI, .39–.49) for a need of oxygen therapy with Omicron
relative to Delta, and 0.64 (95% CI, .52–.72) for a need of inten-
sive care with Omicron relative to Delta (see Supplementary
Material 2, Sections 15–19, for further details).

DISCUSSION

Our data support the existing evidence that the Omicron vari-
ant of SARS-CoV-2, to a significant extent, evades both post-
vaccination and postinfection immunity [2, 8–11]. The VE
levels of all the vaccines used in the Czech Republic are lower
for Omicron compared to Delta. As we previously observed
with Alpha and Delta [12], the protection against infection by
the Omicron variant also wanes over time. However, a booster
vaccine dose provides robust and lasting, or slowly waning,
protection against hospitalization, the need for oxygen therapy,
and intensive care. The combined postinfection and postvacci-
nation immunity is the most protective regardless of the exact
sequence of events, suggesting that the best protective strategy
before a coming wave is to vaccinate all individuals, whether
previously vaccinated or with a previous COVID-19 infection.

We are aware of the complicated interpretation of the hospi-
talization data for the Omicron wave: The very high basic re-
production number (R0) of this variant [13] translated into
the very high prevalence of infection in the population at the
peak of the epidemic wave; and a much higher proportion of
hospitalized patients with COVID-19 as a concomitant finding

rather than the reason for admission. We therefore analyzed
separately the need for oxygen therapy and ICU admission as
a more relevant measure of severe outcomes due to the
Omicron infection.
Compared to the Delta variant, the protection provided by

the postinfection or postvaccination immunity is lower against
the Omicron variant, but at the same time the Omicron variant
appears less severe than the Delta variant and the odds ratio for
oxygen therapy or ICU admission both approximately equal
about one-quarter compared to the Delta variant.
A common limitation of studies like ours is the fact that only

a certain proportion of infections is reported (ascertainment
rate). We believe this phenomenon does not significantly affect
our estimates of VE, assuming that the ascertainment rate is the
same for the vaccinated and the unvaccinated alike and we have
no evidence to the contrary. A potentially low ascertainment
rate could also distort our estimates of the protection by the
postinfection immunity; in particular, if there had been many
undetected individuals with postinfection immunity in the
control group, the infection risk of the virgin population would
have been underestimated and, consequently, the protection by
infection underestimated as well. Our results should be inter-
preted in terms of reported infections only.
In all of our analyses we used age and sex as control variables;

however, with some caution they can also be understood as risk
factors. In this respect, our results generally confirm the common
knowledge that the risk of various severe outcomes grows expo-
nentially with the person’s age – this is clearly illustrated by the
linear increase of log-HRs for both variants (see Supplementary
Material 2, Sections 5–19). The age-related risk of (re-)infection,
on the other hand, appears to be the highest for children and peo-
ple in the working age. This pattern is more pronounced for the
Omicron variant. However, it is not clear to what extent the pat-
tern is caused by behavioral causes and/or the current epidemic
situation rather than biological causes.

Supplementary Data

Supplementary materials are available at The Journal of
Infectious Diseases online (http://jid.oxfordjournals.org/).
Supplementary materials consist of data provided by the author

Table 3. Protection Due to Various Combinations of Past Infection Preceding Vaccination Against Hospitalization for the Omicron and the Delta Variants
of the Severe Acute Respiratory Syndrome Coronavirus 2

VOC Infection

Vaccination

Booster2− Full2− Booster2+ Full2+
Omicron Inf6− 100% (no case) 100% (no case) 71% (0–96%) 93% (49%–99%)

Inf6+ 95% (78%–99%) 94% (77%–95%) 90% (64%–98%) 73% (78%–99%)

Delta Inf6− 100% (no case) 100% (no case) 100% (no case) 100% (no case)

Inf6+ 99% (99%–100%) 97% (91%–99%) 98% (85%–100%) 98% (98%–100%)

Data show protection by vaccination following past infection (95% confidence interval).

Abbreviations: Booster2–, booster dose≤2months ago; Booster2+, booster dose.2months ago; Full2–, complete vaccination≤2months ago; Full2+, complete vaccination.2months ago;
Inf6–, previous infection ≤6 months ago; Inf6+, previous infection .6 months ago; VOC, variant of concern.
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that are published to benefit the reader. The posted materials
are not copyedited. The contents of all supplementary data
are the sole responsibility of the authors. Questions or messages
regarding errors should be addressed to the author.

Notes

Data sharing. Data reported in this study and used for the
analyses are not public. De-identified individual-level data are
available to the scientific community. Requests, together with
a short description of their analysis proposals, should be sub-
mitted to the Institute of Health Information and Statistics of
the Czech Republic (www.uzis.cz/index-en.php), where they
will be assessed based on relevance and scientific merit.
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Institute of Entomology,České Budějovice, Czech Republic, 3 Centre for Modelling of Biological and Social

Processes, Praha, Czech Republic, 4 Czech Academy of Sciences, Institute of Information Theory and

Automation, Praha, Czech Republic, 5 Department of Mathematics and Statistics, Faculty of Science,

Masaryk University, Brno, Czech Republic, 6 Institute of Biostatistics and Analyses, Faculty of Medicine,

Masaryk University, Brno, Czech Republic, 7 Institute of Health Information and Statistics of the Czech

Republic, Praha, Czech Republic, 8 Siesta Labs, Praha, Czech Republic, 9 First Faculty of Medicine, Charles

University, Praha, Czech Republic, 10 Department of Statistical Modelling, Czech Academy of Sciences,

Institute of Computer Science, Praha, Czech Republic, 11 Department of Biochemistry, Cell and Molecular

Praha, Czech Republic

* lberec@prf.jcu.cz

Abstract

Studies demonstrating the waning of post-vaccination and post-infection immunity against

covid-19 generally analyzed a limited range of vaccines or subsets of populations. Using

Czech national health data from the beginning of the covid-19 pandemic till November 20,

2021 we estimated the risks of reinfection, breakthrough infection, hospitalization and death

by a Cox regression adjusted for sex, age, vaccine type and vaccination status. Vaccine

effectiveness against infection declined from 87% at 0-2 months after the second dose to

53% at 7-8 months for BNT162b2 vaccine, from 90% at 0-2 months to 65% at 7-8 months

for mRNA-1273, and from 83% at 0-2 months to 55% at 5-6 months for the ChAdOx1-S.

Effectiveness against hospitalization and deaths declined by about 15% and 10%, respec-

tively, during the first 6-8 months. Boosters (third dose) returned the protection to the levels

observed shortly after dose 2. In unvaccinated, previously infected individuals the protection

against infection declined from 97% after 2 months to 72% at 18 months. Our results confirm

the waning of vaccination-induced immunity against infection and a smaller decline in the

protection against hospitalization and death. Boosting restores the original vaccine effec-

tiveness. Post-infection immunity also decreases over time.
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Introduction

The availability of vaccines brought about a breakthrough in the fight against the coronavirus

disease 2019 (covid-19) worldwide. In the light of the economic and social costs already caused

by covid-19, and the widespread aversion to any serious limitations of people’s daily lives due

to lockdowns, vaccination is undoubtedly a key tool for the containment of the pandemic and

for the limiting of its devastating impact on lives and health of people around the globe. Prov-

ing in the clinical studies and the weeks and months of their real-world application their high

effectiveness against SARS-CoV-2 infection, symptomatic covid-19 illness, need of a hospital

admission, the probability of severe symptoms, and death [1–4], their continued impact now

starts to be challenged by an increasing proportion of breakthrough infections and illnesses in

fully vaccinated individuals [5, 6].

In the Czech Republic, vaccination started on December 27, 2020 initially with the mRNA-

based vaccine BNT162b2 (Pfizer/BioNTech), followed by mRNA-1273 (Moderna), and the

adenovirus-based vector vaccines ChAdOx1-S (AstraZeneca) and Ad26.COV2-S (Johnson&-

Johnson). The administration of booster doses then started on September 20, 2021 and was

initially open to all individuals who completed their vaccination 8 months or longer ago with

only BNT162b2 and mRNA-1273 as allowed boosting vaccines. The waiting period was short-

ened to 6 months on October 29, 2021. Until November 1, 2021 a full 100 μg dose of Moderna

was being administered as a booster dose and since that day only a 50 μg dose was used. We

emphasize that by complete vaccination we mean two doses of vaccine (and just one for Ad26.

COV2-S) and by booster we mean the third vaccine dose.

Central Europe experienced another wave of SARS-CoV-2 infections in the autumn of

2021 despite the substantial proportion of vaccinated and/or recovered population. This wave

was accompanied by a non-negligible proportion of new infections in vaccinated individuals

including the need for hospital admission and, in a relatively few cases, for intensive care. The

appearance of breakthrough infections, though not unexpected, has complicated the public

health messaging related to the importance of vaccination and calls for a better understanding

of the temporal dynamics of post-vaccination immunity in real-world settings. Post-infection

immunity is another important factor determining individual risk. SARS-CoV-2 reinfections

have been reported as relatively rare events, yet the post-infection immunity appears to wane,

too [7–10]. None of these studies addressed longer-term dynamics of post-infection immunity

and their relationship to post-vaccination immunity.

Materials and methods

Study population and data sources

The analyses are based on data from the Czech National Information System of Infectious Dis-

eases (ISID), which includes records of all individuals tested positive for SARS-CoV-2 in the

Czech Republic since the beginning of covid-19 pandemic [11]. This database is overseen by

the Czech Ministry of Health and operated by the Institute of Health Information and Statistics

of the Czech Republic. The ISID data is routinely collected in compliance with Czech legal reg-

ulations (Act on the Protection of Public Health). The Director of the Institute of Health Infor-

mation and Statistics of the Czech Republic has granted that there is no need for ethical

approval of the retrospective analyses presented in this paper. Among other things, the ISID

database covers demographic data, dates of vaccination, including the vaccine types for each

dose, and dates of infection and potential reinfection, including information on dates of hospi-

tal admission with covid-19, and death with covid-19. Additional information on deaths from
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any cause come from the Death Certificate System; these data are used for censoring purposes

only.

In total, our dataset contains 7,428,968 valid records of vaccinated and/or SARS-CoV-2

positive persons (additional 8,834 cases lack information on sex or age and 216 other cases

contain data errors, see S2 Table in the S2 File). We further excluded 16,399 persons who were

recorded to die by the start of vaccination (December 26, 2020). As the source dataset consists

only of those who were tested positive and/or were vaccinated, we completed the sample to the

whole population such that the added subjects were neither tested positive nor vaccinated. In

particular, we completed each sex-age category to the numbers reported by the Czech Statisti-

cal Office by December 31, 2020—10,701,777 inhabitants; consequently, our sample truly

reflected the sex and age structure of the whole population, containing all the positive and/or

vaccinated individuals. We neglected births and deaths of the added persons.

Vaccine types and vaccination and infection dynamics

In the Czech Republic, all EMA-approved Covid-19 vaccines have been distributed and used.

They were provided to all individuals at no cost following the Czech public health insurance

system. Starting on December 27, 2020, workers in the critical infrastructure were vaccinated

first, followed since January 15, 2021 by persons of age 80 and older (S1 Table in S2 File). As of

November 20, 2021, the national Institute of Health Information and Statistics reported

6,287,356 individuals completing the vaccination (58.75% of the population and 67.36% of per-

sons of age 12 years and older); see Fig 1.

The covid-19 epidemic in the Czech Republic started with the first three cases reported on

March 1, 2020 and was initially fueled by Czech citizens returning from the alpine ski resorts

of Italy and Austria. Since then the country saw five waves of covid-19 spread. As of November

20, 2021, 1,996,080 individuals were infected with SARS-CoV-2 virus, of which 12,894 (0.65%)

were reinfected; see S1 Fig in S2 File. See also S2 and S3 Tables and the accompanying S2 and

S3 Figs in S2 File for an overview of the numbers of infection-related outcomes and vaccines

applied within various age cohorts.

Statistical analysis

We separately studied three types of events: (i) SARS-CoV-2 infection defined as a PCR con-

firmed positive test of a person from any sample regardless of the presence of symptoms, (ii)

hospital admission of a person tested positive via a PCR test (within two weeks before hospital

admission and whenever during hospitalization), and (iii) death due to covid-19.

A Cox regression with time-varying covariates was applied to estimate hazard ratios (HRs)

for the outcomes of interest. Analogously to [12], we used calendar time instead of time from

event occurrence as the time scale. Thus, the time course of individual cases was modelled

using “switching” dummy variables, corresponding to the stages of the process the subject goes

through. The vaccine effectiveness is calculated by comparing hazards of the vaccinated indi-

viduals to those of the control group—those who have not been vaccinated and infected so

far—individually for each vaccine type [12]. By using calendar time, we could control for

changing epidemic conditions, including non-pharmaceutical measures, seasonal effects and

viral variants; these phenomena can then be encompassed in the baseline hazard function.

Subjects were withdrawn from the study at the time of their (covid or non-covid) death.

Time zero corresponded to the day before the start of vaccination (26 December 2020) for

the analyses of vaccine-induced immunity, and the onset of epidemic in the Czech Republic

for the analyses of infection-induced immunity. Moreover, we estimated how HRs of infection

after vaccination depended on time after the vaccine application (adjusted for sex, age and
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time since the last infection), how HRs of hospital admission or death depended on time after

the vaccine application (adjusted for sex and age), and how HRs of reinfection in unvaccinated

individiuals depended on time since the previous infection (adjusted for sex and age). In all

these cases, we estimated the vaccine effectiveness (VE, regarding a previous infection as a

“vaccine”) as VE = 1 − HR [12–14].

We aggregate the time delays in two-month (61 days) periods. We consider one such period

after the first dose, four periods after the second one and a single period after the booster dose.

When a new dose is applied to a person, (s)he is no longer regarded to be in any period corre-

sponding to the previous dose, but enters the first period corresponding to the new dose. In

line with the Czech vaccination recognition policy, the first period corresponding to any of the

first two doses starts two weeks after the dose application, while for boosters this interval is just

7 days. For the reinfections, we consider nine two-month periods.

We examine boosting effects by the mRNA vaccines BNT162b2 and mRNA-1273. Since

93% of BNT162b2 boosters is preceded by the BNT162b2 second dose and 73% of mRNA-

1273 boosters is preceded by the mRNA-1273 second dose, but the vaccine type used for the

first two doses does not play a role in which type is applied as the booster, we estimate the

Fig 1. Dynamics of vaccination in the Czech Republic. Specific days in which vaccination was open to an age group or professional or other category are

specified in S1 Table in S2 File.

https://doi.org/10.1371/journal.pone.0270801.g001
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boosting effects of the mRNA vaccines both with and without individual vaccination history.

Subjects with the alleged application of ChAdOx1-S (in total 176) or Ad26.COV2-S (in total

332) boosters are withdrawn from the study of booster dose effectiveness, as these records are

most likely data entry errors.

To analyse a possible impact of the delta variant to breakthrough infections, we performed

an alternative analysis including dummy variables indicating time period starting on July 1st,

2021 when the delta variant started to dominate in Czechia (virus.img.cas.cz/
lineages). We performed three such comparisons, each concerning only age cohorts which

started to be extensively vaccinated at similar time (S1 Table in S2 File); only this way could

guarantee to some extent that the estimation of the delta effect would not collide with that of

immunity waning.

All calculations were performed using the R software (package survival). The algorithm

used to transform data from the database into the package command inputs was coded in

C++. See Supporting information for details.

Results

Since December 26, 2020 to November 20, 2021, 6,287,356 individuals received complete vac-

cination (58.75% of the population and 67.36% of persons of age 12 years and older). In this

period a total of 1,335,055 individuals were infected, of which 96,237 (7.21%) were hospitalized

and 20,809 (1.56%) died because of covid-19 (S2 Table and S2 Fig in S2 File). Among vacci-

nated individuals by far the largest group of 5,011,115 persons (79.7%) received BNT162b2,

followed by 469,605 persons (7.47%) vaccinated with mRNA-1273, 436,575 persons (6.94%)

with ChAdOx1-S and 370,061 persons (5.89%) with the one-dose Ad26.COV2-S vaccine (S3

Table and S3 Fig in S2 File). The 693,071 booster doses administered in this period comprised

617,002 doses of BNT162b2 and 76,069 doses of mRNA-1273 (S3 Table and S3 Fig in S2 File).

We emphasize again that by complete or full vaccination we mean two doses of vaccine (and

just one for Ad26.COV2-S) and by booster we mean the third vaccine dose.

Using a Cox regression model we estimated changes in vaccine effectiveness over time at

two-month intervals (Fig 2, S4 Table in S2 File). The vaccine effectiveness against any PCR-

confirmed SARS-CoV-2 infection declined for BNT162b2 from 87% (95% CI 86–87) 0–2

months after the second dose to 53% (95% CI 52–54) at 7–8 months, for mRNA-1273 from

90% (95% CI 89–91) at 0–2 months to 65% (95% CI 63–67) at 7–8 months, and for ChA-

dOx1-S from 83% (95% CI 80–85) at 0–2 months to 55% (95% CI 54–56) at 5–6 months. Inter-

estingly, the estimated effectiveness for the Ad26.COV2-S vaccine (68% (95% CI 66–70) at 0–2

months and 67% (95% CI 65–69) at 5–6 months) did not seem to exhibit any significant

decline over the study period but notably starts at a significantly lower effectiveness. The effec-

tiveness estimates for ChAdOx1-S and Ad26.COV2-S at 7–8 months after the completion of

vaccination exhibit very large uncertainty due to a low number of events as most people com-

pleted their vaccination with these vaccines much later, and are therefore only shown in S4

Table in S2 File.

A similar trend can be seen in the estimation of vaccine effectiveness against hospital

admissions and deaths. For hospital admission, the vaccine effectiveness declined for

BNT162b2 from 90% (95% CI 89–91) at 0–2 months after dose 2 to 75% (95% CI 73–76) at

7–8 months, for mRNA-1273 from 94% (95% CI 92–96) to 81% (95% CI 78–84), and for ChA-

dOx1-S from 87% (95% CI 81–91) at 0–2 months to 70% (95% CI 68–72) at 5–6 months (Fig 2

red curves, S4 Table in S2 File). In the case of protection from death the model estimated for

BNT162b2 a decrease from 92% (95% CI 90–93) at 0–2 months to 83% (95% CI 81–86) at 7–8

months, from 96% (95% CI 91–98) to 88% (95% CI 82–92) for mRNA-1273 within the first 8
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Fig 2. Vaccine effectiveness against infection. Vaccine-acquired immunity against infection with respect to the delay from the full vaccine application, including the

effect of a booster vaccine dose.

https://doi.org/10.1371/journal.pone.0270801.g002
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months and from 93% (95% CI 77–98) to 82% (95% CI 78–85) for ChAdOx1-S within the first

6 months after application (Fig 2 black curves, S4 Table in S2 File). Ad26.COV2-S once again

exhibits virtually no decline either in the protection against hospitalization starting from 68%

(95% CI 60–75) at 2 months to 67% (95% CI 62–72) at 5–6 months, or deaths starting from

68% (95% CI 42–82) and reaching 68% (95% CI 53–78) at 5–6 months (Fig 2, S4 Table in S2

File).

To evaluate the differences between the individual vaccines, we statistically tested whether

the corresponding covariates differ significantly; that is, whether their differences are signifi-

cantly different from zero. To this end, we estimated the distribution of the differences by

means of the estimator’s covariance matrix and checked for statistical significance via a Z-test.

Fig 3 summarizes the results. We see, for example, that the BNT162b2 booster is quite superior

over all other covariates except the mRNA-1273 booster (quite superior to all covariates).

In June-July 2021 the alpha variant of the SARS-CoV-2 virus was largely superseded by the

delta variant in Czechia (virus.img.cas.cz/lineages). Therefore, we attempted to

disentangle the effects of immunity waning and immunity evasion due to the delta variant on

the observed changes in vaccine effectiveness. Evaluating the extra risk of breakthrough infec-

tion due to the delta variant, for consistency estimated just for the age cohorts that started to

be vaccinated at about the same time, we found a consistent and significant increase in the risk

for BNT162b2, mostly significant increase for mRNA-1273 and ChAdOx1-S, and inconclusive

results for Ad26.COV2-S (Table 1). Note that these differences do not represent the infection

risk increase due to delta; they represent the additional risk increase of a vaccinated individual

over the generally higher infectiousness of the delta variant compared to alpha.

Regardless of the original vaccine used for the initial vaccination schedule a BNT162b2

booster dose enhances protection against infection to 92% (95% CI 91–92), against hospital

admission to 95% (95% CI 94–96), and against death to 97% (95% CI 96–98) (Fig 2). A

mRNA-1273 booster dose reaches 93% (95% CI 91–95) protection against infection, 98% (95%

CI 95–99) against hospital admission, and close to 100% against death (Fig 2). Combining pri-

mary and booster mRNA-based vaccines, boosted effectiveness reached > 91%. The combina-

tion of ChAdOx1-S primary and an mRNA booster showed a somewhat lower effectiveness

but these estimates are less certain due to a low number of observations (Table 2).

To study reinfections, we used data on PCR-confirmed infections since the beginning of

covid-19 pandemic in the Czech Republic; 1,999,315 individuals were infected with SARS--

CoV-2 virus until 20th November 2021, of which 12,894 (0.64%) were reinfected. Previous

SARS-CoV-2 infection in our population conferred a high and fairly stable level of protection

against infection lasting for more than 18 months. In unvaccinated but previously covid-

19-positive individuals protection against PCR-confirmed covid-19 infection declined from

close to 97% (95% CI 97–97) at 2–4 months through 91% (95% CI 90–91) at 5–6 months down

to 83% (95% CI 82–84) at 11–12 months and 72% (95% CI 65–78) at 17–18 months (Fig 4, S5

Table in S2 File).

Discussion

Our results show a gradual decrease in protective effectiveness of three out of four vaccines

used in Czechia to vaccinate against covid-19. The observed decrease was the fastest for protec-

tion against infections followed by hospital admissions, while the protection from covid-

19-related death was the least affected by the time elapsed from the completion of primary vac-

cination schedule.

There are several plausible explanations for this decrease and for a corresponding rise in

breakthrough infections. One is waning of the immunity conferred by the vaccines,
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Table 1. Estimated increase of breakthrough infection hazard ratios (HRs) in times of the SARS-CoV-2 delta variant dominance for age groups having started vacci-

nation in the same month.

Vaccine March (age 70–80y) April (age 55–69y) May (age 35–54y)

HR 95% CI HR 95% CI HR 95% CI

BNT162b2 1.28 1.09–1.52 1.04 0.95–1.14 1.33 1.27–1.40

mRNA-1273 0.82 0.41–1.67 1.56 1.08–2.25 1.59 1.29–1.98

ChAdOx1-S 1.64 1.05–2.57 1.12 0.74–1.70 1.24 0.82–1.86

Ad26.COV2-S 2.70 0.37–19.63 0.40 0.20–0.78 0.91 0.34–2.43

https://doi.org/10.1371/journal.pone.0270801.t001

Fig 3. Estimating potential statistical differences between the vaccines. A Z-test has been performed to test for those

differences. For each pair of covariates (each covariate is characterized by the vaccine and the time interval since completing

the corresponding vaccination scheme), a color is assigned to indicate a degree of statistical significance: blue for 1% (|Z|>

2.576), red for 5% (2.576� |Z|> 1.960), and gray for |Z|� 1.960. Moreover, only pairs with positive values of the test

statistic Z are plotted, indicating a positive difference between a respective y-axis covariate and x-axis covariate (values

symmetric around the diagonal are negative with the same absolute value). The axis labels are composed of a capital letter

(P = BNT162b2 vaccine, M = mRNA-1273 vaccine, A = ChAdOx1-S vaccine, and J = Ad26.COV2-S vaccine) and a number

range (months since full vaccination) or ‘boost’ (3rd vaccine dose).

https://doi.org/10.1371/journal.pone.0270801.g003
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documented for a range of commonly used vaccines and demonstrated for covid-19 vaccines

in an increasing number of recent studies [12–14]. The other possibility is the effect of the

delta variant, shown to evade to some extent the vaccine-induced immunity [12, 15, 16]. Our

sub-analysis of the data suggests but a modest overall effect of the delta variant on the vaccine

effectiveness in the studied period. Lacking individual-level information about specific variants

causing breakthrough infections we used an indirect method of time dummies corresponding

to the period of delta variant dominance. Since this approach may be affected by co-linearity

(“influence” of the absolute time will be mismatched with the waning), we present these esti-

mates just as secondary results; the primary effectiveness estimates are averaged over the viral

variants. However, it is likely that long-term estimates of vaccine effectiveness correspond to

the period of dominating delta variant. This is not an issue for boosters, which have been given

only after delta reached overwhelming dominance.

A largely unstudied factor that could affect the observed vaccine effectiveness are changes

in behaviour of vaccinated vs. unvaccinated persons and a possible effect of infection control

measures due to differential access of the unvaccinated individuals to many social activities or

due to differential testing strategies, since vaccinated people and people within 6 months after

their PCR-positivity have not been required to undergo testing as often as the others. Indeed,

analyses of vaccine effectiveness and its temporal dynamics generally assume that both vacci-

nated and unvaccinated persons behave similarly and we assume this in our study as well. This

possible limitation of this study is applicable mainly to the endpoint of confirmed infection

and to the lesser extent to the hospitalisation or death endpoints.

The one-dose Janssen vaccine appears in our analysis to defy the general trend of protection

decay. While it starts at a significantly lower effectiveness, it holds it over the all 6 months we

consider. To our knowledge, this somewhat counter-intuitive result has not yet been reported

and as such is not easy to interpret. However, since this vaccine was introduced to the Czech

Republic much later than the other three vaccines and only one dose is required for complete

vaccination, it is plausible that this vaccine was mostly chosen by people with different social

and behavioural characteristics compared to the two-dose vaccines. Since we cannot support

this suggestion with data, we leave this as a suggestion for further studies.

We show that administration of booster doses of two approved mRNA vaccines brings the

observed effectiveness to above 90% for infections, hospital admissions and deaths alike.

Booster doses are highly efficient for preventing serious or fatal infections. Although our

results are in a general agreement with the study on protective effect of vaccine booster in

Israel [17], we cover a more extensive period of booster applications, use of the mRNA-1273

vaccine as a booster, and do not limit ourselves to any specific age group.

Protection afforded by previous covid-19 infection declines over time, too, but at a slower

rate compared to the post-vaccination immunity. Whereas several studies consistently report

that protection against reinfection declines [7–10], we are the first to describe the long-term

temporal dynamics of infection-induced immunity against SARS-CoV-2 reinfections. We

note that this finding relates only to directly confirmed primary infections (possibly associated

Table 2. Vaccine effectiveness against infection after administering the booster vaccine dose for various possible

combinations of primary (columns) and booster (rows) vaccines (with the exception of Janssen due to insufficient

data). Hazard ratios (HRs) are given.

Vaccine BNT162b2 mRNA-1273 ChAdOx1-S

VE 95% CI VE 95% CI VE 95% CI

BNT162b2 0.92 0.91–0.92 0.94 0.91–0.96 0.82 0.68–0.9

mRNA-1273 0.92 0.88–0.95 0.94 0.91–0.95 0.91 0.63–0.98

https://doi.org/10.1371/journal.pone.0270801.t002
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with test-seeking behaviour and severity of the disease) and may not be translatable to evi-

dence of previous infection from antibody testing.

In this study we used a Cox model with calendar time, which has an obvious advantage—

our results are independent of factors that influence the risk of all the subjects equally, such as

a change in the basic reproduction number, viral prevalence in the population, non-pharma-

ceutical interventions, weather or seasonal influences, or a dominant virus variant—all these

factors can be included in the baseline hazard function of the Cox model. All this makes our

findings comparable with and transferable to other contexts. Indeed, similar studies have

come to similar conclusions [12]. Our results are also robust with respect to under-reporting

provided the reporting rate is the same for all subjects, because then the Cox regression equa-

tion is only multiplied by a constant, so the estimation of the HRs remains correct.

The model, however, has some limitations. Importantly, the dependence of individual haz-

ard function on covariates may be non-log-linear. This happens, for instance, when the detec-

tion rate depends on a characteristic of a subject—e.g. unvaccinated are being tested more

often than the vaccinated. If this were true the vaccine effectiveness would be overestimated,

yet the estimates of the HR increase (i.e. VE decline) over time would still be valid (provided

that the testing propensity does not change in time). Equally such a case could arise if the vac-

cinated behaved more riskily than the unvaccinated—the effectiveness then would be underes-

timated, yet the estimates of the relative increase of HR (and the consequent decrease of VE)

would again be valid provided that this behaviour does not change substantially over the study

Fig 4. Infection-acquired immunity against reinfection with respect to the delay from the prior infection. The delay 0–2 months is not considered as a new

infection which implies 100% effectiveness by definition.

https://doi.org/10.1371/journal.pone.0270801.g004
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period. It is also worth noting that unlike infections the hospitalization and mortality data are

less likely to suffer from the aforementioned bias as the facts of hospitalizations and deaths

depend much less on test seeking behavior.

In addition, as everywhere, only a certain fraction of infections are reported and hence the

results could possibly be distorted by this fact; that fraction of unreported infections is called

the ascertainment rate. This potential distortion is less severe for the estimates of VE if the

ascertainment rate is comparable in the group of the vaccinated individuals and in the control

group of the unvaccinated virgin population, since biases then cancel out. However, the prob-

lem could be more serious for the estimates of post-infection immunity protection; here, even

if the ascertainment rates were comparable in the group of once infected and in the control

group of covid-19 virgins, there would be an undetected part of formerly infected and hence

protected in the control group. Therefore, the risk of infection in the truly virgin population

would be underestimated, while the estimate of the infection risk in the treatment group

would not be biased, as all have been infected here. As a consequence, the protection by the

past infection is likely underestimated. Determining size of this possible bias is complicated

e.g. by the fact that the unreported cases are more likely to be mild ones, providing less

protection.

Concerns may arise as to what extent are the results affected by the changing environment

due to such aspects as weather, counter-epidemic measures, people’s behavior, etc. Thanks to

the fact that we use calendar instead of relative time in our analyses, these changes are handled

by the baseline hazard function, provided that the environment affects the “treatment” groups

in the same way as the “control” group. This can be the case for both the weather (changing

the amount of time spent indoors) and the overall counter-epidemic measures (reducing the

number of risk contacts). On the other hand, as already emphasized above, differences in

behavioral effects cannot be fully excluded (vaccinated or even unvaccinated people may

behave in riskier ways); thus, the VE should be understood including the potential behavioral

responses. Also, it should be stressed that the fact that the environmental effects “cancel out”

in the Cox model with calendar time (the results do not depend on the baseline hazard in any

way) effectively precludes studying these effects by means of this model.

Conclusion

We used a comprehensive national population-based database containing individual level data

about all detected SARS-CoV-2 infection cases to estimate many important characteristics of

the post-vaccination and post-infection immunity in the population of the Czech Republic,

covering all four vaccines currently approved in the EU and the protection from infection, hos-

pital admission and death. The results strongly advocate for a timely and widespread adminis-

tration of the third (i.e., booster) dose. Covid-19 will undoubtedly continue to disrupt

everyday lives and cause suffering and loss of life around the globe and vaccine effectiveness

data such as the ones presented in this study can bring an important insight for policy makers

in order to limit the worst impacts of the current pandemic.

Supporting information

S1 File. More information on the use of the Cox regression method. Details on the statistical

model used to process infection and vaccination data and to produce the main results of this

study.

(PDF)
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S2 File. Supporting Figures and Tables. S1-S3 Figs and S1-S5 Tables that are referred to

within the main text. S6-S10 Tables indicating numbers of respective cases behind results plot-

ted in Figs 2 and 4 in the main text.

(PDF)

S3 File. Detailed age- and gender-structured data on temporal dynamics of vaccination

and infection in the Czech Republic during the study period. Data presented on a weekly

basis, with the date in the first column indicating the middle of the respective week (week is

not a calendar week, but from Saturday till Friday, since vaccination started on Saturday,

December 26, 2020).

(ODS)
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European Forecast Hub modeling teams under
ECDC for covid-19 forecasting

Figure A.1: 4-week prediction of the omicron wave of our model (blue) and
ECDC ensemble model (violet). Black line corresponds to reported cases.

Description of model performance evaluation: The weighted interval score
(WIS) is a proper scoring rule (i.e., it cannot be “cheated”) that is suited
to scoring forecasts in an interval format. It generalizes the absolute error

(i.e. lower values are better) and has three components: dispersion,
underprediction and overprediction. Dispersion is a weighted average of

the widths of the submitted prediction intervals. Over- and
underprediction (overpred/underpred) penalties are added whenever an

observation falls outside of a reported central prediction interval, with the
strength of the penalty depending on the nominal level of the interval and
how far outside of the interval the observation fell. Note that the average
WIS can refer to different sets of targets for different models and therefore
cannot always be compared across models. Such comparisons should be
done based on the relative skill. The Relative WIS (column rel wis) is a
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relative measure of forecast performance which takes into account that
different teams may not cover the exact same set of forecast targets (i.e.,
weeks and locations). Loosely speaking, a relative WIS of X means that
averaged over the targets a given team addressed, its WIS was X times

higher/lower than the performance of the baseline model described in [6].
Smaller values are thus better and a value below one means that the
model has above-average performance. The relative WIS is computed

using a ‘pairwise comparison tournament’ where for each pair of models a
mean score ratio is computed based on the set of shared targets. The

relative WIS is the geometric mean of these ratios. Details on the
computation can be found in [6]. This metric is calculated for all models
that provide a full set of quantiles. The Relative Absolute Error (column
rel ae) is the relative absolute error of the predictive point forecasts, that

is the predicted value that individual forecasts deem the most likely.
Coverage (50% Cov. / 95% Cov.) is the proportion of observations that

fell within a given prediction interval. Bias (bias) is a measure between -1
and 1 that expresses the tendency to underpredict (-1) or overpredict (1).

Our model MUNI DMS-SEIAR for the Czech Republic is being submitted
to ECDC Forecast Hub weekly for around a year with the best

performance evaluations for cases and hospitalizations (even above
ensemble performance):

model week num. rel wis rel ae 50% 95% bias

MUNI DMS-SEIAR 1 10 0.56 0.41 1 1 -0.04

EuroCOVIDhub-ensemble 1 10 0.73 0.78 0.1 0.5 0.09

MUNI DMS-SEIAR 1 47 0.55 0.5 0.66 0.94 -0.09

EuroCOVIDhub-ensemble 1 49 0.69 0.74 0.63 0.96 0

MUNI DMS-SEIAR 2 10 0.52 0.64 0.8 1 0.05

EuroCOVIDhub-ensemble 2 10 0.95 1.15 0.1 0.6 0.14

MUNI DMS-SEIAR 2 46 0.47 0.54 0.48 0.76 -0.03

EuroCOVIDhub-ensemble 2 48 0.78 0.88 0.44 0.85 0.03

MUNI DMS-SEIAR 3 9 0.79 1.14 0.56 0.89 0.01

EuroCOVIDhub-ensemble 3 10 1.07 1.23 0.1 0.3 0.06

MUNI DMS-SEIAR 3 45 0.65 0.82 0.27 0.69 0.02

EuroCOVIDhub-ensemble 3 47 0.83 0.91 0.38 0.74 0

MUNI DMS-SEIAR 4 9 0.82 1.08 0.22 0.67 -0.07

EuroCOVIDhub-ensemble 4 10 1.13 1.19 0.1 0.4 -0.04

MUNI DMS-SEIAR 4 44 0.69 0.81 0.16 0.55 0

EuroCOVIDhub-ensemble 4 46 0.88 0.91 0.35 0.8 -0.01

Table A.1: European COVID-19 Forecast Hub Evaluation Report for
Czechia, accessed February 17, 2022. Column ”week” addresses the fore-
cast type, ”num.” number of last forecasts included in the evaluation, the
next columns belong to the above described evaluation metrics.
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METHODICS

Differential equations

Ż =− εZ/N,
Ṡ =− β

N−ZS(I + A) + εZ/N,

Ė = β
N−ZS(I + A)− γE,

İ =γpE − µ1I,

Ȧ =γ(1− p)E − µ2A,

Q̇ =µ1I − νQ,
Ṙ =νQ,

S

E

I A

R

Z

Z not affected population size
S susceptibles
E exposed
I detected infectious
A undetected infectious
Q izolated infectious
R removed detected
N population size
p ascertainment rate
ε, β, γ, µ1, µ2, ν parameters

Optimization estimates the size of the affected clusters
(dependencies such as seasonality, the degree of influence
of government measures or changes in people’s behavior
caused by fear or disinformation are included in the
estimate of affected clusters), we use estimates of latent
or infectious periods from the literature, estimates of
computable periods as isolation time or time to
hospitalization or death from ÚZIS dataset and a 14-day
moving average ascertainment rate estimate. Scenarios
of ZSEIAR model can be generated using MAMES
application [?], for detailed documentation see [?].

Mobility dependence

Transmisibility rate β is assumed to be strictly dependent
on the number of contacts or mobility.
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Figure 1: Number of contacts according to social studies [1] during
COVID-19 epidemic in the Czech Republic, 2020

 

0

5

10

15

20

25

30

Number of contacts (PAQ research)

­100

­80

­60

­40

­20

0

20

40

Mobility (retail ­ grey, transit stations ­ black)

Figure 2: Mobility [2] during COVID-19 epidemic in the Czech Re-
public, 2020

Ascertainment rate estimate

The rate is based on the Bayes rule for conditional
probabilities and on the assumption that the average
infected person’s probability of hospitalization is given
or estimated.

p = P (Det) = P (Det|H)P (H)
P (H|Det)

P (Det|H) – the probability that a person hospitalized
with COVID-19 was previously detected; the proportion
of patients detected prior to admission to hospital and
all patients hospitalized with COVID-19 (including
those not detected prior to admission to hospital)
relative to the date of the positive test report.
P (H|Det) – the probability that if an individual was
detected, he or she will be hospitalized; the proportion
of all reported hospitalized patients detected before
admission to the hospital, and all detected persons
except those detected only in the hospital.
P (H) – the probability that SARS-CoV-2 positive
individual is/was/will be hospitalized (regardless of
whether was detected or not); estimated to the age
structure of the epidemics affected.

Hospitalization probability age
structure dependence

Age structure in the Czech Republic attained 20% share
of the over 65 year-old population. Patients hospitalized
with COVID-19 over the age of 65 had a long-term ratio of
around 3/4 during the autumn 2020, so a rough estimate
of probability P (H65+) of hospitalization with COVID-19
for a person over 65 is around twelve times higher than
probability P (H65−) of hospitalization with COVID-19
for a person under 65.

P (H) = p+
65−P (H65−) + p+

65+P (H65+) =

=
(

1 + 11p
+
65+
p+

65−

)
P (H65−),

where p+
65+ and p+

65− are 7-day moving averages of the
senior and non-senior population ratio in the reported
positive cases.

Early warning

A significant decrease in the ascertainment rate esti-
mate is a signal of tracing and testing overload col-
lapse.
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Figure 3: The ascertainment rate estimate shows the collapse of
tracing by regional hygiene stations, which occurred in the second
half of September.
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REAL DATA FIT

Spring and summer 2020

Simulation of a spring outbreak in the Czech Republic
with the constant growth rate of affected clusters copies
the real data due to the ascertainment rate estimate that
shapes the local outbreak in the OKD mines that was the
main source of the infected in the Czech Republic in July.
In August, the optimization of affected clusters abruptly
changes and is no longer constant as the real data start
to increase exponentially.
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Figure 4: Active cases – real data (circles), ZSEIAR model with
constant ε from April (blue), and optimized ε (red)
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Figure 5: Optimalized fit (line) to real data (circles) during the year
2020 – incidence of admissions to hospitals and deaths.

References

[1] PAQ research, IDEA AntiCovid,
https://zivotbehempandemie.cz/kontakty,
2020 (accessed January 21, 2021)

[2] Google Mobility reports,
https://github.com/ActiveConclusion/
COVID19_mobility/blob/master/google_
reports/mobility_report_europe.xlsx, 2020
(accessed January 21, 2021)

[3] MAMES application,
https://webstudio.shinyapps.io/MAMES/

[4] ZSEIAR model (documentation in Czech),
https://is.muni.cz/www/98951/47857356/
mames/MAMES_ZSEIAR_metodika.pdf, 2021



200 APPENDIX A. COVID-19 RELATED WORK



201

Ascertainment rate estimate from hospital data used in modelling
COVID-19 epidemics

Veronika Eclerová (email: eclerova@math.muni.cz), Lenka Přibylová (email: pribylova@math.muni.cz)
Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic

METHODS

Differential equations

Ż =− εZ/N,
Ṡ =− β

N−ZS(I + A) + εZ/N,

Ė = β
N−ZS(I + A)− γE,

İ =γpE − µ1I,

Ȧ =γ(1− p)E − µ2A,

Q̇ =µ1I − νQ,
Ṙ =νQ,

N = 107 population size
Z = Z(t) unaffected at time t
S = S(t) susceptible at time t
E = E(t) exposed at time t
I = I(t) reported infectious at time t
A = A(t) unreported infectious at time t
Q = Q(t) isolated reported infectious at time t
R = R(t) reported recovered or deceased at time t
ε = ε(t) rate of cluster growth at time t
p = p(t) ascertainment rate at time t
β = β(t) transmission rate at time t
γ = 1/4 reciprocal of the mean incubation period
µ1 = µ1(t) reciprocal of the mean infectious period of I
µ2 = 1/3 reciprocal of the mean infectious period of A
ν = ν(t) reciprocal of the mean quarantine duration
Optimization of ε(t): dependencies such as season-
ality, the degree of influence of government measures, or
changes in people’s behavior caused by fear or disinfor-
mation are included in the estimate of affected clusters
Estimation from data
β(t) - Google mobility report
p(t), µ1(t), ν(t) - ÚZIS dataset

Ascertainment rate estimate

The rate is based on the Bayes rule for con-
ditional probabilities and on the assumption
that the average infected person’s probability
of hospitalization is given or estimated.

p = P (Det) = P (Det|H)P (H)
P (H|Det)

P (Det|H) – the probability that a person admitted
to a hospital with COVID-19 was previously detected at
time t; to estimate this probability, we use the 7-day mov-
ing proportion of patients reported prior to admission to
the hospital from all patients hospitalized with COVID-19
(including those not detected prior to admission to hos-
pital) with respect to the date of the positive test report
P (H|Det) – the probability that if an individual was
detected at time t, he or she will be hospitalized; to es-
timate this probability we use the 7-day moving propor-
tion of all reported hospitalized patients detected before
admission to the hospital, from all that time already de-
tected subjects with respect to the date of the positive
test report, that is except those detected in the hospital
afterwards who are a part of the undetected compartment
at time t
P (H) – the probability that SARS-CoV-2 positive indi-
vidual is/was/will be hospitalized (regardless of whether
was detected or not) at time t; should be derived for each
community/country separately since it depends highly
on the population age structure, one possible estimation
method is described in the next subsection

Hospitalization probability age
structure dependence

Age structure in the Czech Republic attained 20% share
of the over 65 year-old population. Patients hospitalized
with COVID-19 over the age of 65 had a long-term ratio of
around 3/4 during the autumn 2020, so a rough estimate
of probability P (H65+) of hospitalization with COVID-19
for a person over 65 is around twelve times higher than
probability P (H65−) of hospitalization with COVID-19
for a person under 65.

P (H) = p+
65−P (H65−) + p+

65+P (H65+)

= P (H65−)

1 + 11p+

65+




= 1
160(1 + 11p+

65+),
where p+

65+ and p+
65− are 7-day moving averages of the

senior and non-senior population ratio in the reported
positive cases.

Retrospective data analysis shows that people under 20
were hospitalized with almost zero probability and three
age compartments (under 20, 20-65, and over 65) seems
to be enough for the basic improvement of P (H) estimate
in the form

P (H) = 1
160(1− p+

20− + 11p+
65+),

where p+
20−, p+

20−65, and p+
65+ are 7-day moving averages

of the young, middle-aged, and senior population ratio in
the reported positive cases.

Spring and summer 2020

Simulation of a spring outbreak in the Czech Republic
with the constant growth rate of affected clusters copies
the real data due to the ascertainment rate estimate that
shapes the local outbreak in the OKD mines that was the
main source of the infected in the Czech Republic in July.
In August, the optimization of affected clusters abruptly
changes and is no longer constant as the real data start
to increase exponentially.
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Figure 1: Active cases - real data (circles), model with constant ε
from April (blue), and optimized ε (red)
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Fall 2020

Insufficience of tracing in the second half of September.
The peak of the second wave is marked at 2020-11-04.
Dates in chart denotes: 2020-09-01 – beginning of school
year, 2020-09-15–2021-10-01 – tracing overload, 2021-11-
04 – peak of the second wave, 2021-01-01 – new year.
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Figure 3: Ascertainment rate estimate

Spring 2020 - Summer 2021

Exposed are estimated using new cases divided by the as-
certainment rate estimate compared to the introduction of
NPIs: 2020-09-01 (beginning of the school year), 2020-10-
22 (partial lockdown), 2020-11-14 (announcement of the
first measure release after 2020-11-18), 2020-12-03 (shops
reopening), 2020-12-27 (a partial lockdown), 2021-01-11
(partial school reopening), 2021-02-23 (mandatory respi-
rators).
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Abstract

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid
capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology,

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.16.22276024doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.



204 APPENDIX A. COVID-19 RELATED WORK

one can maximise the predictive performance of such forecasts if multiple models are combined into an
ensemble. Here we report on the performance of ensembles in predicting COVID-19 cases and deaths across
Europe between 08 March 2021 and 07 March 2022.

Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited
groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported from a standardised
source over the next one to four weeks. Teams submitted forecasts from March 2021 using standardised
quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive
quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the
median) of all individual models’ predictive quantiles. We measured the performance of each model using
the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models.
We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based
on models’ past predictive performance.

Results: Over 52 weeks we collected and combined up to 28 forecast models for 32 countries. We found a
weekly ensemble had a consistently strong performance across countries over time. Across all horizons and
locations, the ensemble performed better on relative WIS than 84% of participating models’ forecasts of
incident cases (with a total N=862), and 92% of participating models’ forecasts of deaths (N=746). Across a
one to four week time horizon, ensemble performance declined with longer forecast periods when forecasting
cases, but remained stable over four weeks for incident death forecasts. In every forecast across 32 countries,
the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently
outperforming all of its individual component models. Among several choices of ensemble methods we found
that the most influential and best choice was to use a median average of models instead of using the mean,
regardless of methods of weighting component forecast models.

Conclusions: Our results support the use of combining forecasts from individual models into an ensemble
in order to improve predictive performance across epidemiological targets and populations during infectious
disease epidemics. Our findings further suggest that median ensemble methods yield better predictive per-
formance more than ones based on means. Our findings also highlight that forecast consumers should place
more weight on incident death forecasts than incident case forecasts at forecast horizons greater than two
weeks.

Code and data availability: All data and code are publicly available on Github: covid19-forecast-hub-
europe/euro-hub-ensemble.

Background

Epidemiological forecasts make quantitative statements about a disease outcome in the near future. Fore-
casting targets can include measures of prevalent or incident disease and its severity, for some population
over a specified time horizon. Researchers, policy makers, and the general public have used such forecasts
to understand and respond to the global outbreaks of COVID-19 [1]–[3].

Forecasters use a variety of methods and models for creating and publishing forecasts, varying in both defining
the forecast outcome and in reporting the probability distribution of outcomes [4], [5]. Such variation makes
it difficult to compare predictive performance between forecast models, and from there to derive objective
arguments for using one forecast over another. This confounds the selection of a single representative forecast
and reduces the reliability of the evidence base for decisions based on forecasts.

A “forecast hub” is a centralised effort to improve the transparency and usefulness of forecasts, by standar-
dising and collating the work of many independent teams producing forecasts [6]. A hub sets a commonly
agreed-upon structure for forecast targets, such as type of disease event, spatio-temporal units, or the set
of quantiles of the probability distribution to include from probabilistic forecasts. For instance, a hub may
collect predictions of the total number of cases reported in a given country for each day in the next two weeks.
Forecasters can adopt this format and contribute forecasts for centralised storage in the public domain. This
shared infrastructure allows forecasts produced from diverse teams and methods to be visualised and quan-
titatively compared on a like-for-like basis, which can strengthen public and policy use of disease forecasts.
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The underlying approach to creating a forecast hub was pioneered in climate modelling and adapted for
collaborative epidemiological forecasts of dengue [7] and influenza in the USA [6], [8]. This infrastructure
was adapted for forecasts of short-term COVID-19 cases and deaths in the US [9], [10], prompting similar
efforts in some European countries [11]–[13].
Standardising forecasts allows for combining multiple forecasts into a single ensemble with the potential
for an improved predictive performance. Evidence from previous efforts in multi-model infectious disease
forecasting suggests that forecasts from an ensemble of models can be consistently high performing compared
to any one of the component models [7], [8], [14]. Elsewhere, weather forecasting has a long-standing use
of building ensembles of models using diverse methods with standardised data and formatting in order to
improve performance [15], [16].
The European COVID-19 Forecast Hub [17] is a project to collate short term forecasts of COVID-19 across
32 countries in the European region. The Hub is funded and supported by the European Centre for Disease
Prevention and Control (ECDC), with the primary aim to provide reliable information about the near-term
epidemiology of the COVID-19 pandemic to the research and policy communities and the general public
[3]. Second, the Hub aims to create infrastructure for storing and analysing epidemiological forecasts made
in real time by diverse research teams and methods across Europe. Third, the Hub aims to maintain a
community of infectious disease modellers underpinned by open science principles.
We started formally collating and combining contributions to the European Forecast Hub in March 2021.
Here, we investigate the predictive performance of an ensemble of all forecasts contributed to the Hub in
real time each week, as well as the performance of variations of ensemble methods created retrospectively.

Methods

We developed infrastructure to host and analyse prospective forecasts of COVID-19 cases and deaths. The
infrastructure is compatible with equivalent research software from the US [18], [19] and German and Polish
COVID-19 [20] Forecast Hubs, and easy to replicate for new forecasting collaborations.

Forecast targets and models

We sought forecasts for the incidence of COVID-19 as the total reported number of cases and deaths per
week. We considered forecasts for 32 countries in Europe, including all countries of the European Union,
European Free Trade Area, and the United Kingdom. We compared forecasts against observed data reported
for each country by Johns Hopkins University (JHU, [21]). JHU data sources included a mix of national and
aggregated subnational data. We aggregated incidence over the Morbidity and Mortality Weekly Report
(MMWR) epidemiological week definition of Sunday through Saturday.
Teams could express their uncertainty around any single forecast target by submitting predictions for up
to 23 quantiles (from 0.01 to 0.99) of the predictive probability distribution. Teams could also submit a
single point forecast. At the first submission we asked teams to add a pre-specified set of metadata briefly
describing the forecasting team and methods (see supplementary information (SI)). No restrictions were
placed on who could submit forecasts. To increase participation we actively contacted known forecasting
teams across Europe and the US and advertised among the ECDC network. Teams submitted a broad
spectrum of model types, ranging from mechanistic to empirical models, agent-based and statistical models,
and ensembles of multiple quantitative or qualitative models (described at [22]). We maintain a full project
specification with a detailed submissions protocol [23].
We collected forecasts submitted weekly in real time over the 52 week period from 08 March 2021 to 07
March 2022. Teams submitted at latest two days after the complete dataset for the latest forecasting week
became available each Sunday. We implemented an automated validation programme to check that each
new forecast conformed to standardised formatting. Forecast validation ensured a monotonic increase of
predictions with each increasing quantile, integer-valued non-negative counts of predicted cases, as well as
consistent date and location definitions.
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Each week we used all available valid forecasts to create a weekly real-time ensemble model (referred to as
“the ensemble” from here on), for each of the 256 possible forecast targets: incident cases and deaths in 32
locations over the following one through four weeks. The ensemble method was an unweighted average of
all models’ forecast values, at each predictive quantile for a given location, target, and horizon. From 08
March 2021, we used the arithmetic mean. However we noticed that including highly anomalous forecasts
in a mean ensemble produced extremely wide uncertainty. To mitigate this, from 26th July 2021 onwards
the ensemble instead used a median of all predictive quantiles.

We created an open and publicly accessible interface to the forecasts and ensemble, including an online
visualisation tool allowing viewers to see past data and interact with one or multiple forecasts for each
country and target for up to four weeks’ horizon [24]. All forecast and meta data are freely available and
held on Github [17] and Zoltar, a platform for hosting epidemiological forecasts [25], [26]. In the codebase
for this study [27] we provide a simple method and instructions for downloading and preparing these data for
analysis using R. We encourage other researchers to freely use and adapt this to support their own analyses.

Forecast evaluation

In this study we focus only on the comparative performance of forecasting models relative to each other.
For each model, we evaluated performance in terms of both accuracy (coverage) and overall predictive
performance (weighted interval score). We evaluated all previous forecasts against actual observed values
for each model, stratified by the forecast horizon, location, and target. We calculated scores using the
scoringutils R package [28]. We removed any forecast surrounding (both the week of, and the first week
after) a strongly anomalous data point. We defined anomalous as where any subsequent data release revised
that data point by over 5%.

We established the accuracy of each model’s prediction boundaries as the coverage of the predictive intervals.
We calculated coverage at a given interval level k, where k ∈ [0, 1], as the proportion p of observations that
fell within the corresponding central predictive intervals across locations and forecast dates. A perfectly
calibrated model would have p = k at all 11 levels (corresponding to 22 quantiles excluding the median). An
underconfident model at level k would have p > k, i.e. more observations fall within a given interval than
expected. In contrast, an overconfident model at level k would have p < k, i.e. fewer observations fall within
a given interval than expected. We here focus on coverage at the k = 0.5 and k = 0.95 levels.

We also assessed the overall predictive performance of weekly forecasts using the weighted interval score
(WIS) across all available quantiles. The WIS represents a parsimonious approach to scoring forecasts based
on uncertainty represented as forecast values across a set of quantiles [29], and is a strictly proper scoring
rule, that is, it is optimal for predictions that come from the data-generating model. As a consequence, the
WIS encourages forecasters to report predictions representing their true belief about the future [30]. Each
forecast for a given location and date is scored based on an observed count of weekly incidence, the median
of the predictive distribution and the predictive upper and lower quantiles corresponding to the central
predictive interval level.

Not all models provided forecasts for all locations and dates, and we needed to compare predictive perfor-
mance in the face of various levels of missingness across each forecast target. Therefore we calculated a
relative WIS. This is a measure of forecast performance which takes into account that different teams may
not cover the same set of forecast targets (i.e., weeks and locations). The relative WIS is computed using a
pairwise comparison tournament where for each pair of models a mean score ratio is computed based on the
set of shared targets. The relative WIS of a model with respect to another model is then the ratio of their
respective geometric mean of the mean score ratios, such that smaller values indicate better performance.

We scaled the relative WIS of each model with the relative WIS of a baseline model, for each forecast target,
location, date, and horizon. The baseline model assumes case or death counts stay the same as the latest
data point over all future horizons, with expanding uncertainty, described previously in [31]. Here we report
the relative WIS of each model with respect to the baseline model.
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Retrospective ensemble methods We retrospectively explored alternative methods for combining fore-
casts for each target at each week. A natural way to combine probability distributions available in the
quantile format used here is [32]

F −1(α) =
n∑

i=1
wiF

−1
i (α)

,
Where F1 . . . Fn are the cumulative distribution functions of the individual probability distributions (in our
case, the predictive distributions of each forecast model i contributed to the hub), wi are a set of weights in
[0, 1]; and α are the quantile levels such that

F −1(α) = inf{t : Fi(t) ≥ α}
.
Different ensemble choices then mainly translate to the choice of weights wi. An arithmetic mean ensemble
uses weights at wi = 1/n, where all weights are equal and sum up to 1.
Alternatively, we can choose a set of weights to apply to forecasts before they are combined. Numerous
options exist for choosing these weights with the aim to maximise predictive performance, including choosing
weights to reflect each forecast’s past performance (thereby moving from an untrained to a trained ensemble).
A straightforward choice is so-called inverse score weighting. In this case, the weights are calculated as

wi = 1
Si

,
where Si reflects the forecasting skill of forecaster i, normalised so that weights sum to 1. This method of
weighting was found in the US to outperform unweighted scores during some time periods [33] but this was
not confirmed in a similar study in Germany and Poland [11].
When constructing ensembles from quantile means, a single outlier can have an oversized effect on the
ensemble forecast. Previous research has found that a median ensemble, replacing the arithmetic mean of
each quantile with a median of the same values, yields competitive performance while maintaining robustness
to outlying forecasts [34]. Building on this, we also created weighted median ensembles using the weights
described above and a Harrel-Davis quantile estimator with a beta function to approximate the weighted
percentiles [35]. We then compared the performance of unweighted and inverse relative WIS weighted mean
and median ensembles.

Results

An example of weekly forecasts from the ensemble model is shown in Figure 1.
Over the whole study period, 26 independently participating forecasting teams contributed results from 28
unique forecasting models (see supplementary information (SI), Table 1). The number of models contributing
to each ensemble forecast varied over time and by forecasting target (SI Figure 1). Not all modellers created
forecasts for all locations, horizons, or variables. At most, 15 models contributed forecasts for cases in
Germany at the 1 week horizon, with an accumulated 592 forecasts for that single target over the study
period. In contrast, deaths in Finland at the 2 week horizon saw the smallest number of forecasts, with only
6 independent models contributing a total 24 forecasts. Similarly, not all teams forecast across all quantiles
of the predictive distribution for each target, with only 23 models providing the full set of 23 quantiles. No
ensemble forecast was composed of less than 3 independent models.
Using all models and the ensemble, we created 2106 forecasting scores where each score summarises a unique
combination of forecasting model, variable, country, and week ahead horizon (SI Figure 2). We visually
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Figure 1: Ensemble forecasts of weekly incident cases in Germany over periods of increasing SARS-CoV-2
variants Delta (B.1.617.2, left) and Omicron (B.1.1.529, right). Black indicates observed data. Coloured
ribbons represent each weekly forecast of 1-4 weeks ahead (showing median, 50%, and 90% probability). For
each variant, forecasts are shown over an x-axis bounded by the earliest dates at which 5% and 99% of
sequenced cases were identified as the respective variant of concern, while vertical dotted lines indicate the
approximate date that the variant reached dominance (>50% sequenced cases).

compared the absolute performance of forecasts in predicting numbers of incident cases and deaths. We
observed that forecasts predicted well in times of stable epidemic behaviour, while struggling to accurately
predict at longer horizons around inflection points, for example during rapid changes in population-level
behaviour or surveillance. Forecast models varied widely in their ability to predict and account for the
introduction of new variants, giving the ensemble forecast over these periods a high level of uncertainty
(Figure 1).

In relative terms, the ensemble of all models performed well compared to both its component models and
the baseline. By relative WIS scaled against a baseline of 1 (where a score <1 indicates outperforming
the baseline), the median score for participating models across all submitted forecasts was 1.04, while the
median score of forecasts from the ensemble model was 0.71. Across all horizons and locations, the ensemble
performed better on scaled relative WIS than 84% of participating model scores when forecasting cases (with
a total N=862), and 92% of participating model scores for forecasts of incident deaths (N=746).

The performance of individual and ensemble forecasts varied by length of the forecast horizon (Figure 2).
At each horizon, the typical performance of the ensemble outperformed both the baseline model and the
aggregated scores of all its component models, although we saw wide variation between individual models in
performance across horizons. Both individual models and the ensemble saw a trend of worsening performance
at longer horizons when forecasting cases with the median scaled relative WIS of the ensemble across locations
worsened from 0.62 for one-week ahead forecasts to 0.9 when forecasting four weeks ahead. Performance for
forecasts of deaths was more stable over one through four weeks, with median ensemble performance moving
from 0.69 to 0.76 across the four week horizons.

We observed similar trends in performance across horizon when considering how well the ensemble was
calibrated with respect to the observed data. At one week ahead the case ensemble was well calibrated
(ca. 50% and 95% nominal coverage at the 50% and 95% levels respectively). This did not hold at longer
forecast horizons as the case forecasts became increasingly over-confident. Meanwhile, the ensemble of death
forecasts was well calibrated at the 95% level across all horizons, and the calibration of death forecasts at
the 50% level improved with lengthening horizons compared to being underconfident at shorter horizons.
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Figure 2: Performance of short-term forecasts aggregated across all individually submitted models and the
Hub ensemble, by horizon, forecasting cases (left) and deaths (right). Performance measured by relative
weighted interval score scaled against a baseline (dotted line, 1), and coverage of uncertainty at the 50%
and 95% levels. Boxplot, with width proportional to number of observations, show interquartile ranges with
outlying scores as faded points. The target range for each set of scores is shaded in yellow.
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Figure 3: Performance of short-term forecasts across models and median ensemble (asterisk), by country,
forecasting cases (top) and deaths (bottom) for two-week ahead forecasts, according to the relative weighted
interval score. Boxplots show interquartile ranges, with outliers as faded points, and the ensemble model
performance is marked by an asterisk. y-axis is cut-off to an upper bound of 4 for readability.
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Table 1: Predictive performance of main ensembles, as measured by the scaled relative WIS.

Horizon Weighted mean Weighted median Unweighted mean Unweighted median
Cases

1 week 0.59 0.62 0.59 0.61
2 weeks 0.67 0.67 0.67 0.67
3 weeks 0.79 0.70 0.81 0.71
4 weeks 1.06 0.75 1.09 0.79

Deaths
1 week 0.63 0.59 1.00 0.59
2 weeks 0.57 0.54 0.81 0.53
3 weeks 0.64 0.56 0.83 0.54
4 weeks 0.83 0.64 0.82 0.62

The ensemble also performed consistently well in comparison to individual models when forecasting across
countries (Figure 3). In total, across 32 countries forecasting for one through four weeks, when forecasting
cases the ensemble outperformed 75% of component models in 21 countries, and outperformed all available
models in 3 countries. When forecasting deaths, the ensemble outperformed 75% and 100% of models in 30
and 9 countries respectively. Considering only the the two-week horizon shown in Figure 3, the ensemble of
case forecasts outperformed 75% models in 24 countries and all models in only 12 countries. At the two-week
horizon for forecasts of deaths, the ensemble outperformed 75% and 100% of its component models in 30
and 26 countries respectively.

We considered alternative methods for creating ensembles from the participating forecasts, using either a
mean or median to combine either weighted or unweighted forecasts (Table 1). Across locations we observed
that the median outperformed the mean across all one through four week horizons and both cases and death
targets, for all but cases at the 1 week horizon. This held regardless of whether the component forecasts were
weighted or unweighted by their individual past performance. Between methods of combination, weighting
made little difference to the performance of the median ensemble, but slightly improved performance of the
mean ensemble.

Discussion

We collated 12 months of forecasts of COVID-19 cases and deaths across 32 countries in Europe, collecting
from multiple independent teams and using a principled approach to standardising both forecast targets
and the predictive distribution of forecasts. We combined these into an ensemble forecast and compared the
relative performance of forecasts between models, finding that the ensemble forecasts outperformed most
individual models across all countries and horizons over time.

Across all models we observed that forecasting changes in trend in real time was particularly challenging.
Our study period included multiple fundamental changes in viral-, individual-, and population-level factors
driving the transmission of COVID-19 across Europe. In early 2021, the introduction of vaccination started
to change population-level associations between infections, cases, and deaths [36], while the Delta variant
emerged and became dominant [37]. Similarly from late 2021 we saw the interaction of individually waning
immunity during the emergence and global spread of the Omicron variant [38]. Neither the extent nor timing
of these factors were uniform across European countries covered by the Forecast Hub [39]. This meant that
the performance of any single forecasting model depended partly on the ability, speed, and precision with
which it could adapt to new conditions for each forecast target.

We observed a contrast between a more stable performance of forecasting deaths further into the future
compared to forecasts of cases. Previous work has found rapidly declining performance for case forecasts
with increasing horizon [31], [40], while death forecasts can perform well with up to six weeks lead time
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[41]. We can similarly link this to the specific epidemic dynamics in this study. COVID-19 has a typical
serial interval of less than a week [42]. This implies that case forecasts of more than two weeks only remain
valid if rates of transmission and detection remain stable over the entire forecast horizon. This is unlikely
to have held given the rapid changes in epidemic dynamics across many countries in Europe. Meanwhile,
we can interpret the higher reliability of death forecasts as due to the longer time lag between infection
and death [43], and higher consistency of reporting deaths in surveillance data [44]. This allows forecasters
to incorporate the effect of changes in transmission. Additionally, the performance of trend-based forecasts
may have benefited from the slower changes to trends in incident deaths caused by gradually increasing
vaccination rates.

We found the ensemble in this study continued to outperform both other models and the baseline at up to four
weeks ahead. Our results support previous findings that ensemble forecasts are the best or nearly the best
performing models with respect to absolute predictive performance and appropriate coverage of uncertainty
[12], [14], [31]. While the ensemble was consistently high performing, it was not strictly dominant across all
forecast targets, reflecting findings from previous comparable studies of COVID-19 forecasts [11], [45]. Our
finding suggests the usefulness of an ensemble as a robust summary when forecasting across many spatio-
temporal targets, without replacing the importance of communicating the full range of model predictions.

When exploring variations in ensemble methods, we found that the choice of median over means yielded the
most consistent improvement in predictive performance, regardless of the method of weighting. Other work
has supported the importance of the median in providing a stable forecast that better accounts for outlier
forecasts than the mean [45], although though this finding may be dependent on the quality of the individual
forecast submissions. In contrast, weighing models by past performance did not result in any consistent
improvement in performance. This is in line with existing mixed evidence for any optimal ensemble method
for combining short term probabilistic infectious disease forecasts. Many methods of combination have
performed competitively in analyses of forecasts for COVID-19 in the US, including the simple mean and
weighted approaches outperforming unweighted or median methods [33]. This contrasts with later analyses
finding weighted methods to give similar performance to a median average [10], [45]. We can partly explain
this inconsistency if performance of each method depends on the outcome being predicted (cases, deaths),
its count (incident, cumulative) and absolute level, the changing disease dynamics, and the varying quality
and quantity of forecasting teams over time.

We note several limitations in our approach to assessing the relative performance of an ensemble among
forecast models. Our results are the outcome of evaluating forecasts against a specific performance metric
and baseline, where multiple options for evaluation exist and the choice reflects the aim of the evaluation
process. Further, our choice of baseline model affects the given performance scores in absolute terms, and
more generally the choice of appropriate baseline for epidemic forecast models is not obvious when assessing
infectious disease forecasts. The model used here is supported by previous work [31], yet previous evaluation
in a similar context has suggested that choice of baseline affects relative performance in general [46], and
future research should be done on the best choices of baseline models in the context of infectious disease
epidemics.

Our assessment of forecast performance may further have been inaccurate due to limitations in the observed
data against which we evaluated forecasts. We sourced data from a globally aggregated database to maintain
compatibility across 32 countries [21]. However, this made it difficult to identify the origin of lags and
inconsistencies between national data streams, and to what extent these could bias forecasts for different
targets. In particular we saw some real time data revised retrospectively, introducing bias in either direction
where the data used to create forecasts was not the same as that used to evaluate it. We attempted to
mitigate this by using an automated process for determining data revisions, and excluding forecasts made
at a time of missing, unreliable, or heavily revised data. More generally it is unclear if the expectation of
observation revisions should be a feature built into forecasts. Further research is needed to understand the
perspective of end-users of forecasts in order to assess this.

In an emergency setting, open access to visualised forecasts and underlying data is useful for researchers,
policymakers, and the public. For forecast producers, an easily accessible comparison between results from
different methods can highlight individual strengths and weaknesses and help prioritise new areas of work.
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For forecast users, probabilistic information about the future can influence decisions in the present that can
then change epidemic dynamics [1].

Existing participatory modelling efforts for COVID-19 have been useful for policy communication [2], while
multi-country efforts have included only single models adapted to country-specific parameters [47]–[49]. By
expanding participation to many modelling teams, our work was able to create robust ensemble forecasts
across Europe while allowing comparison across forecasts built with different interpretations of current data,
on a like for like scale in real time. At the same time, collating time-stamped predictions ensures that we
can test true out-of-sample performance of models and avoid retrospective claims of performance. Testing
the limits of forecasting ability with these comparisons forms an important part of communicating any
model-based prediction to decision makers.

This study raises many further questions which could inform epidemic forecast modellers and users. The
dataset created by the European Forecast Hub is an openly accessible, standardised, and extensively docu-
mented catalogue of real time forecasting work from a range of teams and models across Europe [24], and
we recommend its use for further research on forecast performance. In the code developed for this study we
provide a worked example of downloading and using both the forecasts and their evaluation scores [27].

Future work could explore the impact on forecast models of changing epidemiology at a broad spatial scale
by combining analyses of trends and turning points in cases and deaths with forecast performance, or
extending to include data on vaccination, variant, or policy changes over time. There is also much scope for
future research into methods for combining forecasts to improve performance of an ensemble. This includes
altering the inclusion criteria of forecast models based on different thresholds of past performance, excluding
or including only forecasts that predict the lowest and highest values (trimming) [33], or using alternative
weighting methods such as quantile regression averaging [12]. Exploring these questions would add to our
understanding of real time performance, supporting and improving future forecasting efforts.

We see additional scope to adapt the Hub format to the changing COVID-19 situation across Europe. We
have extended the Forecast Hub infrastructure to include short term forecasts for hospitalisations with
COVID-19, which is a challenging task due to limited data across the locations covered by the hub. As the
policy focus shifts from immediate response to anticipating changes brought by vaccinations or the geographic
spread of new variants [39], we are also separately investigating models for longer term scenarios in addition
to the short term forecasts in a similar framework to existing scenario modelling work in the US [50].

In conclusion, we have shown that during a rapidly evolving epidemic spreading through multiple popula-
tions, an ensemble forecast performed highly consistently across a large matrix of forecast targets, typically
outperforming the majority of its separate component models and a naive baseline model. In addition, we
have linked issues with the predictability of short-term case forecasts to underlying COVID-19 epidemiology,
and shown that ensemble methods based on past model performance were unable to reliably improve forecast
performance. Our work constitutes a step towards both unifying COVID-19 forecasts and improving our
understanding of them.
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ABSTRACT

We present a compartmental SEIAR model of epidemic spread as a generalization of the SEIR
model. We believe that the asymptomatic infectious cohort is an omitted part of the understanding
of the epidemic dynamics of disease COVID-19. We introduce and derive the basic reproduction
number as the weighted arithmetic mean of the basic reproduction numbers of the symptomatic and
asymptomatic cohorts. Since the asymptomatic subjects people are not detected, they can spread the
disease much longer, and this increases the COVID-19 R0 up to around 9. We show that European
epidemic outbreaks in various European countries correspond to the simulations with commonly
used parameters based on clinical characteristics of the disease COVID-19, but R0 is around three
times bigger if the asymptomatic cohort is taken into account. Many voices in the academic world
are drawing attention to the asymptomatic group of infectious subjects at present. We are convinced
that the asymptomatic cohort plays a crucial role in the spread of the COVID-19 disease, and it has to
be understood during government measures.

Keywords SEIR model · SEIAR model · quarantine · basic reproduction number · asymptomatic infectious cohort

1 Introduction

We started modeling the Wuhan COVID-19 outbreak with the standard SEIR model with WHO premised basic
reproduction number R0 between 2 and 3, the incubation period around 5 days, and the serial time around a week
using GLEAMviz network simulator that includes populations, traffic, and measures. Soon we realized, the simulation
predicts outbreaks in European countries too late. The outbreaks fitted better for R0 much higher than it is generally
considered. Afterwards, serious outbreaks in Italy, Spain, UK, and the US happened very quickly. The paper [1]
appeared in Science, estimating 86% of undocumented infectious (published 16.3.2020). Padova University recently
informed about an experiment in town Vò, where areal testing showed that the majority of the positive 3% of citizens
were asymptomatic at the beginning of the outbreak. We made a hypothesis that the asymptomatic cohort can play a
crucial role. This could also be a clue to understanding why early enough closing school policy contributes to slow
down the outbreak. We propose a model that counts in with this asymptomatic infectious cohort, and we derive its basic
reproduction number R0. We proved that the basic reproduction number is a weighted average of reproduction numbers
of both the symptomatic and asymptomatic cohorts, which seems to be very intuitive. On the other hand, this implies
that in case of a disease with the majority of asymptomatic cases, this basic reproduction number R0 is much higher
than the one gained from standard estimates based only on the symptomatic cohort. This can explain the "invisible" and
fast increase in COVID-19 outbreaks since it also acts through the asymptomatic cohort. There are already studies that
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estimate R0 higher than WHO proposed (for example, Diamond Princess estimate 14.8 at [2]). Probably we can see
just the tip of the iceberg. The consequences are very important since it gives a much shorter time to governments. Late
measures have almost no effect.

2 SEIAR model and the basic reproduction number

We propose a simple model that generalizes the SEIR model commonly used for virus disease modeling. The total
population is partitioned into the following compartments: S, Susceptible; E, Exposed; I , Infected (symptomatic
infected); A, Asymptomatic (asymptomatic infected); R, Removed (healed or dead, no more infectious).

Ṡ = −βS(I +A), (1)

Ė = βS(I +A)− γE, (2)

İ = γpE − µ1I, (3)

Ȧ = γ(1− p)E − µ2A, (4)

Ṙ = µ1I + µ2A, (5)

where parameter β denotes the transmission rate (i.e., the probability of disease transmission in a single contact
times the average number of contacts per person) due to contacts between a Susceptible subject and an Infected or
an Asymptomatic subject2. Parameter β can be modified by quarantine government measures that increase social
distancing as closing schools, remote working, using masks, or similar. Parameter γ usually denotes the probability rate
at which the Exposed subject develops clinically relevant symptoms. The period 1/γ (days−1) is called an incubation
period. In the case of COVID-19, it is known that an Exposed subject is infectious one or two days before developing
symptoms, and so we will define the Exposed compartment as a latent non-infectious compartment. Due to this, we
assume that the period 1/γ is shorter than usually estimated (see [3], [4]). We assume that every Exposed subject
becomes infectious, but subjects that enter I cohort later develop symptoms with probability p and those who not enter
A cohort with probability 1− p. This assumption is based on recent studies [1] and experiments in the Italian town
Vò. Parameters µ1 or µ2, respectively, denote the remove rate, so 1

µ1
is the average period to isolation for Infected

symptomatic subjects, and 1
µ2

is the average recovery period for Asymptomatic subjects. We assume that 1
µ2
> 1

µ1
,

since the COVID-19 patients are treated or isolated very quickly after developing symptoms. We omit the probability
rate of becoming susceptible again after recovery, although this is not evident (mainly for Asymptomatic subjects). We
assume S + I + E +A+R = 1 (a non-dimensionalized model with a constant incidence rate).

2.1 Unstability of the non-epidemic equilibrium – outbreak

The non-epidemic equilibrium of the system (1), (2), (3),(4) (we can separate independent equation (5)) is obviously
(1, 0, 0, 0). The Jacobian linearization matrix of the system (1), (2), (3),(4) is

J =



−β(I +A) 0 −βS −βS
β(I +A) −γ βS βS

0 γp −µ1 0
0 γ(1− p) 0 −µ2




and in the non-epidemic equilibrium it is

J(1, 0, 0, 0) =



0 0 −β −β
0 −γ β β
0 γp −µ1 0
0 γ(1− p) 0 −µ2


 . (6)

The Jacobian matrix (6) has one zero eigenvalue. The non-epidemic equilibrium loses stability as any eigenvalue of a
submatrix

A =

( −γ β β
γp −µ1 0

γ(1− p) 0 −µ2

)

2The model can be improved by incorporating different transmission rates for cohorts I and A as βI and βA, respectively. It is
difficult to compare them since, on one side, people tend to avoid contact with subjects showing symptoms, but on the other side, an
asymptomatic subject is less infectious more probably. Due to this dichotomy, we use one the mean β.
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crosses imaginary axes and has positive real part. The characteristic polynomial of the matrix A is

p(λ) = λ3 + (γ + µ1 + µ2)λ
2 + (−β γ + γ µ1 + γ µ2 + µ1µ2)λ+ β γ pµ1 − β γ pµ2 − β γ µ1 + γ µ1µ2

and Routh-Hurwitz criterion

γ + µ1 + µ2 > 0, (7)
−detA = β γ pµ1 − β γ pµ2 − β γ µ1 + γ µ1µ2 > 0, (8)

(γ + µ1 + µ2) (−β γ + γ µ1 + γ µ2 + µ1µ2)− (β γ pµ1 − β γ pµ2 − β γ µ1 + γ µ1µ2) > 0, (9)

implies negative real parts of all the eigenvalues of the matrix A. The condition (7) is satisfied always. Violation of the
condition (8) implies that at least one eigenvalue has positive real part. The condition (8) can be equivalently rewritten
as

R0 :=
βp

µ1
+
β(1− p)

µ2
< 1 (10)

and so the left-hand side as a weighted average of reproduction numbers of both the symptomatic and asymptomatic
cohorts can be defined as R0. If R0 > 1 the epidemic outbreaks. Since the infectious period 1/µ2 of an Asymptomatic
subject is much longer than the infectious period 1/µ1 of a symptomatic Infectious subject, and 1 − p is majority
percentage for the COVID-19 disease, the derived R0 is much higher than the one estimated using SEIR model ([5], [6],
[7]). Violation of the condition (9) give birth to an unstable focus (two complex eigenvalues cross the imaginary axes).

2.2 Case Study: Numerical results for the COVID-19 Outbreak

We do not aim here to fit and predict the curve of the infected. We are trying to explain that the principal difference
between SEIR and SEIAR models leads to principally different outcomes in for example times and rates of outbreaks, a
percentage of the population affected. It also has implications for state measures that are being introduced to keep the
disease contained and controlled under health system capacity.

For commonly used parameters of COVID-19 β = 1, γ = 1/4, µ1 = 1/3, µ2 = 1/10 and p = 0.14 (see [8], [5], [6],
[7], [4]) we get R0

.
= 9 > 1 from (10). Condition (9) is satisfied.

Figure 1: Dynamics of the model (1), (2), (3),(4). The peak time tp = 48, a proportion of infectious in the population
in the peak I (48) = 0.0268.

Figure 1 shows the disease dynamics in case that no strong restrictions are held (without social distancing and other
measures except hospitalization or isolated home treatment). The health system has to contain around 2.7% of Infected

3
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symptomatic population at once3 at the moment of the peak (day 48 from the first Infected subject in a million
population). Commonly, 20% of symptomatic Infected subjects are hospitalized, and 10% need intensive care ([9]).
That is 0.27% of the whole population. 60% decrease of β (e.g., mask protection in the whole population) causes the
peak to be halved in approximately doubled time. SEIR model without the Asymptomatic cohort gives five times higher
and about 3 weeks later peak values (for β = 1), which seems to be very different from the actual dynamics of the
disease COVID-19.

2.3 GLEAMviz simulation of COVID-19 pandemic

The GLEAMviz simulation software is a platform that gives a possibility to simulate the global pandemic on a network
background. The Global Epidemic and Mobility Model (GLEAM) is a stochastic computational model that integrates
high-resolution demographic and mobility data and uses a compartmental approach to define the epidemic characteristics
of the infectious disease [10]. We simulated the pandemic starting in Wu-Han on the 1st of December using SEIAR
model with parameters β = 1, γ = 1/4, µ1 = 1/3, µ2 = 1/10 and p = 0.14 and an exception that β = 0.3 from
20/01/2020 in the whole China (Figure 2). The outbreaks in Europe fit in time, unlike the much later onsets of the
epidemics in case of using the SEIR model. Simulation-based on SEIAR showed good times of local epidemic outbreaks
in Wu-Han, Italy, Germany, Czech Republic, and others (with differences in days, Figure 3) and much closer proportion
of infected in a population (difference in the order). Due to the gradual cancellation of flights, air traffic slowed down,
so we cannot simulate the real situation. Possibility to decrease air traffic during simulations could be a good software
improvement.

Figure 2: Global simulation of COVID-19 outbreak without European protective measures in GLEAMviz based on the
model (1), (2), (3),(4) with parameters β = 1, γ = 1/4, µ1 = 1/3, µ2 = 1/10 and p = 0.14. Czech Republic – new
transitions per 1000/day and cumulative transitions per 1000/day.

3 Efficiency of quarantine government measures with respect to the time of their
introduction

One important information that governments need is to estimate the efficiency of introduced measures. For the SEIAR
model, we will show the dependence of the peak height on the time of the introduction of quarantine and social measures
that affect transmission rate β. It turns out that there is a time threshold for the introduction of quarantine and social

3This hypothetical case with no government interventions gives a peak around 280 000 people symptomatic altogether in Czech
Republic.
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Figure 3: COVID-19 outbreak without European protective measures in GLEAMviz based on the model (1), (2), (3),(4)
with parameters β = 1, γ = 1/4, µ1 = 1/3, µ2 = 1/10 and p = 0.14 – a comparison for Czech Republic new daily
confirmed cases data set ([11]). Transmission rate β is decreased to 0.3 from 20/1/2020 for the whole China. Air traffic
and local traffic is not decreased, there is no decrease of R0 due to government measures in Europe, so the simulation
fails after 20/03/2020 (around a week after first measures). Real data are 10 times lower (that could be due to the
lack of testing at the beginning of the outbreak and undetected mild symptomatic cases) and delayed 16 days (due to
the incubation period, developing symptoms period and testing period, plus possible time for undetected first cases).
Simulation for SEIR model with the same parameters (p = 1, R0 = 3) moves the outbreak more than a month later,
and the infected cohort is more than five times bigger. This is evidence of the unsuitability of models without the
asymptomatic infectious cohort since the parameters are based on clinical characteristics of the disease (commonly
used, [8], [5], [6], [7], [4]).

measures for both SEIR and SEIAR models4. Early measures lead to a significant reduction of the epidemic peak,
whereas after a certain threshold, the epidemic peak cannot be significantly affected.

We will show this threshold for parameters β = 1, γ = 1/4, µ1 = 1/3, µ2 = 1/10 and p = 0.14 used above . Figure
4 shows how the dynamics of the system change abruptly as β reduction from 1 to 0.3 is introduced at times t = 30
and t = 40. We have to highlight the fact that the time t = 30 is counted from the first Infected subject in a million
population, but due to delay (the incubation period, few more days of asymptomatic disease, test duration to confirm
positivity) first COVID-19 patients in a new country were confirmed after around 10 days.

3.1 Existence of a threshold

Depending on the time of the introduction of government measures that reduce β, we can draw the peak of the epidemic.
The heatmap 5 may serve to gain a good insight into the effectiveness of government measures in terms of time and

4Model SEIR is a limit model SEIAR for p = 1.
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Figure 4: β reduction from 1 to 0.3 is introduced at times t = 30 and t = 40. For t = 30 the peak time tp = 73, a
proportion of infectious in the population in the peak I (48) = 0.0091. For t = 40 the peak time tp = 47, a proportion
of infectious in the population in the peak I (48) = 0.0130.

strength. It displays a steep growth that is almost beta independent. This property is not exceptional for taken parameter
values, but it is a generic behavior.

This could imply that countries that took action quickly (not later than 20-25 days from the first confirms) are probably
on a good way to contain the outbreak. On the other hand, Italy, Spain, Switzerland, UK (with a lack of testing) or the
US at highly populated areas face a sharp increase in the infected since the measures were introduced too late (this is of
course not true for local areas with later outbreaks, where measures took place early enough).

3.2 Efficiency threshold estimation

It is challenging to estimate the efficiency of measures threshold during an ongoing outbreak. It is not possible to
compare the time of the introduction of measures with the time of epidemic peak because we do not know it. A possible
approach could be to compare the time of the fastest growth (denoted as Phase 2) with the time of introduction of
measures.

Figure 6 shows the possibility to efficiently contain the outbreak by quarantine, social distancing, mask-wearing, and
other government measures that decrease transmission rate β for various original R0 (β respectively). The dashed line
indicates the outbreak of the epidemic (the maximal steep), the dotted line is the peak time. The threshold is orange,
but the measures have to be introduced a few days before it. Again, parameters γ = 1/4, µ1 = 1/3, µ2 = 1/10 with
p = 0.14 are used. Figure 7 shows the quarantine efficiency as decrease of infected in peak (proportion of population)
for various original R0. Each column is labeled with a percentage that shows a relative difference with respect to the
peak of the epidemic without a quarantine.

4 Conclusion

We presented a compartmental model of epidemic spread, which is a generalization of the SEIR model by adding
an asymptomatic infectious cohort. The derived basic reproduction number is the weighted arithmetic mean of the
basic reproduction numbers of the symptomatic and asymptomatic cohorts. In a limit case (for an empty asymptomatic
cohort), the SEIAR model is the SEIR model with standard R0. This model was developed based on studies and clinical
characteristics of COVID-19, but can be used, for example, to model the dynamics of the H1N1 influenza epidemic and
other human-to-human transmission diseases.
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β

Proportion of infectious in the peak

0 0.025

Proportion of infectious

Figure 5: Proportion of infections in the peak depending on the strength of used measures (smaller β means larger
measures), and a number of days, when quarantine starts, from the first detected case (approximately 10 days after
infection started). Days are shown from day 9, which is an estimation of a start of the phase 2 (outbreak). In case of two
peaks of the epidemic, it displays the first peak.

We are convinced that model SEIAR is the most simple model that can be used to simulate the epidemic dynamics of
COVID-19. The standard SEIR model without an asymptomatic cohort does not match existing data, while the SEIAR
model does quite well. Moreover, the onset of epidemics in different European countries corresponds to the simulations
in GLEAMviz. The extremely rapid outbreaks in Italy and other countries, the functionality of only extreme measures,
and the failure of measures that tried to protect and isolate only vulnerable groups are indirect supports for the suitability
of the SEIAR model. Voices in the academic world are drawing attention to the asymptomatic group of infectious
subjects. We are convinced that the asymptomatic cohort plays a crucial role in the spread of the COVID-19 disease.

The graph 5 indicates that all measures need to be taken early and vigorously to be effective. Late or insufficient measures
have little effect on the outbreak. All measures have economic, social, logistical, and psychological consequences.
Their balance is up to the authorities.
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