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Summary

Introduction. The invasion of cancer cells and metastasis formation is energetically highly de-
manding process. The increase of cancer cell mobility during metastasis formation is
accompanied by a reinforcement of the cytoskeletal architecture, cell-cell, and cell-ECM inter-
actions. There is a tempting theory that more deformable cells (of lower Young modulus) are
favoured for metastatic spreading. However, data regarding prostate tumors suggest the oppo-
site — a stiffening of cancer cells. The aim here is (a) to analyse prostate cell mechanical
properties by a panel of methods, (b) to analyse how cell mechanical properties change through
the cancerogenesis, (¢) whether quantitative phase imaging correlates with standard approaches
used for cell mechanophenotyping, (d) whether advanced image analysis algorithms can be
used in the extraction of image features from quantitative phase images specific for aggres-
sive/stiff cells, (e) how metabolic reprogramming is linked with these processes, and (f) how
these processes are regulated and potentially targeted.

Methods. By using atomic force microscopy, quantitative phase imaging, confocal microscopy,
transcriptomic techniques and migratory and cell invasiveness assays and by analysis of meta-
bolic intermediates the metabolic and biomechanical phenotype of cells was analysed. Deep
learning approaches were used for image processing and translation.

Results. We demonstrated potential of quantitative phase imaging for fast label-free and non-
contact cell mechanophenotyping. Primary prostate tumor-derived Caveolin-1 (CAV1)-non-
expressing-cells are more pliable and predominantly performing OXPHOS, while metastasis-
derived, high-CAVI1-expressing cells are are mechanically stiffer and predominantly employing
glycolysis and rerouting the use of amino acids as energetical sources, specifically aspartate.
Upon induction of zinc resistance further increase of stiffness was observed in metastatic cells
together with alteration in cancer cell metabolites, amino acids in particular.

Conclusions. Here we demonstrated potential of machine learning in quantitative phase imag-
ing. It was shown to be a powerful tool for image segmentation, classification of aggressive
cancer cells and extraction of features from quantitative phase image not visible by the naked
eye and thus enabled to connect biophysical and mechanical features of the cells with biological

cellular processes.
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1 Papers included in the habilitation thesis

Papers presented in this thesis aim to address how cell mechanical properties change during the
pathogenesis of prostate cancer on in vitro model and how it relates with other well-described
tumor hallmark —tumor metabolic state. Following papers are an integral part of this thesis.

Their mutual connection and a broader context are discussed in the following chapters.

1. STEPKA, P., V. VSIANSKY, M. RAUDENSKA, J. GUMULEC, et al. Metabolic and
Amino Acid Alterations of the Tumor Microenvironment. Current Medicinal Chemistry,

2021, 28(7), 1270-1289.

Experimental work (%)

Supervision (%)

Manuscript (%)

Research direction (%)

30%

30%

30%

2. RAUDENSKA, M., J. GUMULEC, J. BALVAN AND M. MASARIK Caveolin-1 in
oncogenic metabolic symbiosis. International Journal of Cancer, Oct 2020, 147(7), 1793-

1807.

Experimental work (%)

Supervision (%)

Manuscript (%)

Research direction (%)

40%

40%

50%

3. GUMULEC, J., J. SOCHOR, M. HLAVNA, M. SZTALMACHOVA, et al. Caveolin-
1 as a potential high-risk prostate cancer biomarker. Oncology Reports, Mar 2012, 27(3), 831-

841.
Experimental work (%) | Supervision (%) Manuscript (%) Research direction (%)
90% 0% 60% 15%

4. VICAR, T., J. BALVAN, J. JAROS, F. JUG, et al. Cell segmentation methods for la-
bel-free contrast microscopy: review and comprehensive comparison. BMC Bioinformatics,
June 28 2019, 20(1), 360.

Experimental work (%)

Supervision (%)

Manuscript (%)

Research direction (%)

70%

90%

60%

90%

5. VICAR, T.,J. GUMULEC, J. BALVAN, M. HRACHO, et al. Label-Free Nuclear Stain-
ing Reconstruction in Quantitative Phase Images Using Deep Learning. In L. LHOTSKA, L.
SUKUPOVA, 1. LACKOVIC AND G.S. IBBOTT. World Congress on Medical Physics and
Biomedical Engineering 2018, Vol 1. New York: Springer, 2019, vol. 68, p. 239-242.

Experimental work (%)

Supervision (%)

Manuscript (%)

Research direction (%)

50%

40%

40%

70%
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6. RAUDENSKA, M., M. KRATOCHVILOVA, T. VICAR, J. GUMULEC, et al. Cis-
platin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin
accumulation. Scientific Reports, 2019/02/07 2019, 9(1), 1660.

Experimental work (%) | Supervision (%) Manuscript (%) Research direction (%)

50% 30% 70% 30%

7. ELSAYAD, K., G. URSTOGER, C. CZIBULA, C. TEICHERT, et al. Mechanical Prop-
erties of cellulose fibers measured by Brillouin spectroscopy. Cellulose, May 2020, 27(8), 4209-
4220.

Experimental work (%) | Supervision (%) Manuscript (%) Research direction (%)

25% 5% 20% 5%

8. KRATOCHVILOVA, M., M. RAUDENSKA, Z. HEGER, L. RICHTERA, et al. Amino
Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progres-
sion. Prostate, May 2017, 77(6), 604-616.

Experimental work (%) | Supervision (%) Manuscript (%) Research direction (%)

30% 100% 80% 70%

9. HEGER, Z., J. GUMULEC, N. CERNEI, H. POLANSKA, et al. Relation of exposure
to amino acids involved in sarcosine metabolic pathway on behavior of non-tumor and malig-
nant prostatic cell lines. Prostate, May 2016, 76(7), 679-690.

Experimental work (%) | Supervision (%) Manuscript (%) Research direction (%)

25% 20% 40% 20%

10. RAUDENSKA, M., J. BALVAN, M. FOJTU, J. GUMULEC, et al. Unexpected thera-
eutic effects of cisplatin. Metallomics, Jul 2019, 11(7), 1182-1199.
Experimental work (%) | Supervision (%) Manuscript (%) Research direction (%)

- 30% 40% 30%




Cell mechanics — important cancer hallmark 2.1

2 Introduction

During a multistep oncogenic process, cancer cells need to perform changes in metabolic phe-
notype to maintain energy for cancer cell invasion, survival in circulation, or homing in a distant
site [3]. Accordingly, aberrant tumor cell metabolism is one of the key tumor hallmarks and
a possible therapeutic target [4]. Historically, metabolic changes were first linked with glucose
metabolism. A phenomenon described in 1924 by Otto Warburg — the “Warburg effect” is char-
acterized by a switch from oxidative phosphorylation (OXPHOS) to glycolysis in a presence of
oxygen — the aerobic glycolysis. Despite the inefficiency of this process from the perspective
of ATP-per-glucose extraction ratio, its inevitable advantage over oxidative phosphorylation is
speed, making glycolysis beneficial for the rapidly dividing cancer cells[3], although it is ener-
getically harmful on the whole-body level.

Cancer cell invasion and metastasis formation is energetically highly demanding process. The
cancer cells not only need to increase their migratory capacity, but they also pass through the
mechanical barriers during the metastasis formation. The energetic demands of cancer cells to
overcome mechanical barriers during the cancer progression are high, consuming up to 50% of
cellular ATP [5]. These barriers cause significant physical forces to affect cancer cells during
their migration through extracellular matrix (ECM) (stretching, internal tension), crossing the
endothelial barrier into circulation, presence in circulation (shear stress), and during migration
to a secondary niche (increased motility). To overcome this, cancer cells adapt to these forces
by several strategies. The cells undergo epithelial-mesenchymal transition, which enables mi-
gratory and invasive properties by changes in cell-cell and cell-ECM adhesions and by
cytoskeletal remodelation [3]. These factors trigger mechanotransduction which in turn modu-
late the cancer cells’ signalling by favouring metabolic and mechanic settings enabling
successful invasion and cell survival in hostile environments. Rearrangement of cancer cells’
actin cytoskeleton associated with cell stiffening is a key process resulting from mechanotrans-
duction. Changes in cell mechanic phenotype and metabolic reprogramming are therefore not
separate cancer hallmarks. Instead, these two processes are highly interdependent. For instance,
glycolysis responds to architectural features of actomyosin cytoskeleton via TRIM21-mediated
regulation of phosphofructokinase [6].

Prostate tumors are the most common type of tumors in men. These tumors share unique meta-

bolic and biomechanical features. Metabolic specificity is attributed to the prostate-specific



Cell mechanics — important cancer hallmark 2.1

effects of zinc ions. Due to the physiological zinc accumulation in benign cells, mitochondrial
aconitase is inhibited, which causes a blockage of Krebs cycle and thus a decrease in OXPHOS.
On the other hand, malignant cells show a decrease in zinc accumulation and thus increased
OXPHOS. Therefore, no Warburg effect is observable in primary tumors of prostate [7]. How-
ever, the metabolic phenotype of prostate cancer changes during its progression with an increase
of aerobic glycolysis in secondary tumors [8]. Therefore, although metabolic targeting seems to
be an attractive therapeutic target, simplistic strategies like glycolysis inhibition fail, because
this problem is multidimensional (metabolism changes during cancer progression as well as
there are differences between cell populations in tumor microenvironment (TME)).

This thesis aims to characterize how the metabolic phenotype changes through the prostate can-
cer progression and how it scales with changes of biomechanical features of the cancer cells.
Together with routinely used methods to analyse cell biomechanics, a potential way to describe
the mechanical phenotype of cells using label-free quantitative phase microscopy is tested. The
informative value of the quantitative phase image (QPI) is further expanded utilizing machine
learning methods.

In a series of scientific papers, we demonstrated (on an in vifro model) that highly aggressive
prostate cancer cells are mechanically stiffer and at the same time characteristic by a spectrum

of metabolic shifts — cells are more anaerobic and overly metabolize essential amino acids.

2.1 Cell mechanics — important cancer hallmark

From the spectrum of the existing mechanical properties of the materials, the most relevant
cellular biomechanical parameters include elasticity, viscosity and adhesiveness [9]. Cells have
viscoelastic properties, however, from the perspective of cancer cells, the elastic properties
dominate over the viscous properties [10]. The elastic properties — “stiffness” of the material —
is defined as the extent to which the material resists the deformation with a defined applied
force [11]. Stiffness of the structures is determined by the material properties — its composition
and its organisation [12]. Specifically, the determinant of tissue stiffness is the composition and
the organisation of extracellular matrix and the main determinants of cellular stiffness are cyto-
skeleton, focal adhesions and nuclear deformability [12]. Stiffness is expressed as Young
modulus in Pascals and in the context of biomedical applications it scales in the orders of 10'—
103 Pa in most cells, 10* Pa in muscle, 107 Pa in tendons and up to 10° Pa in bone [9]

Tumor tissues are typically stiffer as a consequence of higher fibrous tissue crosslinking in ex-

tracellular matrix — desmoplastic reaction [13]. As extracellular matrix (ECM) stiffness is linked
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with tumor aggressiveness and patient prognosis, there has been an extensive effort to charac-
terize how the mechanical properties of the ECM can affect the cancer cells. Physiologically,
cells can sense the physical properties of the environment and transduce signals to the cellular
level. Integrins and focal adhesion proteins act as transducers that convert the extracellular ma-
trix signals downstream to the cells in a process called mechanotransduction.

The mechanical signals from stiff ECM are transduced to cells through integrins and focal ad-
hesion proteins, which in turn regulate processes favouring cell survival. Such mechanical
stimuli can modulate epithelial-to-mesenchymal transition, intravasation and affect metabolic
adaptation, cell death and resistance to radiotherapy and chemotherapy [3; 14]. Therefore, tu-
mors with higher desmoplasia were characterized as more aggressive and more resistant to
conventional treatments [15; 16]. Accordingly, the cell mechanical properties are altered by this
mechanism.

These cytoskeletal rearrangements, together with changes of numbers of focal adhesions and
with the deformability of nucleus, are factors that affect cellular mechanical properties. Gener-
ally, most tumor cells isolated from tumor tissues are usually softer compared to non-tumor
counterparts [17]. The (cancer) cell migration and the cell mechanical properties are tightly con-
nected processes because cytoskeletal rearrangements are associated with both of these.
Therefore, migration (metastatic potential) and stiffness are typically inversely proportional
[12]. Soft and deformable cells are favoured in multistep oncogenesis — for such cells, it is easier
to migrate through small gaps or crowded ECM [10]. However, despite many studies, the asso-
ciation of cellular stiffness with metastatic potential is not as unequivocal as the ECM stiftness.
The uncertainness is underlined by several factors, such as a particular type of technique used
to determine cellular stiffness and cell culture method [12].

As different physical forces affect cells throughout the process of cancer progression, a spec-
trum of methods to describe cell mechanical properties is used. In the circulation, cell
deformation occurs during intravasation and extravasation. Aggressive cells are usually more
deformable, and deformability cytometry might be employed to measure this. During the pas-
sage through the endothelial wall, aggressive cells are predominantly softer. This can be
measured by atomic force microscopy (AFM). In the secondary site, tensile and contractile
forces affect the cells. To measure this, tensile biaxial stretching or traction force microscopy is
usually employed [18; 19]. Quantitative phase imaging (QPI) demonstrated to be a new prom-
ising technique to study cell mechanic phenotype. As the light passes through physically
different structures of the cell, the light phase is changing. The quantitative phase imaging is a

non-invasive technique with high intrinsic contrast even for naturally transparent objects such

10
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as live cells [20]. Using this technique it is possible to extract cell dry mass (in pg/um?) from
the phase (in radians) according to the Barer and Davies [21; 22]. Since the changes of cyto-
skeletal architecture are associated with the consequent changes in the cell biomechanical
characteristics including cell stiffness and cell motility [23], cell dry mass is also expected to
be correlated with changes of cell mechanics. Such finding was demonstrated by Eldridge et al:
the authors applied QPI to characterize cellular stiffness by using an effective spring constant.
The authors also showed that this metric further correlated to cellular mass distribution [24].
However, the association between the phase shift and cell biomechanics is still under research
and a direct comparison of this technique with AFM is not straightforward. Nevertheless, the
deployment of QPI in cell mechanics might provide significant benefits over AFM as the latter
is characteristic by low throughput and cell-cantilever mechanical stress [18].

Taken together, changes in biomechanics are crucial for tumor development. The consequences
of mechanotransduction in stiff environments were intensively studied and relatively rigidly
show a link between increased ECM stiffness and worse prognosis. However, the crosstalk be-
tween cell adhesion molecular machinery and metabolic reprogramming is still far from being
understood [3]. Similarly, the determinants of cellular stiffness, underlying mechanisms, con-
sequences, and an impact of cancer cells stiffening or softening on patient prognosis is still not

satisfactorily clarified.

2.2 Metabolic changes through tumor progression

As mitochondrial ATP production is dramatically more effective in ATP-per-glucose ratio, most
differentiated eukaryotic cells use OXPHOS as a main source of ATP. Glucose is typically me-
tabolised to pyruvate during glycolysis. This results from a generation of small amounts of ATP.
Subsequently, pyruvate is transferred to mitochondria and undergoes oxidation to acetyl-CoA,
which in turn enters the Krebs cycle. Protons created during Krebs cycle are transferred by
NAD+ and FADH to an inner mitochondrial membrane and thereby creating pH gradient. This
gradient is in turn discharged in oxidative phosphorylation (OXPHOS) in the presence of oxy-
gen by producing high amounts of ATP. OXPHOS is, therefore, a major strategy to synthesize
energy.

On the other hand, cancer cells are characterized by the urgent needs of energy supplies, not
concerning the effectivity of ATP production. Although the OXPHOS is highly effective, it is a
highly complex process. Glycolysis, on the other hand, is despite low ATP extraction levels per

glucose molecule extremely fast process. As a consequence, in the cancer cells, the Warburg

11
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effect reroutes the synthesis of ATP to glycolysis, which results in the accumulation of interme-
diate metabolites needed for cell proliferation.

Although tumor cells typically shift to aerobic glycolysis, some tumor cells preserve high
OXPHOS, a “reverse Warburg effect”. One of such examples are primary prostate cancer cells.
The resulting metabolic phenotype is however not a constant phenomenon — it changes through
the tumor progression according to the actual needs of individual cells. Accordingly, a focus
cannot be given only to the metabolism of glucose, but also to other macronutrients. For in-
stance, the supply of amino acids is important for tumor cells to sustain their proliferative drive.
Alongside their direct role as substrates for protein synthesis, they can have roles in energy
generation and a redox balance [25]. This is of great importance in nutrient-poor situations
which often develop in tumor microenvironment. Moreover, it has been shown that cancer cells
are specific by auxotrophism, that is inability to synthetize compounds required for growth.
From the perspective of amino acids, the perspective of essential and non-essential might not
apply in every situation [25]. Author’s experimental publications on these topics are discussed
in chapters 4.3.1 and 4.3.2.

In the following review [8] we summarize current evidence on how amino acid metabolism
changes throughout progression and point out to specific tumor types which differ in auxo-

trophism for specific amino acids.

STEPKA, P., V. VSIANSKY, M. RAUDENSKA, J. GUMULEGC, et al. Metabolic and Amino
Acid Alterations of the Tumor Microenvironment. Current Medicinal Chemistry, 2021,
28(7), 1270-1289.
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2.3 Caveolin-mediated metabolic symbiosis in tumor stroma

Multiple populations exist within the tumor microenvironment (stromal cells, immune cells,
various subpopulations of cancer cells). From the perspective of metabolism, a specific symbi-
osis between the stromal and tumor cells develops in order to reroute the nutrients to energy-
demanding cancer cells. For instance, cancer-associated fibroblasts (CAFs) surrounding malig-
nant cells are characteristic by enhanced aerobic glycolysis and high lactate efflux via MCT4
transporter [26]. This enables the uptake of CAF-produced nutrients by the cancer cells. Similar
symbiosis was described also in tumor-associated macrophages or between multiple subpopu-
lations of cancer cells [4; 27].

Interestingly, these populations often vary in caveolin-1 (CAV1) expression (low CAVI1 in CAFs
and high CAVI in cancer cells). CAV1 is a 21 kDa protein predominantly localized in caveolar
membrane structures, caveolae. It regulates cellular metabolism via providing docking sites for
glycolysis enzymes (aldolase, phosphofructokinase), it affects mitochondrial bioenergetics via
upregulation of mitochondrial amounts and respiration rate, it regulates glutaminolysis and af-
fects autophagy [28]. Within tumor microenvironment, it is a regulator of cellular metabolic
reprogramming. For example, in colorectal cancer, it has been shown that an increase of CAV1
resulted in increased glucose intake and increased ATP production. Nevertheless, CAV1 effect
is context dependent. In some cell types, high CAV1 support the glycolytic phenotype while in
others CAVI1 knockdown is associated with higher levels of glycolysis [29].

However, the effects of CAV1 are far beyond regulation of cellular metabolism and it partici-
pates in mechanotransduction [30], cell migration and mechanical stress responses [31; 32],
indicating that caveolins are crucial regulators of cell mechanic and cell metabolic phenotype
during tumor progression. Physiologically caveolin-rich caveolae are important in cell types
under mechanic stress like smooth muscle cells, which are exposed to stretch, and endothelial
cells, which face high shear stress [33; 34]. Caveolae flattening may provide a buffer for tensile
forces and prevent the cell lysis due to mechanical stress. During mechanical stress surface-to
volume ratio may increase as the caveolar membrane is released, resulting in cellular protection
[35].

Prostatic tumors are — compared to most epithelial tumors — not characteristic by high glucose
intake and high glycolysis (no Warburg effect). This is important diagnostically as primary pros-
tate tumors are usually not detectable by FDG-PET scans. Nevertheless, Warburg effect is
detectable in later stages of cancerogenesis. These findings resulted in a formulation of hypoth-

eses for this thesis (chapter 3): That is: the level of CAV1 differs in various prostate tumor cell
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populations and throughout the tumor progression is associated with changes in cell mechanics
and metabolic reprogramming.
In the review by Raudenska et al. [4], a role of caveolin-1 in the cancer cell metabolic repro-

gramming is discussed. Moreover, a link between cell mechanics and CAV1 is discussed here.

RAUDENSKA, M., J. GUMULEC, J. BALVAN AND M. MASARIK Caveolin-1 in oncogenic
metabolic symbiosis. International Journal of Cancer, Oct 2020, 147(7), 1793-1807.
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Metabolic phenotypes of cancer cells are heterogeneous and flexible as a tumor mass is a hurriedly evolving system capable of
constant adaptation to oxygen and nutrient availability. The exact type of cancer metabolism arises from the combined effects
of factors intrinsic to the cancer cells and factors proposed by the tumor microenvironment. As a result, a condition termed

oncogenic metabolic symbiosis in which components of the tumor microenvironment (TME) promote tumor growth often occurs.
Understanding how oncogenic metabolic symbiosis emerges and evolves is crucial for perceiving tumorigenesis. The process
by which tumor cells reprogram their TME involves many mechanisms, including changes in intercellular communication,
alterations in metabolic phenotypes of TME cells, and rearrangement of the extracellular matrix. It is possible that one
molecule with a pleiotropic effect such as Caveolin-1 may affect many of these pathways. Here, we discuss the significance of

Caveolin-1 in establishing metabolic symbiosis in TME.

Background

The rapid proliferation rate of tumor cells needs effective meta-
bolic pathways to fulfill the demanding energy requirements of
neoplastic growth while generating a sufficient amount of bio-
synthetic precursors to maintain cell anabolism and redox
homeostasis of cancer cells. Accordingly, severe reprogramming
of cellular metabolism is an accepted hallmark of cancer. It is
now well established that oncogene activation and aberrant
growth factor signaling can mediate a metabolic repro-
gramming of cancer cells. However, the essential role of the

tumor is an evolving system capable of adaptation to oxygen
and nutrient availability. To achieve that, proliferating cancer
cells successfully alter the metabolic composition of the micro-
environment. Cancer cells also use different signal molecules
and signaling metabolites to create tumor-supporting TME.
Metabolic communication in TME involves symbiotic nutrient
sharing to support tumor growth and nutrient competition to
impair anticancer immunity. Intercellular metabolic pathways
in the TME are analogous to normal physiological processes,

tumor microcnvironment (TME) cannot be neglected. The only directed to support tumorigenesis® Physiological
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metabolic process co-opted by tumors is, for example, the
glucose-lactate shuttle in the brain.®

The process by which tumor cells reprogram their TME
involves many strategies, including changes in intercellular
communication, altering TME cells metabolic phenotypes,
and rearrangement of the extracellular matrix. It is possible
that one molecule with a pleiotropic effect such as Caveolin-1
(CAV1) may affect many of these strategies and can be a
driver molecule for oncogenic metabolic symbiosis.

Caveolins
The family of mammalian caveolins has three members,
Caveolin-1 (CAV1) encoded by CAVI gene with 4 exons
(localized on 7q31.2), Caveolin-2 (CAV2) encoded by CAV2
gene with 3 exons (localized on 7q31.2), and Caveolin-3
(CAV3), also known as M-caveolin, encoded by CAV3 gene
with 2 exons (localized on 3p25.3). CAVI and CAV2 are
co-expressed in many various tissues, whereas CAV3 is expressed
predominantly in all muscle cell types and astrocytes.*”
Cellular caveolins can be found in several forms, such as cyto-
plasmatic, secreted and membrane-bound form.® Membrane-
bound caveolins have both the N-terminal and the C-terminal
domains localized at the cytoplasmic side of the membrane,
CAV2 requires CAV1 for stabilization and plasma membrane
localization.” CAV1 and CAV?2 can be found in the plasma
membrane as CAV1 homo-oligomers (oligomers containing
only CAV1), or hetero-oligomers containing both CAV1 and
CAV2® The tertiary structure of caveolins comprises the
intramembrane domain and the scaffolding domain with a
cholesterol-binding motif and a p-sheet organized region
involved in the oligomerization of caveolin molecules. The
hairpin topology of caveolins is further modulated by choles-
terol.'” Therefore, caveolin epitopes can be masked and at the
plasma membrane may not be recognizable by specific
caveolin antibodies unless cholesterol is depleted.'!

Two CAV1 isoforms (o and p) have been identified: a
slower-migrating 24-kDa o-isoform and a faster-migrating
21-kDa f-isoform. To generate these isoforms, alternative
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initiation of translation from a single mRNA transcript is
used. The resulting isoforms differ in their N-terminal protein
sequence (the p isoform is truncated by 31 residues), but both
contain a complete C-terminus (Fig. 1). Caveolae are
cholesterol-rich plasma membrane invaginations whose for-
mation requires CAV1 and CAVINI (also known as Polymer-
ase [ and transcript release factor, PTRF). In the absence of
CAVIN1, CAV1 forms noncaveolar membrane domains
known as scaffolds."” Super-resolution microscopy identified
three distinct scaffold domains: smaller S1A and $2B scaffolds
and larger hemispherical 82 scaffolds’® Functions of the
CAV1 scaffold may include regulation of focal adhesions,
growth factor receptor signaling and raft-dependent endocyto-

™ The abundance of caveolae is cell-type-dependent. They
are extremely important in cells facing to mechanical stress
such as smooth muscle cells (highly exposed to stretch) and in
endothelial cells (highly exposed to shear stress).'>'®

As both isoforms of CAV1 were found within caveolae
(ot and p), the N-terminal sequence is apparently not required
for caveolar localization. A CAVla region between amino
acids 66 and 70 seems to be necessary for the exit from the
endoplasmic reticulum. The amino acids 71-80 manage the
inclusion of CAV1 oligomers into detergent-resistant areas of
the Golgi apparatus and amino acids 91-100 and 134-154
regulate oligomerization and the exit from the Golgi appara-
tus.” CAV1 C-terminal domain contains a trans-Golgi locali-
zation signal.18 Taken together, newly synthesized CAV1
transits through the Golgl apparatus before reaching the
plasma membrane. The transport from the Golgi apparatus
can be regulated by lipids and is accompanied by oligomeriza-
tion, detergent insolubility and masking of specific caveolin
epitopes by cholesterol.

CAVl-interacting molecules

CAV1 was identified as a substrate of proto-oncogenic kinases
SRC,* ABL1* and FYN.™ In some cellular conditions, CAV1
can be also phosphorylated due to signaling of mammalian
target of rapamycin (mTOR) complex 2 (mTORC2),”
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Figure 1. Caveolin-1. Schematic diagram of CAV1 isoforms « and f and localization of CAV1 dimer in the plasma membrane. Numbers above
the lines indicate the order of amino acids. Important phosphorylation sites in CAV1 are marked by red stripes. Adapted from Parton et al.,
| Cell Sci, 2006, 119, 787.'% [Color figure can be viewed at wileyonlinelibrary.com]
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epithelial growth factor (EGF)* or in respense to reactive
oxygen species (ROS).™ In all caveolin paralogs examined to
date, only 580 and S168 could serve as common phosphoryla-
tion sites. The important phosphorylation site Y14 is exclusive
for CAV1. The phosphorylation of Y14 results in a conforma-
tional change, which causes the exposure of the N-terminus
for interactions with the actin cytoskeleton, most probably via
proteins such as Filamin A or C-terminal SRC kinase
(CSK)'*?**7. Accordingly, Y14 phospharylation induces bio-
genesis of caveolae vig actin-dependent mechanotransduction
and inactivation of the early growth response-1 (Egrl) tran-
scription factor.”®

A fraction of CAV1 localized in caveolae has been reported
to interact with many signaling proteins vig a direct interac-
tion between caveolin scaffolding domain (CSD; amino acids
81-101) and the conserved caveolin binding motifs (CBMs) of
the interacting protems.29'3° Nevertheless, a recent study has
challenged the validity of this model. The assessment of direct
protein—protein interactions in a model system that can dis-
criminate between membrane-bound caveolar CAVI and a
soluble form of CAV1 showed no significant interaction
between caveolar CAV1 and several proteins containing
CBMs, including eNOS, PPAR-y, PTEN, RhoA and DSG2.
On the other hand, the interaction between caveolar CAV1
and c-SRC, DNM2, FYN, and TRAF2 interaction was con-
firmed. ™ The result for eNOS is particularly surprising
because of the proposed interaction of caveolar CAV1 with
eNOS when CAV1 anchors eNOS in caveolae, which limits its
translocation and activation and thereby reduces its capacity
to generate NO.* * However, as caveolae formation and
CAVI1 downstream signaling function through independent
mechanisms,>®> CSD of soluble CAV1 can be involved in eNOS
regulation. For example, CAV1 with F92A mutation within
CSD forms caveolae but leads to increases in NO bioavailability
in vivo.*®

CAV1 in cells and tissues
CAV1 is expressed at different levels in different tissues. The
highest organ-specific CAV1 protein expression is in the lung,
proximal digestive tract, female tissues and skin (according to
the proteinatlas.org). The highest cell-specific levels of CAV1
were found in adipocytes, endothelial cells, fibrablasts, smooth
muscle cells and a variety of epithelial cells.*®

Caveolins were originally discovered as <ritical proteins for the
formation of caveolae in lipid rafts, which are specialized plasma
membrane domains containing high concentrations of choles-
terol, and were named based on this fact. Caveolae were originally
thought to be involved only in the process of pinocytosis. Later,
their role has expanded to indude endocytosis, transcytosis, cho-
lesterol homeostasis, signal transduction, mechanotranduction,
cell migration and mechanical stress respanses.”” ** In addition to
caveolae, caveolins are also expressed in the membrane of several
organelles and cellular structures including Gelgi apparatus,®
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endoplasmic reticalum,*? mitochondria,® nucleus® lysosomes,‘l"l
pero)(jsomes,45 endocytic vesicles, extracellular vesicles (EVs;
e, exosomes)™*® ** or lipid droplets.* There are types of cells
that preferentially target CAV1 to either the cytoplasm, mitochon-
dria or to the secretory pathway and had little CAV1 in caveolae.®
CAV1 entry into the regulated secretory pathway is probably reg-
ulated by Serine 80. CAV1 mutant (S880A), which cannot be phos-
phorylated, targets CAVI1 to caveolae. Consequently, it is not
secreted even in the presence of dexamethasone, a secretory
phenotype-inducing agent.* Caveolin-containing EVs may have
high impact on intercellular communication inside the tumor
stroma and particular on metabolic reprogramming™ as EVs were
shown to transfer functional RNAs and proteins to recipient cells
causing manipulation of gene and protein expression in these
recipient cells.***" CAV1 was identified as essential for sorting of
selected miRNAs into EVs.*® Indeed, it has been recently shown
that CAV1-containing EVs transport adhesion proteins and pro-
mote malignancy in breast cancer cells. ¥ Moreover, CAV1 is
strongly expressed on exosomes secreted by human melanoma
cells, prostasomes™ and EVs released from the plasma mem-
brane of osteoblasts.>* It was also found that after effective abla-
tion of the CAVI gene in adipocytes, CAV1 protein remained
abundant due to CAV1-containing extracellular vesicles derived
from neighboring endothelial cells >

Taken together, CAV1 can be targeted to a variety of intra-
cellular locations (Fig. 2) and therefore has caveolae-
independent roles, such as lipid transport, membrane traffick-
ing, signal transduction, regulation of gene expression and
mitochondrial functions.*® These facts deeply illustrate the
pleiotropic and context-dependent role of CAVL.

CAV1 and Oxidative Phosphorylation

Several studies reveal that CAV1 is involved in the modula-
tion of mitochondrial functions as CAV1 deficiency decreases
mitochondrial respiration and reduces the activity of respira-
tory chain complexes.”” CAV1 deficiency does not alter
mitochondrial morphology or numbers but results in the
proteasome-dependent degradation of Complexes I, III, IV
and V upon oxidant stimulation.”® Furthermore, low CAV1
expression also causes defective lipid metabolism and high
dependency on glucose.59 51 On the other hand, mitochondria
with increased caveolin showed a decrease in apoptotic stress
and targeted gene transfer of caveolin to mitochondria in
C57Bl/6 mice increases cardiac mitochondria tolerance to cal-
cium and also enhances respiratory function. In contrast,
mitochondrial function is abnormal in caveolin-knockout
mice *?

CAV1 may further modulate mitochondrial function by
regulating cholesterol flux, as loss of CAV1 expression leads
to cholesterol accumulation in the mitochondrial membrane,
increased oxidative stress and cell death.”® CAVI may also
control mitochondrial functions through the regulation of
AFG3L2. This ATP-dependent protease is an essential
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Figure 2. Intracellular localization of CAV1. CAV1 can be inserted
cotranslationally into the ER membrane (pink arrow path), then can
be incorporated into vesicles that move to the Golgi apparatus. In
the Golgi apparatus, CAV1 oligomerizes and becomes detergent-
insoluble. Once it reaches the cell membrane, CAV1 incorporates
into caveolae that can be internalized and recycled. During the
caveolae internalization, CAV1 can probably enter the cytoplasm of
the cell as a soluble protein anchored in lipid particles. It may go to
the ER and bind newly synthesized cholesterol for transport back to
caveolae. Another possibility is that the soluble CAV1 remains in the
cytosol. It may be incorporated into lipid droplets or can go to
mitochondria (gray arrow pathways) or enter the lumen of the ER. In
the lumen of the ER, the soluble CAV1 can be incorporated into HDL-
like particles that are secreted from the cell (blue arrow pathways).
Adapted from Liu et al., ) Biol Chem, 2002, 277, 41295-8.%° [Color
figure can be viewed at wileyonlinelibrary.com]

component of the conserved m-AAA complex involved in
mitochondrial protein homeostasis. Upon oxidative stress trig-
gering, the CAV1-dependent localization of AFG3L2 to mito-
chondria prevents mitochondrial damage and consequently,
functional respiratory chain complexes are maintained. In the
absence of CAV1, AFG3L2 fails to localize to mitochondria
and the AFG3L2-mediated protection is lost. Under these
conditions, mitochondrial Complexes I, III, IV and V are
degraded by cyloplasmic and proteasome-dependent degrada-
tion, oxidative phosphorylation is impaired and CAV1 null
cells are forced to rely on enhanced glycolysis for their bioen-
ergelic requirements.”® While the ATP generalion by
OXPHOS is dispensable for tumorigenesis, loss of mitochon-
drial Complex III/TV can have severe consequences for pyrim-
idine biosynthesis in cancer cells because the activity of
dihydroorotate dehydrogenase (DHODH), which is a key
enzyme of pyrimidine biosynthesis, is associated with the
activity of Complex III. It was found that DHODH-driven
pyrimidine biosynthesis is an essential pathway linking respi-
ration to tumorigenesis as cancer cells without functional
DHODH-driven pyrimidine biosynthesis in mitochondria do
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not form tumors and melastases unless they reconstitute
respiratory chain by mitochondria acquired from host
stroma.**%

A metabolic symbiosis between cancer cells

Most tumors exhibit quite a large volume of intra-tumor het-
erogeneily and significant metabolic compartmentalization.
Tumor mass contains different subpopulations of cancer cells
with different metabolic activity, such as proliferative cancer
cells having high mitochondrial metabolism and lactate and
ketone body uptake, or other cancer cells with low mitochon-
drial metabolism and high lactate and ketone body produc-
tion."® These heterogeneous subpopulations exist in close
relationship in the environment with limited resources. Con-
sequently, they can engage in complex “ecological” interac-
tions including competition and cooperation. The cooperation
can be metabolically demanding but can lead to efficient sur-
vival, especially in a changing, harsh environment. An
established metabolic symbiosis between multiple independent
neoplastic subclones is crucial for tumor progression.” Meta-
bolic symbiosis within a tumor is well exemplified by the
occurrence of a lactate shuttle between glycolytic and oxida-
5889 Glycolytic cancer cells produce lactate,
crealing a lactate gradient in the tumor mass. This gradient
often mirrors the availability of oxygen and may significantly
affect the expression of caveolins™® (Fig. 3). Rather than being
a wasle metabolite, secreted lactale is a signaling molecule and
powerful fuel of the Krebs cycle used by oxygenated tumor
cells instead of glucose. The spared glucose can be then con-
sumed by glycolytic cancer cells through anaerobic glycolysis.
Indeed, targeting lactate-fueled respiration by inhibiting lac-
tate transport into oxygenated tumor cells selectively kills hyp-
oxic tumor cells as a result of disturbed metabolic symbiosis.”

The lactate-based metabolic symbiosis between tumor cells
has been reported in various cancers.”>”" As the prominent
path for lactate uptake, monocarboxylate transporter
1 (MCT1, SLCI16Al1 gene) was identified. Inhibiting MCT1
with a-cyano-4-hydroxycinnamate or siRNA in human cervix
squamous carcinoma cells that preferentially utilized lactate
for oxidative metabolism induced a switch from lactate-fueled
respiration to glycolysis.®” MCT1 expression can be also mod-
ulated by tumor suppressor p53. p53 is known Lo repress
MCT1 expression interacting directly with the MCT1 gene
promoter and altering MCT1 mRNA stabilization. On the
other hand, p53 deficiency results in elevated MCT1 expres-
sion. In hypoxic p53(—/—) tumor cells, the expression of
MCT! is further elevated by NF-kB. Following glucose depri-
vation, upregulated MCT1 in p53(—/—) cells promotes lactate
import and mitochondrial respiration.”

Pharmaceutical targeting of metabolic symbiosis may be a
promising way to target cancer progression. MCT1 inhibition
shows clinical potential in human cervix squamous carci-
noma, diffuse large B-cell lymphoma, and invasive ductal car-
cinoma®>”>™ Tligh MCT1 expression was more commonly

tive cancer cells.
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Figure 3. The lactate-based metabolic symbiosis between cancer cells in the TME. The highly glycolytic cancer cells produce lactate, creating
a lactate gradient in the tumor microenvironment. This gradient often mirrors the availability of oxygen. Rather than being a waste metabolite,
secreted lactate is consumed by well-oxygenated tumor cells instead of glucose. The spared glucose can be then consumed by glycolytic
cancer cells through anaerobic glycolysis. Lactate is imported in oxidative cancer cells through monocarboxylate transporter 1 (MCT1,
encoded by SLC16A1). Lactate efflux from glycolytic cells is managed mainly by monocarboxylate transporter 4 (MCT4, encoded by SLC16A3).

[Color figure can be viewed at wileyonlinelibrary.com]

found in triple-negative breast cancers compared to ER+
and/or PR+ and compared to IER-2+ breast cancers.”
Accordingly, triple-negative breast cancer cells have been
found to use lactate as a primary source of energy, allowing
them to survive glucose deprivation for extended periods. This
metabolic adaptation is mediated by the estrogen-related
receptor alpha (ERRa) nuclear receptor and helps cancer cells
to resist anti-PI3K/mTOR targeted therapies. Blockade of lac-
tate oxidation upon genetic or pharmacological inhibition of
ERRa activity sensitized breast cancer cells to PI3K/mTOR
inhibitors both in vitre and in vive.”” Some antineoplastic
effects of statins may be also explained by blocking metabolic
symbiosis. Some studies showed that statins impair mitochon-
drial function and OXPHOS without a compensatory
upregulation of glycolysis.”*”” Some studies also show that
statins decrease the expression of CAV17*® which can fur-
ther contribute to mitochondrial damage.’—‘8 Nevertheless,
some statins, such as atorvastatin, increase the number of reg-
ulatory T-cells (Treg).*' Such an increase in Treg numbers
may be beneficial in stabilizing atherosclerotic plaque,® but
on the other hand, it might weaken host antitumor immune
responses.” Melabolic symbiosis can be disturbed also in
other ways. Oxidative, high CAV1 expressing cancer cells
seem to be more sensitive to antidiabetic drug metformin.

Int. J. Cancer: 147, 1793-1807 (2020) © 2020 UICC

Metformin is known to inhibit both, Complex I of the respira-
tory chain and mTOR.* mTOR integrates nutrient and mito-
gen signals to regulate cell growth and cell division. While
antagonizing both oxidative and glycolytic groups of cancer
cells by inhibiting mTOR, metformin additionally inhibits
OXPHOS in oxidative cancer cells relying on mitochondria for
energy production. This way may metformin break the meta-
bolic symbiosis between glycolytic and oxidative cancer cells
and exert competition for glucose. Accordingly, there is evi-
dence that the anticancer effect of metformin is significantly
enhanced when glucose availability is drastically restricted.*”

Context-dependent expression of CAV1 as a driver

of metabolic symbiosis between cancer cells

It has been shown that CAV1 may have both, tumor-
suppressive and oncogenic effects. These effects are probably
deeply context-dependent (Fig. 4). CAV1 was associated with
tumor suppression by inducing GO/G1 arrest via a
p53/p21-dependent mechanism®® and by the inhibition of
cyclin D1* CAV1 also inhibits the expression of the anti-
apoptotic factor Survivin, but only in the presence of
E-cadherin.*®* Moreover, targeted downregulation of CAVI
was sufficient to drive cell transformation and hyperactivate
the p42/44 MAP kinase cascade.”” Low CAV1 expression
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Figure 4, CAV1 during cancer development. CAV1 protects normal
cells from damage, helps to maintain normal cell signaling and
inhibits excessive proliferation. When CAV1 expression declines
below the threshold, cells lose tumor-suppressive effects of CAV1,
become sensitive to oncogenic stress and initiate proliferation,
anchorage-independent growth and malignant transformation. During
cancer progression to the advanced stages or treatment with
cytotoxic agents, CAV1 may be re-expressed and help cancer cells
escape cell death, induce treatment resistance and metastasis.
Adapted from Wang et al., Oncotarget, 2015, 6, 37135-50."13 [Color
figure can be viewed at wileyonlinelibrary.com]

also helps cancer cells to overcome oncogene-induced
senescence (OQIS). OIS is known as a powerful tumor sup-
pressor mechanism and is dysfunctional in many cancers
that have downregulated CAV1 expression.”™' Accord-
ingly, many oncogenes, including SRC, RAS, BCR and ABL,
have been shown to transcriptionally downregulate CAV1
expression trying to escape O1§.7%?

On the other hand, CAV1 was highly expressed on cancer
stem cells and affected their chemosensitivity,”* higher expression
of CAV1 induced filopodia and metastases formation in lung ade-
nocarcinoma® and promoted anchorage-independent survival by
preventing anoikis.”® CAV1 phosphorylated on Y14 activates
RIO-associated protein kinase (ROCK) and SRC signaling with a
tumor-promoting effect.”” In the feedback loop, SRC-dependent
tyrosine phosphorylation of CAV1 causes a reversible flattening
and aggregation of caveolae at the cell membrane. Consequently,
the cells changed from typical morphology to a rounded shape
lacking polarity that might directly contribute to the transformed
phenotype.” Flattening of caveolae may also provide a way to tol-
erate membrane tension during mechanical stress and prevent
damage or cell lysis by changing the volume-to-surface ratio of
the cell as the caveolar membrane is released into the bulk plasma
membrane.”® Flattening and dissociation of caveolae are followed
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by the disassembly of caveolae and the release of caveolar proteins,
including CAV1 and cavins, that may modulate the cellular
response o mechanical stimuli at the molecular level**'* For
example, due to mechanical stress, the EHD2 ATPase is released
from caveolae, SUMOylated and translocated to the nucleus,
where it regulates gene transcription.'®

As shown in Torres et al, it is possible that for exerting the
tumor-suppressing effect of CAV1 other interacting molecules,
such as E-cadherin, are needed® In cancer cells, where
E-cadherin expression or its surface localization is lost,'*"'%
CAV1 may not manage its tumor-suppressing role. It was also
shown that in the absence of CAVINI1 expression, CAV1
increased anchorage-independent growth of advanced prostate
cancer cells. CAVINI co-expression reversed this CAV1 effect.
These results suggest that CAV1 causing this tumor-promoting
effect in advanced prostate cancer is present outside of
caveolae.® CAV1 was also shown to interact with integrins.
Whereas integrin alpl promotes CAV1 dephasphorylation,'™*
integrin 1 activated by acute shear stress or fibronectin-
mediated integrin activation induces CAV1 phosphorylation and
cytoskeletal rearrangements promoting cell proliferation.'*>'*

It seems clear that alterations in a cellular context and conse-
quent changes in CAVl-interacting molecules can profoundly
affect the resulting function of CAVL.'” 1t is also obvious that
CAV1 expression tightly reflects the actual needs of cancer cells
and their obtained resistance (p53 inactivation, resistance to OIS,
etc.). For example, the majority of CAV1-positive breast cancers
are triple-negative, high proliferative tumors, with aberrant p53
expression.'”® For these reasons, it could be disadvantageous
for the evolution of tumor cells to carry permanent deleterious
CAV1 mutations, because it may cause greater susceptibility to
mitochondrial damage by ROS and other disadvantages.'"
Instead of this, at the cancer onset, CAV1 gene can be
repressed by CpG hypermethylation, while re-expression occurs
in metastatic foci and lymph nodes.""®"" Consequently, it is
very probable that tumor mass contains cancer cells at a differ-
ent stage of tumorigenesis with different expression of CAV1.
As CAVI-deficient cells are gradually losing their mitochon-
drial functions,”” and start to rely on enhanced glycolysis and
autophagy for their bioenergetic requirements,™ reverse War-
burg effect in CAV1-expressing cancer cells may appear. These
CAV1-expressing tumor cells can, in the presence of CAVI
deficient catabolic cells, reprogram their metabolism toward
anabolic metabolism, mitochondrial biogenesis and increased
OXPHOS'"? thus establishing the metabolic symbiosis.

CAV1 in the metabolic symbiosis between cancer cells

and CAFs

Metabolic symbiosis can also be established between cancer cells
and cancer-associated fibroblasts (CAFs). Under physiological
conditions, fibroblasts control the turnover of extracellular
matrix (ECM), regulate tissue homeostasis and participate in
senescence and wound healing. After they exert their functions,
they are deactivated or undergo cell death.""* In solid tumors,
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ongoing desmoplasia generates mechanical forces converling
normal fibroblasts to permanently active CAFs. CAFs co-evolve
with the cancer cells, alter the physical and metabolic structure
of the TME and may promote the transformation process by
supporting cancer cell growth, angiogenesis, inflammation and
metastasis. In some tumor types, CAFs represent up to 80% of
the tumor mass.'" Interestingly, the constitutively activated
phenotype of fibroblasts similar to CAFs was also found in
fibrotic diseases''® which are in various tissues directly and/or
indirectly regulated by CAV1. CAV1 prevents collagen deposi-
tion, fibroblast proliferation and TGF-P signaling through its
negative regulation of pathways involving PI3K/AKT, Rho-like
GTPase, MAPK (MEK/ERK) or INK.""

It was shown that fibroblasts surrounding malignant cells
have low CAV1 expression, high monocarboxylate transporter
4 (MCT4) expression and enhanced aerobic glycolysis'"® with
simultaneous increase of mitochondrial activity and high
expression of MCT1 transporter in the adjacent epithelial can-
cer cells. Such a situation enables the uptake of CAF-produced
nutrients by these cancer cells. CAV1-deficient stromal fibro-
blasts also promote angiogenesis by recruiting CAV1-positive
microvascular cells.”*""*"'*! High MCT4 expression in the
stromal tissue has been shown to have an important prognos-
tic role in breast cancer.'?? In prostate cancer, a loss of stro-
mal CAV1 correlated with a high Gleason score and worse
prognosis as all metastatic tumors (either from lymph node or
bone) were negative for stromal CAV1 staining. Loss of stro-
mal CAV1 also correlated with high CAV1 expression and
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activated AKT in prostate cancer cells.'”® This loss of CAV1
expression in CAFs is probably induced by ROS and oxidative
stress Lriggered by adjacent cancer cells and executed by
HIFla activation and autophagic CAV1 degradation.® Fibro-
blasts harboring activated HIFla showed a dramatic reduction
in CAV1 levels, nitric oxide (NO) overproduction, loss of
mitochondrial activity and a shift toward aerobic glycolysis
resulting in an increase in lactate production. Lactate and
other energy-rich metabolites could then be transferred to
adjacent cancer cells and may enter their TCA cycle and
increase ATP production'** (Fig. 5). Accordingly, treatment
with antioxidants (such as quercetin or N-acetyl-cysteine) or
NO inhibitors (.-NAME) was able to reverse many of the
CAFs’ phenotypes described earlier. It seems that cancer cells
may induce oxidative stress in CAFs to support their own sur-
vival through the stromal production of nutrients.'”® More-
over, the ROS and NO production in stromal cells themselves
could be involved in field cancerization effect. Accordingly,
eNOS-expressing fibroblasts downregulate CAV1 and induce
mitochondrial dysfunction in adjacent fibroblasts that do not
express eNOS. As such, the effects of stromal oxidative stress
can be amplified and spread.'*

Based on the evidence stated earlier, metformin treatment
may have a potential to interrupt metabolic symbiosis by fore-
ing oxidative cancer cells to utilize glycolysis through inhibi-
tion of Complex I of the respiratory chain, and to disturb
metabolic coupling between CAFs and cancer cells.**'*
Accordingly, highly oxidative cancer cells, such as some
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Figure 5, Oncogenic metabolic coupling between CAFs and oxidative cancer. The oncogenic metabolic symbiosis between cancer-associated
fibroblasts (CAFs) and tumor cells enables malignant cells to consume metabolic substrates produced by CAFs. Cancer cells mediate metabolic
reprogramming of CAFs via the secretion of ROS which initiates in CAFs loss of CAV1, mitochondrial damage, aerobic glycolysis, autophagy and
catabolic phenotype producing high amounts of metabolites such as lactate, pyruvate or ketone bodies. Loss of CAV1 in CAFs is associated with
lactate efflux and high MCT4 expression with concurrent increased mitochondrial mass and mitochondrial activity and high expression of MCT1
transporter in the cancer cells. High mitochondrial mass, associated with upregulated Wnt/p-catenin and MYC signaling, reflects cancer cells®
reliance on oxidative metabolism. CAV1, Caveolin-1; MCT4, monocarboxylate transporter 4; OXPHOS, oxidative phosphorylation; ROS, reactive
oxygen species. Adapted from Penkert et al., Oncotarget, 2016, 7, 67626—49."! [Color figure can be viewed at wileyonlinelibrary.com]
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cancer stem cells, have been shown to be very sensitive
towards metformin treatment."” ' This effect of metformin
is enhanced when glucose availability is markedly restricted.®
An interesting option may be a combined administration of
metformin with 2-deoxyglucose, which is absorbed instead of
glucose but is not used for glycolysis.”*" Furthermere, patients
with head and neck squamous carcinoma who received met-
formin were found to have increased stromal CAV1 staining
(from 25.7% pretreatment to 62.89% posttreatment),’”* Never-
theless, metformin alone does not seem potent enough to
completely inhibit the respiratory chain and other compounds
more efficient in respiratory chain inhibition such as
MitoTam or cyclic pentamethinium salt may break the meta-
bolic symbiosis more efficiently.!3313

The metabolic symbiosis between CAFs and tumor cells
develops dynamically depending on the amount of oxygen,
extracellular availability of metabolites and the presence of
signaling molecules. Therefore, metabolic symbiosis may also
occur in the reverse order where the oxidative metabolism of
CAFs promotes the growth of glycolytic tumor cells. This can
be seen in head and neck cancer (HNSCC). HNSCC CAFs
secrete hepatocyte growth factor (HGF) and stimulate a glyco-
Iytic phenotype in the HNSCC cells."*® Furthermore, CAV1
expression in CAFs favors their contractility and consequent
directional migration and invasiveness of carcinoma cells,'*®
CAV1 binds to intermediate filaments, such as vimentin,
which in turn is required for anterior polarization of CAV1 in
transmigrating cells and positively modulates the YAP
mechanoresponse to substrate stiffness through actin-cytoskel-
eton-dependent mechanism.”” ** CAV1-YAP regulation fur-
ther modulates pathophysiological processes such as ECM
s'ciffening.139 Accordingly, we can assume the existence of dif-
ferent CAFs subpopulation in TME."* While myofibroblastic
types of CAFs with high CAV1 expression may increase the
invasiveness of carcinoma cells, secretory CAFs with low
CAV1 expression can be usetul for oxidative cancer cells

through metabolic symbiosis.

CAV1 in the metabolic symbiosis between cancer cells

and TAMs

During cancer progression, a heterogencous population of
immune cells is recruited to the primary TME as well as to
the premetastatic niche or metastatic sites. Macrophages are
the most abundant population among them. The macrophages
populating TME and supporting tumor growth are usually
termed as tumor-associated macrophages (TAMs). TAMs
were shown to promote angiogenesis, invasion, persistent
growth and te suppress the cytotoxic response of T-cells.'*
The support of tumor growth can be exerted through various
mechanisms such as membrane-cholesterol efflux from mac-
rophages'® or release of other important nutrients such as
pyrimidines or pyruvate.!***> Pyrimidine biosynthesis is an
essential pathway linking respiration to tumorigenesis.”* As a
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result of many anticancer therapies, respiratory chain damage
occurs,™® Without an active respiratory chain cancer cells are
dependent on exogenous uridine and pyruvate," Both can be
delivered by TAMSs."**'*

Although TAMSs have usually been classified as M2-like
macrophages, it has become clear that this classification does
not reflect the large variety of TAMs phenotypes."*® In fact,
phenotypic plasticity of TAMs has been shown, wherein mac-
rophages present an inflammatory phenotype in the early
phase of tumorigenesis while displaying an immunosuppres-
sive phenetype in the later phases of tumor progression.'*
Accordingly, it was also shown that conditioned media
derived from M1 and M2 macrophages support the growth of
breast cancer cells differently.’*® Dynamic changes of CAV1
expression in TAMs reflecting different tumor sites and differ-
ent stages of cancerogenesis were also found. For example,
lung metastasis-associated macrophages show a much higher
expression of CAV1 than TAMs from primary tumor,™"

While pro-inflammatory macrophages are known to
produce most of their ATP through glycolysis, alternatively
activated immunosuppressive and anti-inflammatory macro-
phages have been shown to utilize rather OXPHOS. Accord-
ingly, treatment of macrophages with IL-4, IL-25 or IL-10 was
shown to upregulate OXPHOS.'* '™ IL-10 also inhibits
lipopolysaccharide-induced glucose uptake and glycolysis and
suppresses mammalian target of rapamycin (mTOR). Conse-
quently, IL-10 promotes mitophagy that eliminates dysfunc-
tional mitochondria generating ROS.1%2 On the other hand,
in pro-inflammatory macrophages, MCT4 upregulation repre-
sents a positive feedback mechanism to maintain a high
glycolytic rate essential to a fully activated inflammatory
respanse.’”>

In TME, TAMs compete with cancer cells for nutrients
and consequently undergo changes in their metabolism. Some
studies indicate that TAMs exert aerobic glycolysis, which also
contributes to their functional reprogramming. Changes in
metabolism of TAMs also supported cancer cells invasion
and metastasis.'>® °® Inhibiting glycolysis in TAMs with
2-deoxyglucose disrupted this prometastatic phenotype,
reversing the TAM-supported angiogenesis, extravasation and
epithelial to mesenchymal transition (EMT)."*

Importantly, TAMs accumulating in hypoxic areas of
tumors express HIFla and undergo metabolic shift toward
aerobic glycolysis.'*® '®% HIFla activation induces oxidative
stress and ROS production by macrophages. Oxidative stress
can induce genetic instability and support malignant transfor-
mation.'®® Moreover, lactate produced by glycolytic TAMs
can serve as metabolic fuel for oxidative cancer cells.”" Never-
theless, when oxidative cancer cells are not present, lactate is
accumulated and can be fished out by TAMs through their
MCT's transporters leading to the transcription of the vascular
endothelial growth factor (VEGF) and arginase-1 (ARGI)
which polarizes TAMs closer to a M2 phenotype!®=1%°
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as ARG1 expression defines immunosuppressive subsets of
TAMs' Arginase hydrolyzes arginine to ornithine and urea
and limits arginine availability for NO synthesis. NO production
endows macrophages with pro-inflammatory and cytotoxic
activity." CAV1 was also shown to inhibit NO synthesis."®®
Moreover, CAV1 confers other anti-inflammatory effects in
macrophages vig the MKK3/p38 MAPK pathway™ and via iron
exporter ferroportin stabilization as macrophage ferroportin was
mostly detected in detergent-resistant membranes containing
CAV1Y® Accordingly, anti-inflammatory macrophages express
high levels and pro-inflammatory macrophages low levels of
ferroportin. In line with this profile, pro-inflammatory MI-like
macrophages probably favor iron sequestration, whereas anti-
inflammatory M2-like macrophages favor iron release which
promotes tissue repair and tumor cell proliferation.'”*

Hypoxic tumor areas are characterized by the presence of
macrophages expressing high levels of receptors for vascular
endothelial growth factor 1 (VEGFR1) that actively secrete
matrix metalloproteinase (MMP9) and thus promote angio-
genesis and invasion. VEGFRI-MMP9 signaling axis in mac-
rophages is attenuated by high CAVI1 expression and low
CAV1 expression increased the membrane exposure of
VEGFR1 on TAMs resulting in increased activity of MMP9,
excessive blood vessel formation and expanded metastatic
size."!

Based on these facts, we can speculate that low CAVI gly-
colytic cancer cells producing lactate co-evolve with anti-
inflammatory, oxidative, CAV1 expressing, iron releasing
M2-like macrophages which promote tissue repair and tumor
cell proliferation. On the other hand, glycolytic, low CAVI
expressing, iron-sequestrating, pro-inflammatory MI-like
macrophages may form a metabolic symbiosis with CAVI
expressing oxidative cancer cells; (Fig. 6). Evidence supporting
the co-evolution of glycolytic cancer cells with anti-
inflammatory M2-like macrophages and oxidative cancer cells
with pro-inflammatory Ml-like macrophages are present in
many studies. For example, plasminogen activator inhibitor-1
(PAI-1) promotes the recruitment of monocytes and their
polarization to M2-like phenotype'® and simultaneously
drives rearrangement of the actin cytoskeleton, mitochondrial
fragmentation and glycolytic metabolism in adjacent cancer
cells.'”® Moreover, anti-inflammatory M2-like macrophages
produce high amounts of transforming growth factor-beta
(TGF-p).'™ TGF-p may induce a switch from oxidative
metabolism in hepatocellular carcinoma cells and upregulates
the expression of glutamine transporter Solute Carrier Family
7 Member 5 (SLC7A5) and glutaminase 1 (GLS1).Y° As M2
macrophages express high amounts of glutamine synthetase
and therefore have high glutamine synthesis, they can supple-
ment cancer cells in TME with glutamine. It is important
because glycolytic cancer cells display an addiction to gluta-
mine although glutamine is a nonessential amino acid
synthesized from glucose.'”® 17® Pharmacological inhibition or
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genetic ablation of glutamine synthetase in macrophages pro-
motes an Ml-like phenotype, an increase in T cell recruitment
and suppression of proangiogenic state and metastasis in a
mouse model of Lewis lung carcinoma.’”

In contrast, studies in many chronic inflammation-induced
cancer models indicate the presence of TAMs with an inflam-
matory (Mlike) phenotype.”>'® Ml macrophages were
shown to activate the Notch signaling in epithelial cells"*" which
plays a critical role in the linkages between angiogenesis and
cancer stem cells self-renewal **? Moreover, M1-like TAMs pro-
duce pro-inflammatory cytokines such as IL-6, IL-1§ and
TNFo.'® TAM-derived IL-6 induces tyrosine and serine
phosphorylation of STAT3 that results in activation of
STAT3-responsive genes in cancer cells leading to activation of
cell cycle and enhancement of mitochondrial electron transport
chain activity. STAT3 has a role in the direct, nontranscriptional
regulation of OXPHOS.®* 18 1 addition, STAT3 confers a
protective role during cellular stress, by the reduction of ROS
production and retention of cytochrome C in the mitochon-
dria.'® Levels of IL-6 in human hepatocellular carcinoma sam-
ples correlate with tumor stage and markers of cancer stem
cells."®® Sansone et al. have demonstrated that I1-6 induces can-
cer stem cell renewal vig Notch3.®® Furthermore, IL-6 increases
glycogen synthesis through PI3kinase-dependent mechanisms
and enhances lipid oxidation via AMPK-dependent mecha-
nisms.**? 1L-6 also induces survival of prostate cancer cells by
inducing Bcl/Stat-mediated signaling, supports resistance to
immune checkpoint inhibition in metastatic pancreatic cancer,
and enhances human melanoma cell invasiveness.'”* *% Some
evidence suggests that this IL-6 signaling needs functional
CAVI in caneer cells."** Furthermore, pro-inflammatory macra-
phages can activate osteocdlasts which can then support
reactivating of dormant tumar cells in bones."*"% TL-6 is also
an important mediator for mitochondrial DNA repair.**®

CAV1 in the crosstalk between adipose tissue and tumors
Obesity has been connected to the enhanced risk and malig-
nancy of many types of cancer. While obesity is linked with
cancer development, advanced stages of many cancers are
associated with white adipose tissue loss and cachexia'™
Accordingly, increased consumption of lipids versus glucose is
a marker of cancer aggressiveness in carcinomas.”®® The pri-
mary forms of lipids used by cancer cells as a source of energy
through p-oxidation are fatty acids (FA)."® Tn highly malig-
nant cancers, endogenous lipogenesis becomes insufficient
and cancer cells start to consume FA from other sources. Adi-
pocytes undergoing lipolysis may serve as a source of lipids
for cancer cells. This was proved, for example, in ovarian can-
cer. In providing FA from surrounding adipocytes for ovarian
tumors, fatty acid-binding protein 4 (FABP4) has an impor-
tant role.”® It was also shown that p-hydroxybutyrate secreted
by mammary gland-derived adipocytes enhanced malignancy
of MCT2-expressing breast cancer cells.*”!
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Figure 6. Oncogenic metabolic coupling between CAFs and TAMs. The oncogenic metabolic symbiosis between tumor-associated
macrophages (TAMs) and tumor cells enables cancer cells to manipulate TAMs closer to a M2 phenotype by lactate production (a) or to
consume metabolic substrates produced by TAMs (b). Low CAV1 glycolytic cancer cells producing lactate co-evolve with anti-inflammatory,
oxidative, CAV1 expressing, iron releasing M2-like macrophages which promote tissue repair and tumor cell proliferation. On the other hand,
glycolytic, low CAV1 expressing, iron-sequestrating, pro-inflammatory M1-like macrophages may form a metabolic symbiosis with CAV1
expressing oxidative cancer cells. In pro-inflammatory macrophages, MCT4 upregulation represents a positive feedback mechanism to
maintain a high glycolytic rate essential to a fully activated inflammatory response. [Color figure can be viewed at wileyonlinelibrary.com]

The role of CAVI1 in lipid metabolism became obvious
with the creation of CAV1 knockout mice. These mice were
lean with small adipocytes, had insulin resistance and
exhibited defects in insulin signaling.%® Lipoatrophy caused by
CAV1 gene knockout is probably not linked to defective adi-
pocyte differentiation. Some studies indicate that CAV1 defi-
ciency induces excessive autophagy in adipocytes, which is not
a physiological response to fasting in normal fat cells.**>**
Moreover, CAV1-containing extracellular vesicles were shown
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to be essential for crosstalk between cells in adipose tissue,
and loss of this communication may reduce crucial inter-
cellular signaling and disturb homeostasis in adipose tissue.”

Recent studies point out that a switch from white to beige/
brown fat is involved in energy wasting in cancer-associated
cachexia®® Two drivers of white to beige/brown trans-
differentiation were identified: IL-6* and tumor-derived
parathyroid-hormone-related peptide.**® Accordingly, adipocytes
in TME exhibit upregulated beige/brown fat characteristics, such
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as UCP1 expression and increased catabolism accompanied by
the release of metabolites including FA, lactate, pyruvate, and
ketone bodies. Tumor cells co-cultivated with mature adipo-
cytes exhibit metabolic adaptation and an aggressive phenotype
in vitro and in vivo and at the same time, these tumor-educated
adipocytes showed an increase in beige/brown fat characteris-
tics, such as high UCPI and MCT4 levels and induced CAV1
loss compared to adipocytes cultivated alone™” UCPI uncou-
ples oxidative phosphorylation from ATP synthesis in the inner
mitochondrial membrane to dissipate energy in the form of
heat 2% Nevertheless, CAV1-null mice were unable to liberate
triglyceride stores for heat production.*® In other words, lipol-
ysis in these adipocytes may be connected rather with the
release of metabolites than with ATP production or thermogen-
esis. It was also observed that CAV1-KO adipose tissue con-
tained an increased proportion of infiltrated macrophages
compared to control mice®” These macrophages can further
facilitate the modulation of adipocytes toward tumor-supporting
phenotype ™

The metabolic symbiosis between cancer cells and adipo-
cytes has not been deeply studied yet and therefore our con-
clusions are a bit speculative. Nevertheless, they represent an
interesting new direction for future research.

Conclusion and Future Perspective

The metabolic symbiosis between stromal cells and cancer
cells evolves dynamically depending on the amount of oxygen,
extracellular availability of metabolites and the presence of
signaling and CAV I-interacting molecules. It is apparent that
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the different stages of the tumorigenesis present different met-
abolic challenges to cancer cells and metabolic symbiosis with
cells in TME can pronouncedly support cancer progression.
The difference in CAV1 expression between cancer cells and
cells in TME may contribute to the establishment of onco-
genic metabolic symbiosis because CAV1 expression seems to
be tightly connected with the type of cell metabolism and with
intercellular communication. Nevertheless, the answer is prob-
ably more complex than just CAVI1 expression levels. To
understand the role of CAV1 in cancer metabolism, attention
should be paid to CAV1 cellular localization and
CAVl-interacting molecules as they can completely twist the
resulting effect of CAV1 signals. It will be also important to
investigate the role of CAV1 in mechanotransduction path-
ways involved in tumor progression. How is CAV1 linked to
the long-term cellular response to mechanical and metabolic
signals is an open question and it seems to be an exciting area
of research.
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Non-tumor prostate tissue and prostate cancer cells are metabolically highly specific. In primary
tumors, no Warburg effect was described. The non-tumor prostatic cells accumulate zinc ions.
Due to the inhibitory effect of zinc to mitochondrial aconitase, the non-tumor prostatic cells
accumulate citrate. Therefore, citrate metabolization to alpha-ketoglutarate is inhibited and cit-
rate cannot be used as a source of protons in Krebs cycle by non-tumor cells.

On the other hand, malignant cells show a decrease in zinc accumulation and thus increased
OXPHOS and no Warburg effect in primary tumors [7]. In addition, the “metabolic phenotype”
of prostate cancer differs during its progression. Cells from metastatic sites are characteristic
by decreased OXPHOS [8]. The causes and consequences of altered zinc balance are further
discussed in detail in a Gumulec et al review [36].

The prostate cancer is not just unique metabolically, but also from the view of cell mechanics.
Generally, most tumor cells isolated from tumor tissues are usually softer compared to their
non-tumor counterparts, which facilitates migration through confined spaces [17]. In prostate
cancer, however, a controversy with this exist: Bastatas and colleagues described increased
stiffness (Elastic modulus) in vitro as a result of intensified tensile stress generated by the actin
cytoskeleton [37]. Kim et al described stiffening together with epithelial-mesenchymal transi-
tion in more aggressive paclitaxel-resistant prostate cells DU-145TxR as a result of vimentin,
ZEBI and Snail upregulation [38]. Our results indicate an accordance with this finding [2]. As
higher cellular pliability is needed during metastatic cell migration, this may be perceived as an
evolutionary disadvantage of prostate tumors. However, hypothetically, such increased pliabil-
ity is needed just in a short period of metastasis development — once cells reach the secondary
niche (typically in a bone metastasis), no such phenotype is needed.

Additionally, we also indicated that zinc ions might be involved in this mechanism. As shown
in our Gumulec et al in vitro study, more aggressive bone metastasis-derived PC-3 cells were
highly sensitive to zinc ions while keeping a high level of resistance to cisplatin, as compared
to less aggressive cells from primary tumor [39].

Interestingly, a linkage with prostate tumor aggressiveness and CAV1 gene expression was also
shown in our study on patients with prostate adenocarcinoma. The membrane structures caveo-
lae, or specifically the integral caveolae protein CAVI is an important regulator of cell
mechanical properties, oncogenic metabolic symbiosis and metabolic phenotype [28] (see chap-
ter 2.3). Following study performed on a cohort of patients with prostate cancer confirms the

importance of caveolin: Patients with high grade and high stage tumors were characteristic by
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higher serum CAVI1 levels compared to low stage/low grade tumor-bearing patients [40]. Im-
portantly, complexity of CAV1 regulation is underlined by a fact that its association with grade
is measurable not just on a cellular level or in the tumor in situ: it is also reflected in the patient

serum.

GUMULEG, J., J. SOCHOR, M. HLAVNA, M. SZTALMACHOVA, et al. Caveolin-1 as a po-
tential high-risk prostate cancer biomarker. Oncology Reports, Mar 2012, 27(3), 831-841.
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Abstract. Current diagnostic techniques of prostate cancer
cannot efficiently distinguish the latent and low-risk forms
from the high-risk significant forms of prostate cancer.
Caveolin-1 {Cav-1), except other functions, plays an important
role in cell transformation and the process of tumorigenesis.
Furthermore, Cav-1 is involved in metastatic processes. It has
also been shown that Cav-1 expression is induced under stress
conditions, such as oxidative stress. The present study focused
on the determination of prognostic markers of aggressive
(high-grade) forms of prostate cancer. We determined serum
Cav-1 and serum markers of antioxidant activity-glutathione
(GSH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), Trolox equiva-
lent antioxidant capacity (TEAC), ferric-reducing antioxidant
power (FRAP), N,N-dimethyl-1,4-diaminobenzene (DMPD),
free radicals method (FRK) and blue chromium peroxide
(Cro) in 97 serum samples (82 prostate cancer patients and
15 controls). We found insignificant differences in Cav-1
between the sera of patients and controls (5.69 in the cancer
group vs. 542 ng/ml in the control group). However, we
found a significant (p<0.004) 2.8-fold elevation of Cav-1 in
high tumour stages (T NM T4) compared to lower stages and
a significant positive association with histological grading
r=0.29, p=0.028). We also found that in patients with high
serum Cav-1 the antioxidant capacity of the body is reduced.
These findings indicate that Cav-1 may be an interesting tool
for the prediction of disease burden.
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Introduction

Discovering and definition of new biochemical markers,
which are specifically connected with grave pathological
states including tumour diseases, are among the most
important objectives of biomedical research. Identification
of highly specific and sensitive biomarkers represents the
main aim of modern research, because only such biomarkers
may be applied towards the early diagnosis of malignant
disease, prediction of prognosis and eventually development
of an appropriate treatment strategy in clinical practice (1).
Malignant tumours occupy the first position among diagnosed
diseases due to the improvement of health care. The process of
genesis of a tumour cell includes accumulation of alterations
in a cell genome, which may develop for decades. Mechanisms
of the cell cycle and apoptosis regulation play a crucial role in
the protection against these changes.

Prostate carcinoma is the most frequent malignant disease
among men in the Czech Republic. Global data about the
incidence of prostate carcinoma are not too exact, especially
due to fact that a lot of men die due to this disease without
its clinical manifestations (2). Substantial progress in the
diagnosis of tumour diseases has been observed along with
the development of proteomics due to the identification of
new tumour markers (3-8). These markers, usually proteins,
are closely connected with the development and eventually the
progression of the disease and are present in tumour cells in
altered concentrations.

Due to the introduction of prostate-specific antigen (PSA)
screening in prostate cancer diagnosis, the incidence of this
disease has increased by =50% in the recent years. At present,
its incidence is higher in comparison with bronchogenic carci-
noma with almost half of the men at the age of 80 suffering
from prostate carcinoma. PSA represents the routinely used
diagnostic marker of prostate carcinoma (9-11). Measurements
of PSA blood serum levels began in the early 1980s. There are
plenty of methods used for determination of PSA blood serum
levels (10,12). However, determination of PSA is not specific
and sensitive in the blood serum and its positive predictive
value is only about 35%. PSA may also be elevated in various
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non-tumour conditions in healthy men. Its level is increased in
other prostate diseases (benign prostatic hyperplasia, prosta-
titis and prostate infections) or with physical activity including
cyeling. Almost two thirds of men with increased PSA are
healthy. Contrariwise, 20% of men suffering from prostate
carcinoma have normal PSA levels.

Therefore, it is not surprising that searching for new
markers for this type of tumour disease is still a focus of
research. Caveolin is a protein, which is often associated with
tumour disease as a potential tumour marker. It is an integral
membrane protein and important integral part of caveolae
membranes. Its presence was already discovered in caveolae
membranes in 1953 (13). These membranes are involved in
receptor-independent endocytosis. Caveolae are microdomains
of lipid rafts, which are rich in sphingolipids and cholesterol
and play an essential role in the degradation of cholesterol
(14). However, they also participate in transmembrane signal-
ling. There are three known types of caveolin, which differ in
their molecular structure and tissue distribution. Caveolin-1
is profusely present in adipocytes, epithelial cells, pneumo-
cytes and fibroblasts. Caveolin-2 is expressed in the cells of
mesenchyma, epithelial cells and neuroglia. Caveolin-3 occurs
predominantly in muscle cells (15,16). All types of caveclins
are investigated in view of the pathogenesis of some diseases
(17-20). The connection between caveolin-1 and tumorigenesis
has been investigated in many studies (21-24). Caveolin-1 has
been demonstrated to regulate cell proliferation, so, it can
play an important role in cell transformation and the process
of tumorigenesis (23,25,26). Caveolin-1 is also involved in
metastatic processes (25). The reason for the participation of
caveolin-1 in these processes is the fact that normal epithelial
cells are characterized by cell adhesion and the cell is closely
connected through the membrane with its surroundings and
is able to respond to changes in cell surroundings. Caveolin-1
directly participates in these cell processes, especially due to
its connection with integrins. Changes in protein function lead
to the lapse of cell functions (adhesion) and cell mobility and
the development of metastatic processes (22). Furthermore, it
has been demonstrated that caveolin-1 expression is induced
under stress conditions, such as oxidative stress (27 28).

Metallothioneins (MT) as a metal-binding proteins repre-
sent other promising tumour markers, which are intensely
studied in connection with prostate carcinoma among other
diseases (29-31). It has been recently demonstrated that
metallothioneins play an important role in the development
and progression of some tumour diseases (32-42). Enhanced
levels of MT in tumour cells are probably closely connected
with cell proliferation (43,44). Recent studies point at the
overexpression of MT in relation to the metal-based cyto-
static agents (45,46). Other potential tumour markers include
a-methylacyl-CoA-racemase (AMACR). This substance
is a peroxisomal and mitochondrial enzyme involved in
[3-oxidation of branched fatty acids and in catabolism of bile
acids metabolites 47). Increased levels of these proteins have
been described in adenocarcinomas and high grade prostatic
intraepithelial neoplasia (48). On the other hand, only low
levels of this marker are described in benign hyperplasia and
in atypical adenomatous hyperplasia (47,49, 50).

It is well evidenced that the total antioxidant capacity
of the human body is reduced, when patients suffer from a
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serious disease such as cancer, particularly when the disease
is long-term and the patients are of higher age (51-53). Thus,
we aimed to determine most of the common markers of
antioxidant capacity and to put them into the context with
caveolin-1. The originality of this study consists in the analysis
and mutual correlation between the above-mentioned tumour
markers and the markers of oxidative stress in blood sera of
patients suffering from prostate carcinoma. Our results show
the necessity for the determination of more tumour markers to
aid in the knowledge of the disease stage of the patient and for
the identification of optimal treatments.

Materials and methods

Chemical and biochemical reagents. All chemicals of ACS
purity were purchased from Sigma-Aldrich (St. Louis, Mo,
USA) unless otherwise noted. The primary mouse metallo-
thionein antibody and the secondary anti-mouse horseradish
peroxidase (HRP)-conjugated antibody were purchased
from Abcam (Cambridge, MA, USA). The primary rabbit
PSA and caveolin-1 antibody and the secondary anti-rabbit
HRP-conjugated antibody were purchased from Santa Cruz
Biotechnology, Inc. (S8anta Cruz, CA, USA). The primary
rabbit AMACR antibody was purchased from Clonestar
(Czech Republic). For chemiluminiscent detection of Western
blot membranes the ECL. Western blot detection reagents
system from Bio-Rad Laboratories (USA) was used.

Sample preparation for electrochemical analysis. The samples
of blood serum were denatured at 99°C in a thermomixer
(Eppendorf 5430, Germany) for 15 min with shaking and
centrifuged at 15,000 x g at 4°C for 30 min (Eppendorf 5402).
Heat treatment effectively denatures and removes thermo-
labile and high-molecular-weight proteins from samples. The
prepared samples were used for MT and glutathione (GSH)
analyses.

Differential pulse voltammetyy-Brdicka reaction. Differential
pulse voltammetric measurements were performed with the
747 VA Stand instrument connected to the 746 VA Trace
Analyzer and the 695 Autosampler (Metrohm, Switzerland),
using a standard cell with three electrodes and cooled sample
holder (4°C). A hanging mercury drop electrode (HMDE)
with a drop area of 0.4 mm? was the working electrode. An
Ag/AgCli3M KCI electrode was the reference and glassy
carbon electrode was auxiliary. For data processing GPES 4.9
supplied by EcoChemie was employed. The analysed samples
were deoxygenated prior to measurements by purging with
argon (99.999%) and saturated with water for 120 sec. Brdicka
supporting electrolyte containing 1 mM Co(NH;),Cl, and
1 M ammonia buffer [NH;(aq) + NH,Cl, pH 9.6] was used.
The supporting electrolyte was exchanged after each analysis.
The parameters of the measurement were as follows: initial
potential of -0.7 V, end potential of -1.75 V, modulation time
0.057 sec, time interval 0.2 sec, step potential 2 mV, modula-
tion amplitude 250 mV, E,,, =0 V, volume of injected sample:
20 pl x100 diluted sample with 0.1 M phosphate-buffer
pH 7.0). All experiments were carried out at a temperature
of 4°C employing the thermostat Julabo F25 (Tabortechnik
GmbH, Germany).
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Determination of low-molecular-mass thiols. High perfor-
mance liquid chromatography with an electrochemical
detection (HPL.C-ED) system consisted of two solvent delivery
pumps operating in the range of 0.001-9.999 ml/min (Model
582 ESA Inc., Chelmsford, MA), Zorbax Eclipse AAA Column
4.6 x 150 mm 3.5-pum particle size; Varian Inc., CA, USA),
and a CoulArray electrochemical detector (Model 5600A,
ESA, USA) The sample (30 pl) was injected using an autos-
ampler (Model 540 Microtiter HPLC; ESA, USA) HPLC-ED
experimental conditions were as follows. The compositions of
the mobile phases were: A, 80 mM trifluoroacetic acid and
B, methanol. They were mixed in gradient from 3% B in the
first minute, 10 % B in the second to the sixth minute and
98% B from the seventh minute of the separation; flow of
the mobile phase was 0.8 ml/min, temperature of the sepa-
ration was 40°C; working electrodes potential was 900 mV;
detector temperature was 30°C; each measurement was done
in triplicates. Retention time of the reduced GSH was 5 min.
GSH concentration was calculated from a calibration curve
(0.5-100 pMD. The signal was quantified as a sum of current
responses from all working electrodes (54,55). In the case of
real sample measurements, the shift of the retention time was
of about +2%.

Determination of antioxidant activity. For determination
of antioxidant activity a BS-400 automated spectrophotom-
cter (Mindray, China) was used. It is composed of cuvette
space tempered to 37+1°C, reagent space with a carousel for
reagents (tempered to 4+1°C), sample space with a carousel
for preparation of samples and an optical detector. Transfer
of samples and reagents is provided by robotic arm equipped
with a dosing needle (error of dosage up to 5% of volume).
Cuvette contents are mixed by an automatic mixer including
a stirrer immediately after addition of reagents or samples.
Contamination is reduced due to its rinsing system, including
rinsing of the dosing needle as well as the stirrer by MilliQ)
water. For detection itself, the following range of wave lengths
can be used - 340, 380, 412, 450, 505, 546, 570, 605, 660, 700,
740 and 800 nm. Experimental details on all used spectro-
metric assays have been previously described (56).

Sodium dodecyl sulphate polyacrylamide gel electrophoresis
(SDS-PAGE). The electrophoresis was performed according
to Laemmli using a Mini Protean Tetra apparatus with a gel
dimension of 8.3 x 7.3 cm (Bio-Rad Laboratories) (57). Firstly
we poured 10% (m/ V) running gel and then 5% (m/V ) stacking
gel. The gels were prepared from 30% (m/V) acrylamide stock
solution with 1% (m/V) bisacrylamide (SERVA, Germany).
The polymerization of the running or stacking gels was carried
out at room temperature for 45 min. Prior to analysis the
samples were mixed with reducing (DTT, final concentration
400 mM) sample buffer in 4:1 ratio. The samples were boiled
for 5 min and then the sample was loaded onto the gel. For
determination of molecular mass, the protein ladder, broad or
lower range (Bio-Rad Laboratories) was used. The electropho-
resis ran at 80 V for 20 min subsequently increased to 120 V
for 1 h (Power Basic, Bio-Rad Laboratories) in Tris-glycine
buffer (0.025 M Trizma-base, 0.19 M glycine and 0.0035 M
SDS, pH 83). Silver staining of the gels was performed using
the Bio-Rad Silver stain kit according to Merril ef al (58).
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Western blot analysis. After the electrophoretic separation,
the proteins were transferred onto a nitrocellulose membrane
(Bio-Rad Laboratories) in a Bio-Rad apparatus. The blotting
was carried out for 1 h at a constant current of 0.9 mA for
1 cm? of the membrane. After the transfer, the membrane
was blocked in 5% non-fat milk in PBS (137 mM Nacl,
27 mM KCl, 1.4 mM NaH,PO,, and 4.3 mM Na,HPO,;
pH 7.4 for 2 h. The incubation with mouse primary antibody
in dilution of 1:750 in PBS with 5% non-fat milk was carried
out for 12 h at 4°C. After three washing with PBS containing
0.05 % (viv) Tween-20 (PBS-T) for 5 min the membrane was
incubated with secondary antibody (anti-mouse labelled with
HRP, Sigma-Aldrich, diluted 1:5,000) for 1 h at room tempera-
ture. Then, the membrane was washed three times with PBS-T
for 5 min and incubated with the ECL. WB detection reagents
(Santa Cruz Biotechnology Inc.).

Dot-immunobinding assay. For immunobinding assays
PVDF membranes (Bio-Rad Laboratories) were used. The
sample (1 ul) was applied and dried. Further the membrane
was blocked in 2% bovine serum albumin (BSA) in PBS for
0.5 h with constant shaking The incubation with the primary
antibody (1:500 diluted) was carried out for 1 h at 37°C.
After three times repeated washing in PBS containing 0.05%
(viv) Tween-20 (0.05% PBS-T) for 5 min, the membrane was
incubated in the presence of secondary antibody at a dilution
1:5000 for 1 h at 37 C. Then the membrane was washed three
times in 0.05% PBS-T for 5min and incubated in chromogenic
substrate [0.4 mg/ml AEC (3-aminoethyl-9-carbazole) in
0.5 M acetate buffer with 0.1% H,O,, pH 5.5]. After sufficient
colouring the reaction was stopped by rinsing in water.

tPSA and fPSA determination. Total PSA (tPSA) and free PSA
(fPSA) contents were determined by the immunochemistry
analyser ATA 60011 (Tosoh, Japan). ATA 60011 is specifically
designed for measurement of immunochemistry parameters in
biological fluids using reagents of AIA-PACK series. Analyses
were carried out according to the manufacturer's instruc-
tions. The instrument was calibrated using the ATA-PACK
Calibrator set using a 6-point calibration (Tosoh). All reactions
were performed in the special disposable test cups containing
dried and lyophilized reagents. The immunochemical antigen-
antibody reaction employed magnetic particles (1.5 mm).
Samples were incubated at 37°C. 4-Methylumbelliferyl phos-
phate was used as a substrate and fluorescence corresponding
to enzymatic activity on magnetic particles was measured.

Determination of serum caveolin-1 protein. For determination
of the serum levels of caveolin-1 protein the Human caveolin-1
ELISA Kit (Uscn Life Science, Inc., Wuhan, China; detection
range 0.24-15 ng/ml) was used according to the manufacturer's
manual. To detect the concentration of serum caveolin-1 level
using the ELISA kit, the 60 ng/ml caveolin-1 standard was
diluted to the concentration range 0.24-16 ng/ml in duplicates
and absorption was measured.

Densitometric and statistical analysis. The signal intensity of
bands after immunochemistry analysis was determined using
the ImagelJ 1.45 software (NIH, USA) as an area under the
curve and concentration was calculated according to the protein
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PSA 1.37 +0.55 ng/mL
fPSA 0.38 + 0.17 ng/mL
Age 556+11.7

4 smokers, 9 non-
smokers, 2 stop-smokers

"2 v
Well-differentiated Well-differentiated
n=3 n=10

Moderately-differentiated
n=29

Moderately-differentiated
n=2

Poorly differentiated
n=11

Poorly differentiated
n=18

Figure 1 Characterisation of patients and controls. Categorization by turnour losalization and differentiation. HLF hypetlipoproteinaermia; HT, hypertension ;
[HD, 1schaermue heartdisease; DML, diabetes mellitus type 11, PV D, peripheral vascular diseas; PUD, peptic ulcer disease.

standard. Software Statistica 9.1 (StatSoft, USA) was vsed for
statistical analysis. To test the normal distribution of data and
thus usability of parametric tests, the Kolmogorov-Smirnov test
was used. The Student's t-test for independent values was used
to evaluate differences between the two groups. Simple linear
correlations were performed to reveal the relationships between
variables. To characterize data, associations were visualized
using tree clustering with Euclidean distances measurement
and single linkage. Subsequently, patients divided into clusters
using K-means clustering analysis. Unless noted otherwise, a
level of statistical significance was designated to p=0.05.

Results

Blood serum caveolin-1 levels were statistically evalvated
in groups of controls and histologically verified tumours.
Consequently, caveolin-1 level was related to data in the patient's
history, such as age, smoking habits, associated diseases, clin-
ical tumour stage and histological grade (Fig. 1). Subsequently,
caveolin-1 was related to the level of serum PSA in order to
evaluate the use of caveolin-1 as an auxiliary marker along
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with a PSA. Cluster analysis of PSA and caveolin-1 levels was
performed to divide the patients into the groups characterised
with high or low caveolin-1 or PSA. In these groups tumour
stageand grade was evalvated.

Because tumour pathogenesis and growth are tightly asso-
ciated with oxidative stress, we also determined serum markers
of antioxidant activity, GSH, 2,2-diphenyl-1-picrylhydrazyl
(DPPH), Trolox® equivalent antioxidant capacity (TEAC),
ferric reducing antioxidant power (FRAP), NN-dimethyl-1,4-
diaminobenzene (DMPD), free radicals method (FRK) and
blue chromium peroxide (Cro). We have previously described
these methods in detail in study by Sochor e @f (56). Inaddition,
it has been shown that caveolin-l is associated with oxidative
stress in cancer progression. Thus, we correlated caveolin-1
levels with markers of oxidation and performed cluster
analysis to elucidate possible associations. We also associated
caveolin-1 with other previously determined potential prostate
cancer serum tumour markers, namely c-methylacyl-CoA
racemase (AMACR) and metallothionein (MT)Ywhich we have
previously demonstrated as a high specificity and sensitivity
diagnostic tool for prostate cancer diagnosis (59).
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Figure 2. Caveolin-1 in patients. (A) Calibration curve. Absorbance of caveolin-l standard in concentrations 0.24-16 nglml, obtained calibration curve at
sorrelation r=0.98. (B) Serurn caveolin-1 in patients and controls. No significant difference between groups was observed. (0) Caveolin-1in relation to THM
turnour stage. Significantly higher (p<0004) caveolin-1 level was determined in tumour exceeding serrinal vesicles (T4) compared to lower stages of turmonr.
(O Caveclin-1 grouped by histological tumour grade (Sleason surrl). Higher caveolin-1level was in high grade turmours (correlation =029 atp=0.028)

Table I. Caveolin-1 and PSA levels in relation to tumour stage (TNM T stage), histological differentiation and tumour grade

(Gleason sum score).

n P3A (ng/ml) Free PSA (ng/ml) Caveolin-1 (ng/ml)
Tumour sta ge
T1 1 3.12 0.54 4.19
T2 40 5.4183.44 0.77+0.44 5.25+2.62
T3 18 5.18+3.96 0.58+0.38 65.60+3.69
T4 3 5.58+4.01 0.57+0.33 14254219
Tumour differentiation
Well 3 4.15+1.40 0.63+0.42 4.13+1.27
Moderately 23 4.8323.50 0.66+0.40 5.643.02
Poorly 28 5.95+1.66 0.72+0.48 6.28+3.32
Tumour grade (Gleason sum score)
5 5 3.69+1.43 0.46+0.02 3.86x1.11
6 20 5.03+2.56 0.82+0.39 511242
7 32 4.85+43.22 0.58+0.37 5.75+2.98
8 3 10.12+8.17 1.02+0.82 65.96+4.83
9 4 6.87+5.03 0.64+0.42 9.99+4.04
10 1 3.90 L b
Total 62 4.83+3.56 0.66+0.39 5.65+3.02

®ig nificant at p<0.004; *insufficient data for Gleason sum score 10 patients.

Tested cohort characteristics. We have analysed sera of 82
patients with histologically verified acinar adenocarcinoma
of the prostate and 15 controls (Fig. 1). Out of these patients
only 62 patients were selected for further analysis due to the
lack of complete history data or insufficient quality of samples
(haemolysis and/or extreme values detected). The average age
of the patients was 63.7 years and ranged from 48 to 78 years.
Of the 62 patients, 49 were non-smokers, 9 were smokers
and the rest were former smokers. Forty-two patients (68%)
had localized tumours (T1-2) and 20 patients had spreading
tumours of higher stage. The tumour differentiation ranged
from well differentiated (3 tumours) to poorly differenti-
ated (27 tumours) (Table I). The Gleason sum score ranged
within 5-10. Patients had the following associated illnesses:
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hypertension (39 patients) hy perlipoproteinaemia (21 patients),
ischaemic heart disease (5 patients), diabetes mellitus type II
(6 patients), peripheral vascular disease (1 patient), peptic ulcer
disease (3 patients), and tumour in history (1 patient). Of 62
patients, 15% did not suffer from any associated disease.

Caveelin-1 in patients and controls. Caveolin-1 standard in
the concentration range from 0.24 to 16 ng/ml was used for
determining the calibration dependence shown in Fig. 2A.
Using linear reg ression we obtained strictly linear dependence
with R*>0.99. The serum caveolin-1 concentration ranged
within 1.12-14.15 ng/ml and 1.74-14.97 ng/ml in the patients
group and controls, respectively. The mean serum concentra-
tions were 5.69 ng/ml in the cancer group and 5.42 ng/ml
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Figure 3. Caveolin-land prostate specific antigen (P34). (4) Caveolin-1-PSA relation weak insignificant correlation was observed (see insef). Three clusters
wrere apparent: patients with low PS4 and high caveolin-1 (grey cluster 1), patients with high PSA and high caveolin-1 (dashed cluster 2) and patients with low
P& and low caveolin-1 (dotted grev cluster 3). (B) Turnour stage (TNMT) in three determined PSA/savealin-1 clusters. Fatients with low caveolin-1and low
PSA (cluster 3) had mostly lower grade turnours compared to clusters 1 and 2. (C) Tumour grade (Gleason sum) in PSAfcaveolin-1 clusters of patients. Larger
proportion of patients with higher P3A and higher caveclin-1 had higher grade (33 8.%) tumeours compared to patients with high caveclin-1 only (cluster 1 and
lowr PRA and low caveolin-1 (cluster 3). (O Caveolin-1 and free PEA no significant dependence revealed. Three clusters were apparent patients with high free
P34 and low caveolin-1 (grey cluster 1), patients with high caveclin-1and low free PSA (dashed cluster 2) and patients with low caveolin-1 and low free PSA
(dotted grev cluster 3). (E) Turmour stage (THNM T) in fPSA/saveolin-1 clusters. Fatients with low fPSA and high caveolin-1 (sluster 2) had distinctly higher
stage tumours compared to other clusters. (F) Tumour grade (Gleason surm) in fPSAlcaveolin-1 clusters of patients. Patients with high caveolin-1and low free

P4 (cluster 2) had distinetly ugher grade tumours.

in the control group. To verify the normality and thus suit-
ability of parametric methods, the Kolmogorov-Smirnov test
was performed. We found caveolin-1 levels were distributed
normally (p<0.1), thus, independent t-test was used. No
significant change between group of controls and patients was
determined (Fig. 2B). Cluster analysis revealed statistically
significant variance of values in a group of cancer sera and led
to classification of patients into two groups: high caveolin-1
and low caveolin-1 {data are not shown). Serum caveolin-1
was subsequently related to tumour stage (TNM T stage) and
tumour grade (Gleason score sum) to clarify the differences in
values. A similar trend was observed in both relations: cave-
olin-1 levels remained low in low stage and low grade tumours
and distinctly increased in the highest stage and grade tumours
(Fig. 2Cand D). Patients with tumour spreading beyond the
seminal vesicle (TNM T4 stage) had significantly (p<0.004)
2.8-fold 1ncreased serum caveolin-1 levels compared to T1-3
stages (Table I). However, no statistically significant differ-
ences between localised (T1-2) tumours and those that extend
through the prostate capsule (T3-4) were detected. In terms
of tumour grade and its relation to caveolin-1, patients with

Gleason sum 9 had distinctly higher caveolin-1 levels. This
trend was significant (r=0.29 at p=0.028); however, the differ-
ence between Gleason sum 9 patients and others was below the
threshold of statistical significance.

In addition, other correlations with data obtained from
history were carried out. No statistically important correla-
tions between age of patients and caveolin-1 were found. Level
of caveolin-1 was not significantly changed in connection with
associated disease-hypertension, ischemic heart disease and
hyperlipidaemia, ischemic disease of lower extremities and
duodenal ulcer. Similarly, no differences in monitored markers
between group of smokers and non-smokers were evident (data
not shown).

Caveolin-1 and PSA correlation. Correlation analysisof serum
caveolin-1 levels to PSA levels, found that no correlation exists
between these proteins (p=0.13). When cluster analysis was
performed, three groups were found: patients with low cave-
olin-1 and low PSA (grey dotted ellipse, cluster 3 in Fig. 3A),
patients with low PSA and high caveolin-1 (grey cluster 1) and
patients with high caveolin-1 and PSA (black dashed cluster 2).
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Figure 4. Caveolin-1 and markers of oxidation. (A) Correlations of markers of oxidation and caveolin-1 with sach other with distribution histograms (diago-
nally). Bottorn left part displays relations of markers/proteins, the top right part displays statistical signifisance of correlation (black, more significant trend;
white, less significant). Evident significant correlations of caveolin-1 with reduced glutathione (G3H), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Trolox®
equivalentantioxidant capacity (TEAC). (B) Cluster analysis of markers of oxidation together with caveolin-1 Inverse association of caveolin-1 and markers s
obvious: the firstcluster 15 characterized by no relations 1n caveclin-1 and markers of omdation. The second cluster represents patients with high antiomdative
potential (low GE33G and high antioxidative markers) and high caveolin-1 The third cluster represents patients with lower oxidativefantioxidant markers and
low caveolin-1 (C) Tumour stage in subsequent clusters. No distinet differences in tmour staging within clusters of high or low caveclin-lmarkers of oxida-
tion were evident. (O Turnour grade (represented as Gleason surr] in subsequent clusters. In the “low antioxidative potential” sluster 3 are patients of distinetly
higher content of high grade tumours compared to other patients. (B} Markers of antioxidant capaetty n clusters by P3A/caveolin-1 characterized 1n Fig. 34,
We found significantly lower levels of the GEHIGESG ratio, DPPH, TEAC and DMPD in the "ugh PSA-high caveolin-1" cluster compared to the other clusters.

To characterize patients within those clusters, stage and grade
was plotted in Fig. 3B and C. It is well evident that patients
with high caveolin-1 and PSA (cluster 2) had lower proportions
of localized tumours T1 and T2 compared to patients where
only caveolin-1 is high and the PSA remains low (cluster 1),
or where both proteins were low (cluster 3). A similar trend
was evident in tumour grading (Fig. 3C), whereas in cluster
3 there was only a minimal proportion of high grade Gleason
sum 8 and 9 tumours. In the ‘both markers high cluster 2’ the
proportion of these high grades was about 40%.

A similar association was also observed with caveolin-1
and the free PSA fraction (Fig. 3D) Similarly to the total PSA,
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in a group of low free PSA and low caveolin-1 (cluster 3) the
proportion of low stage and low grade tumours was higher
(Fig. 3E and F). Patients characterised with high serum free
PSA and low caveolin-1 were of marginally higher stage and
grade compared to the ‘low free FSA-low caveolin-1" cluster 3
group, whereas, patients with high serum caveolin-1 and low
free PSA were of significant proportion of T3-4 and grade
Gleason sum 8§ and 9 tumours.

Association of caveolin-1 and oxidative stress. Martkers of
antioxidant activity were determined in the sera of patients
and correlated with serum caveolin-1 level to elucidate
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Figure 5. Relation of caveolin-1 to other potential prostate cancer markers. (A) Correlation matriz. & weak signifizant trend was observed between caveolin-1
and metallothionein (MT), no significant relation between caveolin-1and PSA and a-rmethylacyl Co A-racernase (A MACE) (B) Caveolin-1 and MT clustering
analysis of clinical data. Three clusters were apparent: patients with higher MT and lower caveolin-1 (grey cluster 1), patients with low MT and low caveolin-1
lerey dotted cluster 2) and patients with high caveclin-1and high MT (black cluster3). (C) Tomour stage (TNM T) 1n MTicaveolin-1 clusters. Higher propor-
tion of high-stage turnours are apparent in cluster 3 compared to cluster 2. (00 Tumeur grade (Gleason swmy in clusters of patients. In the cluster with higher
MT and higher caveolin-1 (sluster 3) a higher proportion of patients with high-grade turmours is apparent compared to the other clusters.

potential connections. Association between those markers is
displayed in Fig. 4A. We observed significant trends between
caveolin-1 and reduced GSH, TEAC and borderline signifi-
cance with DPFH. Among others, our results show that most
of the markers of antioxidant capacity correlate more with
each other compared to with caveolin-1. Strongest correlations
were observed between ferric reducin g antioxidant power and
N,N-dimethyl-1,4-diaminobenzene and free radical method.
In order to elucidate the connections between markers of
(anti)oxidation, cluster analysis was performed. Using this
procedure, patients were divided into three distinct clusters
(Fig. 4B) as follows. Cluster 2 which consists of patients with
high antioxidant capacity, low caveolin-1 and low reduced
GSH (Fig. 4B); cluster 3 which consists of patients with low
antioxidative capacity, high caveolin-1 and high reduced gluta-
thione and cluster 1 which shows no apparent dependencies
compared to the previous clusters, and in which the markers
of (anti)oxidation are of rather lower levels. In Fig. 4Cand D
we identified the tumour grade and tumour stage within these

clusters. It is clear from these results that patients with lower
antioxidative potential and higher caveolin-1 level (cluster
3) had a higher proportion of high grade (Gleason sum 8,9)
tumours compared to others (compare clusters 2 and 3 in
Fig. 4D). No similar trend was however observed, 1f we high-
lighted tumour stage within these clusters (Fig. 4C).

Then, we aimed our attention at the markers of antioxida-
tive capacity from a different perspective. We related markers
of antioxidation to caveolin-1 and PSA together. Three clusters
of PSA have been described: high PSA and caveolin-1, high
caveolin-1, and low PSA and caveolin-1. In these clusters, the
levels of individual antioxidative markers were visualized. We
found a significantly lower (p=0.05) level GSH/GS3G ratio,
DPPH, TEAC and DMPD in the group of patients with high
caveolin-1 and high PSA compared to the group of patients
with low serum caveolin-1 and low PSA.

Asseciation of caveolin-1 with other potential tumour
markers. We subsequently performed correlation analyses
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between caveolin-1 and other potential serum markers of
prostate cancer, which we have determined in our previous
studies on the same sample set of patients (59). Thus, regarding
PSA, which is mentioned in this table for overall complexity,
here we show associations of caveolin-1 with MT and AMACR
(Fig. 5A). In our previous study we have shown that metallo-
thionein may be utilized as a marker of prostate cancer with
high level of sensitivity and specifity (59). We found no major
relationships between serum caveolin-1 level and serum MT
levels (r=0.08, Fig. 5B). No trend was also observed when
associated with AMACR. When cluster analysis on MT and
caveolin-1 was carried out in the same way as with PSA or
markers of oxidation (Fig. 5A), we found that when both of
these serum markers are of high level, worse prognosis is
expected, because greater proportion high grade (30 vs. 0% of
(38 8-9 tumours in cluster 3 vs. cluster 2) and high stage (30 vs.
14% of T3b and T4 tumours in cluster 3 vs. cluster 2) tumours
are present in these patients (Fig. 5C and D).

Discussion

In this study, we may clearly conclude that caveolin-1 is asso-
ciated with worse prognosis. This we may evidence by three
findings: first, higher serum caveolin-1 levels are associated
with higher stage and grade tumours (which are of worse
prognosis); second, caveolin-1 positively correlates with PSA
levels, and third, patients with high serum caveoclin-1 have
a lower antioxidant capacity of the body. It is highly desir-
able to differentiate high-risk ‘significant” forms of prostate
cancer from latent, ‘non-significant’ forms. We expect that the
prediction of high-risk tumours may be estimated when more
cancer markers are determined concurrently. Utilization of
caveolin-1 together with free and total PSA and possibly also
with metallothionein may provide more accurate results in the
estimation of prostate cancer risk when determined together.
Based on our results we may conclude that patients with low
free PSA, high caveolin-1 and high total PSA have worse
prognosis compared to patients with lower serum caveolin-1
levels. Similarly, patients, who have high caveolin-1 and
low PSA have better prognosis (lower stage and lower grade
tumours) compared to patients with high PSA and caveolin-1
together. The similar benefit is also provided by the combined
utilization of metallothionein and caveolin-1 as tumour
markers, where patients with high metallothionein and low
caveolin-1 are of better prognosis compared to patients with
high levels of both markers. The merit of the use of fPSA,
tPSA, caveolin-1 together as a marker of worse prognosis
tumour may be underplayed by this finding. In cancers, the
antioxidant capacity is reduced (51-53). Furthermore, patients
with reduced antioxidant capacity are of worse prognosis
when compared to patients with higher antioxidant potential.
We may clearly confirm that the antioxidant capacity is associ-
ated with the severity of disease in this experiment by findings
shown in Fig. 4D, from which it is apparent that patients with
low antioxidative markers are of higher tumour grade.

An important finding of our study is the fact that high
caveolin-1 levels are associated with patients of low antioxida-
tive potential. Cluster analysis shown in Fig. 4B clearly points
to the relationship between caveolin-1 and the antioxidative
capacity of the patient's body. Patients with low caveolin-1
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are of better prognosis because their antioxidative capacity is
apparently higher (cluster 2 in Fig 4B), whereas patients with
high serum caveolin-1 have apparently lower antioxidative
capacity. Due to the fact that caveolin-1 positively correlates
with reduced glutathione and negatively correlates with
markers of antioxidant capacity (even below the level of signif-
icance), we may speculate that caveolin-1 reflects the burden of
the disease. This relation has not been published yet. The rela-
tionship of caveolin-1 with oxidative stress can also be viewed
from another point of view. Recent studies have demonstrated
that caveolin-1 is a target molecule in p38 MAPK mediated
response to stress conditions such as oxidative stress (27,28).
After such stimuli, caveolin-1 is phosphorylated and thus
contributes to various signalling pathways (60} resulting most
likely in processes, such as premature cellular senescence
(27). Thus, the connection of low antioxidant capacity and
high caveolin-1 found in our study may be explained as conse-
quence of caveolin-1 mediated response to high oxidative
burden. In such long-term high oxidative stress conditions the
resulting antioxidant capacity may be reduced, nevertheless,
caveolin-1 remains higher. Utilization of multiple protocols
for the determination of antioxidative capacity or free radical
quenching activity, as performed in this study, may be useful
because of discrepancies between the activity measured
in vitro, and the antioxidative effects observed in vive (61).
Each technique is based on different principles and enables
determination of the antioxidant activity of specific groups of
compounds (56,62,63).

In the recent decade, caveolin-1 was linked with various
types of cancers, of which it was most extensively studied in
the cancers of the breast and prostate. [t was found that tumour
tissue and/or serum caveolin-1 levels vary in a cancer-depen-
dent manner and these changes in caveolin-1 levels may be
associated with tumour protection or progression (25). When
focused on prostate cancer, elevated caveolin-1 expression
was observed in tumour tissue and in mice when compared
to non-tumour tissue (64-66). According to Thompson et al,
caveolin-1 is also elevated in the serum of patients with
localized tumours compared to healthy controls and patients
with benign prostatic hyperplasia (67,68). These findings are
inconsistent with ours; we found no significant difference
between controls and cancers. However, it has also been
revealed that caveolin-1 is connected with tumour progres-
sion and metastatic dissemination and is distinctly elevated in
androgen resistant tumours. Thus this molecule was suggested
as a tissue marker of an aggressive form of cancer (68 74). It
has also been shown that suppression of caveolin-1 expression
can restore the sensitivity to androgens in androgen-insensitive
tumours (65). Higher expression of caveolin-1 was also identi-
fied in tissue samples of patients of higher grade tumours and
of higher PSA (75). This is in good agreement with our results,
where we also identified associations with high stage and high
grade tumours with high PSA. Also, according to a study by
Karam et af on patients before and after radical prostatectomy,
patients of higher caveolin-1 are in risk of higher postoperative
PSA and thus of worse postoperative prognosis (75). Although
we did not compare patients before and after treatment proce-
dures, we similarly observed correlation of caveolin-1 with
PSA. Furthermore, worse prognosis could be expected from
higher oxidative stress in high caveolin-1 patients.
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Our findings together with data from recent studies suggest

that caveolin-1 is involved in disease pathogenesis and progres-
sion. Clarification can contribute to the understanding of this
disease with potential novel targeted therapeutic approaches.
Although associations between caveolin-1 and high-risk
tumours were identified in this study, we still cannot infer that
caveolin-1 may serve as a high-risk aggressive tumour marker
even in a phase when tumours are localized in the prostate
and thus are still curable. To confirm this, it is necessary to
monitor caveolin-1 levels in a follow-up study during the
course of prostate cancer progression from its initial stages.
It is necessary to verify these facts in the extensive group of
patients including those with disseminated disease.
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2.5 Cell mechanics assessment in the era of imaging

Taken together, our in vivo and patient-based [40] experiments indicate accordingly with liter-
ature that both prostate cells’ mechanic phenotype, CAVI signalling and zinc(Il) regulation
differ through prostate cancer progression. As metabolism and biomechanical hallmarks of
prostatic tumors are unique, the specific interplay between these processes and specific regula-
tory mechanisms are expected. However, there are no clear conclusions regarding the necessity
of these processes for cancerogenesis in the prostate as the evolutionary advantages and con-
straints of these metabolic and mechanical changes are not known. However, novel high-
throughput high-resolution imaging techniques like QPI might be promising in the understand-
ing of prostatic biomechanical phenotype. Moreover, because this technique enables direct
visualisation of mitochondrial network and simultaneous multimodal fluorescence imaging, this
approach might be suitable in the understanding of metabolic and mechanical interplay in pros-
tate cancer cells.

Different methods to study cell mechanics are used nowadays with dramatically differing force
profiles (AFM, real-time deformability, tensile biaxial stretching, traction-force microscopy,
etc.) [18; 19]. For the most commonly used technique — AFM, the cell-cantilever contact is
needed, causing distinct mechanical stress to cells [18] and making correlative imaging prob-
lematic and time-lapse experiments near-impossible. Thus, there is a growing interest in using
non-invasive label-free optical methods to probe mechanical properties such as Brillouin mi-
croscopy [41-43] and quantitative phase imaging [2; 44; 45]. With this in mind, the combination
of techniques or ideally correlative acquisition could provide new meta-information on cell
mechanical properties.

However, these techniques differ in frequency scale of measurement and need different models
to determine Young modulus. Absolute Young modulus values are therefore typically tech-
nique-dependent making the biological significance of the measured parameters still not fully
understood [18]. Brillouin shift depends only on mechanical properties (i.e., the longitudinal
modulus and the mass density) and is itself a mechanical property [43]. For modulus recon-
struction, however, a correlative image of refractive index (n) is needed, further enabling to

study how modulus scales with n in various cells/subcellular regions under various conditions.
2.51 Quantitative imaging provides physical specificity

Cells are optically thin objects. Therefore, it is challenging to generate intrinsic contrast in such

objects [46] and contrast enhancement based on phase information is needed [47]. The downside
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of contrast enhancement is an introduction of artefacts; phase contrast images contain halo and
shade-off, differential image contrast introduces non-uniform shadow-cast artefacts [47]. In ad-
dition, the phase contrast image is an intensity distribution, in which the phase information is
coupled nonlinearly and cannot be retrieved quantitatively [46].

Quantitative phase image, on the other hand, does not provide molecular specificity. Neverthe-
less, the label-free quantitative phase image is specific physically. Moreover, compared to the
fluorescence image, the acquired data do not correspond to relative intensity range, but instead
are quantitative by nature — data reconstructed from the holograms is represented in physical
units — radians [48]. It therefore provides quantitative information about local thickness of the
sample as well as about its refractive index. Nevertheless, molecular specificity is needed in

biological experiments. With this regard, multimodal imaging was developed.

2.5.2 Multimodal correlative microscopy

Fluorescence microscopy is the most commonly used microscopic technique in the current bi-
ology. It provides molecular specificity in sample [49]. Quantitative phase imaging, although
physically specific, lacks this specificity and this restricts broader use of this technique. To
overcome this, multimodal approaches were developed, combining phase imaging with Raman
spectroscopy [50], Brillouin spectroscopy [51], multispectral light sources [52], structural illu-
mination microscopy [53], or with fluorescent imaging.

Such imaging of the sample with more complementary modalities combined creates new com-
posite which is not just a combination of the two modalities, it provides additional meta-
information about the sample. Specifically, the combination of quantitative phase imaging with
fluorescent microscopy was demonstrated to benefit from a high spatial resolution of QPI to-
gether with molecular specificity of fluorescent staining [49]. Such benefit was shown in cell
death classification and prediction [44; 45], analysis of cytoskeleton or cell movement [54; 55].
As the acquisition of QPI is fast, the generation of large datasets makes it possible to extract
complex information from these datasets using advanced image analysis methods. For instance,
machine learning has enabled the translation of qualitative and quantitative phase images into

fluorescence images [48]. The possibilities of such approaches are discussed in the next chapter.

2.5.3 Artificial intelligence in biomedical image
During 2015-2020, deep learning algorithms have become methods of choice for biomedical

image analysis [56]. Nowadays, these techniques are used for image classification (pathology
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vs physiology), detection of objects (lesions, cells, organelles, or others), segmentation of re-
gions of images (tissues, cells, subcellular regions), registration or other tasks. Most
applications are observed in neurology, retinal images, chest X-ray imaging, and in digital pa-
thology. The broadness of deep learning (DL) is evident for analysis of MRI brain images, where
DL was deployed for disorder classification (Alzheimer disease, mild cognitive impairment,
schizophrenia), segmentation of anatomical sites, detection of lesions (tumors, micro bleedings,
lacunes), survival prediction, image enhancement [56].

Deep learning has been widely adopted also on retinal fundus images to classify diabetic reti-
nopathy and retinopathy of prematurity, the glaucoma-like disc, macular oedema and age-
related macular degeneration[57], showing performance similar to a panel of experts [56]. The
tremendous potential of deep learning in the medical images can be evidenced by Poplin et al
study also on retinal fundus images: The authors demonstrated it is possible to extract even
gender, age or systolic blood pressure with remarkable accuracy just from retinal images — the
parameters which are beyond the possibilities of human experts in the field [58]. While experts
would annotate the gender based on fundus images with accuracy close to 50:50, the custom-
designed DL network did so with area under curve (AUC) 0.97. Such results were made possi-
ble because of enormous dataset size — it was trained on data from 284,335 patients and
validated on two independent datasets [58]. This example demonstrates that images contain
patterns indiscernible by the human eye which can be advantageously extracted using machine-
learning strategies.

The most commonly used network designs deployed on medical images are convolutional neu-
ral networks and recurrent neural networks. In medical images, the networks are used as
“supervised”, meaning that an expert manually annotates a portion of dataset used for training,
which is then used for the network in the learning process (expert annotates tumor vs non-tumor
zone, cell vs background, neutrophils vs macrophages, etc.). Of the convolutional neural net-
work architectures, U-Net [59] is the most commonly used one for microscopic image cell
detection, morphometry, or counting. Regardless of the architecture used, it still holds that the
dataset size is a bottleneck for the network performance. If either image acquisition is slow or
manual annotation by expert is time-consuming and introduces some level of subjectivity, the
capabilities of the machine learning are untapped. Seen from cellular mechanobiology perspec-
tive, atomic force microscopy or Brillouin spectroscopy provide valuable data, but the
acquisition speed of these methods is slow, roughly one field of view per tens of minutes. Due
to the low throughput of these techniques, the deployment of contemporary machine learning

techniques on such datasets is highly challenging.
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New deep learning approaches — Variational autoencoder or Generative adversarial networks
provide a great advantage — user annotation is not necessary. These architectures can mainly be
deployed in data augmentation or in specific scenarios like shown in our study by Vicar et al.
[60] discussed in a results section 4.2.2.

The deep learning neural networks are typically criticized to be uninterpretable black boxes,
where researchers cannot deduce biological explanations that drive the machine decisions. This
might not be an issue as approaches to overcoming this exist, as shown in Zaritsky et al study
on classification of highly aggressive melanoma cells [61]. The authors “reverse-engineered”
the neural network and in silico generated cell images based on machine-made classification
decisions. In the other words, this approach was used to amplify cellular features of metastatic
efficiency. These images unveiled pseudopodial extensions and increased light scattering as
functional hallmarks of metastatic cells compared to non-metastatic ones [61]. In our Majercik
et al. study [62] we performed a classification of highly aggressive prostate cancer cells based
on quantitative phase imaging. In a similar way as performed by Zaritsky et al study, we gen-
erated “attention maps” of the cells to highlight the areas based on which the network decisions
were made in order to avoid the “black box bias”.

Machine learning is also suitable in the microscopic analysis of quantitative phase imaging.
Specifically, it has been employed in quantitative phase imaging to overcome low molecular
specificity of this technique [49]. Recently, deep learning has enabled the translation of quali-
tative and quantitative phase images into fluorescence images [48]. Such combination — when
powered by Al — can enable diagnosis of diseases based on molecular specificity and morphol-
ogy at single-cell level [49]. Machine learning was employed in image classification based on
QPI data for cancer cells [63], red[64] and white blood cells[65], bacteria[66],[67] and others
[68]. Such approaches open new avenues for biomedical research and diagnosis [49].

In this thesis, artificial intelligence was demonstrated to solve several tasks. It was shown to be
powerful for image segmentation [47; 69-71] (chapter 4.1), cancer cells classification [62], ex-
traction of features from quantitative phase image not visible by naked eye [60; 72] and thus
enabled to explain the molecular specificity of a technique primarily showing biophysical and
mechanical features of the cells. The aspects of deep learning in medical imaging are further

discussed in Gumulec and Vicar book chapter [69].

66



Key methods 3.1

3 Key points of the habilitation thesis

Papers presented in this thesis aim to address how cell mechanical properties change during the
pathogenesis of prostate cancer on in vitro model and how it relates with other well-described
tumor hallmarks — such as tumor metabolic state. As the existing mechanophenotyping methods
are low-throughput, low-resolution and invasive, with atomic force microscopy as a typical
example, the potential of label-free optical techniques was evaluated. It was furthermore inves-
tigated whether quantitative phase image contains data not evident by the naked eye, which can
be deployed in aggressive cell classification. Finally, mechanisms underlying the altered me-
chanical and metabolic phenotype were studied. Specifically, the following hypotheses were
addressed:
e Mechanics of the prostate cancer cells changes during cancer progression
¢ Quantitative phase imaging is suitable to describe biomechanical properties of cells
e There are patterns in quantitative phase maps of cancer cells which are not evident by
the naked eye but underline the change of mechanical phenotype (that is, label-free
quantitative phase image contains specific “meta-information”).
¢ Caveolin-1 is involved in the mechanical and metabolic reprogramming of prostate can-

cer cells.

3.1 Key methods

Key methodological approaches are mentioned in this chapter. Details of these methods specific
for particular experiments and more routine methods are in the Methods section of respective
papers. The thesis lies on a combination of cellular and molecular biology techniques to describe
cell features like migration rate, cell death or division, metabolomic techniques to describe cell
metabolic states, microscopic techniques to acquire data, bioinformatic techniques for image

analysis.

3.1.1 Imaging techniques
Multiple microscopic techniques were employed in this study to describe the physical and mo-

lecular properties of cells. These include contrast-enhancing live-cell label-free methods (phase

67



Key methods 3.1

contrast, differential image contrast), quantitative phase imaging, atomic force microscopy, con-
focal and epifluorescence microscopy, and Brillouin spectroscopy. The details of these methods
are explained in the Methods sections of the respective articles, while here, the principle and
methodological details of crucial microscopic methods are described.

Quantitative phase imaging was performed on two designs of microscopes: coherence-con-
trolled holographic microscope capturing 2D images of cell dry mass and optical diffraction
tomography, acquiring 3D images of refractive index. For coherence-controlled holographic
microscopy Q-PHASE (Telight, Brno) was used. Objectives Nikon Plan 10/0.30 were chosen.
Holograms were captured by CCD camera (XIMEA MR4021 MC-VELETA). The entire image
reconstruction and image processing were performed in Q-PHASE control software.
Refractive index tomograms were acquired on an optical diffraction tomography microscope
with rotational scanning 3D Cell Explorer (Nanolive SA, Lausanne, Switzerland) with Nikon
BE Plan 60x NA 0.8. The size of the acquired tomogram was 93.1x93.1x35.7 um (xyz). Samples
were measured in cell medium which refractive index was measured on digital refractometer
DR201-95 (Kriiss, Germany) and used as a reference. Software Steve 1.6.3496 (Nanolive SA)
was used for image acquisition. Image processing and statistic techniques

Atomic force microscopy was performed on bioAFM microscope JPK NanoWizard 3 (JPK,
Berlin, Germany) placed on the inverted optical microscope Olympus IX-81 (Olympus, Tokyo,
Japan). The typical approach/retract settings were identical with a 15 um extend/retract length,
Setpoint value of 1 nN, a pixel rate of 2048 Hz and a speed of 30 um/s. The system operated
under closed-loop control. After reaching the selected contact force, the cantilever was re-
tracted. The retraction length of 15 um was sufficient to overcome any adhesion between the tip
and the sample and to make sure that the cantilever had been completely retracted from the
sample surface. Force-distance (FD) curve was recorded at each point of the cantilever ap-
proach/retract movement. The Young’s modulus (E) was calculated by fitting the Hertzian-
Sneddon model on the FD curves measured as force maps (64 x 64 points) of the region con-
taining either a single cell or multiple cells. Soft uncoated AFM probes HYDRA-2R-100N
(Applied NanoStructures, Mountain View, CA, USA), i.e., silicon nitride cantilevers with sili-
con tips are used for stiffness studies because they are maximally gentle to living cells (not

causing mechanical stimulation).
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3.1.2 Methods to study cell migration and invasiveness

To study aggressiveness, invasiveness and migration, a panel of assays was used. MTT was
used to analyse the toxicity of selected inductors/inhibitors. Wound healing assay was per-
formed to analyse migration speed. For this approach, cells were incubated for 24h after a
formation of the wound in a fully confluent well. A ratio between the wound area in a time point
0 and 24 was used as an approach metric of migration. Migration was also measured in open
area with low-density seeded cells and the individual cell migration was tracked using QPI. Cell
growth and invasiveness were analysed in real-time on an impedance-based device (xXCELLi-
gence (Acea Biosystems, CA, USA). Colony-forming assays were performed mostly to
determine cell reproductive death after cytotoxic treatment. In 6-well plates cells were seeded
in a density ranging 100-2000 cells and after 1-3 weeks the number of colonies was calculated

using an in-house software script.
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4 Commentary to the articles

The key aim of this thesis is to link the prostate cancer cell mechanical properties with cancer
cell metabolic reprograming and cancer cell aggressiveness - well-described tumor hallmarks.
As discussed in the chapter 2.5.1, quantitative phase imaging has potential to describe the bio-
mechanical properties of prostate cancer cells of varying aggressiveness and their connection
to these cells’ metabolism is investigated in this thesis. Therefore, first, bioinformatic strategies
employing artificial intelligence in computer vision are designed to meaningfully extract fea-
tures from the quantitative phase image suitable for mechanobiology. As these techniques were
optimized and the potential of QPI was established in this field, its biological function was
explained using traditional cell biological and molecular biological approaches. Finally, its link-

age with changes in metabolic phenotype was described.

4.1 Image segmentation: an important step of image data processing

Computer vision in biomedical images is applicable for various tasks — detection of pathologic
lesions, classification of tissue/cell types, and many others. Nevertheless, prior these tasks area
of interest needs to be segmented from an unwanted background (e.g., tumor region and non-
tumor region in hematoxylin-eosin slides, brain tissue from other tissues in MRI, cells from the
surface in microscopy). Such task is a process which divides the image into several logical and
meaningful areas.

Quantitative phase image is a new imaging modality. Therefore, no standardized image pro-
cessing pipelines exist either for classification of such data, but also for its segmentation.
Therefore, the following study by Vicar et al. [47] was designed, aiming to define optimal image
segmentation pipeline. In addition, its “segmentability” was compared to routinely used label-
free microscopy techniques — phase contrast microscopy, differential interference contrast mi-
croscopy, and Hoffman modulation contrast microscopy.

A three-step strategy was proposed in this study: First, areas of interest (cells) were separated
from a background in a semantic segmentation step. In this first step, however, individual cells
are not separated from each other. This separation is initiated in the following step — object
detection. Based on semantic segmentation and object detection, individual cells can be suc-

cessfully identified (instance segmentation).
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This study provided us valuable conclusions important for further research: first, it confirmed
the advantage of quantitative phase image over other contrast-enhancing label-free microscopy
methods: QPI is artefact-free and is quantitative — meaning that similar structures (nucleoli,
nuclei, mitochondria) have identical values (radians, or cell dry mass density) between experi-
ments. In the other words, nuclei, nucleoli, and other structures are physically specific [41]. Due
to these properties, the “segmentability” of QPI image is more accurate, facilitating further QPI
data processing. Second, it was clearly demonstrated that machine-learning strategies dominate
over traditional model-based approaches. Of note, no deep-learning strategies were employed,
instead, networks with simpler architecture, random-forest based like Ilastik [73], Trainable
Weka Segmentation [74] were tested in pipelines. For deep-learning strategies even higher lev-
els of segmentation accuracy are expected and possible deep-learning based segmentation
approaches are discussed in Gumulec et al. [69] book chapter.

For QPI, relatively simple strategies like thresholding followed by watershed were sufficient.
However, a combination of Weka probability map segmented with Graph-cut [75], followed by
object detection with generalized radial symmetry transform [76] and finally segmented by
marker-controlled watershed [77] gives superior results. Segmentation pipelines proposed in
this study were subsequently deployed on the following quantitative phase imaging workflows
so data extraction from this technique can be standardized.

Despite Vicar et al [47] 2019 study demonstrated higher “segmentability” of objects (adherent
cells) acquired by QPI over other microscopic techniques, it did not show the highest-possible
segmentation scores for cells. That is because model-based techniques were used Therefore, in
a following 2021 study [70] we aimed to increase the segmentation score for objects — cells —
in a QPI microscopy image by use of deep-learning techniques. In order to remove inevitable
features of deep learning, that is limited transferability to microscopic images (of cells) not used
in the learning process, unique pipeline was designed. Non-deep learning transfer with adjust-
able parameters is used in the post-processing step. Additionally, we proposed a self-supervised
pretraining technique using nonlabelled data of images of multiple cell types, which is trained
to reconstruct multiple image distortions and improved the segmentation performance [70]. Be-
cause no manual annotation was necessary for this pre-training stage, large amounts of
microscopic images (~ 2000) might be used in the network, that is an amount hardly feasible
in a supervised, that is annotated, type of network. The proposed self-supervised pretraining
method improved both segmentation performance and transferability to different cell types [70].
Nevertheless, despite these two approaches for QPI cell segmentation, the model-based one, as

well as the deep-learning-based one were intended to segment whole cells. Therefore, an effort
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was also given to segment subcellular elements, specifically nuclei and nucleoli. Another quan-
titative phase method, the optical diffraction tomography with 60x magnification was used in
this aim. We have managed to distinguish between objects and background with average dice
coefficients of 0.83, 0.78 and 0.63 for whole cells, nuclei and nucleoli respectively. Also in this
step the pretraining further improved the segmentation performance especially for nuclei and

nucleoli, 21% and 16% respectively [71].

VICAR, T, J. BALVAN, J. JAROS, F. JUG, et al. Cell segmentation methods for label-free
contrast microscopy: review and comprehensive comparison. BMC Bioinformatics, June 28

2019, 20(1), 360.
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Abstract

Background: Because of its non-destructive nature, label-free imaging is an important strategy for studying
biclogical processes. However, routine microscopic techniques like phase contrast or DIC suffer from shadow-cast
artifacts making automatic segmentation challenging. The aim of this study was to compare the segmentation
efficacy of published steps of segmentation work-flow (image reconstruction, foreground segmentation, cell
detection (seed-point extraction) and cell (instance) segmentation) on a dataset of the same cells from multiple
contrast micrascopic modalities.

Results: We built a collection of routines aimed at image segmentation of viable adherent cells grown on the culture
dish acquired by phase contrast, differential interference contrast, Hoffran modulation contrast and quantitative
phase imaging, and we performed a comprehensive comparison of available segmentation methods applicable for
label-free data. We demonstrated that it is crucial to perform the image reconstruction step, enabling the use of
segmentation methods originally not applicable on label-free images. Further we compared foreground
segmentation methods (thresholding, feature-extraction, level-set, graph-cut, learning-based), seed-point extraction
methods (Laplacian of Gaussians, radial symmetry and distance transform, iterative radial voting, maximally stable
extremal region and learning-based) and single cell segmentation methods. We validated suitable set of methods for
each microscopy modality and published them online.

Conclusions: We demonstrate that image reconstruction step allows the use of segmentation methods not
originally intended for label-free imaging. In addition to the comprehensive comparison of methods, raw and
reconstructed annotated data and Matlab codes are provided.

Keywords: Microscopy, Cell segmentation, Image reconstruction, Methods comparison, Differential contrast image,
Quantitative phase imaging, Laplacian of Gaussians

Background of disadvantages. These include photo-bleaching, diffi-
Microscopy has been an important technique for  cult signal reproducibility, and inevitable photo-toxicity
studying biology for decades. Accordingly, fluorescence  (which results not only from staining techniques but also
microscopy has an irreplaceable role in analyzing cel-  from transfection) [1]. Label-free microscopy techniques
lular processes because of the possibility to study the are the most common techniques for live cell imaging
functional processes and morphological aspects of living  thanks to its non-destructive nature, however, due to the
cells. However, fluorescence labeling also brings a number  transparent nature of cells, methods of contrast enhance-
ment based on phase information are required.
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shadow-cast artifacts (3D-like topographical appearance).
Although various segmentation procedures have been
developed to suppress these artifacts, a segmentation is
still challenging.

On the other hand, quantitative phase imaging (QPI),
provides artifact-free images of sufficient contrast.
Although there are no standardized methods for the seg-
mentation of QPI-based images, fundamental methods
for segmentation of artifact-free images (e.g. from fluores-
cence microscopy) will be utilized.

In this review, we describe and compare relevant meth-
ods of the image processing pipeline in order to find
the most appropriate combination of particular meth-
ods for most common label-free microscopic techniques
(PC, DIC, HMC and QPI). Qur aim is to evaluate
and discuss the influence of the commonly used meth-
ods for microscopic image reconstruction, foreground-
background segmentation, seed-point extraction and cell
segmentation. We used real samples - viable, non-stained
adherent prostatic cell lines and captured identical fields
of view and cells manually segmented by a biologist. Com-
pared to microscopic organisms like yeast or bacteria,
adherent cells are morphologically distinctly heteroge-
neous and in label-free microscopy, the segmentation is
therefore still a challenge. We will use the most common
imaging modalities used by biologist and we will provide
a recommendation of image processing pipeline steps for
particular microscopic technique.

The segmentation strategies tested herein are selected
to provide the most heterogeneous overview of recent
state of the art excluding the simplest and outdated meth-
ods (e.g. simple connected component detection, ulti-
mate erosion, distance transform without h-maxima etc.).
Deep-learning strategies are intentionally not included
due to their distinct differences, high demands on training
data and the range of possible settings (training hyperpa-
rameters, network architecture, etc.).

Results

In the paragraphs below we provide a detailed summary of
each image processing step from the pipeline (see Fig. 1),
followed by short description of achieved results. We start
with description of “all-in-one” tools and continue with
image reconstruction, foreground-background segmenta-
tion, cell detection and final single cell segmentation (i.e.
instance segmentation).

Due to the large number of tested methods and
approaches, we have decided to introduce a specific des-
ignation of the methods. We used prefix in order to refer
to image reconstruction ('r'), foreground-background seg-
mentation (‘) and cell detection ('d’) and finally to all-in-
one tools (‘aio’). The list of these designations, number of
parameters to be adjusted in these methods and computa-
tional demands are provided in Table 1.
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“All-in-one” tools

Tirst, we performed an analysis with the available com-
mercial and freeware “all-in-one” tools including FAR-
SIGHT (2], CellX [3], Fogbank [4], FastER [5], CellTracer
[6], SuperSegger [7], CellSerpent [8], CellStar [9], Cell-
Profiler [10] and Q-PHASE’ Dry mass guided watershed
(DMGW) [11]. As shown in Table 2 the only algorithm
providing usable segmentation results for raw images is
Fogbank, which is designed to be an universal and easy
to set segmentation tool. Very similar results were pro-
vided by CellProfiler, which is easy to use tool allowing to
crate complete cell analysis pipelines, however, it works
sufficiently only for reconstructed images. The QPI" ded-
icated DMGW provided exceptional results, but for this
microscopic technique only. The remaining methods did
not provide satisfactory results on label free data; FastER,
although user-friendly, failed because of the nature of
its maximally stable extremal region (MSER) detector.
FARSIGHT failed with the automatic threshold during
foreground segmentation. CellX failed in both the cell
detection with gradient-based Hough transform and in
the membrane pattern detection because of indistinct cell
borders. The remaining segmentation algorithms - Cell-
Star, SuperSegger, CellSerpent - were completely unsuit-
able for label-free non-round adherent cells with Dice
coefficient < 0.1 and thus are not listed in Table 2 and
Fig. 4.

Because of the low segmentation performance of the
examined “all-in-one” methods, we decided to divide the
segmentation procedure into four steps - (1) image recon-
struction (2) background segmentation, (3) cell detection
(seed expansion) and (4) segmentation tailored to the spe-
cific properties of individual microscopic techniques (see
Fig. 1).

Image reconstruction
As shown, the performance of most “all-in-one” meth-
ods is limited for label-free data, in particular due to the
presence of contrast-enhancing artifacts in microscopic
images. Image reconstruction was therefore employed to
reduce such artifacts. Methods by Koos [12] and Yin [13]
(further abbreviated rDIC-Koos and rDIC-Yin, respec-
tively) were used for DIC and HMC images. Images of PC
microscopy were reconstructed by Top-Hat filter involv-
ing algorithm by the Dewan [16] (rPC-TopHat), or Yin
method (rPC-Yin) [14].

Generally, following conclusions apply for image recon-
structions:

* No distinctive differences in image reconstruction
efficacy were observed between the microscopic
methods apart from QPI, as shown in Fig. 2 (described
by area under curve, AUC, see Methods for details).

e The AUC of QPI was distinctly higher with values
near 0.99
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¢ Computationally more-demanding methods
(rDIC-Koos and rPC-Yin) perform better except for
relatively simple rPC-Top-Hat, which provides
similar results

Probability maps generated by sWeka or slllastik can
be used like reconstructions in later segmentation
steps. The advantage of this approach is the absence
of the need to optimize parameters.

DIC and HMC reconstructions

With regard to the morphology of reconstructed images,
rDIC-Koos provides a detailed structure of the cells with
distinctive borders from the background. For rDIC-Yin
[13], details of the reconstructed cells are more blurred
and uneven background with the dark halos around the
cells (see Fig. 2) complicating the following segmenta-
tion. As a result, AUC of rDIC-Yin was distinctly lower as
compared with the others.

Both rDIC-Koos [12] and rDIC-Yin [13] methods work
on the principle of minimizing their defined energy func-
tion. The main difference is that better-performing Koos
[12] uses I1-norm (instead of 12) for sparse regularization
term. Yin's [2-norm, on the other hand, enables derivation
of closed form solution, which is much simpler and thus
faster to compute. Time needed for the reconstruction is
dramatically different - 2.1 s, 36.6 min, 13.1 min and 0.17
s for rDIC-Koos, rDIC-Yin, rPC-Koos and rPC-TopHat,
respectively. rDIC-Koos also introduces a parameter for
the number of iterations, which is however insensitive
within the tested range.

Although these methods were not designed for use
on HMC images, the same conclusions also apply for
the reconstruction of those images, which showed only
slightly worse results. The results of reconstruction accu-
racy can be seen in Fig. 2. Combinations of the best-
performing parameters are listed in the Additional file 1.

Phase contrast reconstruction
From the perspective of cellular morphology of recon-
structed images, rPC-TopHat creates artifacts between
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closely located cells with the borders precisely dis-
tinguishable. Reconstruction based on rPC-Yin [14]
causes an even background without observable arti-
facts around the cells, however cell borders are miss-
ing and mitotic cells are not properly reconstructed
(see Fig. 2).

The optimization of the PST parameters of rPC-Yin
reconstruction is problematic. The PSF parameters of a
particular microscope are not always listed or known.
Searching for these parameters with optimization proved
to be complicated. Because the optimizing function is
not smooth and contains many local local extrema, the
result changes significantly and chaotically even with a
small change of parameters or, at the same time, combina-
tions of parameter settings give very similar (near optimal)
results.

Regarding the computational times, the rPC-Yin recon-
struction works very similarly as the rDIC-Koos approach
for DIC, with similar computational difficulties. The result
of a simple top-hat filter unexpectedly turned out to
be comparable to the complex and computationally dif-
ficult rPC-Yin method. For the reconstruction perfor-
mance see Fig. 2, for optimal parameter setting see the
Additional file 1.

Foreground-background segmentation

In the next step of the workflow, the image foreground
(cells) was segmented from the image background. Both
unprocessed and reconstructed images were used. Follow-
ing strategies were used for the foreground-background
segmentation: (a) Thresholding-based methods: simple
threshold (sST), automatic threshold based on Otsu
et al. [17] (sOtsu), and Poisson distribution-based tresh-
hold (sP'I') [2], (b) feature-extracting strategies: empirical
gradient threshold (sEGT) [18] and approaches specific
for PC microscopy by Juneau et al. (sPC-Juneau) [19],
Jaccard et al. (sPC-Phantast) [21], and Topman (sPC-
Topman) [20]), (c) Level-Set-based methods: Castelles
et al. [22] (sLSCaselles), and Chan-Vese et al. [23] (sL.S-
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Table 1 List of tested segmentation methods and all-in-one segmentation tools and definition of abbreviations
Segmentation step  Abbreviation Description Setable parameters Computational time Ref.
Allin one tools
aioFasright Nucleus editor of Farsight toolkit N/A 496 [2]
aioCellX segmentation, fluorescence quantification, N/A 10305 [31
and tracking tool CellX
aioFogbank single cell segmentation tool FogBank N/A 12005 [4]
according Chalfoun
aiolastER fastER - user-friendly tool for ultrafast and N/A 042 s [5]
robust cell segmentation
aioCellProfiler toal for cell analysis pipelines including single N/A 1185 [10]
cell segmentation
aioDMGW Dry mass-guided watershed method, 100
(Q-PHASE, Tescan)
Reconstruction
DIC-Koos DIC/HMC image reconstruction according 2 3660 min [12]
Koos
1DIC-Yin DIC/HMC image reconstruction according Yin 2 210 [13]
PC-Yin PCimage reconstruction according Yin 4 13.10 min [14]
PC-Tophat PCimage reconstruction according 1 0175 [15,16]
Thirusittampalam and Dewan
Foreground-background segmentation
sST simple thresholding 1 < 001s
sOtsu thresholding using Gaussian distribution 0 <0015 [17]
SPT thresholding using Poisson distribution 0 <0015 [2]
SEGT empirical gradient threshaold 3 0245 [18]
sPC-Juneau Feature extraction approach according 3 0265 [19]
Juneau
sPC-Topman Feature extraction approach according 4 0355 [20]
Topman
sPC-Phantast Phantast toolbox developed by Jaccard 5 0355 [27]
51 S-Caselles Level-set with edge-based method 2 31405 [22]
51 S-ChanVese Level-set with region-based method 2 11105 [23]
sGraphCut Graph-Cut applied on recosntructed and raw 2 1580 s [24]
data
sWekaGraphCut  Graph-Cut applied on probability maps 2 31.80 min** [24]
generated by Weka
sllastikGraphCut - Graph-Cut applied on probability maps 2 37.52 min** [24]
generated by llastik
sllastik machine learning tool by Sommer N/A 31.20 mint21 s* [25].
sWeka machine learning tool by Arganda-Carreras N/A 27.60 min+2.20 [26]
min*
Cell detection (seed-point extraction)
dLoGm-Peng multiscale LoG by Peng 4 3605 [27]
dloGm-Kong multiscale LoG by Kong 5 4205 [28]
dlLaGg-Kong generalized LoG filter by Kong 2 4640 s [28]
dLoGg-Xu generalized LoG filter by Xu 3 5.105s [29]
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Table 1 List of tested segmentation methods and all-in-one segmentation tools and definition of abbreviations (Continued)
Segmentation step Abbreviation Description Setable parameters Computational time Ref.
dlLoGh-Zhang Hessian analysis of LoG images by Zhang 1 8905 [30]
dFRST fast radial-symmetry transform 5 153105 [31]
dGRST generalized radial-symmetry transform 5 572305 [32]
dRV-Qi radial voting methods by Qi et al. 5 9500 [33]
dDT-Threshold distance transform by Thirusittampalarmn, 4 0115 [15]
threshold-generated foreground
dDT-Weka distance transform by Thirusittampalam, 3 017 5% [15]
sWeka-generated foreground
dMSER maximally stable extremal region method 3 2105 [34]
(MSER)
dCellDetect machine learning method based on MSER 1 141.70 5/60.20 s* [35]
Single cell (instance) segmentation
MCWST Marker-conttrolled watershed 0 1405
MCWS-dDTH Marker-conttrolled watershed on DT image 0 1415

For detailed list of optimized parameters see Additional file 1

* computational time for leaming based approaches indicated as two values for learning and classification

w5

cormnputational time for Weka+Graph cut combination shawn as surn time of these methods. & not includes time for Weka probability map creation, § indicate final
segmentation step following foreground-background segmentation and seed-point extraction. Number of parameters in “all-in-one” approaches not shown because of the
GUI-basad nature, similarly, not shown for learming-based approaches, see Mathods section for details. Computational time shown for one 1360x 1024 DIC field of view

ChanVese), (d) Graph-cut [24], and (e) Learning-based
Tlastik [25], and Trainable Weka Segmentation [26].

Based on the obtained results, this step can be con-
sidered the least problematic in segmentation, with the
following general findings:

Well-performing methods (e.g. sWeka, slllastik,
sLS-Caselles,sEGT, sPC-Juneau) are robust enough
to work even on unreconstructed data.

Image reconstruction improves
foreground-background segmentation efficacy and
once reconstructed, there are no distinct differences
in segmentation efficacy between microscopic
techniques

QP1I performs dramatically better even
unreconstructed

Learning-based methods (sWeka and sIlastik)
perform better by a few units of percents. Its
performance can further be improved with GraphCut.
More time-consuming methods (sLS-Caselles,
sLS-ChanVese, sGraphCut, sWeka, sllastik) does not
necesarily provide better results. For detailed results,
see chapters below and Fig. 3.

Threshold-based approaches

The Simple threshold (sST) provides better results than
automatic thresholding techniques assuming Poisson
distribution (sPT) or Otsu method (sOtsu). The potential
of these automatic techniques lies in the segmentation of
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images, where optimal threshold value varies between the
images. However, this is not necessary for QPI images
(constant background value increases success of sST)
and for reconstructed images with background removal
(hackground values are close to zero, so the histogram
cannot be properly fitted with Gaussian or Poison dis-
tribution, see Table 2). There are not any parameters to
optimize for sOtsu and sP'T methods, which is the main
advantage. The results of thresholding could be poten-
tially improved by morphological adjustments. Regarding
the computational times, these are the simplest and thus
the fastest possible methods, which are listed mainly to
provide basic idea about the segmentability of our data.

Feature-extraction-based approaches

The feature-based approaches - sEGT, sPC-Topman, sPC-
Phantast and sPC-Juneau are all mainly based on the
extraction of some feature image, which is then thresh-
olded and morphologically modified. Because of fea-
ture thresholding strategies, the segmentation is possible
without the image reconstruction. Thus these methods
are among the most straightforward approaches to extract
and threshold some local features (e.g. absolute value of
gradient or local standard deviation).

All these methods can be easily adjusted, have the same
number of parameters and the segmentation performance
is very similar (see Table 1) with slightly better-performing
sEGT. Compared to the other feature-extraction-based
methods, sSEGT includes elimination of small holes.
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Table 2 The segmentation efficacy {(shown as Dice coefficient) of individual segmentation steps on raw and reconstructed image data

Segmentation efficacy (Dice coefficient)

Method QP DIC HMC PC
raw raw rDIC 1DIC raw rDIC rDIC raw rPC rPC
Koos [12] Yin[13] Koos [12] Yin [13] Yin[14] TopHat [15]
Foreground-background segmentation
sWekaGraphCut 096 0.86 0.89 0.84 0.86 0.34 084 0.86 080 0.84
slllastikGraphCut 094 0.87 0.89 0.84 0.87 0.34 034 0.80 080 0.84
sWeka 094 0.85 0.87 0.80 0.85 082 0.79 0231 0.72 0.81
sllastik 094 0.85 0.86 0.80 082 082 0.79 0.84 0.72 0.82
sLS-Caselles 088 0.83 0.82 0.79 0.84 0.79 0.79 0.77 0.75 0.79
SEGT 039 0.88 0.85 0.64 0.86 0.79 0.70 0.74 068 0.79
sPC-Phantast N/A N/A N/A N/A N/A N/A N/A 0.77 N/A N/A
sPC-Juneau 085 0.85 0.84 0.59 082 077 069 0.73 0.72 0.76
sPC-Topman N/A N/A N/A N/A N/A N/A N/A 0.72 N/A N/A
sLS-ChanVese 061 048 0.74 0.55 0.68 0.67 0.36 0.64 065 0.76
sGraphCut 092 0.38 0.78 0.64 0.32 0.59 058 040 0.70 0.74
sST 092 0.339 0.76 061 0.31 0.72 053 040 069 073
sPT 083 0.34 0.60 0.34 0.30 046 008 0.29 067 0.73
sOtsu 062 0.34 036 0.31 0.28 0.16 018 0.24 051 0.66
Cell detection (seed point extraction)
dGRST 094 0.65 0.79 0.85 0.75 0.81 085 031 0.77 0.88
dlLoGm-Kong 0.90 0.83 090 0.86 0./2 0.84 085 0.52 069 0./8
dFRST 094 0.58 0./8 0.82 0./0 0./8 082 0.82 0./4 0.88
dlLoGm-Peng 089 0.71 0.86 0.78 0.69 0.83 086 0.51 0.73 0.84
dLoGg-Kong 085 0.83 0.30 0.84 0.74 082 083 043 0.72 0.79
dDT-Weka 0381 0.68 0.81 0.74 0.73 0.72 075 0.80 0.76 078
dLoGg-Xu 084 0.77 0.80 0.80 0.65 0.31 078 0.52 0.71 0.78
dDT-Threshold 094 0.26 091 0.86 0.54 0.86 084 0.49 0.76 0.81
dRV-Qi 0.77 061 0.57 0.58 0.70 048 048 0.82 0.59 065
dMSER 093 0.06 0.55 0.58 0.29 0.82 069 0.65 0.79 068
dCellDetect 092 0.00 0.88 0.89 0.00 083 034 0.00 0.71 081
dloGh-Zhang 082 0.13 052 0.64 0.25 0.63 065 049 0./0 061
Single cell (instance) segmentation
MCWS-dDTH 0.77 0.58 0.66 0.61 047 0.54 055 0.52 037 0.62
MCWSH 082 0.55 0.69 0.63 0.26 0.54 053 041 039 0.60
aloFogbank 0.71 0.54 0.55 042 044 038 039 0.46 034 0.19
aioCellProfiler 069 037 0.55 0.38 0.19 045 027 0.09 041 0.54
aloDMGW 082 0.08 0.62 0.38 0.00 048 029 0.10 039 0.65
aioFasright 021 0.15 043 0.00 0.00 0.26 0.14 0.03 037 057
aioCellX 034 0.03 0.08 0.21 002 0.18 005 0.07 003 0.16
aioFastER 009 0.03 0.07 0.00 0.02 0.17 001 0.25 008 0.06

Sorted by Dice coefficient thigh to low). N/A, not applicable, for foreground background segmentation, methods designated for PC image were not deployed on other
ricroscopic modalities

The performance of feature-extraction methods is is mostly due to halos in PC; although sPC-Topman

technique-dependent with the highest scores for DIC  and sPC-Phantast are extended by the elimination of PC
and QPI and the lowest (but still high) for PC. This artifact regions, sPC-Topman have even worse results
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than SEGT or sPC-Juneau and sPC-Phantast leads to a From feature thresholding methods, SEGT was shown
slight improvement only for a cost of more parameters  to be the best with only a small number of parameters and
to be set. great versatility. Because of its percentile based threshold,
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it can be used even with a default setting, which achieves
e.g. 0.84 Dice coefficient value for QPI. Compared to
threshold-based methods, feature-extraction strategies
perform approximately 10% better. Considering the com-
putational demands, these methods are very simple and
fast - comparable to simple thresholding.

Level-set-based approaches

Both sL.S-Caselles [22] and sLS-ChanVese [23] active con-
tours tended to shrink too much, which was compensated
by setting additional force to negative sign, which leads
to a tendency of the contour to grow. The increase of the

additional force leads to a better Dice coefficient value
until a breaking point, after which it leads to the total
divergence of the contour. Still, the value of additional
force had a much greater influence than the smoothness
parameter.

Compared to the above-mentioned foreground-
background segmentation strategies, the level-set based
methods are relatively complicated and computation-
ally difficult (tens of seconds vs. less than 1 s per FOV,
Table 1). In their basic forms, two parameters are needed
to be set. Another great disadvantage is that proper
initialization is required, mainly the sLS-Caselles method
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is very sensitive to initialization. Based on segmentation
results, sLS-ChanVese is applicable on reconstructed
images only, and does not even reach the segmentation
efficacy of simple threshold results. On the other hand,
sLS-Caselles is applicable on raw images, but only for PC
images it surpasses the otherwise much faster sSEGT.

Graph-cut
There is a large number of methods and modifications
based on Graph-Cut. Herein, we tested the basic model
only. When Graph-cut was employed on the recon-
structed images (sGraphCut), the highest Dice coefficient
was obtained among non-trainable approaches except for
rPC-Tophat, being surpassed by sLS-ChanVese. Never-
theless, Graph-Cut does not outperform simple threshold
dramatically, providing roughly 2% increase in Dice coef-
ficient and is only suitable for reconstructed data.
Regarding differences between microscopic meth-
ods, the Graph-cut approach was most suitable for
reconstructed DIC images, followed by PC and HMC.
Regarding the computational times, this method performs
similarly as the level-set-based strategies (tens of seconds
per FOV - Tables 1 and 2). Optimized values are shown in
Additional file 1.

Trainable approaches

Trainable Weka segmentation (sWeka) and Ilastik
(sllastik) were employed in this step. Similarly to the
feature-extracting approaches, these are applicable on
raw, unreconstructed data. Both sllastik and sWeka
outperformed all tested foreground-background segmen-
tation methods with Dice coefficient up to 0.94 for QPI
and up to 0.85 for DIC, HMC and PC.

Regardless of the imaging modality used, there was an
identifiable “breakpoint” in the dependency between the
area size used for learning and the segmentation efficacy
after which no dramatic increase in Dice coefficient was
observed, see Fig. 3. For DIC, PC, and HMC it was approx.
at the size 70 x 70 px., for QPI, distinctly smaller area
was necessary, approx. 25 x 25 px. These areas roughly
correspond to the cell size. However, to demonstrate the
theoretical maximum of this method and to compare it
with Ilastik, learning from one whole FOV for DIC, HMC,
and PC and from 3 FOVs for QPl was deployed (see
Table 2.

Next, an effect of learning from one continuous area in
one FOV, or smaller patches of same sizes from multiple
FOVs was tested. On DIC data it was demonstrated that
learning from multiple areas causes significant, but slight
2% increase increase in Dice coefficients.

No increase of Dice coefficient was observed when
different filters were enabled apart from the set of
default ones (“default” vs “all”) as well as changing
of minimum/maximum sigma. This was tested with a
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random search approach and with the Dice coefficient
varying £0.01. Both Weka and Ilastik provide almost
the same segmentation results and are identically time-
demanding.

There are two parameters to be optimized: terminal
weights and edge weight. Tdge weight (designated as
“smoothness” in the GUI, range 0-10) reflects a penalty
for label changes in the segmentation (higher values cause
smoother result).

Furthermore, probability maps generated by sWeka
and llastik under optimal settings were exported and
these maps were further segmented by Graph-Cut
(sWekaGraphCut/sllastikGraphCut) and optimized in a
same manner as sGraphCut on reconstructed data.
A slight increase of the segmentation efficacy caused
the sWekaCraphCut/sIlastikCraphCut combination to be
the most efficient foreground-background segmentation
method for QPL, HMC, and PC, only being surpassed by
EGT on raw DIC image data. More importantly, this was
achieved without the need of the image reconstruction.

Cell detection (seed-point extraction)
Once the foreground (cells) is separated from the back-
ground, the next step is to identify individual cells
(seed points). The following strategies were used: (a)
Cell shape-based, Laplacian of Gaussian (LoG) vari-
ants Peng et al. [27] (dLoGm-Peng), Kong et al.[28]
(dLoGm-Kong), Hessian Zhang et al.[30] (dL.oGh-Zhang),
generalized Kong et al. [28] (dLoGg-Kong), general-
ized Xu et al. [29] (dLoGg-Xu), (b) Cell shape-based,
generalized radial symmetry transform [32] (dGRST),
fast radial symmetry transform [31] (dFRST), (c) Qi et
al.[33] radial voting (dRV-Qi), (d) distance transform
[15] (dDT-Threshold, dDT-Weka), (e) Maximally Sta-
ble Extremal Region [34] (AMSER), and (f) dCellDetect
[35]. Following general conclusions are applicable for this
segmentation step:

e Seced-point extraction is crucial step of cell
segmentation
The requirement of reconstructed images is a
significant bottleneck of the seed-point extraction
multiscale and generalized LoG are among the most
robust and to some extent work also on
unreconstructed data
Radial symmetry transform-based strategies perform
well
e Seed-point extraction is exceptional on QPI data
e Learning-based approach dCellDetect provide

exceptional results on reconstructed data.

Laplacian of Gaussian-based strategies
Multiscale LoG filters (dLoGm-Peng and dLoGm-Kong)
perform similarly as generalized versions (dLoGg-Kong



Image segmentation: an important step of image data processing

4.1

Vicar et al. BMC Bioinformatics (2019) 20:360

and dLoGg-Xu), but Hessian-based LoG (dLoGh-Zhang)
were significantly worse in some cases. As for the tradi-
tional microscopic methods, LoG approaches enables the
highest achievable segmentation efficacy. It was found out
that particular combinations of reconstruction-LoG filter
perform better than others; an optimal reconstruction-
seed-point extraction combination is rDIC-Koos followed
by dLoGm-Peng for DIC, rDIC-Koos plus dLoGm-Kong
for HMC, and rPC-Tophat plus dLoGm-Peng for PC.
Moreover, there were dramatic differences in cell detec-
tion between QP1 and the remaining contrast-enhancing
microscopic methods. On the other hand, there were no
differences with Dice coefficient 0.9 for both QPI and DIC
with dLOGm-Kong (Fig. 4).

Hessian variant dLoGh-Zhang achieved low segmenta-
tion efficacy on our samples of adherent cells {of various
sizes) due to the use of one estimated optimal kernel size
only (see Table 2). dLoGg-Kong originally completely fails
for some modalities due to the wrong cell size estimation
caused by sub-cellular structures, which produce higher
signal then cells. This was eliminated by introducing a new
Omin parameter, limiting the lower scale,

Regarding the computational times, LoG-based are
among faster techniques, being surpassed only by the
distance transform.

Radial symmetry transform-based strategies

Compared to the computationally-simple LoG-based
techniques, the dFRST [31] and generalized dGRST [32]
provide better results for unreconstructed QPI images
and, notably, for unreconstructed HMC and PC images.
On reconstructed data, a possible application is for PC
data with results very close to QPI segmentation. Never-
theless, computational times in the orders of hundreds of
seconds need to be taken into account.

Radial voting

Radial voting (dRV-Qi) approach [33] does not achieve
the results of fast LoG-based strategies for all microscopic
modalities, either raw or reconstructed, while being com-
putationally comparable to radial symmetry transform-
based approaches. Thus, it is considered not suitable for
such data.

Distance transform

The strong advantage of the distance transform [15] is
its speed, which is the highest among other seed-point
extraction strategies. Segmentation efficacy of the tested
version with optimal thresholding (dDT-Threshold) is the
highest among all microscopies except for PC, but image
reconstruction is needed. An alternative approach is to
use WEKA for binary image generation (dDT-Weka),
where cells are less separated than in a case of optimal
threshold.
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Maximally stable extremal region

Compared to the relatively consistent performance of LoG
between microscopic techniques, the dMSER approach
[34] is distinctly more suitable for HMC reconstructed
by rDIC-Koos and PC reconstructed by rPC-Yin, where
the segmentation performance as well as computational
requirements are identical or similar to LoG.

CellDetect

The CellDetect approach uses [35] maximally stable
extremal region for segmentation. Adherent cells in unre-
constructed DIC/HMC/PC images are, however, dramat-
ically heterogencous structures. Thus, there are no ele-
ments registered for learning and thus the performance
of CellDetect was similar to aioFastER methods. On the
reconstructed data, it performs similarly as LoG- or dis-
tance transform-based methods. Nevertheless, because
the trainable nature of this technique, enormous compu-
tational time demands must be taken into account (up to
100-fold higher than DT). Segmentation of microscopic
elements of low shape heterogeneity (e.g. yeast) would
profit from CellDetect significantly.

Single cell (instance) segmentation

The data which underwent reconstruction, foreground
segmentation and seed-point extraction were finally seg-
mented by Marker-controlled watershed (MCWS) applied
on distance transform or on images directly. Com-
pared to previous steps, errors generated by this step
have only minimal impact on overall segmentation qual-
ity, providing few-pixel-shifts to one or other adjacent
cells. The distance transform approach is more univer-
sal but, in case the cells are well-separated, MCWS-only
approach can provide better results. When compared to
“all-in-one” segmentation strategies, the approach pro-
posed by us provides dramatically better results except
of proprietary software for quantitative phase imaging
(see Table 2). With this in regard, the development of
a new method which is strictly based on the nature of
mass-distribution-QPI images could provide even better
results.

Finally, it was assessed how the segmentation accuracy’s
individual steps are affected by morphological aspects
of cells. Following aspects were studied (Fig. 5): cellu-
lar circularity and level of contact of cells with other
cells (isolated cells vs cells growing together in densely
populated areas, expressed as a percentage of cellu-
lar perimeter in contact with other cells). The circu-
larity ranged 38.2 to 63.5%, median 51.2%, (percentage
of cells with a circularity 100%: 2.1%), the percentage
of perimeter ranged 4.1-41.9%, median 22.0% (percent-
age of cells with no contact with others 21.7%). Cells
with circularity ranges 0-40% and 70-100% were con-
sidered low- and high-circularity cells. Regarding the
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aioDMGW
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Fig. 4 Seed-point extraction segmentation step and all-in-cne segmentation approaches. a Results of segmentation, representative image of
1DIC-Koos-reconstructed RIC image followed by foreground-background segmentation with Traniable Weka Segmentation. Blue points indicate
seeds based on which cells are segmented using marker-controlled watershed. Note absence of seed-points for “all-in-one” segmentation
approaches. b Dependency between number of cells used for training and Dice coefficient for Celldetect
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degree of contact with other cells, cells whose 0-15%
and 50-100% of perimeter was in contact with other
cells were designated “isolated” and “growing together’,
respectively.

It was found out that the reconstruction method does
not affect a difference in segmentation accuracy between
highly- and low-circular cells (the segmentation accu-
racy in highly circular cells is in average 15% better for
all reconstruction methods) without significant variations
for individual methods. Seed-point extraction, however, is
much more cell-shape-dependent (Fig. 5¢). Because these
methods are blob detectors by nature, the result is better
for more circular cells with most methods. However,
the dDT-Treshold and dCellDetect are not affected by
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circularity and are among the most efficient segmenting
tools at the same time.

Regarding the effect of a degree of contact with other
cells, method of image reconstruction does not affect a
difference in segmentation between densely and sparsely
populated areas (20% better segmentation results for iso-
lated cells). Seed-point extraction accuracy is however
even more profoundly affected by a level of contacts
with other cells (in average 25% better segmentation for
isolated cells).

Discussion
During the last two decades, the amount of approaches to
segment microscopic images increased dramatically. The
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precise segmentation of label-free live-cell microscopic
images remains challenging and not completely solved
task. Furthermore, different microscopic techniques make
this task more difficult due to different image properties
provided.

Accordingly, the aim of this study was to compare the
most heterogeneous spectrum of segmentation methods
to real data of the same cells from multiple contrast
microscopic modalities. The properties of each processing

step has been evaluated and segmentation accuracy has
been compared.

We used human adherent cells, which are much more
heterogeneous in shape and thus much bigger challenge
for segmentation than the segmentation of spherical bac-
teria or yeast. Based on the described results, we can now
summarize, discuss and suggest several findings directed
to both biologists and bicinformaticians from different
points of view.
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Segmentability of microscopic techniques

When considering a microscopy technique for label-free
segmentation, there were no dramatic differences in the
segmentation efficacy between DIC, HMC or PC. How-
ever, the highest segmentation efficacy was obtained when
QPI microscopy was used due to the higher image qual-
ity (without significant artefacts and high image contrast).
In principle, approaches originally intended for fluo-
rescence segmentation are applicable for these images.
QPI technique should be also the choice, when a fast,
high throughput segmentation is desirable, because no
image reconstruction is needed and simple threshold-
ing with MSER - Seeded watershed provides satisfactory
results.

Performance of segmentation steps

Regarding individual processing steps, the most crucial
are image reconstruction and seed-point extraction meth-
ods. Foreground-background segmentation, on the other
hand, can be considered the least problematic part,
where no dramatic differences between methods were
observed, except that learning-based approaches scored
better. Regarding the seed-point extraction, however, a
reconstructed image is needed for almost all approaches
(except dDT-Weka), making seed-point extraction depen-
dent on precise reconstruction. Not all foreground-
background segmentation methods need reconstructed
images, because some are compatible with raw DIC or
PC images (e.g. sWeka, sLS-Caselles, sEGT) and gen-
erally perform well. Omitting the reconstruction step
will need the seed point extraction methods applica-
ble to raw data (eg. dDT-Weka or DT with different
foreground-background segmentation), which can slightly
reduce the quality of cell segmentation. It was also evi-
dent, that not all reconstruction algorithms are suitable
for the seed-point extraction (high Dice coefficient in the
foreground segmentation step does not guarantee suit-
ability for the seed-point extraction). It also cannot be
stated that the time-consuming methods are dramati-
cally better-performing in the seed-point extraction. Here,
the learning-based approach provided better results, too.
Below we provide short workflow summary for each
microscopic technique:

e (QQPI — this technique usually provides images with
the best image properties with respect to automated
image processing. We observed that Weka probability
map segmented with Graph-cut, followed by seed-
point extraction with dGRST and finally segmented
by Marker-controlled watershed gives superior
results. In general, any segmentation approach used,
QPI gained the highest segmentation efficacy.

e PC - for this modality we suggest simple and fast
reconstruction with Top-Hat filter, and dGRST or
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dFRST for seed-point extraction. Graph-cut applied
to probability Weka probability maps produce best
foreground-background segmentation. Final
segmentation is slightly improved if
Marker-controlled watershed is applied to distance
transform image (instead of intensity image).

¢ DIC/HMC — the images from these modalities are
similar, which leads us to suggestion that the same
pipeline can be applied to both. We suggest to use
rDIC-Koos method for reconstruction and
Graph-cut applied to probability Weka probability
maps for foreground-background segmentation.
Thresholding with distance transform
(dDT-Threshold) is best for seed-point extraction,
finally segmented by Marker-controlled watershed.
Although DIC and HMC have a lot of similar
features, DIC produce generally better results.

All-in-one packages are extremely popular in biolo-
gist community and more or less provide the complex
solution for single cell segmentation task. However, these
packages implement common image processing meth-
ods (some of them described here) and together with
graphical user interface and interactions, provide rich
possibilities for segmenting the images. We can conclude
that FogBank and CellProfiler tools achieve the highest
segmentation efficacy among these approaches (without
need of programming skills) and it is also universal for var-
ious imaging modalities. Both FogBank and CellProfiler
use a similar generalizable approach based on the com-
bination of watershed and distance transform, however,
CellProfiler also includes a possibility to build complete
cell analysis pipelines and as such should be default choice
without programming.

Deep-learning remarks
Intentionally, our focus was set on a spectrum of tradi-
tional strategies while the rapidly-developing spectrum
of deep-learning-based segmentation was omitted. The
main practical limitation of application of deployment of
pre-trained U-net or other deep learning method (transfer
learning) is the need for sufficiently large training dataset
(covering different modalities and cell types/shapes).
However, the image databases for segmentation tasks
are not as large and complex as ImageNet [36], which
became a standard for pre-training of classification-based
networks. For this reason, available models use only pre-
trained encoder [37], which is pre-trained for classifica-
tion on ImageNet. As such, we leave this investigation for
future work, where deeper-comparison is highly needed,
especially for different amounts of training data and from
view of computational requirements.

Despite the tremendous success of deep learning
approaches applied in many computer vision tasks
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including live cell imaging, there is no straightforward
way how to use these methods for cell segmentation of
touching dense populated cells. One of the approaches to
achieve separated mask for each cell is to predict simple
binary foreground mask, but giving higher weight to cor-
rect prediction on the boundary as in [38]. Another simple
solution is to predict three pixel classes — background,
foreground and cell boundary as in [39], which provides
better separation of cells. On the other hand, deep learn-
ing can be also used for cell detection by regression of 2D
Gaussians on the position of centroids as in [40]. In [41],
authors combined detection and segmentation into simul-
taneous prediction with one U-Net network, where one
prediction map predicts distance to cell boundary (after
thresholding we obtain foreground-background segmen-
tation) and second map predicts distance to cell centroid
(detections are obtained with local maxima detection).
These techniques are very promising, however, their test-
ing is out of scope of this paper because our dataset is
not sufficiently large for training of these algorithms and
there is no standard way how to use deep learning for
cell segmentation, leading to enormous number of possi-
ble setups to test in order to achieve fair comparison to
classical methods.

Remarks and limitations

Because of Matlab platform was used, the information
regarding computational time is approximate with a large
software-dependent space for its reduction. All segmen-
tation steps were performed in a sequential way. Thus
parallel processing may provide a distinct improvement
for most of the methods, but this was beyond the scope of
this study. Based on a distinctive difference in a segmenta-
tion accuracy between “all-in-one” methods and individ-
ual methods reviewed herein, well-performing methods
usually have more than three parameters to be set (usu-
ally not even corresponding with morphological features
of the cells). Thus it is still difficult, if not impossible, to
automatize the whole segmentation process. In a spite of
this, deep-learning approaches provide some alternative —
instead of setting optimized parameters, user needs just to
provide a training dataset.

Although there are several excellent reviews on such
segmentation, a study practically comparing the to-date
best-performing approaches on real data from various
microscopic techniques is still missing. In [42] the authors
review a broad spectrum of segmentation methods to seg-
ment histological images. In [43] the authors focus on
available tools with GUI. The author of [44] summarizes
historical progress of cell segmentation methods. There
are also works on comparing QPI, DIC and PC, but in [45],
the authors compare modalities without segmentation
and in [46] authors test algorithms only on QPI data, with-
out considering image reconstructions. In Ulman et al.
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[47] the authors compared segmentation and tracking on
various microscopic methods, including 2D fluorescent,
DIC and PC. Many detection errors can be eliminated
with tracking. Thus the comparisons with our review
might be rather relative. Similarly to our results, one of the
best-performing algorithms “KTH-SE” used a relatively
simple thresholding together with a precise seed-point
extraction (tracking in their case). This underlines the fact
that a precise seed-point extraction is the most crucial
segmentation aspect. Also a segmentation performance
was significantly lower in the “Fluo-C2DL-MSC” dataset
characteristic by low circularity of cells.

Our study has several limitations. These include the
focus on the segmentation of adherent cells, not those
cultivated in the 3D matrix or suspension-cultured coun-
terparts. Also the ground truth manual segmentation was
performed by a human, although experienced biologist.
The problem of overlapping cells was present, although
relatively rare. Using the learning-based approaches it was
demonstrated that those surpass the transitional strate-
gies. This predicts a future success for deep-learning
methods and probably also their future superiority. Also,
in accordance with cell time-lapse trend in microscopy,
cell segmentation is just the first part of the story with cell
tracking being another one.

Conclusion
In this study, we performed a comprehensive testing
of image processing steps for single cell segmentation
applicable for label-free images. We searched for pub-
lished methods, which are used by biologists and bioin-
formaticians, we assessed the suitability of used data
and we carefully tested particular segmentation steps
(image reconstruction, foreground-background segmen-
tation, seed-point extraction and cell segmentation) and
compared them with available “all-in-one” approaches.
As expected, learning-based methods score among the
best-performing methods, but well-optimized traditional
methods can even surpass these approaches in a fraction
of the time. We demonstrated that the image reconstruc-
tion step makes it possible to use segmentation methods
not directly applicable on the raw microscopic image.
Herein we collected a unique set of similar field-of-
view image of the same cells acquired by multiple micro-
scopic techniques and annotated by experienced biologist.
The raw and reconstructed data is provided, together
with the annotated ground truth and Matlab codes of all
approaches.

Methods

Dataset

Cell culture and culture condition

PNT1A human cell line was used in the experiment. This
cell line was derived from normal adult prostatic epithelial
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cellsimmortalized by transfection with a plasmid contain-
ing SV40 genome with defective replication origin, The
cell line was purchased from HPA Culture Collections
(Salisbury, UK). PNT1A cells were cultured in RPMI-
1640 medium supplemented with antibiotics (penicillin
100 U/ml and streptomycin 0.1 mg/ml) with 10% fetal
bovine serum (FBS). Prior microscopy acquisition, cells
were maintained at 37°C in a humidified (60%) incubator
with 5% CO, (Sanyo, Japan). Intentionally, high passage
number of cells was used (> 30) in order to describe
distinct morphological heterogeneity of cells (rounded
and spindle-shaped, relatively small to large polyploid
cells). For acquisition purposes, cells were cultivated in
Flow chambers p-Slide I Luer Family (Ibidi, Martinsried,
Germany).

Microscopic image acquisition and dataset characteristics
QPI microscopy was performed on Tescan Q-PHASE
('Tescan, Brno, Czech Republic), with objective Nikon CFI
Plan Fluor 10 x /0.30 captured by Ximea MR4021MC
(Ximea, Miinster, Germany). Imaging is based on the orig-
inal concept of coherence-controlled holographic micro-
scope [48, 49], images are shown as a 32bit file with val-
ues corresponding to pg/pm? recalculated from radians
according to Barer and Davies [50, 51].

DIC microscopy was performed on Nikon A1R micro-
scope (Nikon, Tokyo, Japan) with a Nikon CFI Plan Apo
VC 20 x /0.75 objective captured by a Jenoptik ProgRes
MF CCD camera (Jenoptik, Jena, Germany).

HMC microscopy was performed on Olympus 1X71
microscope (Olympus, Tokyo, Japan) with Olympus
CplanFL. N 10 x /0.3 RC1 objective captured by Hama-
matsu Photonics ORCA-R2 CCD camera (Hamamatsu
Photonics K.K., Hamamatsu, Japan).

PC microscopy was performed on a Nikon Eclipse
TS100-F microscope, with a Nikon CFI Achro ADI. 10 x
/0.25 objective captured by Jenoptik ProgRes MF CCD
camera.

The captured dataset characteristics are summarized in
Table 3. All data were manually segmented by an expert in
cell biology as ground truth for segmentation and detec-
tion. Same areas of sample were captured using these
microscopes, but due to the cell movement and different
FOV size the overlap is not absolute.

All-in-one segmentation tools
Here are described “all-in-one” approaches (designated
with “aio” prefix).

aioFARSIGHT

FARSIGHT toolkit 0.4.5 module Nucleus editor [2] con-
sists of an automatic Poisson threshold binarization
refined with graph-cut (applied on a binary foreground
image) and produces initial segmentation containing
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cell clusters. Next, Multiscale Laplacian-of-Gaussian is
used to produce feature map (image where blobs are
enhanced - see “LoG filters” section for more details),
which is segmented by local clustering algorithm. This
clustering algorithm then produces rough cell clus-
ter separation. Finally «-Expansions (multilabel graph
cut) is used to refine segmentation, with novel method
of Graph colouring for more efficient computation
(see [2] for more details).

The first set of parameters was cell-shape-derived: “min
scale” and “max scale” (the minimum and maximum scale
of the multiscale Laplacian of Gaussian filter) were set
based on a measured radius of equivalent circle of cells,
“xy clustering res” (resolution of the local maximum clus-
tering) was set similarly as “min scale’; and “min object
size” was set as the area of the smallest cell. The sec-
ond set of parameters was optimized: “high sensitivity”
(enable/disable high sensitivity binarization), “finalize seg-
mentation” (enable/disable the segmentation refinement
step), “use distance map” (enable/disable the use of the
distance constraint to select the LoG scales), and “refine-
ment range” (parameter sets the maximum distance that
an initial contour can be shifted).

aioCellX
Dimopoulos et al. [3] approach consists of seed genera-
tion with gradient-based Hough transform, construction
of membrane patterns images for each seeced (cross-
correlation with estimated membrane profile) and seg-
mentation of each such image with graph-cut. After that,
statistical morphological outliers are removed and indi-
vidual regions are combined (almost identical regions are
merged and overlaps are resolved).

CellX includes a GUI, where user can interactively set
cell size range, maximal cell length and estimated mem-
brane profiles.

aioFogbank

In Chalfoun et al. [4] Fogbank, foreground is segmented
with EGT. Seeds are detected as connected regions after
percentile thresholding (with some distance and size con-
straints). Pixels above a defined percentile level are then
connected to the nearest seed-point. Either intensity or
gradient image and either Euclidean or geodesic distance
are used for computation.

Table 3 Data-set summary

Modality  FOV size Image size Num. of FOVs  Num. of cells
QPI 376376 pm - 600600 px 18 637
PC 1253%944 prm 1360x 1024 px 10 2387
DIC 627x472 - 1360x 1024 px 11 862
HMC 867x660pm 13441024 px 11 1297
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aioFastER

Hilsenbeck et al. [5] FastER applies MSER to construct
component tree and SVM for classification of regions into
groups of cells or false detections. Finally non-overlapping
regions with the highest score are selected. It shares
CellDetect similarities (see “CellDetect” section), but this
algorithm uses 9 features for SVM classification only and
does not compute globally optimal solution, thus being
computationally faster. To achieve complete segmenta-
tion (not only detection as CellDetect), authors modified
their approach on the algorithmic level. Size constraints of
cells (measured min/max cell size) were set and “de-noise”
parameter sctting were optimized (off/on/strong). Larger
number of FOVs used for training were tested without
improvement,

Dry mass-guided watershed

The dry mass-guided watershed method (designated as
aioDMGW) is a thresholding-based approach, imple-
mented as a part of Analyzer module of Q-PHASE soft-
ware 6.803 (Tescan, Brno, Czech Republic). First the phase
image is slightly smoothed and foreground is separated
from background using thresholding. Then watershed
starting from the local maxima is performed. The decision
of merging of touching segments, or leaving them sepa-
rated, is based upon the sums of pixel values (i.e. dry mass)
in each touching segment. The optimized parameters are:
threshold; min segment sum (the minimum accepted sum
of pixel values in each segment used to filter out noise
and cell debris); max merge sum (the threshold of sum
of pixel values of touching segments used to decide if the
segments should be merged or left separated).

aioCellProfiler

The CellProfiler [10] is a strong segmentation tool, how-
ever, we perceive it more as a platform where a substantial
part of the segmentation strategies used here can be
reproduced. Nevertheless, we evaluated output of “Indeti-
fyPrimaryObject” module, which combines thresholding
and watershed. Watershed is used twice, for seed-point
extraction and final single cell segmentation, and it is
applied to either intensity or DT image. Additionally,
module uses some smoothing and it remove seed-points
bellow some allowed distance. Measured range of cell
radiuses and optimal threshold (see Additional file 1) were
used and we optimized betwen application to intensity or
DT image for both steps.

Other all-in-one tools
Following algorithms were reviewed but not used in com-
parison with reasons stated below:

CellTracer [6] consists of 3 steps — foreground seg-
mentation, border segmentation and cell segmentation by
model fitting. This approach is more suitable for yeast-
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or bacteria-shaped objects (coccus- or bacillus-shaped
with distinctive borders). Similar issues were observed in
SuperSegger (7], CellSerpent [8] or CellStar [9].

Image reconstruction techniques

DIC, HMC and PC image formation process can be
described as convolution between the original image of
the scene and 2D PSE. For PC images PSF is [13]

PSFpc(x,v) = 8(x,¥) — airy (\/ x% + yz) (1)

where 8(-) is Dirac delta function and airy(-) is Airy pat-
tern. This leads to halo and shade-off artifacts (see Fig. 2).
For DIC image PSF is difference of two Gaussians [52]:

2 2 2 2
l +y )7:\/1/6!}(]) (7x +y )
a a
2)

T

PSFpic(x,y) = —xu exp (f

where o is Gaussian standard deviation and n =[# v]
is unit vector specifying shear direction. It means that
DIC image is derivation under shear direction visible as
3D-like topographical appearance (see Fig. 2). The inverse
PSFE then can be used for image reconstruction. The goal
of these reconstruction algorithms is to produce image
of blob-like cells qualitatively corresponding to cell mass
(similar to QPI). The methods described bellow are des-
ignated with prefix “r” (reconstruction), original modality
and author, where possible.

DIC reconstruction methods were well reviewed in [12].
Based on the results of this study, two methods were cho-
sen: (a) fast, computationally-efficient Yin et al. approach
[13] (in following parts designated as “rDIC-Yin”) and (b)
more computationally-demanding Koos et al. [12] (des-
ignated as “rDIC-Koos”). HMC images have the similar
properties as DIC and therefore the same reconstruction
algorithms were tested.

For PC reconstruction [14], two methods were chosen
(a) more complex computationally-demanding method
based on PSF model (designed as “rPC-Yin”) (b) simple
Top-hat filtering (designated as “rPC-Tophat”).

rDIC-Koos

Method proposed by Koos [12] (rDIC-Koos) uses an
energy minimization with data term and total variation
regularization term

1 ~ N
E:Effﬂ(u-vu(*f)fg)2+ws|vfld8'l (3)

where - denotes dot product, ¥ denotes gradient, u =
[« v]T is unit vector specifying shear direction, £2 is image
domain and K is kernel which approximate PSF without
derivative (Gaussian function), where wK = PSFpic(x,¥).
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Euler-Lagrange equation of data term for symmetric ker-
nel K leads to

g + vyg — f f K (LB 32f + 2uvid, + vzajj) =0
w
(1)

where d; and 9, denotes partial derivatives and W is a
local window (with size of kernel). Finally, this can be
solved with gradient descent iterative method as

JEV = FO — g (@030 + 20,0, © + 2020 ) 5 K
Fo)
+ UG + v0,G — div (L)
v f O

(5)

where f+1 ig reconstructed image in next iteration, div
denotes divergence. Last term is proposed by total varia-
tion regularization.

Besides of shear angle, which is assumed to be known
(or recognizable from image - typically multiple of 45),
rDIC-Koos method has three parameters - weight of
smoothness (total variation) regularization wy, step size of
gradient descent w,; and number of iteration if. Smooth
regularization sets compromise between noise elimina-
tion and details preservation. Too large step size leads to
method divergence and too small step size leads to slow
convergence. Number of iterations has a small influence
on the result; default value 20000 was used. For setting of
other parameters see Additional file 1.

rDIC-Yin

Yin et al. [13] presented a reconstruction method for
DIC images (rDIC-Yin) working with multiple shear direc-
tions, but with some simplification in equations it also
works on images with one shear angle direction. Authors
assumed that distortion of the microscope can be modeled
by convolution with PSF

g=d=xf (6)

where d is PSF (in general a directional first-derivative-of-
Gaussian kernel, but simple difference without Gaussian is
used for simplification), g is acquired image and f is orig-
inal image. Simple inverse filtering leads to highly noisy
images, which can be reduced by regularization. This can
be achieved with optimization of energy function which
must be minimized over whole image domain

Eff) = d#f— g+ waxh? +wf (7)

This equation is composed of data term, smooth term
and sparse term (all with [» penalization, where wy and
w, are weights for the smooth and sparse regulariza-
tions, respectively). fis reconstructed image (approxima-
tion of f). Smoothness is achieved by setting a restored
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pixel value to be close to the average of its neighbors
(where a =[1,1,1;1,-8,1;1,1,1] /8). Sparse regulariza-
tion causes the value of background pixels to be close to
zero, Optimization of function has close-form solution in
Fourier space (F = F{f} etc.)

F=-DOG @ wWAOA+w,—DOD) (8)

where “@” and “@” denotes element-wise division and
multiplication, respectively.

Besides shear angle, rDIC-Yin has two parameters only,
wg and w,, which set smoothness and sparse regulariza-
tions, respectively.

rPC-Yin

In [14] Yin et al. used a deconvolution with sparse con-
straint regularization to reconstruct PC images. This
method was further expanded with dictionary of diffrac-
tion patterns [53], which deals with problematic mitotic
cells. This method is in fact a segmentation method as
presented in the Suat al. paper [53] and it therefore cannot
be used as preprocessing (i.e. reconstruction) step. rPC-
Yin [14] is very similar to rDIC-Yin [13] with modified
equation 7 to linear equation system with /; penalization
for the sparse term.

= = . =T = =
Ed) = (Hf — 8% + wf Lf+ w,|Af| (9)

where f and g are vectorized restored and acquired
images, H is the transfer matrix of the image formation
model and L is Laplacian matrix (corresponding to dif-
ferent expression of operators d and a in the equation 7).
A is positive diagonal matrix defining sparseness, w, and
w, are weights for the smooth and sparse regulariza-
tions. Because of /; penalization of sparseness (known
to be better than [;) there in no closed-form solution. It
can be solved with an iterative algorithm which is based
on non-negative multiplicative updating (for more imple-
mentation details see [14]). PST (which leads to H) is then
modeled by the equation 1, where airy pattern is

h (2:Rr> Ckew) (er(Rr— W)

airy(ry = R (10)
where R and W are PSF-dependent parameters - outer
radius (R) and ring width (W) of phase ring and J;(-)
is the first order Bessel function of the first kind. rPC-
Yin has also optimization parameters wy and w, which
define weights of components of optimized energy func-
tion. Other parameters not discussed in [14] were set
to default value (radius = 2,epsilon = 100,gamma =
3,scale = 1, maxiter = 100, tol = 107'%), Because of large
computational time, optimization of PST and optimiza-
tion parameters was done separately - first proper PSF was
found (other parameters set to default value wy = 1 and
wy = 0.5) and then optimal W and R values were used in
optimization of ws and w,.
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rPC-Tophat
Top-hat filtering (referred here as rPC-Tophat) was used
by Thirusittampalam et al. [15] and Dewan et al. [16] for
halo artifacts elimination. This simple heuristic approach
shows very promising results and it is considered as the
next PC reconstruction technique in this paper.
Reconstruction based on top-hat filtering with disk-
shaped structuring element has only one adjustable
parameter - radius of structuring element, which is
roughly equal to the radius of the cell, with optimal value
r=16.

Foreground-background segmentation

Thirteen methods has been tested and to make it more
clear, the methods are designated with prefix “s” (segmen-
tation), original modality and the author, where possible.

Thresholding
Three threshold-based techniques were used for the
foreground-background segmentation. Simple threshold
(named as s8T) and two automatic threshold algorithms,
Otsu [17] (sOtsu) and Poisson distribution [2] (sPT).
Automatically determined thresholds varies between
FOVs, so a better result can be expected. sOtsu assumes
that gray-scale values are mixture of two Gaussian dis-
tributions. Nevertheless, for the adherent cell images the
mixture of two Poisson distributions is sometimes more
suitable [2], thus sPT was tested. For ST, threshold value
was optimized with 100 steps between minimal and max-
imal value.

Empirical gradient threshold

Chalfoun et al. [18] described an empirical gradient
threshold method (referred here as sEGT), which uses
empirically derived model for threshold estimation. sSEGT
was described to work with different microscopic modal-
ities (PC, DIC, brightfield and fluorescence) and is appli-
cable also on the others, including raw (unreconstructed)
images. sSEGT utilizes a Sobel operator to compute abso-
lute value of gradient, then the percentile-based threshold
is found, followed by the binary morphological opera-
tions. Three parameters must be set beforehand: minimal
cell size (removing small objects), minimal hole (removing
small holes) and manual fine-tune (decreasing or increas-
ing the estimated threshold). For all these methods mini-
mal object size was determined from a ground true mask
of the training images.

sPC-Juneau

Juneau et al. [19] described simple segmentation method
(referred here as sPC-Juneau) designed for PC images. It
computes a range map (difference between minimum and
maximum in local window), which is then thresholded.
Consequently, all holes and small objects in the binary
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image are removed. Thus these parameters are optimized:
window size, threshold and minimal object size. Although
originally designed for PC images, it is applicable for other
modalities as well.

sPC-Phantast

Jaccard et al. [21] developed a software toolbox PHAN-
TAST consisting of foreground segmentation techniques
specialized for PC microscopy images. It computes local
contrast

VGxI2—(GxD)?

C =
G=x1

(11)

where G is a Gaussian kernel with standard deviation o.
The resulting local-contrast image is then globally thresh-
olded and halos are corrected. For halos correction, the
gradient direction is computed by eight Kirsch filters
(8 directions). Halo pixels are initialized with boundary
pixels of binary image, then iteratively each halo pixel
points to its gradient direction and two adjacent direc-
tions, where each of these three pixels is marked as halo
if it is considered foreground (for bright halos gradient
points in and for dark cells gradient points out). Maxi-
mum cell area fraction removed as halo is restricted and
after elimination of halos, small objects and holes are
removed. This leads to 5 parameters - Gaussian o, thresh-
old, halo area fraction, minimal hole size and minimal
object size.

sPC-Topman

Topman et al. [20] described another method for fore-
ground segmentation originally intended for PC images.
This approach applies two filters, one with a small
and one with a large local window computing the
standard deviation, where both are thresholded. The
result is an intersection of these two binary images,
where binary image from large window is morpholog-
ically eroded (with morphological element of half the
size of the large window) and final image is morpho-
logically opened and closed. This leads to 4 parame-
ters - two window sizes, threshold, and morphological
element size.

LevelSets

Matlab implementation of level-set method with function
activecontour was used. This implementation includes an
edge-based method [22] (referred as sl.S-Caselles) and
region-based method [23] (referred as sLS-ChanVese).
Both methods use a Sparse-Field implementation [54] for
contour evolution and both have two adjustable param-
eters - smoothness of the result contour and additional
force, which leads to a tendency of the contour to grow
or shrink. While sL.S-ChanVese segments the image into
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two regions based on the mean region intensities, sLS-
Caselles segments the image based on the edges. The
level-set methods were initialized with morphologically-
dilated binary results of Weka segmentation, because it
provides similar initial contours for all modalities. Num-
ber of iterations of the evolution was set to 1000, which
was shown to be enough for all types of images and all
parameter settings.

Trainable Weka Segmentation

Next, a machine learning tool for microscopy pixel
classification Trainable Weka Segmentation v.3.2.13 was
used [26] (designated as sWeka). Compared to previ-
ous foreground-background segmentation strategies, this
approach was primarily used directly on the raw data.
Weka was trained using the following default training
features (Gaussian blur, Sobel filter, Hessian eigenvalues,
difference of Gaussians filter, membrane projections) as
well all remaining available filters (variance filter, min-
imum filter, maximum filter, median filter, anisotropic
diffusion, bilateral filter, lipschitz filter, kuwahara filter,
gabor filters, Sobel filter, laplacian filter, structure, entropy
filter). For these filters it is also possible to set a o
range, which specifies the filter size. Other parameters
were set to default values, random forest classifier was
set to 200 trees (WEKA FastRandomForest). Because of
learning nature of this approach, the effect of following
factors on segmentation efficacy was optimized: (a) num-
ber of fields of view used for learning (b) training features
used for learning (“all” and “default” training features),
(c) effect of various fields of view used for training (one
continuous area in one FOV, or smaller patches of same
sizes from multiple FOVs), (d) size of FOV used for learn-
ing (increasing the area from 6 x 6 px to 1360 x 1024 px).
Moreover, probability maps were exported and used for
further analyses.

lastik

Another tested machine learning tool for pixel classi-
fication was Ilastik v.1.3.0 [25]. Ilastik uses a random
forest classifier [55] with 100 trees and is very simi-
lar to WEKA. llastik was launched using the following
settings: enabled all training features: raw intensity, gra-
dient magnitude, difference of Gaussians, Laplacian of
Gaussian, structure tensor eigenvalues and the Hessian
matrix eigenvalues - all with 7 Gaussian smoothings with
o = 03— 10px.

Ilastik was optimized accordingly as Weka. It allows a
computationally expensive automatic selection of suitable
features. Based on a first optimization step, there was no
significant difference between “optimal” and “all” features.
Thus, in a spite of this and a fact that Ilastik has less
available features then WEKA, “all” features were used in
further steps.
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Graph-cut approach

An Image] plugin for Graph-Cut (v. 1.0.2) based on the
reimplementation of Kolmogorov’s maxflow v3.01 library
[24] was used. The following data were used as an
input for Graph-Cut: (a) Probability maps generated by
Weka (referred as sWekaGraphCut), (b) images recon-
structed with approaches described in “Image reconstruc-
tion approaches” and (c) raw image data (both referred as
sGraphCut). There are two parameters to be optimized:
terminal weight and edge weight. Edge weight (designated
as “smoothness” in the GUI, range 0-10) reflects a penalty
for label changes in the segmentation (higher values cause
smoother result). Terminal weights (designated as “fore-
ground bias’ range 0-1) correspond to a cost of assigning
background pixels to the foreground.

Terminal weights (foreground bias in GUI) affect the
segmentation efficacy distinctly, thus its optimization is
crucial. On the other hand, edge weight (smoothness)
corresponds to the size of individual cells and has been
roughly estimated from 0.4 to 0.8 for used cell sizes
(between 1000 and 4000 pixels, respectively).

Cell detection (seed-point extraction)

The cell detection (seed-point extraction) plays a key
role in the segmentation of the overlapping objects. For
densely clustered and touching cells a precise cell detec-
tion has the most significant influence to the final seg-
mentation accuracy. The primary goal in the cell detection
is to recognize the presence of the individual objects in
the image. Finally, combination of successful foreground-
background separation followed by identification of
individual cells enable to segment individual cells. There
is a considerable amount of methods for cell detection
and the mostly used and cited methods are described and
evaluated in this paper. Because most of the described
methods require blob-like cells, image reconstruction is
necessary in most cases (except LoG and generalized LoG
filters by Kong et al. [28]).

The tested seed-point extraction methods usually
include parameters related to the cell radius (minimal and
maximal). For this reason we estimated these values from
the ground truth masks. Background segmentation from
the previous step was used to eliminate falsely detected
seeds in the background. Some of the tested meth-
ods already include this step (e.g. dLoGg-Xu [29]). The
binary background masks produced by trainable Weka
segmentation were used for this purpose. For clarity, the
methods described bellow are designated with prefix “d”
(detection), image processing approach and author, where
possible.

LoG filters
Because of distinctive popularity of the LoG filter for the
blob object detection, many modifications of this detector
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exist, e.g. multi-scale LoG, Hessian LoG, generalized LoG.
LoG filter at a scale o is defined by equation

2 a2 i
LoGix,0) = V2G (x o) = —— XI5
2ma6

(12)
where G is 2D Gaussian function, x = {x, %) and || || is
Euclidean norm [27]. In principle, this filter works as a
matched filter for blobs.

Multi-scale LoG filtering uses a bag of LoG filters with
m different sigma values, which leads to m — D feature
space. As proved by Lindeberg [56], LoG responses must
be normalized LoG(X, o) yorme = o¥LoG(x,o) for scale
invariance, where ¥ = 2 for scale invariance, but it can be
refined for a preference of larger or smaller objects.

Peng et al. [27] used Maximum Intensity Projection
(MIP) of the series of LoG-filtered images MIP(x) =
moax(LoG,,,,,.m (x,0)), with threshold applied to result-
ing 2D image, where binary objects correspond to
the detected cells. This method (further designated as
dLoGm-Peng) has the following parameters: minimal
sigma oy, maximal sigma oyey, sigma step Ao , ¥ and
threshold.

Kong et al. [28] searched for local maxima higher than
defined threshold in whole m — D LoG scale space with
elimination of overlapping regions by a pruning process.
In the pruning process, the overlapping blobs are elimi-
nated, where only blob with larger value in m — D scale
space is preserved. This method has these parameters:
Tinax, Sigma step Ao, y, threshold and maximal overlap
ratio. Here for o the logarithmic step is used. This method
is referred as dLoGm-Kong.

Hessian analysis of LoG (referred as dLoGh-Zhang)
described by Zhang et al. [30] uses the same bag of LoG-
filtered images, but optimal scale identification and cell
center detection is different. It is known, that local Hes-
sian matrix is positive definite for blob-like structures.
The Hessian H (computed from LoG-filtered image) at
position (x,y) can be approximated with differences in
2 x 2 neighborhood. Each connected region with a pos-
itive definite Hessian is considered as cell, where H is a
positive definite matrix when Hy is positive and det(H) is
positive.

(13)

ALoG(xy0) aLoG(x.y;cr‘J)

_ x? dxiy
H(x,% U) - ( dLoG(x,0) 0LoG(x,50)
dydx ay?

Optimal is considered a such scale where the mean inten-
sity of the LoG-filtered image is maximal on the positive
definite locations, and these positive definite regions are
the detected cells. Method is insensitive to choeice of range
and steps of o, which leaves only y parameter to be opti-
mized. Zhang [30] also uses unsupervised classification to
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identified true cells only, but in our case this leads to dete-
rioration of the results only and thus was not included in
the testing.

Intuitively rotationally-symmetric LoG kernels are very
sensitive to irregular cell shape. For this reason Kong
et al. [28] proposed a generalized LoG filter (referred as
dLoGg-Kong) for the detection of the elliptical shapes.
They derived an equation for elliptical kernel with two
standard deviations ay, oy and orientation ®. Method also
includes a specific scale normalization with a parame-
ter @ and automatic choice of sigma range based on the
initial analysis with circular LoG filters. For every pixel
position, a feature image is created as a sum of all fil-
ter responses and detected cells are local maxima in this
image (see [28] for more details). Thanks to the automatic
o estimation, there is one parameter only - . Method uses
integer kernel sizes smaller than estimated oy,y. Small
kernels produce false peaks on a sub-cellular structures in
our data. These artefacts are eliminated by adding a oy
parameter, which corresponds to a minimal cell radius.

Xu et al. (referred as dLoGg-Xu) [29] sped up this tech-
nique by summation of the filters with the same kernel
orientation @, which is possible thanks to the distributive
property of convolution. Instead of automatic estimation
of o range, they estimate it from cell radii. Moreover
this technique includes a different normalization (without
parameter) and mean-shift clustering for elimination of
multiple-time detected seeds. Parameters of this method
are: o range and mean shift window size.

A similar approach was described also in Peng et al. [27]
method. Parameter range of o is estimated based on cell
radius as o = r/ V2. Tor dLoGm-Peng we used estimated
Opmax ANd 0. Step of o (Ao) is insensitive parameter,
therefore we set it to 1. For setting of other parameters see
Additional file 1. Authors [27] used y = 2, which is proven
to lead to the theoretical scale invariance. When y < 2 the
smaller objects are preferred, for y > 2 the larger objects
are preferred. Appropriate setting of ¥ leads to mean Dice
coefficient improvement +0.089 for dLoGm-Peng method
and for this reason we add y to optimized parameters
for both dLoGm-Peng and dLoGm-Kong methods. Simi-
larly for dl.oGm-Kong we used estimated oyax and oy
with 13 logarithmic steps like the authors[28] (for other
parameter settings see Additional file 1). Extension by y
parameter leads to 3 parameters (besides of cell radii),
which are sensitive and must be properly set. Both gen-
eralized LoG methods try to avoid parameters setting,
where dLoGg-Xu has cell size-related parameters only (we
set it based on estimated radius) and dLoGg-Kong has
one adjustable parameter - scale normalization factor, but
cell size estimation is automatic. Both generalized LoG
methods are computationally expensive (see Table 1), but
dLoGg-Xu reduces the computational time by a reduction
of number of convolutions.
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Distance transform

Distance transform (DT) of foreground image is defined
as a distance to the nearest background pixel (Euclidean
distance is chosen as metric). Local maxima of the gen-
erated distance map are considered as cells. This method
often detects many false cells. For this purpose h-maxima
transform is used [15], which uses a grayscale morphology
for elimination of small local maxima, where parameter k
sets the depth of local maxima to be eliminated. We used
two modifications of this method; dDT-Threshold, where
binary foreground is computed with optimized threshold
and dDT-Weka, where foreground from Weka segmenta-
tion is used. Other parameter of this method is maximal
size of objects and holes, which are eliminated before
applying of the IDT.

Fast radial-symmetry transform

Fast radial-symmetry transform [31] (referred as dFRST)
is a general method for the detection of circular points of
interest applicable to approximately circular objects. Pix-
els with absolute value of gradient greater than threshold
B vote in its gradient direction at the distance of radius
r € R, where R is set of radii, determined based on
object/cell size. If bright blobs are only considered detec-
tion, positions of affected pixel is given by an equation

g£x)

g ’”)

where g(x) represents the gradient and round operator
rounds each vector element to its nearest integer. On posi-
tion P(x), an orientation projection image O, is increased
by 1 and magnitude projection image M, by ||g(x) . Trans-
formation is defined as mean over all radii

P(x) = X+ round ( (14)

1

S:EZF,*G,. (15)

reR

where
~ o

M (x) [ 10,(x)]
Fr(x) = ’}( ( ’k ) (16)
a . if |O <
O, (x) = Or(x) 1|(-r(x‘)| k (17)

k otherwise

where G, is a Gaussian kernel, @ is the radial strictness
parameter and X is a scaling factor normalizing different
radii (where typically & =~ 10). Inspired by Ram et al.
[57], we use a gray-scale dilatation to small local max-
ima suppression in S. Local maxima are then considered
as cells. As R we use all integer values between esti-
mated minimal and maximal cell radius. The parameters
for this method include: radial strictness «, scaling factor
k, size of morphology structuring element 8, and gradient
threshold 8.
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Generalized Radial-symmetry transform

The generalized radial-symmetry transform as described
by Bahlman et al. [32] (referred as dGRST) is able to
deal with elliptical shapes because affine transform is
employed.. Similarly to generalized LoG filters, we can
compute response for different axis scalings and rotations.
The dGRST principle is similar to dFRST method, but the
gradient g(x) is transformed to

g0 = GMG M g(x) (18)
where
01
=[] 19

and G is affine transformation matrix - for ellipse it is rota-
tion and scaling with parameters 6, 2 and b. We can setr =
1 and used a and b to adjust the size of the desired ellipse
axis. All integer values between estimated minimal and
maximal cell radius with @ > b and 6 steps for ¢ were used
for 2 and b. Bahlmann at al. [32] mentioned also a Gaus-
sian kernel specified by affine transformation parameters
8, a and b. For consistency with dFRST, we use Gaus-
sian kernel with o = 0.5 distorted with G transformation.
Remaining parameters are identical to dFRST.

Radial voting

Qi et al. [33] presented a modification of radial voting for
cells in histopathology specimens (reffered here as dRV-
Qi). It is based on an iterative radial voting described
previously [58], but works as a single-path voting followed
by a mean-shift clustering. Every pixel with position x =
[«,%] vote in Gaussian smoothed gradient direction «(x),
with cone shaped-kernel function (voting area).

A Y, Finines Finasr A) = {x + rcosg, y + rsing|rmin <
F < Fmaxr® — A < ¢p <8+ A}
(20)

where 6 is an angle of vector @(X), {Fumin: Fimax) i kernel
radial range and A is the kernel angular range. In addi-
tion, voting sector is weighted by Gaussian function with
center located at kernel center. Every pixel (with gradi-
ent above certain threshold) update voting image V by
adding voting pixel gradient magnitude |g(x)| to all pixels
under kernel, Voting image is then thresholded with sev-
eral thresholds and results are summed and clustered with
mean-shift algorithm. For more details see [33]. We used
estimated 7y, and g, from the ground truth images,
thresholds were set to 0.2, 0.3,...0.9-times the maximum
of image, and we optimized sigma of gradient Gaussian
smoothing, sigma of Gaussian for kernel and mean shift
bandwidth. We also vote with all pixels, not only with pix-
els with high gradient magnitude, because computational
time of our implementation is not dependent on number
of voting pixels. Besides [33] we also tested original [58]
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and newer [59] methods, but both were less suitable for
adherent cells.

Maximally stable extremal region

Extremal regions of gray-value image are defined as con-
nected components of thresholded image I; = I >1¢
for some ¢ in this method (designated as dMSER).
As described in [34], dMSER produces stable extremal
regions of image which are stable in sense of area variation
w.r.t. changing threshold ¢. Minimal stability of extracted
region can be set with two parameters - threshold step
& defining the percentage of intensity range and maximal
relative area change with this step. This method gener-
ates many regions which can overlap. Finally, the smallest
regions generated with the highest threshold are picked.
This is achieved by finding of the local maxima in the sum
of binary images of all regions. Another option is the usage
of most stable region from the overlapped ones, but this
was shown to be noneffective in our case.

CellDetect

Arteta et al. [35] implementation of CellDetect uses MSER
to identify the candidate regions, followed by a classifi-
cation of true regions, Method extracts 92-dimensional
feature vector with object histograms and shape descrip-
tors. Training proceeds in two phases. In the first phase,
training of binary SVM and its evaluation is done, which
produces score for each region. Region with one seed-
point and highest score (one for each seed-point) is used
as ground truth for the next phase. In the second phase,
structured SVM is used for classification of the regions
within each tree created from the overlapping regions,
but non-overlap constrains are included. For more details
see [35]. Method requires few training images with sim-
ple dot annotation and proper setting of MSER detector
to achieve high recall.

Single cell (instance) segmentation

After image reconstruction, foreground-background seg-
mentation and seed-point extraction, individual cells were
segmented using Marker-controlled (or seeded) water-
shed [60]. This step showed to be less crucial, because
inaccuracy in placing border between cells has a small
influence to segmentation efficacy only. Thus, for combin-
ing of foreground and seeds into the final segmentation,
we test only this simple but very robust technique. Note
that more advanced methods exist - e.g. graph-cut [61], or
level-set [62] based.

Maker-controlled watershed is similar to classic water-
shed approach, with restriction of local minima posi-
tions into detected sceds location, which can be sim-
ply done with mathematical morphology operations.
Besides of straightforward application on our images,
we proposed a second approach applied on DT image,
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which does nol require an intensity valley between
separated cells. For DT image we use geodesic dis-
tance transform [63] with distances from seeds (the dis-
tance within the foreground pixels only, ignoring the
background).

General parameter optimization strategy

Grid search with 10 steps was used for the optimization
of parameters of all methods, where suitable range was
selected experimentally by a few manual tests. Parame-
ters with large searched range (relatively large difference
between lower and upper bound) were searched with log-
arithmic scale. The same parameters ranges were used for
all modalities. All parameters were properly set for train-
ing images and then these values were used for all test-
ing images. For background segmentation and detection
methods Dice coefficient was used as an objective func-
tion (used e.g. in [18]). For image reconstruction tech-
niques the area under ROC curve (AUC) generated by
thresholding was used (as well as in [14] or [12]). Because
of large computational difficulty of some methods, we
attempted to eliminate such parameters from optimiza-
tion, which does not influence the objective function.
If threshold is optimized parameter, its value was opti-
mized between a minimal and maximal intensity of image
pixels, with 100 steps for simplicity. Before application
of each method, images were normalized into interval
[0,1], where minimal and maximal values of the first
image of each sequence were used as a reference for the
normalization.

Evaluation of results

The F; score (Dice coefficient) was used as a measure
of segmentation accuracy for (1) foreground-background
segmentation, (2) seed-point extraction, and (3) single cell
segmentation, with following modifications:

Foreground-background segmentation evaluation
For the evaluation of cell segmentation, Dice coefficient
was used as follows:

D 21XNY| (21)
ice = —————

| X[ + Y]
where | - | is number of pixels of region, X and Y are

ground truth and result segmentation, respectively. Dice
coefficient is equal to Fy-score, but this term is used for
pixel-wise evaluation. Another metric used for segmenta-
tion evaluation is Jaccard index, which is related to Dice
coefficient as:

Dice
2 — Dice

which is monotonically increasing function on interval
< 0,1 = (the range of Dice values). This means that order

Jaccard = (22)
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of quality of segmentation algorithms w.r.t. Jaccard is same
as w.r.t. Dice coefficient and for this reason we evaluated
only Dice coefficient.

Dice coefficient was computed for evaluation of the
foreground segmentation results using all pixels in the
image.

Seed-point extraction evaluation
Single dot labels (seeds) are considered as cell detection
results. If some method produces pre-segmented regions,
then centroids are used as labels. Because our ground
truth corresponds to the binary segmented cells, we con-
sider as TP (true positive) such cells having one seed only.
As FP (false positive) are considered cells with additional
seeds in one cell and with seeds outside cells. TN (false
negative) are cells without any seed. To evaluate the per-
formance of the cell detection, Dice coefficient (F1 score)
was used
2TpP

2TP+FP+FN’

In some papers the accuracy of the centroid positions
is also evaluated. Nevertheless, these positions are not
very significant for cell segmentation. Therefore, we didn’t
evaluate this accuracy.

Dice = (23)

Single cell segmentation evaluation

For single cell segmentation evaluation the F; score (Dice
coefficient) is used in a similar manner as for foreground-
background segmentation evaluation with following mod-
ifications: We dealt with correspondence of objects. We
used same evaluation of correspondence as [64] in their
SEG evaluation algorithm — cell are considered as match-
ing if:

XNY| > 05X (24)

which ensures unambiguous pairing. The final measure
of Dice was calculated as the mean of the Dice coefficient
of all the reference objects. The cells which are on the
image boundary were labeled and they are not included in
the evaluation.

A computer with following specifications was used to
estimate computational times: Intel Core i5-6500 CPU, 8§
GB RAM.

Additional file

Additional file 1: Optimal values for parameters of individual
reconstruction methoeds (xlsx table). * highest value not reducing
sensitivity, ** not learned because of identification of small number of
regions. nan, not a number, (XLSX 17 kb)
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4.2 Artificial intelligence in quantitative microscopy

Quantitative phase enables high-throughput imaging of subtle changes of the cell mass distri-
bution. Cell dry mass is calculated from phase according to Barer and Davies [21; 22]. Due to
the inherent low phototoxicity of this technique, long time-lapse acquisitions are feasible. Cell
dry mass is a dynamically changing during degradative or biosynthetic cell processes and there-
fore the technique enables to extract detailed quantitative information on cell morphology and
cell topography during various processes including cell division, cell growth, cell communica-
tion, or cell death [44]. This technique, therefore, has a promising role in the cancer studies.
Quantitative nature of this microscopic technique and possibility to acquire large dataset (hun-
dreds to thousands of fields of view per time-lapse) open a possibility of machine learning
deployment in image analysis instead of mere visual assessment of the images or simple mor-
phometry (measuring areas or intensities).

In the following subchapters, the potential of QPI to include information not evident by naked
eye will be tested to reconstruct specific subcellular structures originally labelled fluorescently.
Specifically, synthetic imaging of nuclear staining from a quantitative phase image without the
presence actual fluorescence information (DAPI, Hoechst, or another nuclear staining) was per-
formed in a paper by Vicar et al [47]. Furthermore, deep learning-based classification of two
types of prostatic cells characteristic by varying degrees of aggressiveness was performed (con-

ference proceedings by Majercik et al. [62])

4.2.1 Synthetic nuclei reconstruction from the label-free quantitative phase

Compared to fluorescent dyes routinely used in fluorescence microscopy, label-free quantitative
phase imaging does not provide biological specificity but provides a physical specificity to un-
derlying structures of samples (DNA, proteins, lipids...). Although some cellular structures can
be well recognized by the naked eye in a quantitative phase (nucleus, nucleoli, mitochondria,
and some others), most others are not.

“Synthetic” staining using deep learning is however possible in this case: such approach is
applicable to highlight fluorescently labelled structures from a label-free image without actual
fluorescent labelling [78].

Such approach is of great biological interest for live-cell imaging as in many cases fluorescent
staining is not possible (due to technical obstacles), requires fixation or causes phototoxicity

and is thus not suitable for time-lapse experiments. First, we employed a U-Net and SegNet
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convolutional neural networks (CNN) to generate the synthetic staining in the following pa-
per [72] and used a segmentation overlap with nuclei masks (segmented based on the nuclear
channel) as a metric. We determined a dice coefficient 0.78 for PNTIA and DU-145 cell line

synthetic nuclei staining (this metric is explained in our Vicar et al study [47], chapter 4.1).

VICAR, T., J. GUMULEC, J. BALVAN, M. HRACHO, et al. Label-Free Nuclear Staining Re-
construction in Quantitative Phase Images Using Deep Learning. In L. LHOTSKA, L.
SUKUPOVA, 1. LACKOVIC AND G.S. IBBOTT. World Congress on Medical Physics and
Biomedical Engineering 2018, Vol 1. New York: Springer, 2019, vol. 68, p. 239-242.
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Label-Free Nuclear Staining Reconstruction
in Quantitative Phase Images Using Deep

Learning

Tomas Vicar, Jaromir Gumulec, Jan Balvan, Michal Hracho,

and Radim Kolar

Abstract

Fluorescence microscopy is a golden standard for
contemporary biological studies. However, since fluores-
cent dyes cross-react with biological processes, a
label-free approach is more desirable. The aim of this
study is to create artificial, fluorescence-like nuclei
labeling from label-free images using Convolution Neural
Network (CNN), where training data are easy to obtain if
simultaneous label-free and fluorescence acquisition is
available. This approach was tested on holographic
microscopic image set of prostate non-tumor tissue
(PNT1A) and metastatic tumor tissue (DU145) cells.
SegNet and U-Net were tested and provide “synthetic”
fluorescence staining, which are qualitatively sufficient
for further analysis. Improvement was achieved with
addition of bright-field image (by-product of holographic
quantitative phase imaging) into analysis and two step
learning approach, without and with augmentation, were
introduced. Reconstructed staining was used for nucleus
segmentation where (.784 and 0.781 dice coefficient (for
DU145 and PNTI1A) were achieved.
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1 Introduction

Fluorescence microscopy is a golden standard for contem-
porary biological studies. Regardless of the staining probe
used, the purpose of such approach is to (1} identify indi-
vidual cells, (2) localize processes to cytoplasm/nucleus or to
(3) facilitate cell tracking in image analysis. Nevertheless,
the usage of any fluorescent probes, e.g. transfection-based
ones (see [1]) affect the cellular physiology due to
unavoidable photo-toxicity. This include changes in cellular
morphology, migration, division and various others. With
this in regard, a label-free approach is an promising alter-
native. While most of the other label-free microscopic
techniques (DIC, PC, etc.) suffer from artifacts like a halo in
phase contrast, a quantitative phase imaging lacks those.
Thus the image processing is dramatically easier.
Convolution neural networks (CNNs) has proved to be
efficient tool for both classification and segmentation tasks,
including applications on biological data like microscopic cell
images [2]. Major disadvantage of such process is high
demands for training data, where creation of labeled database
is highly time consuming and biological tasks often require an
expert. Our approach to deal with this task for cell nuclei
segmentation, is to use fluorescence staining from simulta-
neous acquisition of fluorescence and label-free modality. If
we train a model on such data, this model then can be used for
nuclei segmentation on data without fluorescence. This
approach therefore enables a creation of a training set with tens
of thousands of cells without the need of manual annotations.

2 Materials and Methods
2.1 Experimental Data
Adherent cell lines from prostate non-tumor tissue (PNT1A)

and metastatic tumor tissues (DU145) were used in the
experiment. All cell lines were cultured in RPMI-1640
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medium supplemented with antibiotics (penicillin 100 U/ml
and streptomycin 0.1 mg/ml) with 10% fetal bovine serum
(FBS). Prior microscopy acquisition, the cells were main-
tained at 37 °C in a humidified (60%) incubator with 5%
CO; (Sanyo, Japan). For acquisition purposes, the cells were
cultivated in Flow chambers p-Slide I Lauver Family (Ibidi,
Martinsried, Germany).

Objective Nikon Plan 10/0.3 was used for hologram
acquisition with a CCD camera (XIMEA MR4021MC). For
the fluorescence mode a solid state light source (Lumencor
Aura II} was used and images were captured by sCMOS
camera (Andor Zyla 5.5, 2560 x 2160 px). Holographic data
were numerically reconstructed with Fourier transform
method (described in [3]) and phase unwrapping was used on
phase image. As a result we obtain Quantitative phase image
(QPI) and amplitude image, which is practically a Bright-field
(BF). Both QPI and BF images are spatially registered on
fluorescence images. Ordinarily, only QPI image is used for
image analysis, thanks to its contrast and desirable properties,
but we decided to test addition of BF image (by-product of
holographic QPI) to improve our model.

2.2 Used Models

There are plenty of CNN’s pixel-to-pixel models, where the
most popular are the encoder-decoder type. First, SegNet [4]
network (its SegNet-Basic version) was employed, because of
its ease of training, but afterwards U-net [2], which is widely
used for biological tasks, has shown to have better results.
Both of these networks are encoder-decoder type, where
SegNet uses unpooling and U-net uses transposed convolu-
tion with concatenation of decoder data with encoder data of
same degree. This block concatenation allow a better com-
bination of high and low level features. For both networks, the
original topologies from those papers were used and both
networks were optimized identically as described below.

2.3 Preprocessing

One of the main problem in fluorescence data analysis is the
fluctuation of intensities of the fluorescence between differ-
ent cells, moreover between experiments. CNN has no
chance to recognize how much fluorescence staining was
captured by each cell, thus we must somehow locally nor-
malize. Similar problem is in QPI image, where highly
adhered cells have much less contrast than mitotic/apoptic
cells, which are less adhered and round-shape. This issue
was tested to solve with local histogram equalization using
CLAHE method [5], applied on both source (QPI/BF) and
desired (fluorescence) images. CLAHE is widely used as a
preprocessing of CNNs (e.g. [6]), but we even use it on the

fluorescence (label) images. The disadvantage of this
approach is that resulting “synthetic” fluorescence is
equalized-like and the original fluorescence can not be
reconstructed. Both QPI and BF pixel intensities were
z-scored with mean and standard deviation computed from
whole training database (QPI has exactly quantified values,
thus single image z-score would lead to loss of information).

2.4 Network Implementation

For training we constructed image triples of QPI, BF and
fluorescence images—where 10/14 fields of view (FOVs) were
used for training and 4/14 FOVs were used for testing and
evaluation (each FOV contains 30 time-lapse images—1.5 h
of recording, all FOVs and time points were mixed together).
Network were trained with Adam optimizer [7] (learning rate
0.001, f, = 0.9 and f, = 0.99—which is all the default set-
tings from the paper) and Mean Squared Error (MSE) loss (L2
loss) was used as an optimization criteria. Small 320 x 320 px
randomly selected patches were used for training, which were
cropped from original 600 x 600 px images. PyTorch 0.3.0
was used for network implementation and training.

Many test with a dropout and data augmentation with
rotation, shearing and scaling were done, but neither leads to
good convergence of the network. However, these tech-
niques can significantly improve network generalization. For
this reason, a modified two step learning was employed—
learning without data augmentation (only random choosing
of patches were employed) for pre-training of the network
and re-training with the data augmentation (flipping, scaling,
shearing and rotation before patch selection). The typical
progress of MSE during learning is shown on Fig. 1, where
test data MSE was 0.304 and 0.364 for the two step learning
and leaming without the augmentation, respectively. More-
over we tested L1 and Huber (L2 for small and L1 for large
values) loss instead of L2 (MSE), but both lead to visually
less sufficient results.

0.7
—train
0.6 —test

05]

03]
0.2

0'10 5 10 15

epoch

Fig. 1 Example of model MSE on training and testing datasets for
U-Net, QPI + BF images and PNTIA cells
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Table 1 MSE and Dice between original and reconstructed nuclear staining images (with U-net unless otherwise stated), * value is not

comparable with others

Value Cell line QPI BF QPI + BF QPI + BF SegNet QPI + BF CLAHE
MSE DU145 0311 0.451 0.285 0.336 0.0028*

PNTIA 0.335 0.590 0.304 0.381 0.0024*
Dice DUI145 0.758 0.622 0.784 0.767 0.752

PNTIA 0.712 0.542 0.764 0.758 0.781

2.5 Nucleus Segmentation

From the “synthetic” staining, a final nucleus segmentation
was obtained by thresholding with an automatic threshold
method based on Poison distribution of the histogram [8§]
(better for cell images than Otsu), followed by morphol-

(a)

(b)

Fig. 2 Example of results for a patch of DUI45 cells reconstructed
with U-net unless otherwise stated. a QPI, b BF, ¢ equalized QPIL
d equalized BF, e fluorescence, f equalized fluorescence, g-k “syn-
thetic” fluorescence for QPI, BF, QPI + BE, QPI + BF SegNet,

ogical operations—morphological closing and elimination of
small objects and holes (<50 px). Original staining was
segmented similarly. This segmentation step has been per-
formed for both, the comparison of the reconstruction results
and proving the segmentability of the “synthetic” fluores-
cence data.

QPI + BF CLAHE, (L) segmentation results from original (purple)
and synthetic fluorescence (green) (dice 0.752 and for QPI + BF data
used), 10 x magnification and image width 200 pm (color figure
online)
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3 Results

The aim of this study was to (1) create artificial masks for
nuclei for further segmentation and (2) to reconstruct the
structure of the nuclei. With this regard, first the accuracy of
different networks can be well evaluated in term of MSE,
which can be well compared between different settings.
Disadvantage of MSE is data dependency and as such different
cell lines or data with equalization are not comparable. As
shown in Table 1, addition of BF image leads to improvement
0.026 and 0.031 for DU145 and PNT1A, respectively. U-net
performed better for this task as expected. The results of
non-equalized images are incomparable with equalized ima-
ges, because MSE is image value-dependent, however without
using of an equalization the convergence of the network was
slower during the training and results were worse in images
with both distinctive cells and less visible cells.

One of the main motivations for nuclear staining recon-
struction is nucleus segmentation. Segmentation was evalu-
ated in term of dice coefficient (see e.g. [9]), which is also
much less data dependent and as such, thus is also better for
comparison of different data sets than original MSE. As
shown in Table 1, very similar results for both cell lines
were achieved. Despite the fact that the images reconstructed
with CLAHE are visually better, so CLAHE leads to better
results for PNT1A (by 0.018 of dice), but worse results for
DU145 (by 0.032 of dice). Maximal achieved dice (0.784 for
DU145 and 0.781 for PNT1A) can be considered sufficient
for further analysis, moreover if we consider lack of clarity
of nuclei in QPI images. As you can see in Fig. 2, the main
inaccuracy arises at the point of nearby nuclei, where they
will be interconnected in “synthetic™ fluorescence image.

4 Discussion

Overall, reconstructed “synthetic” fluorescence leads to blurry
images, which may be used for localization of cell nuclei and
nuclei segmentation, but their usability for precise nuclei seg-
mentation is limited. However it is possible to consider using
higher magnification. Another improvement might be done
with enlargement of training database, which was relatively
limited for such easy to obtain data. Using a more precise
nuclei segmentation method must also be considered.

Another possible use of “synthetic” florescence could be
found in cell detection (cell counting). Further analysis
should be done for another staining for segmentation of
other cell organelles. Other possibility is to use similar
approach with staining signaling phases of cell cycle or
ongoing apoptosis for detection of such states.

5 Conclusions

The proposed method can provide an easy-to-obtain anno-
tated dataset for CNN training, which is then able to produce
fluorescence-like images usable for numerous biological
applications. Application of CLAHE on both source and
desirable images shown to be usable approach for fluores-
cence image contrast normalization. The data augmentation
prevents the network convergence, but two step learning
approach was presented to enable the use of data augmen-
tation. Reconstructed staining has proven to be useful for the
nuclei segmentation.
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4.2.2 Quantitative phase nuclei reconstruction from unpaired images

The approach presented in chapter 4.2.1, however, needs a paired training image (correlative
imaging of the same field of view acquired label-free and with staining), which is not always
doable. There might exist limitations related to different sample preparation conditions, or con-
struction aspects of microscopes disabling the correlative imaging.

Cycle-consistent generative adversarial network [79] (CycleGAN) is a machine learning tech-
nique overcoming this limitation — it is suitable for learning on non-paired data (e.g. one dataset
of brightfield microscopy, the second dataset of atomic force microscopy, fluorescent or other
technique). In addition to the U-Net based paired approach shown in chapter chapter 4.2.1, this
CycleGAN-based approach demonstrates that nuclear image reconstruction is possible from
another dataset of quantitative phase imaging. Specifically — DU-145 cells stained with Hoechst
33258. Generation of virtual fluorescence from QPI is doable using CycleGAN: Improved Was-
serstein loss [80] was used for training of dataset and results were compared to a standard
supervised U-Net (Figure 1). We determined mean squared error 3.23 x 10" for U-Net and just
slightly lower, but sufficient performance of CycleGAN 5.1 x 10 verifying the possibility of
such approach [60].

a. Standard U-Net paired training c. comparison of synthetically generated nuclear staining
U-Net GAN CycleGAN

fake Hoechst real Hoechst

QPI
| U-Net

b. CycleGAN unpaired training

P
GE |I U-Net G I|
a | o I|

fake fake QPI fake Hoechst
Hoechst fake QPI

. |I o |
. | ot I |

fake fake Hoechst fake QPI

ground truth

Hoechst

fake Hoechst

- real/fake

real Hoechst

. o

!i Iﬂm ﬁ !I s d. Table of mean squared error for different methods

real QPI Trained on U-Net GAN CycleGAN
Training set 3.23E-04 5.97E-04 5.16E-04
Hoechst . ?
realfake Training + Testing set n/a 5.86E-04 4.82E-04
QPl Training set 3.22E-02 1.39E-02 1.15E-02
Training + Testing set n/a 1.13E-02 1.03E-02

Figure 1 Generation of synthetic nuclei from quantitative phase image. a. architecture of standard paired

QP! + Hoechst

network. b. network design of unpaired network. c. comparison of real staining and synthetic image-based

on quantitative phase image. d. performance of the network. Taken from Vicar, Gumulec et al, [60],
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4.3 Imaging to characterize cell mechanics

This chapter is based on the hypothesis that quantitative phase imaging provides information
on cell mechanics. The rationale of such hypothesis is based on the physical properties of quan-
titative phase imaging (chapter 2.5.1) and the motivation is based on a fact that, compared to
atomic force microscopy, QPI is faster and less invasive. In the following chapters, QPI is cor-
related with atomic force microscopy, Brillouin spectroscopy, confocal imaging of

cytoskeleton, and related to molecular phenotype, cell migration and invasiveness.

4.3.1 Quantitative phase imaging correlates with Young modulus

In the Majercik et al. study [62] we provided a piece of evidence that prostate cancer cells
characteristic by higher degree of in vitro aggressiveness (PC-3 zinc-resistant) differ from their
wild-type counterparts (PC-3) in physical composition — its quantitative phase image. These
findings however do not provide any clue how the cell dry mass distribution differs between
wild-type and zinc-resistant cells nor what is the underlying mechanism of this finding.

With this regard, a study which further became a crucial part of this thesis was performed: In a
Raudenska et al. [81] paper we focused on how cell dry mass scales with Young modulus deter-
mined by atomic force microscopy and with cytoskeletal rearrangement and therefore to
provide evidence how cell dry mass is linked with cell biomechanics. Furthermore, the molec-
ular basis of this process was explained.

Tumor cells are usually softer (of lower Young modulus as determined by AFM) compared to
non-tumor counterparts and more aggressive tumor cells are usually softer than less aggressive
ones [19], which is useful as an indicator of malignant potential. In the following study, we
observed a disagreement with this concept: metastatic cell lines (PC-3 and LNCaP) character-
istic by increased aggressiveness in vitro and in vivo were significantly stiffer than cells derived
from the primary tumor (22Rv1) [2]. The Young modulus of these cells scaled with cell dry mass
and with the expression of membrane protein caveolin, implicating its involvement in mecha-
notransduction and confirming the predictive value of QPI for biomechanical studies.

This study provides one other implication: either Young modulus or cell dry mass is in relation
to the gene expression of Caveolin-1. The function of this pleotropic protein includes metabolic
reprogramming, mechanotransduction, cell migration and mechanical stress responses and are
in depth discussed in chapter 2.3. Here the data indicate that cells expressing high CAV1 are

stiffer compared to CAV1-non-expressing cells.
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Figure 2 Young moduli and setpoint height maps determined using atomic force microscopy, representative FOVs
of wild-type and zinc-resistant PC-3 cells and per-cell-average Young modulus values of 32 measured cells. From

Gumulec et al. [1] and Raudenska et al. [2]

Furthermore, in the next experiment we compared the Young modulus of wild-type PC-3 and
zinc-resistant PC-3-50 cells using AFM with 5 pum silica sphere probe gp-SCONT (0,01 N/m).
The Young moduli calculated using Derjaguin-Muller-Toporov model were 0.99 and 2.0 kPa
for wild-type and zinc-resistant PC-3 cells (Figure 2), suggesting that the zinc resistant coun-
terparts characteristic by higher migration and invasiveness rates in vitro are stiffer, being in
agreement with Kim et al study on docetaxel-resistant prostate cancer cells [2].

Mechanical properties of cells affect cell migration, adhesion, differentiation and subcellular
organelle transport as well as cell metabolic state[82]. These properties are not only related to
physiological functions but are also linked to a pathophysiological mechanism of diseases, can-
cer development in particular. One of the key features of cancer cells is the ability to migrate
and invade tissues — cancer spreading, which leads to the development of metastatic tumors in
distant organs [83]. More deformable cells are favoured for key cancer spreading processes —
extravasation and extravasation [10]. As compared to non-tumor cells, a decrease in stiffness of
cancer cells was accordingly described by numerous studies in a spectrum of tumor types [10].
Accordingly, such change of mechanical properties of cancer cells is a promising indicator of
malignant potential[19], because it is a direct measurement of the cells’ phenotype. This con-
trasts with a number of molecular markers, which, despite their high predictive value, do not
correspond with the actual development of the disease. For instance, although prostatic specific
antigen is a powerful diagnostic tool for prostate cancer, its function is not cancer-specific, in-

stead, it is needed for sperm liquefaction.
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However, the increase in deformability remains controversial. It is not clear whether all cells or
just some subpopulation of cancer cells is softer [84], and how this depends on tumor type and
tumor progression. Also, mechanisms leading to cell softening are still not explained satisfac-
torily.

In our lab we studied a prostate cancer model and observed a disagreement with this concept:
metastatic cell lines (PC-3 and LNCaP) characteristic by increased aggressiveness in vitro and
in vivo were significantly stiffer than cells derived from the primary tumor (22Rvl) [2]. In a
spite of the fact that zinc plays an important role in prostate cancer development, we further
developed a zinc-resistant metastatic prostate tumor cells “PC-3-res-50 [85], which demon-
strated to be even stiffer (to have higher Young modulus determined by atomic force
microscopy, AFM) and even more aggressive, as determined by wound-healing, colony-form-
ing, migration assays and partly by growth speed in animal models and higher levels of
glycolysis and respiration (Kratochvilova et al, in preparation). Gene expression profiling of
those cells revealed enrichment of pathways associated with stress response, positive regulation
of metabolic processes, DNA repair and cell ageing mediated mostly by RAS signalling. More-
over, our results also suggest a positive correlation between cell stiffness and cell dry mass
density as determined by quantitative phase imaging and an association between Caveolin-1
expression and the total stiffness of prostate cancer cells [2]. In prostate cancer cells, an increase
of stiffness in more aggressive cells was described similarly in literature [37; 38]. However, as
shown by Raudenska et al study, this stiffening was not attributed to the change in actin cyto-

skeleton network architecture, one of the major factors determining the cell stiffness [2].
RAUDENSKA, M., M. KRATOCHVILOVA, T. VICAR, J. GUMULEC, et al. Cisplatin en-

hances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin

accumulation. Scientific Reports, 2019/02/07 2019, 9(1), 1660.
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: processes) were shown to influence biomechanical features of cancer cells significantly
- lar bio-mechanical characteristics including cell stiffness are very important for cell motility®, changes in the
. cytoskeletal architecture and consequent changes in the cell stiffness, cell dry mass, and motility could represent

Cisplatin enhances cell stiffness
and decreases invasiveness rate
In prostate cancer cells by actin

accumulation

Martina Raudenska(®*, Monika Kratochvilova?, Tomas Vicar(5%3, Jaromir Gumulec(H*%*,

© Jan Balvan(®%%*, Hana Polanska?, Jan Pribyl° & Michal Masarik®?%2*

 Wefocused on the biomechanical and morphological characteristics of prostate cancer cells and

their changes resulting from the effect of docetaxel, cisplatin, and long-term zinc supplementation.
Cell population surviving the treatment was characterized as follows: cell stiffness was assessed by
atomic force microscopy, cell motility and invasion capacity were determined by colony forming assay,

. wound healing assay, coherence-controlled holographic microscopy, and real-time cell analysis. Cells
. of metastatic origin exhibited lower height than cells derived from the primary tumour. Cell dry mass

and CAVI gene expression followed similar trends as cell stiffness. Docetaxel- and cisplatin-surviving
cells had higher stiffness, and decreased motility and invasive potential as compared to non-treated
cells. This effect was not observed in zinc(ll)-treated cells. We presume that cell stiffness changes may
represent an important overlooked effect of cisplatin-based anti-cancer drugs. Atomic force microscopy
and confocal microscopy dataimages used in our study are available for download in the Zenodo
repository (https://zenodo.org/, Digital Object Identifiers:10.5281/zenodo.1494935).

Atomic force microscopy (AFM) is a three-dimensional high-resolution topographic technique suitable for bio-

: logical applications in native conditions! with the ability to measure cantilever probe bending with an extremely

high precision®. Moreover, AFM emerged as a powerful tool to obtain biomechanical properties of biological
samples including biomolecules and cells'*¢. The method of nanomechanical mapping of cell surfaces is based
on works published by Nikolaev and Thomas™*.

It was shown that cell stiffness determined by AFM can be used as a marker for cancer progression and
metastatic potential® ''. Different cancer types feature distinct cell stiffness'? and a connection between atten-
uated cell stiffness and increased invasion capacity was also observed". Furthermore, cytoskeletal architecture
changes induced by stress (anti-cancer drugs or fluid shear stress in the circulatory system during metastatic
41415 Since the cellu-

important secondary effects of many cytostatic drugs.
We studied the effect of two widely used anticancer drugs docetaxel and cisplatin on a panel of prostate cancer

. cell lines by using AFM, quantitative phase imaging and assays analyzing migratory and invasiveness poten-
© tials. Furthermore, the effect of zinc supplementation on the biomechanical characteristics of prostate cancer
o cells was also tested because zinc(lII) ions play a key role in the prostate gland metabolism and contribute to
. the number of biological processes such as apoptosis, signal transduction and cell invasiveness'® ¥, Docetaxel
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is a second-generation taxane derived from the needles of Taxus baccata. The primary mechanism of action
for docetaxel is to promote and stabilize microtubulin assembly, thereby blocking microtubule dynamics.
Consequences include impairment of mitolic progression, cell cycle arrest, and inhibition of cell proliferation’.
Furthermore, some studies indicate that DNA is not the only cellular target for cisplatin, but that it may also
affect cytoskeleton”?'. These additional interactions could enhance the anti-proliferative effect and contribute
to the anti-cancer effects of cisplatin such as inhibition of growth and migration. An important aim of this study
was to reveal changes in the cell stiffness after treatment (zinc, docetaxel, cisplatin) and to assess the eftect of
this changed cell stiffness on cell invasiveness and migration of prostate cancer cells in different stages of cancer
disease progression. The second question we wanted to answer was whether the expression of CAV1I gene in pros-
tate cancer cells reflects their bio-mechanical phenotypes because Cav1 has been recently linked to cell stiffness
through the regulation of actin remodelling and focal adhesions??*.

Methods

Chemical and biochemical reagents. RPMI-1640 medium, Ham’s F12 medium, fetal bovine serum
(FBS) (mycoplasma-free), penicillin/streptomycin, and trypsin were purchased from Sigma Aldrich Co. (St.
Louis, MO, USA). Phosphate buffered saline PBS was purchased from Invitrogen Corp. (Carlsbad, CA, USA).
Ethylenediaminetetraacetic acid (EDTA), zinc(II) sulphate (BioReagent grade, suitable for cell cultures) and all
other chemicals of ACS purity including docetaxel were purchased from Sigma Aldrich Co. (St. Louis, MO, USA)
unless noted otherwise.

Cell cultures.  Four human prostatic cell lines were used in this study. The PNT1A human cell line is derived
from normal adult prostatic epithelial cells immortalized by transfection with a plasmid containing $V40 genome
with defective replication origin. 'The primary culture was obtained from the normal prostatic tissue of a 35-year
old male post-mortem. PNT1A is PTEN positive non-tumorigenic epithelial cell line?’. PNT1A cells harbour
wild-type p53. However, SV40 induced T-antigen expression inhibits the activity of p53%-¢. This cell line had lost
the expression of androgen receptor (AR) and prostate-specific antigen (PSA)¥-?%. 22Rv1 is the human prostate
carcinoma epithelial cell line derived from a xenograft serially propagated in mice after castration. The cell line
expresses prostate specific antigen (PSA). Growth is weakly stimulated by dihydroxytestosterone and lysates are
immunoreactive with AR antibody. 22Rv1 is PTEN and p53 positive?*". The PC-3 human epithelial cell line
was established from a 4-grade prostatic adenocarcinoma, androgen-independent and unresponsive metastatic
site in the bone. PC-3 is PTEN-, AR-, PSA-, and p53-negative25’23’2°A The LNCaP cell line was established from a
lymph node metastasis of the hormone-refractory patient and contains a mutation in the AR gene. This mutation
creates a promiscuous AR that can bind to different types of steroids. LNCaP are AR-positive, PSA-positive,
PTEN-negative and harbor wild-type p532%0, All cell lines used in this study were purchased from HPA Culture
Collections (Salisbury, UK).

Cell cultivation. The PNT1A, LNCaP, and 22Rv1 cells were cultured in the RPMI-1640 medium with 10%
FBS. The PC-3 cells were cultured in the Ham’s F12 medium with 10% FBS. Both media were supplemented with
antibiotics (penicillin 100 U/ml and streptomycin 0.1 mg/ml). The cells were maintained at 37 °C in the humidi-
fied (60%) incubator with 5% CQO; (Sanyo, Japan).

MTT viability assay. The MTT assay was used to determine the cell viability. After a passage, the suspension
of cells in growth media was diluted to a concentration of 2 000-10 000 cells/200 ul and transferred into 96-well
plate. On each plate, positive and negative control was carried out. The plates were incubated for 2 days at 37°C to
ensure cell adhesion. Docetaxel and cisplatin were added in fresh media at increasing concentrations (0-400 nM
for docetaxel and 0-150 pmol/l for cisplatin}. The plates with the treatment were incubated for 24 h. Subsequently,
the medium was changed to a fresh medium with MTT (4:1, MTT 5mg/ml in PBS) and incubated for 4h in the
incubator in the dark. DMSO was used to dissolve MTT - formazan crystals and absorbance was measured at
570 nm (VersaMax microplate reader, USA).

Cisplatin and docetaxel treatment of cell cultures.  Cells confluent up to 50-60% were washed with
a FBS-free medium and treated with a fresh medium with FBS and required antineoplastic drug concentration
(1C50 concentration for the particular cell line). The cells were treated with 93uM (PC-3}, 38uM (PNT1A), and
24pM (22Rv1) of cisplatin (Sigma- Aldrich, St. Louis, Missouri), respectively. IC50 concentrations used for treat-
ment with docetaxel (Sigma-Aldrich, St. Louis, Missouri) were 200 nM for PC-3, 70 nM for PNT1A, and 150 nM
for 22Rv1. The cells were cultivated under these conditions for 24h. Subsequently, the cells were washed with an
FBS-free medium and treated with a fresh medium with FBS. Non-viable cells were washed out and the viability
of remaining cells was checked by microscopy. AFM, coherence-controlled holographic microscopy, invasion
assay, colony forming assay and wound healing assay followed.

Long-term zinc (I1) treatment of cell cultures.  Cells were cultivated in the constant presence of zinc(1I)
ions. Concentrations of zinc(II) sulphate in the medium were increased gradually by small changes of 25 or
50uM. The cells were cultivated at each concentration no less than one week before harvesting and their viability
was checked before adding more zinc. This process was used to select zinc resistant cells naturally and to ensure
better accumulation of zinc within the cells (accumulation of zinc is usually poor during the short-term treatment
of prostate cancer cells)', Total time of the cultivation of cell lines in the zinc{I1)-containing media exceeded one
year. Resulting concentrations of zinc(Il) in the media (IC50 for the particular cell line) were 50 uM for the PC-3
cell line, 150 pM for the PNT1A cell line, and 400 uM for the 22Rv1 cell line. The concentrations of zinc(IT) in the
media and FBS were taken into account. The cells were washed with an FBS-free medium and treated with a fresh
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medium with FBS. AFM, coherence-controlled holographic microscopy, invasion assay, colony forming assay and
wound healing assay followed.

RNA isolation, cDNA preparation. The cultivation medium was removed and the cells were washed with
PBS and trypsinized. TriPure Isolation Reagent (Roche, Basel, Switzerland) was used for RNA isolation. RNA
samples without reverse transcription were used as negative control for gqRT-PCR to exclude DNA contamina-
tion. The isolated RNA was used for the cDNA synthesis, RNA (1000 ng) was transcribed using the transcriptor
first strand cDNA synthesis kit (Roche, Switzerland) according to manufacturer’s instructions. The cDNA (20 pl)
prepared from the total RNA was diluted with RNase free water to 100 pl and the amount of 5l was analyzed
directly.

Quantitative real-time polymerase chain reaction (QRT-PCR).  The qRT-PCR was performed using
TagMan gene expression assays with the LightCycler®480 II System (Roche, Basel, Switzerland). The amplified
DNA was analyzed by the comparative Ct method using 3-actin as a reference. The primer and probe sets for
ACTB (assay [D: Hs99999903_m1), and CAV1 (assay ID: Hs00971716_m1) were selected from the TaqMan gene
expression assays (Life Technologies, USA). The qRT-PCR was performed under following amplification condi-
tions: total volume of 20 pl, initial incubation at 50 °C/2 min followed by denaturation at 95°C/10 min, then 45
cycles at 95°C/ 15 sec and at 60 °C/1 min.

Actin and tubulin staining.  3-tubulin waslabeled with anti- [} tubulin antibody [EPR1330] (ab108342) ata
working dilution of 1/300. The secondary antibody used was Alexa Fluor® 555 donkey anti-rabbit (ab150074} at a
dilution of 1/1000. Actin was labeled with Alexa Fluor™ 488 Phalloidin {A12379, Invitrogen); 1 unit per slide. For
mounting Duolink® In Situ Mounting Medium with DAPI (DUO82040) was used. The cells were fixed in 3.7%
paraformaldehyde and permeabilized using 0.1% Triton X-100.

Confocal microscopy. 'The microscopy of samples was performed at the Institute of Biophysics, Czech
Academy of Sciences, Brno, Czech Republic. Leica DM RXA microscope (equipped with DMSTC motorized
stage, Piezzo z-movement, MicroMax CCD camera, CSU-10 confocal unit and 488, 562, and 714 nm laser diodes
with AOTF) was used for acquiring detailed cell images (100 < oil immersion Plan Fluotar lens, NA 1.3). Total 50
Z slices was captured with Z step size 0.3 pm.

AFM measurements. Weused the bioAFM microscope JPK NanoWizard 3 (JPK, Berlin, Germany) placed
on the inverted optical microscope Olympus IX-81 (Olympus, Tokyo, Japan) equipped with the fluorescence and
confocal module, thus allowing a combined experiment (AFM-optical combined images). The maximal scan-
ning range of the AFM microscope in X-Y-Z range was 100-100-15 pm. The typical approach/retract settings
were identical with a 15 pm extend/retract length, Setpoint value of 1 nN, a pixel rate of 2048 Hz and a speed
of 30 um/s. The system operated under closed-loop control. After reaching the selected contact force, the can-
tilever was retracted, The retraction length of 15 pum was sufficient to overcome any adhesion between the tip
and the sample and to make sure that the cantilever had been completely retracted from the sample surface.
Force-distance (FD) curve was recorded at each point of the cantilever approach/retract movement. AFM meas-
urements were obtained at 37°C (Petri dish heater, JPK) with force measurements recorded at a pulling speed of
30 um/s (extension time 0.5 sec).

'The Young’s modulus (E} was calculated by fitting the Hertzian-Sneddon model on the FD curves measured
as force maps (64 » 64 points) of the region containing either a single cell or multiple cells. JPK data evaluation
software was used for the batch processing of measured data. The adjustment of the cantilever position above the
sample was carried out under the microscope by controlling the position of the AFM-head by motorized stage
equipped with Petri dish heater (JPK} allowing precise positioning of the sample together with a constant elevated
temperature of the sample for the whole period of the experiment. Soft uncoated AFM probes HYDRA-2R-100N
(Applied NanoStructures, Mountain View, CA, USA), ie. silicon nitride cantilevers with silicon tips are used for
stiffness studies because they are maximally gentle to living cells (not causing mechanical stimulation). Moreover,
as compared with coated cantilevers, these probes are very stable under elevated temperatures in liquids - thus
allowing long-time measurements without nonspecific changes in the measured signal.

Wound healing assay. After the passage process, each cell line was re-suspended and seeded into a 24-well
plate, the cell amount per well in 500 ul media being optimized to 150,000 for PC-3, 150,000 for PNT1A and
200,000 for 22Rv1. After 48 h, the cells were 100% confluent and scratched into the cell monolayer. After gentle
wash and change of media, each well was photographed at time 0 and after 24 h on the same spot. The photos were
analyzed according to instructions from the software creator’’. 'The software computed the percentage of the open
wound area. Each cell line was analyzed in min. twenty four repetitions.

Real-time impedance-based cell proliferation and invasiveness assay. The impedance-based
real-time cell analysis (RT'CA) xCELLigence system was used according to supplier’s (Roche Applied Science and
ACEA Biosciences, San Diego, CA, USA) instructions. The xCELLigence system consists of four main compo-
nents: RTCA DP station, RTCA computer with integrated software and disposable CIM-plate 16. Firstly, seeding
concentration optimal for proliferation and invasion assay was determined. Response optimal for the prolifera-
tion assay was found in the well containing 10,000 cells. After seeding a total number of cells in 200 pl of medium
to each well in E-plate 16, attachment and proliferation of the cells were monitored every 15 min. For the inva-
siveness assay, optimal response was found in the well containing 20,000 cells. After coating the upper wells with
Matrigel and after adding FBS as a chemoattractant, a total number of cells in 100 pl of medium to each well in
CIM-plate 16 was seeded. Attachment and growth of the cells through the matrigel were monitored every 15 min.
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Duration of all experiments was 150 h. Relative invasiveness rate was defined as the cell index for matrigel-coated
wells (cells need to decompose matrigel to produce signal) at a given time point. The impedance of electron flow
caused by adherent cells is reported using a unitless parameler called Cell Index (CI), where CI = (impedance at
time point n - impedance in the absence of cells)/nominal impedance value). In order to compare between cell
lines/treatments, those cell indices were normalized to value 1.0 at the time when treatment was added.

Colony forming assay. Colony forming assay is a method of choice to determine cell reproductive death
after cytotoxic treatment. Only a fraction of seeded cells retains the capacity to produce colonies. Cells were har-
vested with trypsin in EDTA and centrifuged at 2700 rpm/7 min. 'Then the cells were re-suspended in the fresh
medium and counted using CASY® Cell Counter. The cells were seeded onto 6-well plates. Fach well contained
2 ml media and 100, 500, 1,000 or 2,000 cells. The plates were cultivated for 1-3 weeks. Optimal seeding was 500
cells. Any shaking or moving with plates was prevented to obtain clear colonies. The cells were subsequently fixed
with cold methanol and visualised with the trypan blue.

Quantitative phase imaging. Quantitative phase imaging was performed by using Tescan multimodal
holographic microscope Q-PHASE. Cells were cultivated in Flow chambers p-Slide I Lauer Family (Ibidi,
Martinsried, Germany). To image a sufficient number of cells in one field of view, lens Nikon Plan 10/0.30 were
chosen. Holograms were captured by CCD camera (XIMEA MR4021 MC-VELETA). Complete image recon-
struction and image processing were performed in Q-PHASE control software. Cell dry mass values were derived
according to*>* from the phase, eq. (1}

P (n

where m is cell dry mass density (in pg/pm?), ¢ is detected phase (in rad), X is wavelength in pm (0.65 pm in
Q-PHASE), and « is specific refraction increment (220.18 pm?/pg). All values in the formula except the Phi are
constant. Phi (Phase} is the value measured directly by microscope.

Statistical analysis and image processing. Quantitative phase images were analyzed with Q-PHASE
control software, which includes segmentation based on watershed with region merging, followed by feature
extraction (mass, circularity and position) for the following analysis. AFM and colony forming assay images were
analyzed with MATLAB custom scripts. For the AFM images, segmentation masks were created by watershed
segmentation of Setpoint Height images with manual corrections, then the masks were used for the extraction of
mean cell values of both Setpoint Height and Young’s modulus images. For the colony forming assays, regions of
interest were chosen by registration of each image to the reference image (with manually labeled area of interest).
Next, the colonies were segmented by thresholding of the blue component of image transformed into Lab color
space, where single fixed threshold was used. Finally, the fraction of areas covered by colonies was computed.

Fluorescence microscopy data were analyzed in Image] 1.52h and Python 3.7.1 as follows: cells were manually
segmented using actin fluorescence channel, two regions were created for analysis: whole cell and cell periphery,
lining a 4 jum thick region around cell border and including most of periphery actin cytoskeleton. In these two
regions following parameters were measured for both actin and tubulin fluorescence: Integrated intensity, median
intensity, and following regions were measured to describe cell morphology: Cell area, Maximum caliper (max
feret diameter), roundness, and aspect ratio. Moreover, stress fibers were manually segmented in every cell and
following parameters were measured: number of fibers per cell, feret angle of fiber, integrated intensity, fiber
length, mean intensity. Next, a standard deviation of feret angles of individual fibers was calculated relatively to
mean of feret angle using a circstd function from scipy package for Python.

Data were checked for normality, based on which either paired ANOVA or Kruskal-Wallis test were applied
in order to test the impact of the tested factors (cell line, resistance, treatment), and either Pearson or Spearman
correlation were applied in order to test dependency between variables, MATLAB 2017a (Statistics and Machine
Learning Toolbox) was used for this statistical analysis with p < 0.05 considered as significant.

Results

Biomechanical profiling of non-treated prostate cells. Force-indentation curves were successfully
acquired for 68 LNCaP, 42 PC-3, 20 22Rv1 and 64 PNT1A non-treated cells to which the Hertz model was fitted.
The Hertz model worked well in the used indentation range (example in Fig. le for PC-3 cells). Coherence-
controlled holograms were successfully acquired for 104 LNCaP, 17 PC-3, 99 22Rv1 and 77 PNT1A cells.
Figure 1a,b (AFM) and Fig. 1¢,d (coherence-controlled holographic microscopy) show representative profiles
of each of the cell lines used in this work. The median Young’s moduli values, cell mass values and CAVI gene
expression obtained for these four cell lines are shown in Fig. 1f. The values of Young’s moduli were within the
range reported in the literature®. The median values of Young’s moduli were E= 997 Pa for LNCaP, 1210 Pa for
PC-3, 1153 Pa for PNT1A and 671 Pa for 22Rv1. The Young’s moduli obtained for the 22Rv1 cells were signifi-
cantly lower than those obtained for the PC-3, PNTIA and LNCaP cells (p < 0.009 in all cases, for details, see
Supplementary Tab. $1). On the other hand, no significant changes in cell stiffness were found between the PC-3,
PNT1A and LNCaP cells. The observed values of Young’s moduli followed similar trends with cell dry mass meas-
ured by coherence-controlled holographic microscopy and with CAV1 gene expression (see Fig. 1f).

Significant cell height (Setpoint Height) differences were observed between the PNTIA and PC-3 cells
(p<0.001), PNT1A and LNCaP cells (p =0.001) and between 22Rv1 and PC-3 cells (p = 0.039). Cells of met-
astatic origin were significantly flatter than cells derived from a primary tumour or benign tissue {(p < 0.001,
Fig. 1g). The LNCaP cells also showed correlation between cell height and cell stiffness stronger than the other
types of cells (Fig. 1b).
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Figure 1. Cell stiffness, cell dry mass and CAV 1 expression of untreated prostate cancer cell lines. (a) Cell
stiffness maps determined by indentation (Young’s modulus) of prostatic cells (first row) and cell height
(displayed as Setpoint Height, second row). (b) Profile of Setpoint Height/Young’s modulus of red/blue lines
shown in A together with pixel Pearson correlation values. (¢) Cell dry mass. (d) Profile of cell dry mass in
the corresponding cutting point (white line). (e) Hertz model fitting to a force curve obtained on PC-3 cells.
() Values of Young’s modulus, Cell dry mass, CAV1 gene expression for prostatic cells. Statistical significance
shown for Young’s modulus only. (g) Setpoint Height of cells. Significance between metastatic and non-
metastatic cells highlighted. Calibration bars for A and C represent 25 jum. Error bars denote standard errors.
Asterisk indicates statistical significance at p < 0.05. For detailed statistics see Supplementary Table S1.

Effect of cytostatics on cell biomechanics and morphology. We analyzed cell stiffness, cell dry
mass, and cell height in cells that had survived the chosen 24h treatments (1x IC50 of zinc(II), cisplatin, and
docetaxel; for MTT see Fig. 2a). Force-indentation curves were successfully acquired for 27 PC-3, 41 22Rv1
and 84 PNTI1A cisplatin-treated cells, for 23 PC-3, 23 22Rv1 and 23 PNT1A zinc(II) treated cells, and for 83
PC-3, 26 22Rv1 and 61 PNT1A docetaxel-treated cells. Figure 2b shows representative profiles for each treat-
ment. Coherence-controlled holograms were successfully acquired for 118 PC-3, 187 22Rv1 and 33 PNT1A
cisplatin-treated cells, for 61 PC-3, 67 22Rv1 and 37 PNT1A zinc(II) treated cells, and for 19 PC-3, 107 22Rv1 and
39 PNT1A docetaxel-treated cells.

Because no significant changes in cell stiffness, cell flatness, and cell dry mass were found between the met-
astatic cell lines PC-3 and LNCaP, only the more aggressive PC-3 cell line was included in further experiments.
In all tested cell lines (PNT1A, 22Rv1 and PC-3), cells treated with the cytostatic drugs (cisplatin or docetaxel)
had a higher Young’s modulus (were stiffer) as compared to non-treated cells (p < 0.007 in all tested cell lines).
Docetaxel increased cell stiffness more effectively than cisplatin (p < 0.001). On the other hand, this effect was
not observed in the zinc(II) treated cells (see Fig. 2b,c and Supplementary Tab. S1). Consequently, changes in cell
stiffness due to cisplatin treatment do not result from simple metal accumulation in the cells (platinum or zinc)
but are connected with changes in the cytoskeletal organization (for illustration see Fig. 3 and Supplementary
Fig. S1 with fluorescent staining of tubulin and actin). Using an image analysis, it was observed, that cisplatin
causes significant increase of actin density (determined by increased integrated density of actin fluorescence)
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Figure 2. Changes in biomechanical features; effect of treatment. (a) MT'T test and respective IC50
concentration values. For detailed statistics see Supplementary Table S1. (b) Representative Young’s moduli
maps of cell lines treated with zinc(II), docetaxel, and cisplatin. (¢) Young’s moduli (cell stiffness), Setpoint
Height, and cell dry mass density changes after zinc(II), docetaxel and cisplatin treatment. All tested cell lines
(PNT1A, 22Rv1 and PC-3) assessed together. Error bars denote standard errors.

and in particular, increased number of stress fibers, their increased length and fluorescent intensity (Fig. 3b,c
and Supplementary Table $2). With regard to tubulin, no increase of cell periphery tubulin content was observed
after cisplatin treatment. On the other hand, docetaxel treatment caused distinct accumulation of tubulin in cell
periphery (described by increased median and integrated fluorescence density). Elongation of actin fibers was
observed as a non-specific marker of cell stress, caused by all types of treatments used in this study.

Cell dry mass density values measured by coherence-controlled holographic microscopy followed the trend
of Young’s modulus. On the other hand, no significant changes were observed in cell height due to the cytostatic
treatment (values of Setpoint Height) (Fig. 2¢).

Next, the association was analyzed between morphological parameters, cell treatment and the cell type
(Fig. 4). Cell circularity differed distinctly and tended to be significantly lower due to the zinc treatment and
higher due to the cisplatin and docetaxel treatments in the 22Rv1 and PNT1A cells. However, no significant asso-
ciation between the treatments and cell circularity was observed in the metastatic PC-3 cells.

Migration, invasiveness and cytostatic treatment. To establish the relationship between the changes
in cell stiffness and the metastatic potential of prostate cancer cells, we performed invasion assay, colony form-
ing assay and wound healing assay of cells that had survived the cisplatin, docetaxel and zinc treatment, and
of non-treated cells. Simple migration ability was tested by wound healing assay and verified by real-time
coherence-controlled holographic microscopy (Fig. 5). Due to the cisplatin and docetaxel treatment, a signifi-
cant reduction of cell migration was observed in all tested cell lines according to the wound-healing assay. This
trend was observable also in the coherence-controlled migration assay, but did not gain statistical significance
for PNT1A and PC-3. On the other hand, the zinc treatment enhanced the migration speed in the PNT1A cells
(Fig. 5a,b). The circularity of the cells was in the negative correlation with the migration speed after the zinc and
cytostatic treatments (rg, = —0.33; p = 0.0001 for zinc and rg, = —0.48; p=0.0001 for cytostatic drugs). On the
other hand, the cell circularity showed no association with the cell migration speed in the non-treated cells.

Furthermore, the ability of cancer cells to spread to the surrounding tissues was tested by using the label-free
impedance-based real-time cell analysis, where the cells must be able to go through the matrigel. Due to the
cisplatin and docetaxel treatment, a significant reduction of cell invasion was observed (Fig. 6a). Conversely, the
long-term zinc treatment enhanced the ability to invade, for the PC-3 cells in particular. To determine the repro-
ductive death of cells that had survived the cytotoxic treatment, the colony forming assay was used. A significant
reduction in colony formation was observed due to the cisplatin and docetaxel treatment, where no formation of
new colonies was observed. Conversely, the long-term zinc treatment enhanced the ability to form colonies in the
metastatic PC-3 cells (Fig. 6b,c).
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Figure 3. (3-Tubulin; effect of treatment, PNT1A cells. (a) Tubulin fibers form a thick cables and dense shell
due to docetaxel treatment (see blue square). In contrast to docetaxel that caused significant changes in
microtubules, cisplatin affected actin cytoskeleton more fundamentally. Accumulation of stress fibers and/or
changes in actin organization were observed. All three treatments (zinc, cisplatin, and docetaxel) caused stress
fibers accumulation and/or actin disintegration in some cells (see and compare areas in the white squares), but
cisplatin was the most effective in this process (all images (N =242) and data analyses are accessible on (https://
zenodo.org/, Digital Object Identifiers: 10.5281/zenodo.1494935). For remaining cell lines see Supplementary
Fig. S1. Cells are shown at 100x magnification, calibration bar indicates 10 pm, detail square width 10 pm. (b)
Results of image analysis for actin and tubulin structures, shown results for all cell lines, for detailed results of all
cell lines see Supplementary Table S2 (c) Actin fibers, Tubulin in cell periphery (defined as a region 4 pum from
the cell border). Intensity of actin fibers localized in cytoplasm (i.e. those fibers not in periphery) is increased by
cisplatin treatment, tubulin fluorescence is pronounced in cell periphery after docetaxel treatment. Displayed as
median and interquartile range.

Discussion

Tumour transformed cells differ from normal tissue-connected cells in many features. Significant observa-
ble differences were shown in biomechanical properties such as cell adhesion and mechanical stiffness'>*-%¢.
Accordingly, cell stiffness studies showed that cancerous cells are usually less stiff than their normal counter-
parts’”~*°. This observation was only partially confirmed in our study. Whereas tumour cells derived from the
primary tumour tissue (22Rv1 cells) were significantly softer than cells derived from the normal prostatic tissue
(PNT1A cells), this was not true for metastatic cell lines (PC-3 and LNCaP).

In many studies, it was demonstrated that the low cell stiffness could serve as a marker for cell motility and
malignant potential®'!. Nevertheless, in our case, both types of cells derived from metastatic sites (PC-3-high
invasiveness, LNCaP-low invasiveness) were stiffer and flatter than tumour cells derived from the primary tumour
tissue. Our results also suggest some role of CAV1 in the total stiffness of prostate cancer cells and a positive cor-
relation between cell stiffness and cell dry mass in the non-treated cells and between cell stiffness and cell dry
mass density in the treated cells. The influence of CAV1 could be managed by modulating the Rho/ROCK path-
ways?2. Other studies focused on the prostate-derived cells had similar results regarding the cell stiffness!!-44041,

According to our results, cytoskeleton plays a key role in the changes of biomechanical features of cancer
cells, because the treatment with docetaxel that stabilizes microtubule and blocks their dynamics caused a sig-
nificant enhancement of the cell stiffness. This observation is in a good agreement with other studies*!*'> and
interestingly, the cytochalasin that is known to depolymerize the actin filaments, caused a decrease of the cell
stiffness'>*2. Furthermore, the treatment with cisplatin caused also a significant increase in the cell stiffness of
prostate cancer cells and the effect of cisplatin on cytoskeleton as mentioned in?® and?! was confirmed. Changes
in cell stiffness due to cisplatin treatment probably do not result from simple metal accumulation in the cells
because no such increase was shown in the zinc-treated cells. The observed reorganization of the cell cytoskeleton
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Figure4. Cell dry mass distribution and morphology; effect of treatment. (a) Matrix of representative cells,
coherence-controlled holographic microscopy. Longer axis orientation of the cells was unified. Numbers inside
cells represent circularity, 4n(area/perimeter?). (b) Circularity of the cells. Boxes and error bars represent
interquartile range and 95% percentile.
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Figure 5. Changes in motility of prostate cancer cells; effect of treatment. (a} Rose diagram of cell migration
speed obtained by coherence-controlled holographic microscopy and corresponding bar charts, (b) Boxes
and error bars represent interquartile range and 95% percentile. (¢) Wound-healing assay in t=0and 24 h.
(d) Summary vector of the movements of all cells after respective treatments divided by migrated path length.

implies changes in cancer cell motility and invasiveness. Accordingly, a significant decrease in cell migration,
invasion and forming of colonies was observed in cells that had survived the docetaxel and cisplatin treatments
in all tested cell lines. We can speculate that this decrease is among other things a consequence of increasing cell
stiffness because highly invasive cells need to be rather more pliable™**", Consequently, changes in cell stiffness
could be an important overlooked effect of antineoplastic drugs. Conversely, the zinc(IT) treatment did not show
such clear trends as the treatments with cisplatin and docetaxel. The effect of zinc treatment was highly influenced
by the type of cell line.
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Figure 6. Changes in the invasive potential of prostate cancer cells; effect of treatment. (a) Impedance-based
real-time cell analysis (xCELLigence invasion assay); effect of zinc(IT), docetaxel, and cisplatin treatment. (b)
Representative images of colony forming assays and calculated covered area, (¢) Boxes and error bars represent
interquartile range and 95% percentile.

Conclusions
In this study, we demonstrated AFM together with coherence-controlled holographic microscopy to bring a
promising approach that helps understand the correlation between the cell structure, cell mechanics, and func-
tion (changes in migration speed, cell dry mass, cell circularity, etc.). Despite the differences in the absolute value
of Young’s modulus across biomechanical studies, the obtained relative changes of Young’s modulus were shown
to be consistent.

Both cisplatin and docetaxel treatments caused a significant increase in the cell stiffness of prostate cancer
cells that had survived the treatment. Hence, we presume the effect of cisplatin on the cytoskeleton. Consequently,
the decrease in cell migration, invasion and forming of colonies observed in cells surviving the docetaxel and
cisplatin treatment was associated with the increasing cell stiffness. We maintain therefore that changes in the cell
stiffness could be an important overlooked effect of cisplatin-based anti-cancer drugs.

Data Availability
Atomic force microscopy and confocal microscopy data images used in our study are available for download in
the Zenodo repository (https://zenodo.org/, Digital Object Identifiers: 10.5281/zenodo.1494935).
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4.3.2 Shear modulus estimation using quantitative phase imaging

Previous study revealed an association between cell cry mass and cell Young modulus [2], chap-
ter 4.3.1. To further examine the possibilities of using QPI to analyse the mechanical properties
of cells, QPI was employed in a microfluidic setup with cells exposed to shear stress [86]. The
approach is used to estimate cell viscoelastic properties upon fluid shear tress induction. In this
system QPI is used because it enables optical path length measurement as higher objects cause
higher phase shifts. Approach is based on a study by Eldridge et al. [24] and is further improved
by a possibility to extract refractive index and to estimate cell height in a single measurement.
In addition, the proposed method highly benefits from a parametric deconvolution of a flow
signal measured by flow meter; this parameter is highly dependent on a fluidics and syringes
used, adding a capacity to the system. Therefore, cell viscosity estimation in particular can be
highly distorted. To suppress this effect, we applied a correction method utilizing parametric
deconvolution of the flow system’s optimized impulse response [87]. Achieved results were
compared with the direct fitting of the Kelvin-Voigt viscoelastic model and the basic steady-
state model. The results showed that our novel parametric deconvolution approach is more ro-
bust and provides a more reliable estimation of viscosity with respect to changes in the syringe’s
compliance compared to Kelvin-Voigt model [87].

We demonstrated that this setup is suitable for high throughput and robust cell viscoelasticity
estimation and work even in a time-lapse scenario. The great advantage if of the system is that
apart from the viscoelastic properties estimation per cell also parameters derived from quanti-
tative phase image can be extracted — cell morphology, cell dry mass, or parameters like
circularity or others. Simultaneous measurement of refractive index, which is used to calculate
the cell height, further complements a number of determinable parameters for individual cells

[86].

4.3.3 Complementarity of Brillouin spectroscopy and quantitative phase imaging

In the chapter 4.3.1, a correlation between cell dry mass and Young modulus of prostatic cells
was described [2]. In an Elsayad et al [88] study, we focused on an alternative approach of
measurement of cell mechanical properties based on Brillouin spectroscopy. Compared to
AFM, the advantages of Brillouin microscopy are that it is a completely non-invasive, non-
contact method that can measure mechanical properties in short acquisition times. Spontaneous
scattering is based on the inelastic scattering of light from acoustic phonons that are inherently
present in the probed material [88]. It enables to calculate the storage modulus and thus elastic

properties of the sample by the relation
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where v is a Brillouin peak frequency shift, n is a refractive index of a material, M’ is a storage
modulus and p is the mass density. Critical in this relation is a need for knowing the refractive
index of the sample. As p and n are directly coupled in most samples, there is no need to meas-
ure both. Quantitative phase imaging extracts the phase shift from which cell dry mass can be
approximated. Another quantitative phase technique — optical diffraction tomography enables
to separate two components of the cell dry mass — that is the physical (optical) property of the
sample (its refractive index) and sample height.

In this study, we have effectively demonstrated that a combination of both techniques in a cor-
relative setup provides a more accurate way of estimating storage modulus — estimating the
mechanical properties of the sample. Brillouin microspectroscopy was performed on a custom-
build setup in Vienna Biocenter Advanced microscopy core facility, while the refractive index
was determined in our lab.

In sum, the paper shows the complementary roles of Brillouin spectroscopy and quantitative
phase imaging. Therefore, in this experiment instead of living prostate cancer cells, the imaging
was performed on simple-to analyse non-moving objects — cellulose fibres, as the acquisition

of correlative dataset of fast-migrating cells is still a challenging issue.

ELSAYAD, K., G. URSTOGER, C. CZIBULA, C. TEICHERT, et al. Mechanical Properties of
cellulose fibers measured by Brillouin spectroscopy. Cellulose, May 2020, 27(8), 4209-4220.
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Abstract We investigate the potential of Brillouin
Light Scattering (BLS) Microspectroscopy for fast
non-invasive all-optical assessment of the mechanical
properties of viscose fibers and bleached softwood
pulp. Using an optimized Brillouin spectrometer, we
demonstrate fast spatial mapping of the complex
longitudinal modulus  over extended  areas
(> 100 um). Our results reveal that while the soft-
wood pulp has arelatively uniform moduli, the viscous
fibers have significant spatial heterogeneous in the
moduli. Specifically, the viscose fibers exhibited a
regular pattern of increasing and decreasing modulus
normal to the fiber axis. The potential influence of a
locally changing refractive index is investigated by
holographic phase microscopy and ruled out. We
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discuss our results in light of the anisotropic mechan-
ical properties of the fibers and are able to estimate the
relative difference between the modulus along the
fiber axis and that perpendicular to it. Results are
presented alongside reference measurements of the
quasi-static mechanical properties transverse to the
fiber axes obtained using AFM-nanoindentation which
reveal a similar trend, hinting at the potential useful-
ness of BLS for mechanical characterization applica-
tions. However, more detailed investigations are
called for to uncover all the factors influencing the
measured high-frequency BLS modulus and its sig-
nificance in relation to physical properties of the fiber
that may be of practical interest.
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Introduction

The mechanical properties of pulp fibers have been
investigated using numerous different approaches.
Longitudinal (i.e. along the fiber axis) measurements
of fiber properties like the E-modulus and the breaking
strength are usually studied using fiber tensile testing
(Kompella and Lambros 2002; Burgert et al. 2005,
Fischer et al. 2012; Jajcinovic et al. 2018) [see also
Fischer (2013) and Jajcinovic (2017) for extensive
reviews]. In contrast the transverse properties of fibers
(i.e. perpendicular to the fiber axis) were initially
investigated via compressive measurements on wet
fibers (Hartler and Nyren 1970; Dunford and Wild
2002; Wild et al. 2003). Bergander et al. carried out
tests on radial double-wall cut wood strips in an
environmental scanning electron microscope {(Ber-
gander and Salmen 2000). Atomic Force Microscopy
(AFM) based methods have also been used to inves-
tigate fiber properties such as flexibility and con-
formability (Nilsson et al. 2000; Pettersson et al. 2017)
as well as transverse mechanical properties (Ganser
et al. 2013; Ganser and Teichert 2017). A compre-
hensive list of literature on the topic can be found in
Czibula et al. (2019).

While the viscoelastic nature of cellulosic fibers has
been known for a long time, earlier studies focused
predominantly on the creep behaviour of fibers in the
longitudinal direction (Stanzl-Tschegg and Navi 2008;
Cisse et al. 2015). The viscoelastic behaviour of wood
has been characterized for pine specimens along the
grain direction (Penneru et al. 2006) and for green
wood in the transverse direction (Bardet and Gril
2002). However, only recently has fiber viscoelasticity
in the transverse direction been addressed using an
AFM-Nano-Indentation (NI) based method (Ganser
et al. 2018) at varying levels of relative humidity (RH)
(Czibula et al. 2019).

In this work spontaneous Brillouin Light Scattering
(BLS) Microspectroscopy is applied to probe the
mechanical properties of cellulosic fibers. Sponta-
neous BLS is based on the inelastic scattering of light
from acoustic phonons that are inherently present in
the probed material. Acoustic phonons are collective
molecular excitations, which unlike optical phonons,
have a significantly lower energy (in the GHz range)
and will extend over many molecules. BLS measures
the effective velocity of these excitations, by measur-
ing the frequency shift of the so-called BLS peaks

@ Springer
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relative to the probing laser. In a typical BLS
microspectroscopy experiment when one couples to
a single acoustic phonon mode, one observes fwo
Brillouin scattering peaks on either side of the probing
laser frequency, which correspond to the “creation”
and “anmihilation” of a phonon. The shift of these
peaks relative to the elastic scattering peak (i.e.
frequency of the probing laser) is directly proportional
to the hypersonic velocity of the phonons via Eq. (1).
The velocity can in turn be used to calculate the elastic
storage modulus at the corresponding frequency via
the Christoffel equation [Eq. (2)].

Key advantages of BLS microscopy are that it is a
completely non-invasive, non-contact method that can
measure mechanical properties in short acquisition
times {~ 100 ms or less per position). This is
particularly useful for investigation of pulp fibers, as
their small size (length 6.6-3 mm, width 15-40 pm)
require elaborate samiple preparation and intricate
mictomachinery for mechanical testing. Amnother
potentially promising aspect of BLS microscopy is
that it can be used to evaluate the full elastic tensor of
anisotropic materials. Due to the fibril orientation in
the 82 wall and the misalignment between the fibril
orientation angle and the fiber axis, the fiber should be
described by an orthotropic material model of the fiber
wall, explicitly taking into account also the fibril
orientation angle (Magnusson and Ostlund 2013). As
thus the fibers can be characterized by either perform-
ing mechanical measurements in the longitudinal and
the transverse direction—i.e. two tensile plus two
shear moduli—together with the fibril angle, or, by
performing direct orthogonal measurements of the
three tensile moduli plus the three shear moduli.
Measurement of pulp fiber shear moduli is even more
complicated than tensile moduli, and to the best of our
knowledge has not been done. BLS has routinely been
used to measure mechanical properties and even the
complete elastic tensor of biological fibers such as for
spider silk (Koski et al. 2013), proteins {Randall et al.
1979, Speziale et al. 2003), collagens (Harley et al.
1977; Cusack and Miller 1979; Edginton et al. 2016),
muscle fibers (Berovic et al. 1989), or recently
bamboo wood splinters (Williams et al. 2019). Being
a non-contact method able to measure the full elastic
tensor {i.e. the elastic moduli and shear moduli in all
three spatial directions) BLS has the potential to
provide substantial progress for mechanical testing of
cellulosic fibers and, at the same time, resolve the
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laborious and complicated issues in fiber handling
during mechanical testing.

In this work we demonstrate the applicability of the
method for cellulosic fibers by analyzing the BLS-
measured mechanical properties of pulp- and viscose
fihers. Specifically, the elastic modulus (storage
modulus) representing the elastic behavior and the
loss modulus (dampening coefficient) representing the
viscous behavior are evaluated. By adjusting the
effective solid angle over which we are probing and
detecting (via the effective numerical aperture of the
objective lens) we are able to transition between
coupling to predominamtly acoustic phonon modes
perpendicular to the fiber axis and acoustic phonon
maodes both perpendicular and parallel to the fiber axis.
We note that because of the employed back-scattering
geometry and polarization of detection we are exclu-
sively measuring longifudinal acoustic phonons,
which in turn yield the so-called longitudinal moduli.
In this brief communication we also for the first time to
our knowledge demonstrate the feasibility of using a
Virtual Tmaged Phase Array (VIPA)-based imaging
spectrometer for studying such fibers. While having a
lower spectral resolution and finesse than the tradi-
tionally emiployed multi-pass Fabry—Perot spectrom-
eters (Sandercock 1970), it also has some advantages
in regard to required acquisition time and illumination
intensity, as well as affordability, which would be
important for wider research and potentially also
industrial applications.

Materials and methods
Fibers

The two different fibers investigated were hand ribbon
shaped viscose fibers (Leonardo fiber from Kelheim
Fibers) and fully bleached softwood kraft pulp fiber
from industrial production {Sappi). For the BLS
measurements two viscose fibers and two softwood
fihers were investigated. Reference measurements, by
AFM-NI, were carried out on fully bleached Canadian
softwood kraft pulp {Canfor) at about 50% RH. AFM-
NI data of round shaped viscose fibers from Kelheim
were used as the second reference.

123

Calculation of elastic modulus from BLS
FHEASUFemEenis

The measured BLS frequency shift vg (GHz) is in
general related to the speed of the probed acoustic
phonons Vg for a given scattering wavevector ¢ via:

(1)

where n is the refractive index (written here as a tensor
for the general anisotropic case), v is the frequency of
the probing laser, and ¢ is the vacuum speed of light.
(In the backscattering geometry this reduces to
vg = £2nc" v V). The propagation of phonons in
the x; direction is described by (Berne and Pecora

2060):

Gug

ka
where p is the mass density and czu is the stiffness
tensor. It follows that the components of the latter can

be calculated from the measured acoustic velocity
(Eq. 1) via (Beme and Pecora 2000):

vg = +2n- QC_IVOV@

' d
P=a = Gl
o ! ax]-

(2)

=0 (3)
For the case of an isotropic material in the back-
scattering geometry one would probe the first three
diagonal components {c1111 = a2 = €3333), such
that the position of the BLS peaks directly yield the
longitudinal storage modulus M

(# - §) (B - §)eyu — pV}

Mr _ pvz

()

The corresponding loss modulus (M) can be obtained
from the lifetime of the phonons—which is manifested
in the homogeneous broadening of the BLS peak Ip-
via (Carroll and Patterson 1984; Floudas et al. 1991)

Mr.' _ pV’ZE

0]

(5)

The case of anisotropic samples—as is the case with
the studied fibers—is more subtle, given the distinct
elastic moduli in different directions. For the studied
fibers we may assume a transverse anisotropic sym-
metry such that measurements will vield a linear
combination of the miodulus parallel and perpendicu-
lar to the fiber axis (M) and M . respectively). The
respective contribution of these can be calculated from
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Egs. 1 and 3 by considering the projection of the
scattering wavevector on the stiffness tensor.

Finite numerical aperture

In order to achieve a high lateral spatial resolution, one
needs to probe with a correspondingly large numerical
aperture (NA). Finite NA measurements will in the
studied case result in two modifications to the
measured spectrum. Firstly, one would observe an
inherent effective broadening and slight shift in the
peak position of the BLS signal resulting from the
frequency dependence of the scattering wavevector
(Eq. 1) (Antonacci et al. 2013). This can readily be
calculated by integrating Eq. 1 over the probed solid
angles. Secondly, one may observe an effective
broadening due to the anisotropy of the sample,
namely that the phonen speed is dependent on direc-
tion. To illustrate the latter for the samples studied
here, let us assume the fibers are orientated in the %
direction and we probe along the perpendicular Xi-
axis, SllCh that 1111 (: M”) 7é €990 = 6‘3333(: MJ_)
By increasing the effective probing NA from = 0 one
will thus transition from probing exclusively M, to
probing a linear combination of M, and M). Given
that M| # M this will result in an effective broad-
ening with increasing NA and a shift in the measured
vg to lower (higher) frequencies if M) <M,
(8 > M, ). The exact dependence can again be
obtained by integrating Eq. 1 over the probed solid
angles, this time taking these symmetry conditions
into account and noting that there will also likely be an
associated anisotropy in the refractive index (i.e.
7| # n ). Since we do not have access to the latter, in
this study we calculate an effective elastic modulus
(M). This is obtained by calculating a single effective
acoustic velocity (V3 = V) from Eq. 1 assuming the
back-scattering geometry and an effective refractive
index (n-§ = n), and subsequently calculating the
complex modulus from Egs.’s 4 and 5. Prior to fitting
the BLS spectra to obtain vz and I'g the results are
deconvolved with the elastic scattering peak and
corrected for broadening exclusively due to the finite
NA as described below. The effective refractive index
(1.3-1.4) was taken from holographic phase micro-
scopy measurements (see below) on the same samiples,
and a density of 1500 kg/m® was assumed throughout.
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Measurements on the same samples using a very
small NA (< 0.01) were used to estimate the contri-
bution of M, to the total high-NA measured Modulus,
since the former can be assumed to exclusively probe
in the direction transverse to the fiber axis. The ratio of
the elastic moduolus along the fiber axis to that
perpendicular to the fiber axis was also estimated via:
=

SECEI

where vp is measured BLS-shift with NA = 1, and vé
is that measured for NA < 0.01.

An effective loss tangent is also calculated from the
measured effective storage and loss moduli as
tan(8) = M" /M’ for each of the measured samples.

My

1+2n (6)

BLS setup

The employed setup consists of a self-built confocal
sample scanning Brillouin microscope as described in
e.g. Elsayad et al. (2016). In particular this consisted of
an inverted microscope frame (iX73 by Olympus,
Japan) with the laser and spectrometer coupled to the
lower right port. Samples were mounted on standard
microscopy slides and imaged through standard
170 pm glass coverslips. An objective (numerical
aperture (NA) = 1.3, 60x, Si-immersion oil, Olym-
pus, Japan) was employed for all BLSM measure-
ments. The aperture of which was only partially filled
yielded an effective NA ~ 1.0. The measured (opti-
caly lateral and axial resolution {corresponding to the
probing volume) were 290 nm and 650-700 nm as
determined from the Full Width Half Maximum of the
Point Spread Function. To assure optimum confocality
the physical pinhole was fixed at 100 pwm, correspond-
ing to just over one Airy unit with the employed tube
lens. Excitation was performed via a solid state single-
mode 532 nm laser (Torus by Quantum Laser, Ger-
many), passed through an optical isolator, expanded,
and coupled into the optical path via a 90:10 non-
polarizing beam splitter. The sample was scanned
using a long travel range 3-axis piezo stage (Physik
Instrumente, Germany) and for each position one
spectrum was acquired. Average laser power at the
sample was kept low and measured to be below 3 mW.
The dwell time per scanned point was fixed at 100 ms.
After the pinhole the beam passed through a polarizer
and 2 nm narrow band pass filter centered at 332 nm.
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The Brillouin spectrometer consisted of a cross
dispersion Virtnal Imaged Phased Array (VIPA)
spectrometer similar to the one described in Scarcelli
et al. (2015) with the elastic scattering peaks blocked
by masks at intermediate imaging planes. The
employed VIPAs (Light Machinery, Canada) each
had a free spectral range of 30 GHz. Also employed
were self-fabricated gradient apodization filters prior
to each VIPA. The resulting spectral projection was
subsequently Fourier filtered using a Lyot stop (Edrei
et al. 2017) and magnified. Finally, the Brillouin
spectra consisting of only the Brillouin peaks, was
imaged on a cooled EM-CCD camera (ImageEM IT,
Hamamatsu, Japan) which was read out for each scan
point. Measurements on distilled water and spectro-
scopic grade ethanol before and after each scan where
used for scaling the dispersion axis of the spectral
projection. All spectra were fitted with Lorentzian
functions with a quadratic background correction
term, using a standard least-squares fitting algorithm
in Matlab as described in Elsayad et al. (2016).

To account for the instrumental spectral response as
well as the contribution from multiple-scattering in the
sample, the spectra was deconvolved with a measure-
ment of the elastic Rayleigh scattering peak measured
in each respective sample. This was performed by
optically attenuating the laser and opening the slits of
the spatial masks in the spectrometer. Since our laser
line has a line-width (kHz—MHz) that is orders of
magnitude smaller than the spectral resolution, a
straight forward deconvolution can be assumed to
accurately capture the spectral response of our setup.
This however will not account for the spectral
broadening induced by the finite NA (see below).

To account for this, measurements were performed
at different effective NAs by placing a ring-actuated
iris diaphragm (Thorlabs, Germany) immediately
behind the objective lens. By closing the iris {which
could be done with an accuracy of several hundred
microns) we could tune the effective NA from < 0.01
up to the maxinium of the objective lens. We note that
this would equally affect the probing and detection
NA. The effective NA (NAy ) was calculated from the
radins (R} of the iris  aperture  via:
NAgss = nR{w? +R2)71/2, where w is the working
distance of the objective lens. The results on distilled

water showed an increase in the line width by a factor
of 1.9(+0.1) from NA ~ 0to NA = 1.0, with a small
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shift in the peak position to lower frequencies of
310 MHz (~ 4%).

The effect of changing the effective NA from ~ 0
to 1.0 was also measured on each of the samples using
the same approach. To determine the contribution
from the anisotropy to the ohserved broadening, the
measured frequency shift and line width at each NA
was corrected in the sample measurements by a
multiplicative factor corresponding to the effective
modification in the peak position and linewidth (see
above) measured in distilled water for the same
corresponding NA relative to the low-NA limit.

BLS measurement time

The total time consumed by the sample preparation
and the BLSM measurements amounted to approx.
34 h. During this time calibration measurements
were performed and multiple areas of approx.
100 x 100 pm were measured, each of which were
divided into 21 x 5 measurement spots.

Testing conditions

It is important to note that BLSM measurements are
very sensitive to the level of hydration (Wu et al. 2018)
as well as temperature. Also, cellulose fiber mechan-
ical properties are strongly affected by relative
humidity under ambient conditions (Jajcinovic et al.
2018). Special care was thus taken that these were kept
at the same level (25 °C, 30-50% RH) for all
measured samples.

Holographic phase microscopy

Refractive index tomograms were acquired on a
commercial holographic phase microscope with rotat-
ing scanner (3D Cell Explorer, Nanolive SA, Lau-
sanne, Switzerland) with a Nikon BE Plan 60 x NA
().8 objective lens. The size of acquired tomogram was
93.1 x 93.1 x 357 um (XYZ). Water was used as
the reference refractive index {1.330) in all measure-
ments. The software “Steve 1.6.3496” (Nanolive SA)
was used for image acquisition and reconstruction, and
maximum intensity projections were plotted using
FIIT/Tmagel.
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AFM nanoindentation

All AFM measurements were performed with an
Asylum Research MFP-3D AFM. The instrument is
equipped with a closed-loop planar x—y-scanner with a
scanning range of 85 x 85 pum” and a z-range of about
15 um. For the experiments, four-sided pyramidal,
full diamond probes (ND-DYIRS, Advanced Dia-
mond Technology) with a tip apex radius of about
50 nm have been used. The spring constant of the
cantilever was about 60 N/m and calibration of the
cantilever was performed according to Hutter and
Bechhoefer (1993). In AFM-NI, the sample surface is
plastically deformed and according to the Oliver—
Pharr method (Oliver and Pharr 1992) the reduced
modulus E, and the hardness A can be obtained. The
method has been successfully established for pulp and
viscose fibers before and is thoroughly described in
Ganser et al. (2013) and Ganser and Teichert (2017).

Results and discussion

Figure 1 shows spatial maps of the measured BLS
frequency shift vg of the viscose and bleached
softwood Kraft fibers and the calculated effective
transversal storage modulus (M) and widefield trans-
mitted light pictures of each fiber. While the pulp
fibers seem to have a quite uniform elastic modulus the
viscose fibers exhibit a regular lomgitudinal stripe
pattern. Along the fiber axis there are elongated
regions with lower (low region, 4.2 GPa) and higher
(high region, 5.4 GPa) effective transversal moduli.
Figure 2 shows the effect of increasing the effective
numerical aperture (NA = 0.01-1) for the viscose
(high region and low region separately) and bleached
softwood Kraft fibers. The plotted storage and loss
modulus have in each case been corrected for the
effect of finite NA excitation/detection by a linear
coefficient determimed from measuring distilled water
with the corresponding NA (see above). As such the
observed changes with NA can be attributed to the
anisotropy of the sample. In all cases one sees an
increase in both the loss modulus (line width) and the
storage modulus (frequency shifty with increasing NA.
The latter suggests that the component of the storage
modulus along the fiber axis is larger than that
perpendicular to the fiber axis. This corresponds to
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the anisotropic nature of both, viscose (strong orien-
tation of cellulose due to stretching during the
spinning process) and wood fibers (strong orientation
of fibrils in 82 wall). The loss modulus as well as the
loss tangent also show an increasing trend with
increasing NA, however the errors on the measure-
ments are quite high.

As the BLS frequency shift scales linearly with the
refractive index (Eq. 1) we used holographic phase
microscopy 1o investigate whether there are any
significant differences in »r (between and within
samples) which could account for any observed
variations in the frequency shift. Maximum intensity
projections of the reconstructed refractive index
holograms are shown for two different representative
sample types in Fig. 3. The local variation of the
refractive index is in each case rather low and
therefore cannot in itself explain the differences in
the calculated longitudinal modulus (see above).
Interestingly similar longitudinal patterns in the vis-
cose fiber can be observed for the refractive index
maps (Fig. 3a) as for the storage modulus (Fig. 2c, e),
which might be the result of the drawing of the
filaments during the spinning process.

Table | summarizes the results for the refractive
index n, BLS frequency shift vy, the measured
effective longitudinal storage and loss moduli ('
and M") and the loss tangent for the two fiber types.
Also shown is the derived ratio of the storage modulus
perpendicular and along the fiber axis (M /Ml"),
calculated from the point measurements at different
NA’s (see above). We note that for this calculation an
isotropic refractive index is assumed for each of the
sample regions (as referenced in table), which is likely
not the case. The calculations for all NA’s can be
found in the ESIL

As also evident from the spatial maps (Fig. 1) the
low region of the viscose fibers and the softwood pulp
have comparable values for A’ while the (longitudi-
nal} “stripes” in the viscose fiber (high region) have a
significantly larger M’. We suspect the differences
may be related to either a local densification of the
material or a local hardening of the structure.

Table 1 also shows reference data for the reduced
modulus in the transverse fiber direction obtained
from AFM-NI of viscose and bleached softwood pulp
fibers. In comparison the measurements from AFM-NI
are higher for the viscose and lower for softwood pulp.
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Viscose

(a)

Frequency Shift / GHz

3| high region

Elastic Modulus / GPa

3.5

Fig. 1 a, b Transmitted light widefield microscopy images of
the viscose and bleached softwood Kraft fibers respectively. c,
d confocal spatial maps of the BLS-frequency shift. e, f the
calculated effective transversal storage modulus (see main text)

While these show a similar trend to the average
effective longitudinal storage moduli measured with
BLS, the percentage difference is significantly larger
between the two types of fiber. Itis often the case when
attempting to perform correlative AFM and BLS
studies that relatively large changes in the AFM
measured (Young’s) moduli will correspond to only
subtle changes in the BLS-measured (longitudinal)
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Softwood

(b)

(@) 10.5

© o =

o0
Frequency Shift / GHz

()

[=,]

Lh

45
4

Elastic Modulus / GPa

35

from a, b. Note The widefield pictures in a, b were taken through
a different microscope port and with a different magnification,
and are thus not spatially aligned with the confocal BLS-maps in
cf

moduli—in many cases scaling in a roughly semi-
logarithmic fashion (e.g. Scarcelli et al. 2015). It
should be noted though that currently such relations
are empirical and lacking theoretical foundation,
given the different boundary conditions of the mea-
sured moduli and the wvastly different frequency
regimes probed (quasi-static vs. GHz) which will be
sensitive to distinct mechanical relaxation processes.
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Tt is also understood that under high hydration levels
(>> 90%) the solvent can dominate the contribution to
the modulus measured with BLS and such an apparent
correlation breaks down (Wu et al. 2018).
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4Fig. 2 Measurements of the properties over a changing NA.
The storage modulus a shows a consistent trend to higher moduli
at higher NA. These results show that, as expected, the storage
modulus along the fiber axis is higher than perpendicular to it.
The loss modulus (b} and the loss tangent (¢} also appear to show
a similar trend but the associated uncertainties are too large to
draw any definitive conclusions

In the context of the current study it is also
necessary to emphasize that the references were not
measured on the same fibers. The counterintnitive
result that the quasi-static AFM measurements yield
an effectively lower modulus may possibly be due to
the effective length scales probed with BLS. Since the
probed phonons have a wavelength of approximately
100-200 nm with decay lengths on the order of 1 pm,
they probe an effective collective response. Aside
from more detailed knowledge of molecular level
interactions, interpretation of the BLS spectra would
for the case of heterogeneous media also require
(ultra-)structural considerations on these scales espe-
cially for the viscous fibers.

The loss tangent {tan({3)) relates the storage and the
loss modulus and is a measure of how well energy is
dissipated in the material. A tan(8) = 0 would mean
that the material is fully elastic while a number > 1
means that more energy is dissipated than stored.
Importantly in the case of BLS measurements the loss
tangent will be independent of the density and
refractive index (which cancel out—Eqs. 4 and 5)
which means that a change in loss modulus indicates a
“true” change in the moduli of the structure. Within
experimental uncertainties the loss tangent was similar
between the two fiber types, with the values being in
the same range than quasi-static measurements (Zhou
et al. 2001; Csdka et al. 2012).

Given the frequency of the probed phonons in BLS,
the most relevant mechanical relaxation times probed
will be on the scale of picoseconds. It is possible to
extract effective mechanical relaxation times {t) from
BLS measurements by driving the sample across a
thermodynamic phase transition {at which vt~ 1),
e.g. Carroll and Patterson {1984). Tt is however in
general challenging to obtain the relaxation times from
the BLS measurements, as they will also depend to a
large degree on the distribution (model) of relaxation
times (Floudas et al. 1991). A detailed investigation of
this would also benefit from complementary lower
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(a)

(b) Softwood

i 5

Fig. 3 Refractive index n of the Viscose (a) and bleached softwood Kraft (b) fibers (colorbar = n}), suggesting only relatively small

variations between and within the samples

frequency broader-bandwidth techniques (such as
photon correlation spectroscopy), which is beyond
the scope of the current study.

Conclusions

We have demonstrated spatial mapping of the high-
frequency effective transversal storage and loss mod-
ulus for viscose and softwood pulp fibers using a VIPA
based Brillouin Microscope. Reference measurements
with AFM-NI revealed a similar trend—namely a
larger elastic modulus for viscous than softwood pulp
fibers, although a direct comparison between the two
moduli is at this point unjustified given the different
mechanical relaxation processes probed.

Our results suggest that Brillouin microscopy can
serve as a fast and reliable technique to investigate the
high-frequency mechanical properties of cellulosic
fibers. One demonstrated advantage is the ability to
map the properties in different directions (longitudinal
and transverse to the fiber axis). In addition it has the
ability to rapidly and all-optically map properties over
larger areas using a VIPA based spectrometer such as
was employed here. In this regard we see much
potential for BLS microscopy for understanding and
testing the mechanical properties of cellulose fibers as
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it is also less cumbersome and a lot faster than direct
mechanical testing. Extensions of the technique to e.g.
consecutively probing at different angles (scattering
wavevectors) can also be used to investigate the full
elastic (stiffness) tensor of the fiber material, i.e.
tension stiffness and shear stiffness in all three spatial
directions, as has been demonstrated for other natural
fiber materials (Koski et al. 2013; Edginton et al.
2016). It is however important to note that the
measured properties with BLS are by construction
different than those probed with most other mechan-
ical testing techniques. This will be due to the high-
frequency regime probed (where coupling of con-
stituents/solutes to liquids will be much stronger and
the latter will have a high modulus) and the different
boundary conditions associated with deriving the
elastic modulus from the speed of acoustic phonons.
While there is ongoing active research in the direction
of both empirically and theoretically relating the BLS
measured moduli to more familiar structural and
physical parameters and shedding light on their
relevance in assessing otherwise relevant chemi-
cal/physical properties, the current study demonstrates
the practical feasibility and potential of Brillouin
microscopy for studying the anisotropic mechanical
properties of cellulosic fibers.
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Table 1 Data obtained from the measurements presented in Figs. 1 and 2
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Reduced modulus

(GPa)

Estimated ratio of storage modulus
transverse to fiber axes and storage

Tan(5}

Measured

Frequency Measured

shift vg

Refractive
index: n

Sample

effective loss

effective storage

/M

4
1

modulus along fiber axis:

modulus: M
(GPa)

modulus: M’
(GPa)

(GHz)

5.6-7.3% (50-30) %RH

0.045 £ 0.013 081 £0.16

0.24 £ 0.07
0.17 + 0.03
0.18 + 0.08

544013
42+ 0.1
45+ 0.1

94 +£01
840 4+ 0.1

1.31

1.34

Viscose (region high)

0.041 + 0.008 0.7% + 0.04

Viscose (region low)
Bleached softwood

1.3 + 0.7 (50) %RH

N=3

0.040 + 0.018 0.88 + 0.17

87+ 0.1

1.34 + 0.02

Kraft

Values were calculated as described in the main text

*Data from Ganser (2014}
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4.3.4 Mitochondrial network increases mass density in zinc resistant cells

Changes in cellular biomechanical properties play a crucial role in the development of metas-
tases in cancers. Although cell stiffness decrease is described in most tumor types, in a model
of prostate cancer we previously described an increase of stiffness of metastatic tumor-derived
cells compared to primary tumor-derived cells and increase of cell stiffness in a more aggressive
zinc-resistant variant of PC-3 cells (chapter 4.3.1). As this stiffening was not related to actin
cytoskeleton organisation, the most predominant factor affecting cell mechanics, we next aim
to explain the underlying mechanism by using a combination of microscopical methods (coher-
ence-controlled holographic microscopy, confocal microscopy of actin and tubulin and
refractive index tomography).

In the wild-type PC-3 cells individual mitochondria are well discernible in refractive index
tomograms (Figure 3A) from rest of perinuclear structures [1]. On the other hand, in zinc-re-

sistant cells, individual mitochondria are barely visible compared to wild-type cells due to
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Figure 3 Mitochondrial network is predominantly altered in zinc-resistant cells. a. refractive index tomography (op-
tical diffraction tomography) of wild-type cells with evident mitochondrial network. Single slice of tomogram. White
arrow indicates mitochondrial branching. right: profile of RI map of cell, nucleoli are the most prominent structures
regarding refractive index. b. tomograms of more aggressive zinc resistant PC-3 cells and respective profile. Evident
density increase in perinuclear region. c. principal component analysis of parameters extracted from multiple zones
of the cells illustrated in a cartoon cell. These parameters are suitable (N=235 cells) to distinguish PC-3 cell variants
with increased aggressiveness. d. correlative imaging of RI tomography with fluorescent staining of mitochondria

(mitoTracker Green FM). From Gumulec et al [1]
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accumulation of these organelles (Figure 3B). Based on parameters extracted from refractive
index tomograms, quantitative phase microscopy can be used to distinguish between more met-
abolically active and more aggressive ,,zinc-resistant PC-3 cells and wild-type counterparts
(Figure 3C). Combination of refractive index tomography, AFM and confocal microscopy pro-
vided more robust evidence that mass redistribution and increase of metabolic plasticity is
characteristic for aggressive prostate cancer model rather than just increase of cell stiffness as
seen by AFM.

Based on these findings, the attention was directed on a metabolic reprogramming of cancer
cells, and specifically, on the dysregulation of use of metabolic substrates, amino acids, and, on

the mitochondria [1; 89; 90].

4.4 Mechanical phenotype is linked also with metabolic phenotype

Metabolic reprogramming is an important prostate cancer hallmark as indicated by multiple
evidence. First, malignant cells derived from prostatic tumors show a decrease in zinc accumu-
lation and thus mitochondrial aconitase-mediated increased OXPHOS and no Warburg effect in
primary tumors [7]. Based on our experiments, zinc levels differ dramatically in tumorous tissue
of patients and benign prostate [91] and cell line models derived from aggressive tumors are
highly sensitive to zinc ions [39]. Second, as indicated by refractive index tomography, the
mitochondrial network architecture is altered in zinc-resistant prostate cancer cells [1]. With this

regard, the focus on oxidative metabolism was given in the next steps.

4.41 Amino acid metabolism in prostate cancer

In a study by Raudenska et al [2] on highly aggressive prostate cancer cells discussed in chapter
4.3.1 it is shown that cells derived from metastatic site are stiffer, of higher cell dry mass, and
expressing CAV1 compared to the primary tumor-derived cells of low aggressiveness. To further
explain which energy-rich compounds are predominantly metabolised, the following study was
performed. Here we show a link between changes in amino acid utilization and aggressiveness
of the prostate cancer cells.

The non-tumor prostatic cells accumulate citrate due to inhibitory effect of zinc to mitochondrial
aconitase. Therefore, citrate metabolization to alpha-ketoglutarate is inhibited and citrate cannot
be used as a source of protons in Krebs cycle in non-tumor cells. Although glucose cannot be
effectively transferred to energy in cancer cells, other substrates can enter the Krebs cycle. Glu-
cogenic amino acids in particular. In prostate cells, Accumulation of high amount of citrate is

manged via acetyl-CoA through pyruvate and oxalacetate regeneration in the end of the Krebs
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cycle. Oxalacetate is synthesized from aspartate, which is in turn increasingly imported to the
prostatic cells. For the prostate cells, aspartate can therefore be considered an “essential” amino
acid [92]. Prostate cancer, on the other hand, loses the ability of citrate accumulation as the
inhibitory effect of zinc diminishes. As a result, mitochondrial aconitase is disinhibited and this
results from an increased metabolic effectiveness of cancer cells [93; 94] (reviewed in Gumulec
et al. [36]).

In a Kratochvilova et al. [95] study, shifts in amino acid pattern were described in relation to
the aggressiveness and degree of zinc resistance [85]. Higher aspartate accumulation and lower
levels of alanine, methionine leucine, lysine and threonine were present in aggressive cells
(characteristic by high Young modulus, high cell dry mass, more stemness-like phenotype and
higher migration rates) compared to less aggressive primary tumor-derived cells of low Young
modulus and low cell dry mass. Results of the amino acid profiling in prostate cancer are sum-
marized in Kratochvilova et al.

In sum, here we demonstrated that alanine, methionine leucine, lysine and threonine are “es-
sential” for zinc-resistant PC-3 cells and the results also confirm that enzymes of citrate cycle

are intact in these cells, otherwise no Asp increase would not be possible.

KRATOCHVILOVA, M., M. RAUDENSKA, Z. HEGER, L. RICHTERA, et al. Amino Acid
Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression.

Prostate, May 2017, 77(6), 604-616.
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BACKGROUND. Failure in intracellular zinc accumulation is a key process in prostate
carcinogenesis. Nevertheless, epidemiological studies of zine administration have provided
contradicting results. In order to examine the impact of the artificial intracellular increase of
zine(I) ions on prostate cancer metabolism, PNTLA, 22Rv1, and PC-3 prostatic cell lines—
depicting different stages of cancer progression—and their zine-resistant counterparts were
used. To determine “benign” and “malignant” metabolic profiles, amino acid patterns, gene
expression, and antioxidant capacity of these cell lines were assessed.

METHODS. Amino acid profiles were examined using an ion-exchange liquid chromatogra-
phy. Intracellular zinc content was measured by atomic absorption spectrometry. Metal-
lothionein was quantified using differential pulse voltammetry. The content of reduced
glatathione was determined using high performance liquid chromatography coupled with an
electrochemical detector. Cellular antioxidant capacity was determined by the ABTS test and
gene expression analysis was performed by qRT-PCR.

RESULTS AND CONCLUSIONS. Long-term zinc treatment was shown to reroute cell
metabolism from benign to more malignant type. Long-term application of high concentra-
tion of zine(Il) significantly enhanced cisplatin resistance, invasiveness, cellular antioxidant
capacity, synthesis of glutathione, and expression of treatment resistance- and stemness-
associated genes (50X2, POUS5F1, BIRCS5). Tumorous cell lines universally displayed high
accumulation of aspartate and sarcosine and depletion of essential amino acids. Increased
aspartate/ threonine, aspartate /methionine, and sarcosine/serine ratios were associated with
cancer phenotype with high levels of sensitivity and specificity. Prostate 77: 604-616, 2017.
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Metabolism of prostate gland cells is unique and
different from metabolism of other cells in human
body. Secretory epithelial cells in the prostate are
highly specialized in citrate production and are able to
secrete high amounts of citrate into the prostatic fluid.
This happens due to their capability to accumulate
high levels of zinc that inhibit m-aconitase and citrate
oxidation in the Krebs cycle. As a consequence, normal
prostate glandular epithelial cells exhibit low respira-
tion, unfinished Krebs cycle, low citrate oxidation, and
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are therefore worse ATP producers as compared to
benign epithelial cells in other tissues [1].

In majority of tumors, tumorigenesis is usually
associated with a metabolic switch from respiration to
glycolysis and reduced catabolic Krebs cycle activity
(Warburg effect) which attenuates effectivity of ATP
production. Conversely, due to a failure in intracellular
zinc accumulation in tumor prostate cells, a metabolic
switch from citrate-accumulating, energy-inefficient
benign cells to energy-efficient tumor cells occurs [2].
Citrate can be oxidized to carbon dioxide and oxaloace-
tate for the production of ATP in mitochondria; another
possibility is its preferable exportt to the cytosol, where
acetyl coenzyme A (acetyl-CoA) and oxaloacetate is
formed due to ATP citrate lyase action. Acetyl-CoA is
used for the synthesis of fatty acids and cholesterol,
whereas oxaloacetate is an amino acid precursor [3].
Accordingly, prostate cancer cells were shown to
contain higher levels of amino acids, fatty acids, and
cholesterol [3-6]. Furthermore, N-methyl derivative of
glycine (sarcosine) can be accumulated in cells during
prostate cancer progression to metastasis [7]. Changes
in intracellular concentrations of particular metabolites
can influence cancer cell growth and metastatic inva-
sion [8,9]. Many oncogenes—such c-Myc, Ras, or Src—
provide cancer cells with alternative metabolic path-
ways and unconventional use of amino acids [10,11].
Consequently, changes in amino acid profiles may
serve as a valuable biomarker for screening, diagnosis,
and prognosis, since they are easily measurable in
body fluids.

It is obvious that failure in intracellular zinc
accumulation is a key process in prostate carcino-
genesis. Nevertheless, epidemiological studies of
zin¢ administration have provided rather contra-
dicting results [12]. In order to examine the impact
of excessive zinc concentrations on intracellular zinc
accumulation and prostate cancer metabolism,
PNT1A, 22Rvl, and PC-3 prostatic cell lines—
depicting different stages of the cancer disease
progression—and their previcusly created zinc-re-
sistant counterparts have been used in this
study [13]. The main focus of this work has been to
assess “benign” and “malignant” metabolic profiles.
Furthermore, amino acid profiles of each cell line in
relation to a degree of zinc accumulation and zinc
resistance have been determined.

MATERIALS AND METHODS
Chemical and Biochemical Reagents

RPMI-1640 medium, Ham’s F12 medium, fetal
bovine serum (FBS) (mycoplasma-free), penicillin/
streptomycin, and trypsin were purchased from
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Sigma Aldrich Co. (St. Louis, MO). Phosphate buff-
ered saline PBS was purchased from Invitrogen Corp.
(Carlsbad, CA). Ethylenediaminetetraacetic acid
(EDTA), zinc(Il} sulphate (BioReagent grade, suitable
for cell cultures) and all other chemicals of ACS purity
were purchased from Sigma Aldrich Co., unless noted
otherwise.

Cell Cultures

Three human prostatic cell lines were used in this
study. PNT1A human cell line is derived from normal
adult prostatic epithelial cells immortalized by trans-
fection with a plasmid containing SV40 genome with
defective replication origin. The primary culture was
obtained from the normal prostatic tissue of a 35-year
old male post mortem. PNT1A is PTEN positive non-
tumorigenic epithelial cell line [14]. 22Rv1 is human
prostate carcinoma epithelial cell line derived from a
xenograft serially propagated in mice after castration.
The cell line expresses prostate specific antigen (PSA).
Growth is weakly stimulated by dihydroxytestoster-
one and lysates are immunoreactive with androgen
receptor antibody. 22Rv1 is PTEN positive [15]. PC-3
human epithelial cell line was established from a four
grade prostatic adenocarcinoma, androgen indepen-
dent, and unresponsive metastatic site in bone. PC-3
is PTEN- and p53-negative [15,16]. All cell lines used
in this study were purchased from HPA Culture
Collections (Salisbury, UK).

Cell Cultivation

PNT1A and 22Rvl cells were cultured in RPMI-
1640 medium with 10% FBS. PC-3 cells were cultured
in Ham’s F12 medium with 10% FBS. Both media
were supplemented with antibiotics (penicillin
100 U/ml and streptomycin 0.1mg/ml). Cells were
maintained at 37°C in a humidified (60%) incubator
with 5% CO, (Sanyo, Japan). The passages of PNTLA
and 22Rvl cell lines ranged from 25 to 35, the
passages of PC-3 cell line ranged from 15 to 25.

Zinc(ll) Treatments of Cell Cultures

Two different treatments were used in this study.
The first one was short-term treatment. Cells conflu-
ent up to 50-60% were washed with FBS-free medium
and treated with fresh medium with FBS and required
zinc concentration (onefold to threefold the value of
IC50 for the cell line). Cells were cultivated under
these conditions for 24hr. The resulting samples
are called zinc-treated “wild type” in this study. The
second type of treatment was long-term. Cells were
cultivated with the constant presence of zin¢(II) ions.
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The concentrations of zinc(IT} sulphate in the medium
were increased gradually by small changes of 25 or
50 uM. Cells were cultivated at each concentration no
less than 1 week before harvesting and the viability
was checked before adding more zinc. This process
naturally selected zinc resistant cells. Cells with long-
term exposure are called “resistant” in this study.
Total time of cultivation of cell lines in =zinc(IT}-
containing media exceeded one year. Resulting con-
centrations of zine(IT) in media (onefold to threefold
the value of IC50 for particular cell line) were 50; 100
and 150 uM for PC-3 cell line, 150; 300 and 450 pM for
PNT1A cell line, and 400; 800 and 1200 wM for 22Rv1
cell line. Concentrations of zinc(I) in media and FBS
were taken into account.

RNA Isolation, cDNA Preparation

Cultivation medium was removed, cells were
washed with PBS and trypsinized. TriPure Isolation
Reagent (Roche, Basel, Switzerland) was used for RINA
isolation. RNA samples without reverse transcription
were used as negative control for gRI-PCR to exclude
DNA centamination. The isolated RINA was used for
the cDNA synthesis. RNA (1,000ng) was transcribed
using the transcriptor first strand ¢cDNA synthesis kit
(Roche, Switzerland) according to manufacturer’s
instructions. The ¢cDNA (20 1) prepared from the total
RNA was diluted with RNase free water to 100 ul and
the amount of 5 ul was directly analyzed.

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)

qRT-PCR was performed using the TagMan gene
expression assays with the LightCyder®480 Il System
(Roche, Basel, Switzerland). The amplified DNA was
analyzed by the comparative Ct method using B-actin
as a reference. The primer and probe sets for ACTB
(assay ID: Hs99999903_ml), MT2A (Hs02379661_gl),
ZNTT (Hs00253602_m1), SOX2 (Hs01053049 s1), HIF1A
(Hs00153153_m1), NANOG (Hs04260366_gl), BIRCS
(Hs00153353_m1l), and POUSFI (Hs04260367_gH) were
selected from TagMan gene expression assays (Life
Technologies). gRT-PCR was performed under the
following amplification conditions: total volume of
20 pl, initial incubation at 50°C/2min followed by
denaturation at 95°C/10min, then 45 cycles at
95°C/15sec and at 60°C/1 min.

Preparation of Cells for Determination of Amino
Acid Profiles and Zinc Content

Five miligram of cells was digested by Microwave
system 3,000 (Anton Paar GmblI], Graz, Austria) using
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rotor MG-65 in nitric acid (65%v/v) and hydrogen
peroxide (30v/v) in ratio 7:3. Microwave power was
set to 100 W (30 min) at a temperature of 140°C.

Amino Acids Profiling

Amino acid profiles were examined using an ion-
exchange liquid chromatography (AAA-400, Ingos,
Prague, Czech Republic) with post-column derivatiza-
tion by ninhydrin and absorbance detector in visible
light range (IEC-Vis). Measurements were carried
out under conditions optimized in our previous
study [17].

Zinc Quantitation by Atomic Absorption
Spectrometry

Measurements were carried out on 2807 atomic
absorption spectrometer (Agilent, Technologies, Santa
Clara, CA) with electrothermal atomization and Zee-
man background correction. Zinc was measured on
primary wavelength: Zn 213.9nm (spectral band-
width 0.5nm, lamp current 10mA) in the presence of
Pd chemical modifier.

Preparation of Cells Prior Sarcosine Analyses

The cells were frozen by liquid nitrogen to disrupt
their structure. The frozen samples were further
homogenized using ultrasonic homogenizer SONO-
PLUS mini20 (Bandelin electrenic, Berlin, Germany).
Then 1ml of 0.2M phosphate buffer (pH=7.0}) was
added and the sample was homogenized again for
5min. The cell homogenates were further analyzed
using IEC-Vis according to our previous study [17].

Preparation of Cells for Determination of Total
Protein, Metallothionein, Glutathione, and
Antioxidant Capacity

The cells were frozen by liquid nitrogen and
homogenized using ultrasonic homogenizer SONO-
PLUS mini20 (Bandelin electronic). Subsequently, 1 ml
of 0.2 M phosphate buffer (pH 7.0) was added and the
sample was homogenized for 5min. The homogenates
were further centrifuged using Microcentrifuge 5417R
(Eppendorf, Hamburg, Germany) at 4°C, 15,000g, for
15 min. Finally, the supernatant was filtered through a
membrane filter (0.45 pm nylon filter disk; Millipore,
Billerica, MA) and analyzed.

Determination of Total Protein Content

The total proteins were utilized for results nor-
malization and were performed using SKALAB
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CBT 600T kit (Skalab, Svitavy, Czech Republic)
according to manufacturer’s instructions, using
BS-400 automated spectrophotometer (Mindray,
Schenzhen, China).

Determination of Amount of Metallothionein

MT was quantified using differential pulse voltam-
metry (747 VA Stand, connected to the 693 VA
processor and 695 Autosamplet, Metrohm, Herissau,
Switzerland), under the cenditions used in our previ-
ous study [18].

Determination of Reduced Glutathione

The content of reduced glutathione (GSIH) was
determined using high performance liquid chroma-
tography coupled with an electrochemical detector
(HPLC-ED} system under the conditions used in our
previous study [19].

Determination of Antioxidant Capacity by the
ABTS Test

Antioxidant capacity was analyzed using the
neutralization of a radical-cation arising from one-
electron oxidation of the synthetic chromophore
2,2"-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
(ABTS). The reaction was monitored spectrephoto-
metrically by the change of the absorption value at
660 nm using spectrephotometer BS-400 (Mindray).

Real-Time Impedance Based Cell Migration and
Invasivity Assay

The impedance-based real-time cell analysis
(RTCA) xCELLigence system was used according to
the instructions of the supplier (Roche Applied
Science and ACEA Biosciences, San Diego, CA).
The xCFLLigence system consists of four main
components: RTCA DP station, RTCA computer
with integrated software and disposable CIM-plate
16. Firstly, the optimal seeding concentration for
migration and invasivity assay was determined.
Optimal response was found in the well containing
20,000 cells. After coating the upper wells with
Matrigel and adding FBS as chemoattractant, a total
number of cells in 100 pl of medium to each well in
CIM-plate 16 was seeded. The cell attachment and
growth through the matrigel were monitored every
15min. Duration of all experiments was 8Ohr.
Results are expressed as relative impedance using
manufacturer’s software (Roche Applied Science
and ACEA Biosciences) [20].
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Statistical Analysis

Data were checked for normality and log-normal
data were transformed. Univariate general regression
models with all three factors (cell line, resistance, zinc
concentration) as categorial predictors were per-
formed in the first step. Consequently, planned
comparisons were performed. In the next step, all
values were standardized and dependencies were
analyzed using principal component analysis on a
two-factor plane based on aminec-acid levels (oxida-
tive parameters and genes were plotted as supple-
mentary variables}, (¢} using hierarchical clustering
using Ward’s method showing linkage distance be-
tween cases (cell lines). Finally, receiver-operator
statistic using easyROC 1.3 (http://www.biosoft.
hacettepe.edu.tr/easyROC/) was performed to assess
area under the curve, sensitivity and specificity of
selected variables as predictors of tumor presence.
Unless noted otherwise, P level <0.05 was considered
significant and software Statistica 12 (Dell Inc., Tulsa,
OK) was used.

RESULTS
Zinc Accumulation

In previous experiments, IC50 for zinc sulphate of
wild-type cell lines was determined as follows:
150.8 M, 369.1 M, and 55.5 for PNT1A, 22Rv1, and
PC-3, respectively [13].

The levels of accumulated (measured} intracellular
zinc in wild-type and resistant cell lines exposed to
0-3-fold of its IC50 concentrations of zinc sulphate
were compared (see experimental section for details).
Intracellular zinc was accumulated more intensively
in resistant cell lines in comparison with wild-type
cell lines (P = 0.01, see Supplementary Table 51) when
exposed to zinc treatment. Nevertheless, cell-line
specific differences in zinc accumulation were ob-
served; intracellular zinc(Il) content increased exten-
sively and proportionally to added zinc sulphate in
all resistant cell lines and also in the wild-type 22Rv1.
On the other hand, enly a small increase in intracellu-
lar levels of zinc due to zinc sulphate treatment was
observed in wild-types PC-3 and PNT1A. Maximal
increase in intracellular zinc concentration was
achieved in zinc-resistant 22Rv1 cultured in threefold
IC50 (up to 1,800 ng/g); see Figure 1A.

General Mechanisms of Coping With Increasing
Zinc(ll) Concentrations

Changes in antioxidant capacity, expression of
selected genes, and accumulation of particular amino
acids caused by increasing zinc(Il) concentration are
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! At 0.061 Val 0124 | 2 u
1 His 0.063 Lvs 0.157 | 3 i)
. Ala 0.134 Leu 0.181
] Thr 0.137 Arg 0.187 |
4 Tyr 0.153 BIRC5 0.240
. ZNT1 0.16f His 0.269 |
. Leu 0.238 Ser 0.308
. Ser 0.318 GSH 0.414 |
3 lle 0.332 POUSF1 0533
3 Asp 0.40: lle 0.634 |
MT 0.324 MT2A 0.424 Thr 0.667
Pro 0.421 Glv 0.667 Gly 0.777 | — —
Gly 0.513 val 0.674 NANOG 0.787 zscore 2 -1 0 +1 42 +3
Val 0.624 NANOG 0.73 Pro 0.803 |
Cyvs 0.636 Pro 0.762 Tyr 0.825
Ser 0.970 Lys 0.931 HIF1A 0.876 |
Fig. . Concentrations of amino acids, gene expression levels and other parameters in zinc-resistant prostatic cell lines and wild-type
counterparts. (A) absolute concentration of intracellular {measured) zinc versus concentration of zinc in medium (0, |, 2, and 3
correspond to |C-50 fold changes). (B) Heatmap showing relative amounts of parameters in cells. Displayed as z-scores with mean = 0 and
standard deviation = |. Note the distinctive differences between wild-type PNT I A cells and tumorous counterparts. “*IC50 fold" indicate

fold change of half-maximal concentration of zinc used for treatment, **Zn" indicate amount of intracellular zinc {measured). (C) results of
univariate test, P-values for individual variables for three independent predictors—cell line, resistance, and zinc concentration. Sorted based
on P-level (parameters most significantly affected by cell line/resistance or Zn concentration are dark red, topmost in table}.

shown in Figure 1B. According to multivariate
ANOVA, MT gene, and protein, ZnT1, and SOX2
genes significantly increased their expression in cells
treated with zinc(Il)ions (P <0.001, P<0.001,
P=0.002, see supplementary Table S1). Furthermore,
zinc(IT) treatment significantly enhanced cellular con-
centrations of sarcosine (P = 0.03), aspartate (P — 0.01),
glutamate (P=0.01), cysteine (P=0.005), valine
(P=0.03), and arginine (P=0.04) as well as antioxi-
dant capacity of cells (2,2’-azino-bis(3-ethylbenzothia-
zoline-6-sulphonic acid, ABTS, P =0.05). On the other
hand, cellular concentrations of alanine (P=0.04),
methionine (P=0.01), and phenylalanine (P—=0.04)
significantly decreased due to zinc(II) treatment.

In conclusion, universal mechanisms of coping
with increasing zinc concentrations (common to both
resistant and wild-type cell lines) were observed.
These mechanisms involved chelation of free zinc ions
by metallothionein (an increasing trend in MT expres-
sion was observed), efflux of zinc(Il) ions from the
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cytoplasm by the ZnT1 transporter and enhancement
of the antioxidant capacity (measured by ABTS)
followed by the accumulation or depletion of particu-
lar amino acids.

Effect of Cell Line

In this step, the effect of the cell line was analyzed
after adjustment of zinc concentration and zinc resis-
tance. Using univariate test, there was a significant
effect of cell line on the gene expression and amino
acid profile F(30,6)=16.97; P<0.001 (see Fig. 1C).
Among the parameters most distinctly affected by cell
line are cellular concentrations of sarcosine, methio-
nine, aspartate, and threonine and gene expression
levels of POU5SF1, NANOG, and BIRCS.

Subsequent planned comparisons (multivariate
testing) revealed that tumorous 22Rv1 cell line (com-
pared to non-tumor PNTIA) exhibited up-regulation
of the gene expression of SOX2 (P=0.001), MT2A
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(P=002), NANOG (P=0004), and POUSFI
(P <0.001); higher accumulation of zinc (F=0.01),
aspartate (P=0.002), and sarcosine (P 0.001} and
higher antioxidant capacity (P=0.04). Conversely,
intracellular concentrations of threonine (P=0.005),
alanine (P =0.002), methionine (P <0.001), leucine
(P=0.003), phenylalanine (P=0.02), histidine
(P =0.005), and lysine (P = 0.002) were lower in 22Rv1
cell line. Secondly, characteristics of the cell line
derived from metastasis (PC-3) were analyzed. Com-
pared to PNT1A, there was a significant up-regulation
of GSH (P =0.01), BIRC5 (P < 0.001), SOX2 (P =0.03),
and HIF1A (P =0.002). Higher accumulation of aspar-
tate (P <0.001), sarcosine (F<0.001), and arginine
(P=0.03) was also observed in PC-3. Conversely,
intracellular concentrations of threonine (P < 0.001),
alanine (P=0.01), methionine (P<0.001), leucine
(P=0.002), phenylalanine (P=0.01), and Ilysine
(P =0.02) were lower in PC-3 cell line.

In conclusion, tumorous cell lines were characteris-
tic by higher expression of SOX2, higher accumula-
tion of aspartate, and sarcosine and lower levels of
essential amino acids, in particular: threonine, methio-
nine, leucine, phenylalanine, lysine, and alanine.
Primary tumor-derived 22Rv1l was characteristic by
depletion of histidine and increased expression of
MT2A, NANOG, and POLISE. Bone metastasis-derived
PC-3 was typical by increased accumulation of argi-
nine and higher expression of HIFIA and BIRC5.

Effect of Long-Term Treatment (Zinc Resistance)

In this step, the effect of “zinc resistance” (ie.,
long-term vs. short-term treatment) was assessed.

Resistant cells markedly increased their IC50 for
cisplatin: by 1.4, 1.6-, and 1.6-fold for PNT1A, 22Rv1,
and PC-3, respectively [21]. Furthermore, morphologi-
cal changes and increased numbers of polyploid giant
cancer cells (PGCCs) in zinc-resistant PC-3 cell line
were cbserved (Fig. 2A). Also, cellular concentraticns
of metallothionein, cysteine, sarcosine, methionine,
glutamine, and GSH were significantly affected by the
zinc resistance. Resulting zinc accumulation, antioxi-
dant capacity (ABTS) and higher gene expression of
BIRC5 (P=0.002), POUSF1 (P=0.03), and SOX2
(P =0.02) were other consequences of zinc-resistant
phenotype (Fig. 1C and supplementary Table SI).
Higher accumulation of zinc in resistant cells (see
section Zinc Accumulation) could be a direct result of
their higher antioxidant capacity (ABTS) (P =0.01)
and higher GSH (P = 0.001), and metallothionein (MT)
production (P =0.002). Resistant cells accumulate also
higher levels of sarcosine (P=0.003), cysteine
(P=0.002), and glutamate (P=0.02) and relatively
lower levels of methionine (P=0.003). The ability of
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cells to spread in the surrounding tissues was tested
by using real-time, label-free monitoring xCELLigence
invasivity assay. Higher invasiveness of all tested zinc
resistant cell lines (PC-3, PNT1A, 22Rv1) in compari-
son with their non-resistant counterparts was demon-
strated (Fig. 2B).

To reveal the complex connection patterns between
long- and short-term treatments and thus to illustrate
the involvement of amino acids in zinc resistance,
principal component analysis (PCA) was performed.
This analysis combines the advantages of correlation
analysis with cluster analysis by projecting the varia-
bles (amino acids, genes, etc.} on a two-factor plane.
The “importance” of the variables increases with their
distance from the center of the diagram. A two-factor
plane was constructed based on amino acid patterns
(“active” variables). This approach explained 66.4%
and 59.7% of data heterogeneity in wild-type and
resistant cells. In the next step, other parameters
(genes, oxidative stress-related parameters) were plot-
ted into this factor plane as supplementary variables.
Following associations were evident: (i) The central
effect of GSH and its association with amino acid
metabolism is typical for zinc-resistant cells (compare
the distance of GSH from the PCA center in WT and
resistant cells, Fig. 3A); (ii) On the other hand,
antioxidant capacity measured by ABTS played a
more central role in wild-type cells (compare distan-
ces from PCA center accordingly). Because G5H was
not in a positive correlation with ABTS, we assume
another important role of GSH in resistant metabo-
lismn; (iii) Furthermore, “pro-survival and/or antioxi-
dant” markers (such as ABTS, GSH, MT, HIF1A,
cysteine, glutamine) are clustered together in wild-
type cells (lower left quadrant of PCA), while markers
associated with “pluripotency” (NANOG, S0OX2,
POUSF1) are located in a different (upper left)
quadrant in wild-type cells. However, this is not
evident in zinc-resistant cells, where all those param-
eters are clustered together.

Amino Acid Patterns as Predictors of Cancer
Phenotype

Previous analyses highlighted amino acids specif-
ically related to zinc resistance, cell lines, or zinc
concentration. However, these data do not bring the
evidence whether or how the individual amino
acids are related to the advancement of the disease.
Therefore, hierarchical cluster analysis was per-
formed using amino acid concentrations as varia-
bles. Based on interrelationships between amino
acids, linkage distance between wild-type untreated
PINTLA cell line and others was calculated (Fig. 3B).
As expected, remaining wild-type PNT1As (exposed

The Prostate
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Fig. 2. Cell morphology and invasivity changes due to long-term zinc treatment. (A) Morphology of wild-type and zinc-resistant cells.
Red arrrow indicate polyploid giant cancer cells. (B) real-time label-free monitoring of invasivity. See higher invasiveness of all tested zinc
resistant cell lines (PC-3, PNTIA, 22Rv ) in comparison with their non-resistant counterparts.

to zinc) were clustered closely to the untreated one
followed by a cluster of tumorous cell lines (see the
setting of the plateau on a linkage distance curve in
Fig. 3B “tumorous metabolism” characteristic for
tumorous cells). Distinct contribution of zinc treat-
ment was also evident: higher concentrations of
zinc, as well as resistant variants of particular cell
lines, were at greater distance from benign un-
treated PNT1A. Moreover, another cluster character-
istic by the highest linkage distances to PNT1A was
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observed and designated as “highly resistant me-
tabolism”; this cluster was composed of resistant
tumorous cell lines treated by the highest zinc(II)
concentrations. This trend was verified using re-
ceiver-operator statistics (ROC), showing that link-
age distance based on amino acid profiles is highly
specific and sensitive indicator of malignant behav-
ior (Fig. 3C). This trend was also in a correlation
with pluripotency marker SOX2 (r=0.72, P <0.001,
highlighted as green dots in the chart).
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Fig. 3. Amino acid patterns and tumor progression. (A) Principal component analysis, projection of variables on two-factor plane based
on amino acid concentrations (other parameters plotted on a chart as a supplementary variables). Note that pluripotency-associated genes
NANOG, SOX2, and POUSF! are clustered together with pro-survival and oxidative stress parameters in resistant cells (lower left quadrant)
and clustered separately in WT cells. (B) linkage distance determined by cluster analysis based on amino acid patterns. Linkage distance
illustrates level of dissimilarity from non-tumor wild-type untreated PNTIA cells, for whose linkage distance =zero. 0, I, 2, and 3
correspond to |C-50 fold changes. See that resistance and/or tumorous phenotype enhance linkage distance from PNT | A cells. Based on a
linkage distance, benign, tumorous and highly resistant cells were distinguished. Linkage distance correlated with SOX2 expression in cells
(green dots). (C) receiver-operator curves and its subsequent statistics for determination of benign/malignant cell lines. (D) chart showing
relative abundance of particular amino acid in particular cells, sorted from low to high concentrations. 0, |, 2, and 3 correspond to IC-50
fold changes. Rainbow color order coding based on untreated wild-type PNTIA cells. See the rainbow-colored heatmap distracts by
relative increase/decrease of specific amino acids amounts (see online for color). See gradual decrease of Met (high concentrations in non-
tumor cells vs. low concentrations in resistant tumorous cells) and increasing concentrations of Sar, Cys, and Asp in relation to the
progression of zinc resistance and malignance. $* indicate sarcosine. WT, wild-type; R, resistant.

In order to highlight which of the amino acids
contribute to this “model of gradual increase of
aggressiveness,” a heatmap based on amino acid
concentrations was created (Fig. 3D). Several specific
phenomena were evident: (i) gradual decrease of

methionine (high concentrations in non-tumor cells as
compared to low methionine concentrations in resis-
tant tumorous cells) and (ii) increasing concentrations
of sarcosine, cysteine, and aspartate in relation to the
progression of zinc resistance and malignance. Based
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on these data, following product/precursor ratios
were calculated: cysteine/methionine and sarcosine/
serine. The association of these ratios with malignant
phenotype was verified by ROC and multivariate
ANOVA (Table I), where both of them demonstrated
high levels of sensitivity and specificity. Thus, high
cysteine/methionine and sarcosine/serine ratios were
shown to be a promising marker of malignant
metabolism.

Excessive accumulation of aspartate was accompa-
nied by a depletion of some essential amino acids
(threonine, lysine, leucine, phenylalanine, and methi-
onine) in prostate cancer cells. This fact indicated a
boosting of aspartate synthesis pathways. Various
molecules could serve as a substrate for synthesis of
aspartate, including essential amino acids (Fig. 4). In
accordance with observed increasing/decreasing
trends of amino acids (Fig. 3D), ratios between Asp
and other amino acids were calculated and the effect
of cell line on the level of these ratios was analyzed
using multivariate ANOVA and receiver-operator
statistic (Table I). Aspartate/tyrosine, aspartate/me-
thionine, and aspartate/threonine ratios were shown
to be promising markers of malignant metabolism.
Furthermore, ROC analysis provided evidence that
aspartate synthesis pathway is specifically altered in
tumorous cell line and thus it is involved in the
prostate cancer progression.

DISCUSSION

The key biochemical feature of prostate cancer cells
is a steep decrease in intracellular zinc(IT) and citrate
levels. Metabolic transformation leading to the attenu-
ation of zinc concentration with subsequent triggering
of citrate oxidation is fundamental for the manifesta-
tion of malignant phenotype [22]. Consequently, it is
intriguing to apply this relationship to treatment or
prevention of prostate cancer. Our approach in this
study was to constitute conditions that would enforce
the accumulation of zinc(Il) into the malignant cells
and to assess consequences of such accumulation for
malignant metabolism (Will an artificial intracellular
increase of zinc cause a change towards a benign
metabelism?}. PNT1A, 22Rv1, and PC-3 prostatic cell
lines— depicting different stages of the cancer disease
progression—and their previously created =zinc-
resistant counterparts have been used [13]. We have
confirmed the higher ability of zinc-accumulation in
resistant cell lines (see Fig. 1A). It can be assumed that
long-term exposure to excessive zinc(Il) is able to
exhaust the capacity of cellular zinc(Il} exporters
and cells are then forced to accumulate this metal
and to trigger intrinsic mechanism for coping with it.
Universal mechanisms of coping with increasing
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intracellular zinc(Il) concentrations include free zinc
ions chelation by metallothionein and an enhance-
ment of the antioxidant capacity. These effects were
previously observed in several laboratories, including
ours [13,23,24]. The maximal increase in intracellular
zinc concentration was achieved in zinc-resistant
22Rv1 derived from primary tumor of prostate (up to
1800 png/g). High zinc tolerance in primary tumor
cells (especially in comparison with metastatic coun-
terparts) may result from adoption and enhancement
of inherited capabilities of benign secretory epithelial
cells. These cells are highly specialized and evolved
for zinc accumulation [25]; therefore, they can exploit
protective mechanisms against the toxic effects of
zinc. On the contrary, prostate cancer cells derived
from bone metastasis (PC-3 cells) no longer need to
cope with high zinc concentrations in prostate gland
and hence are more sensitive to zinc(IT).

The main focus of this study was to assess
“benign” and “malignant” metabolic profiles. Clarify-
ing of metabolic shifts triggered by carcinogenesis is
relevant for diagnostic purposes and can also eluci-
date the molecular basis of malignant processes,
which could possibly result in new therapeutic
options. In this study, tumorous cell lines displayed
higher expression of SOX2 gene, higher accumulation
of aspartate and sarcosine and lower levels of threo-
nine, alanine, methionine, leucine, phenylalanine, and
lysine as compared to benign PNT1A. SOX2 is a core
transcription factor involved in self-renewal and
pluripotency of tumor cells and was reported to be
involved in malignant transformation of prostate
tissue [26,27] which is in full accordance with our
results. SOX2 expression plays a significant role in
cancer phenotype, as it was in a strong correlation
with linkage distance depicting the degree of devia-
tion from benign metabolism represented by PNT1A
cells (see Fig 3B). With regard to sarcosine and
aspartate, we have previously shown that these amino
acids affect the progression and migration capacity of
prostate cancer cells [9]. Aspartate is usually synthe-
sized in the mitochondrial matrix with the help
of malate dehydrogenase (MDH2} and glutamic-
oxalpacetic transaminase 2 (GOT2). Nevertheless, the
shift in the NAD+/NADH balance after OXPHOS
attenuation in healthy prostate secretory cells can
inhibit MDH2 and consequently aspartate synthesis
in mitochondria [28,29]. Accordingly, aspartate was
considered as an essential amino acid for healthy
prostate cells [30,31]. Moreover, healthy prostate cells
utilize large amounts of aspartate as the carbon
source for citrate production [32]. Support of aspartate
biosynthesis in proliferating cells was recently revealed
as a key activity of respiration [28,33]. Excessive
aspartate accumulation accompanied by depletion of
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Fig. 4. Crucial role of aspartate in prostate cancer metabolism. Amino acid contributors for Asp synthesis based on amino acid ratios
and receiver operator statistics (see Fig. 3 and Table I). Asterisk indicates amino acid whose Asp/amino acid ration differs significantly
between non-tumor and tumorous cells. «-KG, w-ketoglutarate; OAA, oxaloacetate; MDH2, malate dehydrogenase; GOT2, glutamic-

oxaloacetic transaminase 2.

several essential amino acids (threonine, lysine, leu-
cine, phenylalanine, and methionine) suggests activa-
tion of aspartate biosynthesis through enhancement
of MDH2/GOT2 activity in prostate cancer cells
with renewed Krebs cycle and OXPHOS [28,29]; see
Figure 4. In accordance, oncogenic KRAS, a common
feature of prostate cancer, plays a role in redirecting of
glutamine metabolism toward aspartate produc-
tion [34,35]. Moreover, high levels of MDH2 were
associated with poor prognosis in prostate cancer
patients [36]. Based on our previous data, we exam-
ined selected product/precursor ratios for associations
with a malignant phenotype by multifactorial ANOVA
and ROC analysis. Aspartate/threonine, aspartate/
methionine, and sarcosine/serine ratios demonstrated
high levels of sensitivity and specificity in distinguish-
ing cancer and benign metabolism. Qur observation
also confirmed the potential for threonine, tyrosine,
and methionine restriction as a promising approach in
prostate cancer treatment [37—42], especially because
methionine is limiting factor for GSH and metallothio-
nein synthesis [43] associated with cisplatin resis-
tance [16].

Last, but not least, short- and long-term zinc treat-
ments were shown to redirect cell metabolism from
benign to more malignant type (see Fig. 3B). Zinc has
long been associated with prostate health [22], but our
findings contradict this statement as well as results of
some other studies [44-46]. According to our results,
resistant cells markedly increased their IC50 for
cisplatin: by 1.4-, 1.6, and 1.6-fold for PNT1A, 22Rv1,
and PC-3, respectively [21] and their ability to invade.
Moreover, long-term application of high concentration
of zinc significantly enhanced synthesis of glutathione
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(GSH) (see Fig. 1C), which could result in triggering
of molecular mechanisms underlying the stemness
and pluripotency [47-49]. Accordingly, we observed
increasing number of polyploid giant cancer cells
(PGCCs) in our zinc-resistant PC-3 cell line. Due to
their possible stem cell-like properties, these PGCCs
cells could represent an escape route to survive a
genotoxic stress and to enhance aggressiveness of
cancer cells [50-52]. Increased cellular antioxidant
capacity and higher gene expression of treatment
resistance-, pluripotency-, and stemness-associated
genes BIRCS, POUSFI, and SOX2 were other conse-
quences of zinc-resistant phenotype showing potential
danger of long-term zinc supplementation.

CONCLUSIONS

In this study, we demonstrated that an intriguing
idea to reestablish intracellular zinc concentrations in
prostatic tumors does not restore benign phenotype in
malignant prostate cells. Conversely, this approach
drives tumor cells toward a higher level of aggres-
siveness and resistance through the activation of
pluripotency- and stemness-associated regulatory
molecules. Furthermore, changes of amino acid levels
triggered by carcinogenesis and/or resistance are
relevant for diagnostic purposes and may elucidate
the molecular basis of malignant processes, which
could possibly result in new therapeutic options.
Ratios of certain logically-related amino acids may
then be a sensitive indicator of the malignant pheno-
type. Moreover, the restriction of essential amino
acids, such as threonine or methionine, or the inhibi-
tion of aspartate synthesis may be a promising
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approach for the prostate cancer therapy with mini-
mal toxic side effects.
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4.4.2 Cellular Amino acid levels associated with cancer progression

A dysregulation of amino acid profiles was described in a previous study [95], chapter 4.4.1,
highlighting specifically a role of alanine, methionine leucine, lysine and threonine for prostate
cancer cells characteristic by high aggressiveness in vitro. In the following study an effect of
amino acids on prostate tumors is analysed from a different perspective: Recently, a role of non-
coding amino acid N-methyl glycine (sarcosine) was related to prostate cancer progression [96].
Specifically, an elevated levels of this amino acid were described in metastatic tumors. There-
fore, exogenous supplementation of amino acids — precursors of sarcosine metabolic pathway
— was performed and levels of the coding amino acids were monitored together with analysis
of cancer cell migration and division rate in vitro.

The data observed in this study [97] indicate that the production of sarcosine by prostate cancer
cells is inducible by its amino acid precursors — glycine, and, in particular dimethylglycine. The
treatments by these precursors further modify the levels of coding amino acids in cancer cells,
enabling to differentiate cell lines of different degree of in vitro aggressiveness. In both, treated
and untreated PC-3 cells significantly higher levels of serine, glutamic acid, and aspartate,
linked with prostate cancer progression were found. These phenomena followed migration rates
of these cells: The highest migration of metastatic cancer cells PC-3 was induced by sarcosine
and glycine. The highest cell division was achieved after treatment of 22Rvl and PC-3 cells
with sarcosine [97].

In the context of the previous study focusing on the association of amino acid patterns and
prostate cancer aggressiveness [95] and together with the findings that the cells differ also in
Young modulus, cell dry mass, stemness-like phenotype and higher migration rates, data indi-
cate that alterations of amino acid metabolites is inextricably associated with the changes in cell

mechanical properties in prostate tumors.
HEGER, Z., J. GUMULEC, N. CERNEI, H. POLANSKA, et al. Relation of exposure to amino

acids involved in sarcosine metabolic pathway on behavior of non-tumor and malignant pros-

tatic cell lines. Prostate, May 2016, 76(7), 679-690.
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BACKGROUND. Sarcosine (N-methylglycine) was previously delineated as a substantial
oncometabolite of prostate cancer (PCa) and its metabolism seems to be significantly
involved in PCa development and behavior.

METHODS. We focused on investigation whether the exposure of prostate cells
(PNT1A, 22Rv1, and PC-3) to sarcosine-related amino acids (glycine, dimethylglycine,
and sarcosine) affects their aggressiveness (cell mobility and division rates, using real-
time cell based assay). The effect of supplementation on expression of glycine-
N-methyltransferase (GNMT) mRNA was examined wusing qRT-PCR. Finally,
post-treatment amino acids patterns were determined with consequent statistical
processing using the Ward’s method, factorial ANOVA and principal component
analysis (P < 0.05).

RESULTS. The highest migration induced sarcosine and glycine in metastatic PC-3 cells
(a decrease in relative free area about 53% and 73%). The highest cell division was
achieved after treatment of 22Rvl and PC-3 cells with sarcosine (time required for
division decreased by 65% or 45%, when compared to untreated cells). gRT-PCR revealed
also significant effects on expression of GNMT. Finally, amino acid profiling shown
specific amino acid patterns for each cell line. In both, treated and untreated PC-3 cells
significantly higher levels of serine, glutamic acid, and aspartate, linked with prostate
cancer progression were found.
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CONCLUSIONS. Sarcosine-related amino acids can exceptionally affect the behavior of

benign and malignant prostate cells. Prostate 76:679-690, 2016.

KEY WORDS:
prostate cancer

INTRODUCTION

The amino acid sarcosine is currently studied as a
potential biomarker for the early stages of prostate
carcinoma (PCa). Even though the linkage of sarcosine
with PCa development and its potential in a diagnosis
of early stages of tumors was described [1,2], its usage
as a marker remains still unclear [3,4]. Hence, it is
necessary to study the fate of sarcosine and other
amino acids, which act as the intermediate products
of tumor metabolism in PCa. Formation and oxidation
of sarcosine occurs in mitochondria and are provided
by two basic pathways (schematically depicted in
Fig. 1), where sarcosine can be simultaneously pro-
duced from dimethylglycine (Dmg) or glycine. The
first pathway involves repeated methylation of

© 2016 Wiley Periodicals, Inc.

cancer metabolism; dimethylglycine; folate; glycine; sarcosine pathway;

phosfatidylethanolamine (PE) by S-adenosylmethio-
nine (SAM) to form phosphatidylcholine (PC) with the
resulting intermediate product betaine. This reaction
forms Dmg and regenerates methionine from homo-
cysteine. The Dmg is subsequently converted to sarco-
sine via dimethylglycine dehydrogenase (DMGDH) [5].
The second metabolic pathway creates sarcosine
during the transformation of the methyl group of
S-adenosylmethionine catalyzed by the enzyme glycine
N-methyltransferase (GNMT) [6,7]. These two reactions
ultimately produce 5,10-methylenetetrahydrofolate and
are dependent on oxidized flavine cofactors (e.g.,
flavine adenine dinucleotide) [5].

GNMT acts as an essential enzyme that influences
synthesis of sarcosine [8]. Due to properties of GNMT,
its excessive production causes conversion of glycine

3
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Scheme of metabolical pathway of sarcosine biosynthesis and degradation to its non-methylated precursor—glycine and its

connection to other important metabolical pathways. Enzymes in scheme are numbered and depicted as follows: |, DMGDH,
dimethylglycine dehydrogenase; 2, GNMT, glycine-N-methyltransferase; 3, SARDH, sarcosine dehydrogenase; 4, SHMT /2, serine
hydroxymethyltransferase; 5, |1, MTHFR, 5,10-methylenetetrahydrofolate reductase; 6, MTR, methionine synthase; 7, BHMT, betaine-
homocysteine methyltransferase; 8, CHDH, choline oxidase; 9, MAT, methionine adenosyltransferase; |0, SAM-dependent methyltransfer-
ase; ||, PEMT, phosphatidylethanolamine methyltransferase; 12, AHCY, S-adenosylhomocysteine hydrolase; |3, CBS, cystathionine (3-
synthase; 14, CTH, cystathionase; |15, GCL, glutamate-cysteine ligase; |16, GSS, glutathione synthetase; 17, CDOI, cysteine dioxygenase |;
18, CSAD, cysteine sulfinic acid decarboxylase; |9, GOTI, glutamate oxaloacetate transaminase |. Dmg stays for dimethylglycine, SAM for
S-adenosyl-methionine, SAH for S-adenosyl-homocysteine, PE for phosphatidylethanolamine, PC for phosphatidylcholine, and THF for

tetrahydrofolate.
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to sarcosine and elevates the sarcosine levels in urine.
This makes sarcosine interesting in the field of non-
invasive cancer biomarkers. Thus, sarcosine appears
to be not only a non-proteogenic amino acid but also
an important metabolite in oncogenesis. According to
Sreekumar et al, the elevated levels of sarcosine
correlated with progression of prostate cancer and
metastatic process [9] and accordingly, it has been
revealed that supplementation of sarcosine to prostate
cancer cell lines induced a selection of invasive
phenotype in culture [10]. Nevertheless, the explana-
tion for these phenomena remains unclear. Moreover,
the metabolic fate of sarcosine in prostate cancer cells
has not been fully resolved yet.

Therefore, the insight into the metabolic pathways
of sarcosine and the mechanisms of its regulation are
required to be investigated. This study is aimed to
evaluate the effects of treatment of three prostatic cell
lines (a “non-tumor” PNT1A, a primary tumor-
derived 22Rvl and metastasis-derived PC-3) with
three sarcosine-pathway-related amino acids (glycine,
dimethylglycine, and sarcosine) on the cell cancer-
geneous status. The evaluation was carried out using
as a combination of assays determining the effects of
these amino acids on the expression of GNMT
mRNA, cell migration, invasiveness, their division
and growth capabilities.

EXPERIMENTAL SECTION
Chemical Compounds

All standards and other chemicals were purchased
from Sigma-Aldrich (St. Louis, MO) in ACS purity,
unless noted otherwise.

Prostatic Cell Lines

Three human prostatic cell lines were used in this
study: (i) the PNT1A human cell line established by
immortalization of normal adult prostatic epithelial
cells by transfection with a plasmid containing SV40
genome with a defective replication origin. The pri-
mary culture was obtained from the prostate of a
35-year-old male post mortem; (ii) 22Rv1 which is a
human prostate carcinoma epithelial cell line derived
from a xenograft that was serially propagated in
mice after castration-induced regression and relapse of
the parental, androgen-dependent CWR22 xenograft.
(iif) The PC-3 human cell line established from a grade
4 androgen independent and unresponsive prostatic
adenocarcinoma from 62-year-old Caucasian male and
derived from metastatic site in bone. All cell lines used
in this study were purchased from Health Protection
Agency Culture Collections (Salisbury, UK).
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Culture Conditions

PNT1A and 22Rv1 cells were cultured in RPMI-1640
medium with 10% fetal bovine serum (FBS). PC-3
cells were cultured in Ham’s F12 medium with 7%
fotel bovine serum (FBS). All media were supple-
mented with penicillin (100U/ml) and streptomycin
(0.1 mg/ml), and the cells were maintained at 37°C in a
humidified incubator (Sanyo, Moriguchi, Japan) with
5% CO,. The treatment with amino acids was initiated
after cells reached ~60-80% confluence. Cells were then
harvested and washed four times with PBS, pH 7.4.

Cell Content Quantification

Total cell content was analyzed using Casy model
TT system (Roche Applied Science, Penzberg,
Germany}. To prepare a viable cell standard, 100 pul
cell suspension was mixed with 10ml Casy Tene. All
subsequent measurements were performed on 100x
diluted 100l cell suspension. Prior each measure-
ment, background was subtracted.

Measurements of Cell Viability—MTT Assay

The suspension of 10,000 cells was added to
each well of standard microtiter plates (E-plates 16).
After addition of medium (200 pl), plates were incu-
bated for 2 days at 37°C to ensure cell growth. To
determine the effects on cell viability, the amino acids
(sarcosine, glycine, and dimethylglycine) in concen-
tration 0-3 mmol/]1 were used. Plates were incubated
for 24hr; then, media were removed and replaced by
a fresh medium, three times a day. Further, a medium
was replaced by 200 pl of fresh medium containing
50l of MTIT (5mg/ml in PBS) and incubated in a
humidified atmosphere for 4hr at 37°C, wrapped in
aluminum foil. After the incubation, MTT-containing
medium was replaced by 200ul of 99.9% dimethyl
sulphoxide to dissolve MTT-formazan crystals. Then,
25ul of glycine buffer (pH 10.5) was added to all
wells and abserbance at 570 nm was immediately
determined (VersaMax microplate reader, Molecular
Devices, Sunnyvale, CA).

In Yitro Wound-Healing Assay

The cells were pipetted into 16-well plate to reach
the confluence ~80%. After seeding of cells on the
bottom of a plate, a pin was used to scratch and
remove cells from a discrete area of the confluent
monolayer to form a cell-free zone. After that, cells
were re-suspended in a fresh medium enriched with
sarcosine, glycine, and dimethylglycine (1.5 mmol/1).
After 24hr, the pictures of cells were taken and
compared with pictures obtained in Ohr, using
TScratch software (CSElab, Zurich, Switzerland).
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Growth and Proliferation Assay Using Real-Time
Cell-Based Assay

The real-time cell-based assay (RTCA) was carried
out using the xCELLigence system (Roche Applied
Science and ACEA Biosciences, San Diego, CA). After
seeding the total number of cells (10,000) in 100 ul
medium to each well in E-plate, the attachment,
proliferation and spreading of the cells was monitored
every 15min. After 24hr, amino acids (1.5mmol/1) or
MiliQ water (control measurements) were added and
cell impedance was monitored for 250h. For evalua-
tion of exposure, a “doubling time” function, describ-
ing the cell division rate, was employed.

Isolation of RNA and Reverse Transcription

High pure total-RNA isclation kit (Roche, Basel,
Switzerland) was used for isolation of cellular RNA.
The medium was removed and samples were twice
washed with 5ml of ice-cold PBS. Cells were scraped
off, transferred to clean tubes and centrifuged at
20,800¢ for 5min at 4°C. After this step, lysis buffer
was added and RNA isolation was carried out from
22Rv1, PNT1A, and PC-3 according to manufacturer’s
instructions. Isolated RNA was used for cDNA syn-
thesis. RNA (500 ng) was transcribed using transcrip-
tor first strand ¢cDNA synthesis kit (Roche} according
to manufacturer’s instructions. Prepared <DNA
(20 ]y from total-RNA was diluted with RINase-free
water to a total volume of 100l and 5wl of this
solution was directly analyzed by g-PCR.

Quantitative Polymerase Chain Reaction (q-PCR)

g-PCR was performed using the TagMan gene
expression assay system with the Lightcycler 480 II
RT-PCR system (Roche, Basel, Switzerland) and the
amplified DNA was analyzed by the comparative
Ct method using f-actin as a housekeeping gene.
The primer and probe sets for S-actin (assay ID:
Hs99999903_ m1l) and GNMT (Hs00219089-m1) were
selected from TagMan gene expression assays (Life
Technologies, Carlsbad, CA). g-PCR was performed
under the following amplification conditions: total
volume of 20pl, initial incubation 50°C/2 min
followed by denaturation 94°C/10 min, then 40 cycles
94°C /10sec, 60°C/1 min.

Preparation of Cell Lines for Determination of
Patterns of Cellular Amino Acids

The harvested cells were frozen in liquid nitrogen to
disrupt their structure. The frozen sample was homog-
enized using ultrasonic homogenizer SONOPLUS
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mini20 (Bandelin Electronic, Berlin, Germany). Subse-
quently, 1ml of 0.2M phosphate buffer (pH, 7.0) was
added and the sample was homogenized for 5min.
The homogenate was further centrifuged using Micro-
centrifuge 5417R under the following conditions at
4°C for 15min. Finally, the supernatant was filtered
through a membrane filter (0.45-pm nylon filter disk;
Millipore, Billerica, MA) and analyzed.

lon-Exchange Chromatography

Amino acids including sarcosine were determined
using ion-exchange chromatography with Vis detec-
tion after post-column derivatization with ninhydrin
(AAA-400, Ingos, Prague, Czech Republic), following
conditions employed in our previous study [3].

Quantification of Total Protein in Cell Lines

Total protein was determined using the SKALAB
CBT 600T kit (Skalab, Svitavy, Czech Republic), on
automatic spectrophotometer BS-400 (Mindray, Shenz-
hen, China), following the manufacturer’s instructions.

Statistical Analysis

Prior all analyses, data were standardized. Correla-
tion analysis followed by hierarchical clustering using
the Ward’s method was exploited to reveal dependen-
cies between variables. To analyze the effects of cell
line, amino acid used for treatment and the concentra-
tion of amino acid used for treatment, factorial
ANOVA was used. To reveal dependences in complex
data, principal component analysis was employed.
Unless noted otherwise, the threshold for significance
was P<0.05. For analyses Software Statistica 12
(StatSoft, Tulsa, OK) was employed.

RESULTS

Cytotoxicity of Sarcosine, Glycine, and
Dimethylglycine on Prostate Cells

In the first step, prostatic cell lines were tested for
their susceptibility to applied amino acids using MTT
assay. Figure 2A-C illustrates that treatment with
glycine (Gly), sarcosine (Sar), and dimethylglycine
(Dmg), respectively, resulted in low or no inhibition
of cell lines growth, observed particularly by the
highest applied concentration or above the used
concentration range (2.0-3.5 mmol/1). The found data
were further employed to design the experimental
workflow. Because the undesired cytotoxicity can
affect performance of further analyses, concentrations
not exceeding 1.5mmol/1 were utilized for subse-
quent treatments only.
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Fig. 2. Viability assay data of (A) PNTIA, (B) 22Rvl, and (C) PC-3 cells after application of glycine, sarcosine, and dimethylglycine
(0.0-3.5 mmol/l). Growth inhibition in each treatment is expressed as a percentage of the control (untreated) cells. The data shown were
obtained by the MTT assay. Values are means of three independent replicates (n = 3).

An Effect of Sarcosine, Glycine, and
Dimethylglycine on Growth Properties of
Prostate Cells

The growth of the cells were tested using wound-
healing assay (Fig. 3A), which is an easy, low-cost and
well-developed method to measure cell migration in
vitro [11]. After formation of a new artificial gap on a
confluent cell monolayer and subsequent supplementa-
tion with 1.5mmol/1 of sarcosine, glycine, or dimethyl-
glycine, it was found that the cell migration was
induced distinctly by sarcosine and glycine in PC-3
(relative free area of 53% and 73%, respectively) and
22Rv1l cells (57% and 87%), which is shown in
Figure 3B. Contrary to that, dimethylglycine treatment
suppressed migration in 22Rvl and PC-3 (150% in
22Rv1l and 202% in PC-3), whereas the treatment of
PNTIA led to increase in cell migration (80%). Using
the real-time cell-based assay, we also focused on
investigation of the effects of sarcosine, glycine, and
dimethylglycine on the division rates of the tested
prostate cells. As shown in Figure 3C, the most
significant effects were achieved after cultivation with
exogenously added sarcosine, which resulted in eleva-
tion of a division rate of 22Rv1 and PC-3 cell lines (time
required for their division was 65% and 45%, respec-
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tively). Furthermore, the 22Rv1 cells were also boosted
by treatment with glycine and dimethylglycine.

An Effect of Treatment of Prostate Cells With
Sarcosine, Glycine, and Dimethylglycine on
Expression of mRNA of Cellular GNMT

The results shown in Figure 4A demonstrate that
relative expression of GNMT mRNA differs among
the tested cell lines. The lowest GNMT mRNA
expression was identified in non-malignant PNT1A
cells, followed by metastatic PC-3 and primary tumor
22Rv1 cells, which corresponds to the known fact that
GNMT over-expression is associated with the cancer
cells more than with the non-tumor ones [12]. In
the case of PC-3 cells, glycine treatment induced
significant down-regulation of GNMT mRNA. Similar
effect was observed in 22Rv1 cells, where 0.1 and
0.5mmol/l of glycine stimulated expression of
GNMT, however, higher applied concentrations
resulted in down-regulation as in PC-3 cells. The
highest increase in GNMT mRNA expression by
glycine was found in PNTIA cells; nevertheless, the
higher concentration (1.0 and 1.5mmol/l) led to a
decrease in GNMT mRNA expression (Fig. 4B). Con-
trary to relatively low effects of glycine, sarcosine
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Fig. 3. Cell growth and invasiveness. (A) Growth of cell lines after treatment of amino acids compared to untreated cells. Displayed as a

relative impedance (cell index). The effect of amino acids on (B) cell mobility, assessed by wound-healing assay, NT stands for no amino
acid treatment (as reference free areas in NT cell lines were employed) and (C) the cell division rate (related to cell division rate of cells
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application of 1.5mmol/l of each amino acid. Values are means of three independent replicates (n=3). Vertical bars indicate standard

error.

supplementation mostly induced down-regulation of
GNMT gene among all tested cell lines (PNT1A > PC-
3>22Rvl) (Fig. 4C). Dimethylglycine treatment stim-
ulated expression of GNMT mRNA in PNTIA cells,
whereas this amino acid inhibited expression of
mRNA of this enzyme in primary tumor (22Rv1) and
metastatic cell lines (PC-3) (Fig. 4D). Taken together,
the results demonstrate that supplementation of cells
with even low concentrations of sarcosine and its
pathway-related amino acids is able to trigger over-
expression of GNMT (particularly in the case of
dimethylglycine in PNTIA cells) or its down-regulation
during treatment of PC-3 cells with glycine, sarcosine
and dimethylglycine or, 22Rv1 cells supplemented
with sarcosine and dimethylglycine.

Analysis of the Effect of Treatment of Prostate
Cells With Sarcosine, Glycine, and
Dimethylglycine on Patterns of Cellular
Amino Acids

In the next step, the effect of treatment with
glycine, dimethylglycine and sarcosine on the spec-
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trum of amino acids in the tested prostate cell lines
was analyzed. The correlation heatmap showing the
response of cellular amino acid spectra to exposure of
cells with sarcosine, glycine, and dimethylglycine is
shown in Figure 5A. There was a significant positive
correlation of all supplemented amino acids with
intracellularly measured ones; r=0.62, 0.38, and 0.48
at P < 0.05 for glycine, dimethylglycine, and sarcosine,
respectively. Based on factorial ANOVA, a significant
effect of all prediction factors on the amino acid
pattern was found as follows: cell line F(28,
144) =136.6, P < 0.001 (Fig. 5C), amino acid used for
treatment F(38, 144)=28.66, P <0.001 (Fig. 5D) and
the concentration of treatment F(76, 286)=72,
P <0.001 (Fig. 5E). The combined effect of all
three variables was significant, F(304, 930)=27,
P <0.001, too. Noteworthy, the highest sarcosine
levels were found in 22Rv1l (mean in untreated
cells 3.12 pmol/mg of total protein), followed by PC-3
(178 pmol/mg  of total protein) and PNTIA
(0.84 wmol/mg of total protein), which corresponds to
the expression of the GNMT gene. Inasmuch, glycine,
sarcosine, and dimethylglycine treatment led to large
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changes in amino acid patterns in the cells (for details,
see Table S1 in supplementary data). The obtained
data indicate that the cell line type is highly specific
for its amino acid pattern and this pattern is signifi-
cantly influenced by amino acid supplementation.

Characterization of Patterns of Cellular
Amino Acids

The previous analyses did not sufficiently highlight
trends and relationships in the complex amino acid
profile of the cell lines. Therefore, correlations among
the individual amino acids detected in the cells were
performed (Fig. 5B). Based on the results found by
correlation analyses, amino acids can be divided into
three clusters: cluster Lys, His, Dmg, Sar, Cys (cluster
1 in Fig. 5B), which is characterized by minimal
correlations between these amino acids. The other
two clusters, Phe, Ile, Ala, Arg, Thr (cluster 2 in
Fig. 5B) and Tyr, Leu, Gly, Val, Met, Pro, Glu, Ser, Asp
(cluster 3 in Fig. 5B) are characterized by strong
correlation between those amino acids. A specific
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correlation pattern is apparent for sarcosine and
cysteine, which demonstrate a negative correlation
with all other amino acids except themselves.
Nevertheless, the correlation analysis did not allow
to interpret complex multidimensional relationships
between the amino acids’ levels after the treatment of
cells with sarcosine, glycine, and dimethylglycine—so
called “amino acid patterns” of cell lines. Therefore,
the principal component analysis was used. The
component analysis allowed us to detect the structure
in relationships between amino acid levels, and thus
helped us to reveal characteristic patterns for the
respective cell lines—non-tumor, primary tumor, and
secondary/metastatic tumor cells. A two-factor model
was employed with the eigenvalue 3.61, thus 49.4% of
total variability of data (30.4 and 19.0 for factors 1 and
2, respectively) is explained. First, cases (cell lines, and
amino acids used for supplementation) were projected
into a factor plane (Fig. 6A). A color-coding by the cell
line revealed a significant clustering of cell lines by a
factor 2, whereas non-tumor PNT1A cells are clustered
rather by positive values of factor 2, metastatic PC-3
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Effect of treatment with glycine, dimethylglycine, and sarcosine on the cellular amino acid profile. (A) Heatmap showing clustered

correlation analysis of amino acids used for treatment and amino acids profile measured in cells. Note the differential response of individual
cell lines. (B) Heatmap showing correlation of amino acid profile measured in all three cell lines. Notice the differential negative correlation
of sarcosine and cysteine with the majority of other amino acids. (C) Effect of the cell line on the level of amino acids, factorial ANOVA.
Notice the differential response of cysteine, sarcosine, dimethylglycine, glycine, lysine, and alanine compared to the remaining amino acids.
(D) Effect of amino acid used for treatment, factorial ANOVA. (E) Effect of concentration of the amino acids used for treatment, factorial

ANOVA. Error bars not displayed for purposes of clarity.

are associated rather with negative values of this
factor. Primary tumor 22Rv1 cluster is located between
PNTIA and PC-3. Thus, the second factor is consid-
ered as “non-malighant—aggressive tumor cluster.” In
the next step, cases were color-coded by the amino
acid used for treatment of prostate cell lines. This
correlated with factor 1 on a factor plane; for each cell
line the precursors—notably glycine was associated
with more negative values than sarcosine. Thus, this
factor was further designated as “precursor-product”
(Fig. 6B). When variables (i.e,, determined amino
acids) were plotted to this factor plane, a similar shift
is apparent (Fig. 6C). Whereas an amino acid pattern
of the non-tumor PNT1A cell line is associated rather
with negative values of factor 1, a metastatic-derived
PC-3 amino acid pattern is associated with positive
values of this factor, which corresponds also to
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“precursor” factor in Fig. 6B demonstrating sarcosine
connection to prostate cancer.

DISCUSSION

The metabolic abnormalities of prostate cancer cells
have not yet been fully elucidated [13]. Amino acids
play an important role in cellular physiology, since
they are involved in a number of fundamental
metabolic processes [14,15]. Thus, we have focused on
determination of response of the prostate cell biomo-
lecules involved in a sarcosine metabolic pathway to
supplementation of these cells with amino acids with
emphasis on sarcosine, a widely discussed biomarker
of PCa.

Only the high concentrations of sarcosine, glycine,
and dimethylglycine are toxic to the tested prostate
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cells. Their cytotoxic concentrations are in conformity
with those described by Stachlewitz et al, who
have found that only the high concentrations of
glycine (units of mM) are able to prevent increases in
Ca®" in cells, thereby inhibiting cell proliferation [16].
Likewise, we have found in our previous study,
focused on possible effects of sarcosine on PC-3 cells,
that only the high concentrations of sarcosine are able
to inhibit cell growth, as a result of disruption of
redox equilibrium [14]. Importantly, throughout our
study, supplementation of prostate cells with tested
amino acids did not exceed the concentrations of
1.5 mmol/l.

Sarcosine metabolism is suspicious to be an impor-
tant part of malignant transformation of prostate
cells. According to the changes in the cell mobility
and division rates, sarcosine and glycine, but not
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dimethylglycine, can stimulate the migration of ma-
lignant cell lines (22Rv1 and PC-3). These findings are
in agreement with a study carried out by Sreekumar
et al, who have found that direct addition of
sarcosine imparted an invasive phenotype to benign
prostate cells and the number of motile prostate cells
was significantly higher upon sarcosine treatment
(P=6.9977% n=10) [9]. Similar, to that, Khan et al.
demonstrated that addition of sarcosine to prostatic
GNMT knockdown cells partially rescued their inva-
sive properties, while addition of a sarcosine isomer,
alanine, failed to rescue the invasive phenotype [17].
Notably, both studies highlighted the role of glycine,
inducing invasion in the cells, however, to a lesser
degree than sarcosine. It is plausible that this phe-
nomenon is linked with the conversion of glycine to
sarcosine catalyzed by GNMT.
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Song et al. have reported that GNMT activity is
connected with the progression of prostate cancer [12].
In agreement with their data, we have shown that
GNMT mRNA expression is low predominantly in
benign prostate cells, whereas high in the malignant
cells. Hence, our results support the finding that
sarcosine, generated from glycine by GINMT could be
exploited as a PCa biomarker [3,9]. The GNMT
enzyme is expected to play a substantial role in
modulating prostate cancer cells invasion [18], and
thus can be involved in promotion of the oncogenic
potential of prostate cells with subsequent facilitating
conversion of glycine to sarcosine. We demonstrated
that dimethylglycine causes inhibition of GNMT
mRNA expression in malignant cells, however, benign
PNT1A were affected in a different manner. Increased
amount of endogencusly added dimethylglycine
can stimulate sarcosine formation through action of
dimethylglycine dehydrogenase (DMGDH), utilizing
dimethylglycine as a substrate, instead of GNMT;
nevertheless, whether the activity of DMGDH is
distutbed in prostate cancer cells is unknown. The
data found in the present work further illustrate that
applied sarcosine significantly inhibited expression of
GNMT in PNTLA cells, and to a lower extent in
malignant PC-3 and 22Rv1. Thus, it can be hypothe-
sized that by this kind of blocking, GNMT is not able
to catalyze transformation of sarcosine to glycine and
sarcosine can be thus accumulated in cancerous cells,
as was shown in many studies [2,9,19]. However,
plausible mechanism of this phenomenon is still not
defined. Treatment of cells with glycine triggered only
slight expression differences in GNMT, thus it can be
stated that its expression is not glycine inducible.
Our results illustrate the divergent significance of
GNMT among the prostate cell lines and confirm
the role of free amino acid pool as important meta-
bolic factor, influencing PCa cells as was suggested
by Fu et al. [15].

It has been shown that amine acids are substantial
for cellular physiology [20-22] and our results demon-
strate that free glycine and sarcosine can influence the
GNMT expression in PCa cells. Jain et al. have
revealed increased reliance of cancer cells on glycine
mitochondrial metabolic pathway, which involves
sarcosine and dimethylglycine [23]. Importantly, re-
cent works have identified that sarcosine and related
metabolites or their associated metabolic pathways,
are central to cancer metastasis [9], cellular transfor-
mation [24,25], or murine embryonic stem cell prolif-
eration [26]. Hence, we focused on patterns of amino
acids in prostate cell lines and on the effect of
exogenous supplementation with sarcosine-related
amino acids on amino acid patterns in these cells.
Qur profiling revealed unique amino acid patterns,
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exhibiting exceptional specificity toward prostate cell
types. This phenomenon is likely connected with
disturbances in carbohydrate, lipid, and protein
metabolism during oncegenesis. Considering the
Warburg effect [27], metabolic shifts in tumor cells
from respiration to fermentation should result in an
increased demand for consumption of amino acids
and complex metabolic derangements reflected by
alteration in amino acid patterns. Noteworthy, statisti-
cal processing of amino acid patterns revealed that
malignant cell lines (22Rv1 and PC-3) exhibit common
features in increased (Glu, Sar, Gly, Asp, Ser) and
decreased (Ala, Thr, Arg, Ile, Phe, Dmg) amino acids,
when compared to benign PNT1A cells (Fig. 5C).
First, our interest was caught by differences in
glutamic acid. This amino acid is a precursor for
glutamine in its interconvertible biosynthesis. In
cancer cells, glutamine is the primary mitochondrial
substrate, maintaining mitochondrial membrane po-
tential and integrity [28]. Moreover, it provides sup-
port for the NADPH production required for redox
control and macromolecular synthesis [29]. Our
results show that oncogenesis results in elevated level
of intracellular glutamic acid. This phenomenon is
likely connected with the fact that many of the
signaling pathways promoting oncogenesis also
reprogramms the glutamine metabolism. For instance,
Myc coordinates the reprogramming of metabolism to
depend on glutamine and to sustain cellular viability
and the citric acid cycle (TCA) anaplerosis through
carbon donatien [30,31]. Interestingly, glycine supple-
mentation led to a significant elevation of glutamic
acid levels within the cell lines; however, the reason
explaining this phenomenon is not yet clear. Taken
together, divergence in glutamic acid metabolism
supports the idea that interventions intoc metabolism
could be a potential therapeutic approach in PCa
management, as was shown by Wang et al. [32].
Figure 6C illustrates that contrary to benign pros-
tate cells, in malignant cells, glutamic acid essentially
shares similar distribution with glycine and serine.
Serine and glycine are linked biosynthetically.
They provide the precursors for the synthesis of
proteins, nucleic acids, and lipids [33]. Our results
show that cancer cells benefit from higher levels
of these amino acids. Serine biosynthesis is a compo-
nent of glycolysis-diverting pathways, resulting
in expression of phosphoglycerate dehydrogenase
(PHGDH), which is necessary to sustain cancer
growth and oncogenic transformation through
production of anaplerotic intermediate of TCA
a-ketoglutarate [34]. Serine also supports aerobic
glycolysis and lactate production by affecting the
activity of pyruvate kinase M2 (PKM2), converting
phosphoenolpyruvate to pyruvate and one molecule
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of ATP [35]. Glycine promotes tumorigenesis and
its upregulation correlates with cell proliferation
and poor prognosis. Its conversion significantly
contributes to the biosynthetic requirements of
purines, ATP and NADPH in cancer cells [23].

Elevated levels of aspartate in both types of malig-
nant prostate cells are likely related to glutaminolysis,
which lyses glutamine to citrate [36]. Such process
takes place in all proliferating cells and especially in
tumeoer cells, where the TCA is truncated due to an
inhibition of aconitase [37]. Aspartic acid, produced
from oxaloacetate during conversion of glutamate to
a-ketoglutarate is utilized as a precursor for synthesis
of nucleic acids and serine [38]. Taken together, both
malignant prostate cell lines exhibited high depen-
dency on glutamine metabolism, when compared to
benign ones.

Our data further indicate that glycine supplementa-
tion influences all prostate cell amino acid patterns
most effectively, which is likely due to a linkage with
serine biosynthesis. Glycine treatment also resulted
in elevation of amounts of amino acids connected
to glutamine metabolism. Hence, we put evidence that
glycine plays substantial role in prostate cells and
glycine deprivation (dietetic or enzymatic depletion)
may be a new strategy for human cancer therapy as
was described earlier [23,33,39]. On the contrary, the
highest increase in sarcosine concentrations was found
after supplementation with exogenous dimethylgly-
cine, whose role in prostate cancer development is not
vet well elucidated. Flevated sarcosine levels during
prostate cancer progression [3,9,17,19] are thus likely
associated with action of both substrates—glycine and
dimethylglycine and catalytic actions of corresponding
enzymes—GNMT and DMGDIH. One may speculate
that inhibition of those enzymes may be used in
prevention of prostate cancer.

CONCLUSION

The present study illustrates that exogenous sup-
plementation of prostate cells with amino acids,
closely related to sarcosine metabolism, can signifi-
cantly affect the expression of GNMT mRNA in tested
cells as well as their growth attributes. The results
found indicate that sarcosine production is triggered
by dimethylglycine treatment more than by glycine;
however, glycine, a well-known cancer-related metab-
olite, significantly influences the prostate cell amino
acid patterns. Above-mentioned data support the
studies, which demonstrate that the deprivation of
some amino acids can be helpful in management
of cancer and furthermore proves the elevated levels
of sarcosine in primary and secondary tumor cell
lines when compared with non-tumor ones, which
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corresponds to their GNMT expression levels. We
anticipate that sarcosine metabolic pathway is highly
important in prostate cancer behavior, and thus
further studies, dealing with involved amino acids
and their enzymes and also with inhibition of their
activity in relation to physical and molecular parame-
ters of prostate cells are strongly required to elucidate
this phencmencn. Moreover, it was shown that amino
acid patterns unequivocally describe if the prostate
cells demonstrate malignant or non-tumor parameters.
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4.4.3 Modulation of cell metabolic and mechanical properties as a drug target

Targeting of cancer cell migration and adhesion accompanied by or resulting in changes of cell
stiffness, as well as changes in differentiation and metabolic state is commonly used as an anti-
cancer strategy. Interestingly, the mechanism of action of some of the commonly used
anticancer agents exceeds their canonical mechanism. For instance, data indicate DNA damage
is not the only mechanism cisplatin; our previous study [2] in agreement with literature data
points out that that cisplatin induces the formation the actin stress fibers and thereby affects the
cytoskeleton and membrane mechanical properties [98-101]. The ability of cisplatin to modify
microtubule disassembly by direct tubulin modification was also shown [102]. Moreover, also
cancer cell metabolism is affected by this drug. In proliferating cancer cells, pyruvate is shifted
away from the tricarboxylic acid cycle and fermented into lactate. Cisplatin exerts an inhibiting
effect on glucose transport, glycolysis and lactate production and stimulates ROS generation by
OXPHOS which contributes to the mitochondrial dysfunction and cell death. Evidence on these

mechanisms are discussed in a following review [103].

RAUDENSKA, M., J. BALVAN, M. FOJTU, J. GUMULEC, et al. Unexpected therapeutic
effects of cisplatin. Metallomics, Jul 2019, 11(7), 1182-1199.
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Cisplatin is a widely used chemotherapeutic agent that is clinically approved to fight both carcinomas and

sarcomas. It has relatively high efficiency in treating ovarian cancers and metastatic testicular cancers. It is

generally accepted that the major mechanism of cisplatin anti-cancer action is DNA damage. However,

cisplatin is also effective in metastatic cancers and should, therefore, affect slow-cycling cancer stem cells

in some way. In this review, we focused on the alternative effects of cisplatin that can support a good

Recelved 6th March 2019,
Accepted 30th April 2019

DOI: 10.103%/cOmt00049f

therapeutic response. First, attention was paid to the effects of cisplatin at the cellular level such as
changes in intracellular pH and cellular mechanical properties. Alternative cellular targets of cisplatin, and
the effects of cisplatin on cancer cell metabolism and ER stress were also discussed. Furthermore, the

impacts of cisplatin on the tumor microenvironment and in the whole organism context were reviewed. In

rsc.li/metallomics

Introducticon

cis-Diamminedichloroplatinum(n) {NSC 119875), more often
called cisplatin, is a platinum coordination compound with a
planar geometry. Platinum is bound to two amine groups and
two chloride ions. Cisplatin is called the “‘penicillin of cancer”
because it is widely used in clinics and it was also the first
relevant chemotherapy drug in cancer therapy {FDA approved
cisplatin under the name of Platinol® for cancer treatment in
1978). Cisplatin has a water solubility of 2.53 g 1. " at 25 °C, a
melting point of 270 °C, a molecular weight of 300.01 mg mol *,
and a density of 3.74 g cm . Cisplatin is clinically approved to
fight both carcinomas and sarcomas and has relatively high
efficiency in treating ovarian cancers and metastatic testicular
cancers. Nevertheless, other tumor types such as head and neck
cancer, bladder eancer, lung cancer, or breast cancer also benefit
from a therapeutic regimen that includes this drug.'™ Cellular
accumulation of cisplatin happens by different mechanisms,
including passive diffusion and multiple transport systems such
as high-affinity copper uptake transporter 1 (hCTR1/SLC3141) or
some members of the SLC22 family.*
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this review, we try to reveal possible causes of the unexpected effectiveness of this anti-cancer drug.

It is generally accepted that the major mechanism of cispla-
tin anti-cancer action is binding of platinum to DNA by forming
intra-stranded and inter-stranded crosslinks. This DNA damage
then arrests the cell cycle and initiates cell death in fast
proliferating cells.” Nevertheless, before interaction with DNA,
cisplatin has to undergo the activation step which consists of
the chloro-ligand(s) replacement, usually by water molecules.
Depending on the pH value of the environment, the hydrated
complexes can be subsequently stabilized by deprotonation of
the aqua ligands or again passivated in the alkaline solution.*"?
various values of pK, were determined for cisplatin hydrates in
several studies. For example, the pK,, value of cis{PtCI{H,O){NH;),]"
was 6.41 in ref. 220 or 6.6 in ref. 219, the pK, value of cis-
[PH{H,0)2(NH ), " was 5.37 in ref. 220 or 5.5 in ref. 219, and the
pKa value of cis-[PtCI{H, O OH)}NH;),]" was 7.21 in ref. 220 or
7.3 in ref. 219. Furthermore, when cisplatin is administered as
an anti-cancer treatment, it is exposed to various endogenous
sulfur-containing molecules such as glutathione, metallothioneins
and thioredoxins, and it has been found that in 180 minutes almost
all the ligands are substituted by sulfur ligands.* In the cell,
cisplatin is colocalized with sulfurrich and phosphorus-rich
regions in the nucleus and cytoplasm. In the nucleus, most of
the platinum was associated with the nucleolus. Within the
cytoplasm, platinum mainly in the
organelles.*® Probably only 1-10% of intracellular cisplatin ends
up in the nucleus and reacts with DNA which leads to the cell cycle
arrest and initiates cell death in fast proliferating cells.”'****
However, cancer stem cells {CSCs) maintain a quiescent slow-
cycling state which protects them from the type of therapy targeting
fast proliferating cells. Quiescent CSCs have been proven in many
human malignancies and are probably the major cause of

accumulated acidic
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treatment resistance in metastatic cancers®” because CSCs can
survive chemotherapy with increased tumorigenic and invasive
potential.® Nevertheless, about 80% of patients with metastatic
testicular germ-cell tumors can be cured using cisplatin-based
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Fig. 1 Alternative effects of cisplatin. Cisplatin is known as a cytotoxic drug which kills cancer cells by damaging DNA. However, other interesting
mechanisms such as acidification of the cytoplasm, ER stress, disruption of RNA transcription, inhibition of important oncogenic proteins and decrease in
metabolic plasticity of cancer cells as well as changes in their mechanobiology should be considered as cisplatin has a pleiotropic effect on cellular
proteins significantly affecting their conformation and function. Cisplatin may also exert antitumor immunomodulation.

of the cellular pathways that could be influenced by cisplatin
may provide an important clue for the design of new cancer
treatment strategies. The alternative effects of cisplatin dis-
cussed in this review are summarized in Fig. 1.

chemotherapy.®® Why is cisplatin so effective? Recent studies

suggest that cisplatin could have other mechanisms of action . . .

and more variable cellular targets beyond nuclear DNA. There- Clsplatln and intracellular pH of tumor
fore, we will focus on the alternative effects of cisplatin that can ¢ al|g

reflect its good therapeutic response in this review. First, we
will pay attention to the effects of cisplatin at the cellular level;
then the whole organism context will be reviewed. Uncovering

The acid-base balance of tumor tissues is fundamentally
different from that in healthy tissues. Cancer cells tend to have

Metallomics, 2019, 11, 1182-1199 | 1183
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more alkaline intracellular pH {pH; = 7.12-7.7) compared to
healthy cells (pH; = 6.99-7.05) while producing acidic extra-
cellular pH (pH, = 6.2-6.9). In healthy tissues, the pH, value is
in the range of 7.3-7.4.1° This situation leads to an inverse pH
gradient {ApH; to ApH,) between the outside and inside space of
the cell, which can enhance proliferation, metabolic adaptation,
apoptosis resistance, migration, and invasion of cancer cells.!
Moreover, the inverse pH/pH; gradient influences the effectivity
of antineoplastic drugs. Many of them, such as doxorubicin,
mitoxantrone, paclitaxel, and vinblastine are weak bases which
are inactivated by protonation in the acidic microenvironment
surrounding the cancer cells. On the other hand, cisplatin which
is a weak acid has a better chance to concentrate on the more
alkaline intracellular space of tumor cells."*"

The aberrant regulation of hydrogen ion dynamics in tumor
tissues can be considered as one of the hallmarks of cancer.*®
Rapid cytoplasmic alkalization seems to be an oncogene-
dependent early event in the malignant transformation and
accounts for the increased activity of hydrogen ion extruders
such as the Na'/H" exchangers of the SLCO family."*™® An
increase in pH; above 7.2 facilitates the cell cycle progression
through the S and G2/M phases by increasing the activity of the
key mitotic regulators such as eyclin-dependent kinase 1 {CDK1)
and cyclin B1 (€CNB1).""® Changes in pH; seem to be a con-
served evolutionary mechanism for the regulation of mitosis and
meiosis.'® Furthermore, an alkaline pH; promotes glycolysis,*”
which may depend on the pH-sensitive activity of several glycolytic
enzymes. Optimal pH at 30 °C {pH;, optimurm) for the activity
of lactate dehydrogenase {LDH) by conversion of pyruvic acid
to lactate is within the range of 7.20-7.40 for all the LDH
isoenzymes.”® The LDH activity is elevated in many types of
cancers and has been linked to tumor growth and invasion.****
Moreover, intracellular alkaline pH prevents the progression of
apoptosis because pH; acidification is essential for the activa-
tion of caspases and endonucleases.***®

Recently, it was shown that cisplatin could significantly
affect the intracellular pH of cancer cells. Acidification of the
cytoplasm was described as a result of cisplatin treatment, as
demonstrated by in vitro and in vivo experiments.>®*” Although
the exact causes of this cytoplasmic acidification are yet to be
clarified, it is possible that this effect is associated with cisplatin-
caused inhibition of the proton estrusion and seems to be
independent of cisplatin-DNA adduct formation.”®”’ Indeed,
non-competitive inhibition of the Na'/H" exchanger 1 (NHE-1/
SIC9A1) by cisplatin was confirmed in the HT29 cells and
fibroblasts from the PS120 cell line.*”*® The activity of NHE-1
is typically increased in cancer cells™ and steadily increased pH;
has been shown in the cisplatin-resistant cell lines.”** The role
of NHE-1 in tumorigenesis may be essential because NHE-1-
deficient cells showed severe acidification of pH; and cell death
due to Ras oncogene overactivation.®” Thus, NHE-1 inhibition by
cisplatin can play an important role in its antineoplastic effect.

Further evidence that cisplatin has a significant effect on the
intracellular and extracellular pH of tumor cells is that proton
pump inhibition,* and also carbonic anhydrase 9 (CAIX/CA9)-
targeted therapy enhance the anti-cancer effects of cisplatin.®*

1184 | Metaliomics, 2019, 11, 1182-1199
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CAIX is a dimeric protein belonging to a family of zine-containing
enzymes that catalyze the reversible hydration of carbon dioxide
{CO,) to bicarbonate and protons {CO, + H,0 « HCO; + H).
CAIX can effectively utilize CO, to produce bicarbonate that is
delivered through the plasma membrane by the bicarbonate
transporter protein family NBC (NBC2/SLC4A5 and others).”*®
The protons produced by CAIX stay outside and increase the
acidosis of the tumor microenvironment. The intracellular
bicarbonate is converted back to CO, by cytoplasmic carbonic
anhydrase 2 {€A42) in a reaction that scavenges protons and
helps neutralize the intracellular pH. In summary, the CAIX
activity protects the cytosol from acidification, while contributing
to the acidosis of the extracellular microenvironment.*® Cisplatin
can also intervene in this mechanism, as sodium bicarbonate
cotransporter NBCnl {NBC3/SLC4A7) might be made unfunc-
tional by cisplatin treatment, for example, by its reduced plasma
membrane localization.*

In conclusion, the induction and maintenance of intracellular
alkalization and extracellular acidification has an important role
in the progression of the neoplastic transformation.*® Further-
more, low microenvironmental pH is a key factor for exosome
trafficking in tumor cells®>*° and some cancer cell-derived exo-
somes can increase treatment resistance of recipient cells.*'*
Due to cisplatin treatment, the pH gradient reversal in cancer
tissues can be abolished, and this can mean a major contribu-
tion to the treatment efficacy.

Cisplatin and cell metabolism

It is generally accepted that binding of cisplatin to the nuclear
DNA is mainly responsible for its antineoplastic effect. However,
cisplatin also forms a high amount of adducts in mitochondrial
DNA {mtDNA), because mitochondria are not able to carry out
nucleotide excision repair, and to effectively remove cisplatin-
mtDNA adducts compared to the nucleus. So, the possibility
shall not be excluded that mitochondrial DNA may also be an
important target of cisplatin. Actually, it has been shown that the
level of DNA adducts in mtDNA is higher than that in nuclear
DNA. This may be a consequence of both higher initial platinum
binding and inefficient removal of cisplatin-mtDNA adducts.***

Mitochondria are important for the energy supply and reg-
ulation of apoptosis. Apart from mtDNA adducts, cisplatin also
stimulates ROS generation, prompting oxidative alterations in
mitochondrial lipids, proteins, and mtDNA and inducing
apoptosis.*® Mitochondrial ROS generation is independent of
the amount of cisplatininduced damage of nuclear DNA. The
cytotoxic effect of cisplatin varies among cells and depends on
the mitochondrial redox status and integrity of mitochondrial
DNA.** Cisplatin may induce serious mitochondrial damage®®
and tumor cells with such damaged mtDNA showed delayed
tumor growth. Further tumorigenesis was conditioned by the
acquisition of mtDNA from the host cells.*”

Cancer cells were found to switch their cellular metabolism
to glycolysis. Moreover, glycolysis is uncoupled from the
mitochondrial tricarboxylic acid {TCA) cycle and oxidative
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phosphorylation in such cells. Consequently, lactate formation
increases. This metabolic phenotype is called the Warburg
effect. By restricting the input of pyruvate into oxidative meta-
bolism in mitochondria, the Warburg effect decreases the
mitochondrial ROS generation and increases the cell death
resistance and survival advantage for metastasis.*® Originally,
increased glycolysis in cancer cells under aerobic conditions was
misinterpreted as evidence for respiration damage. However, we
now understand that it reflects an altered regulation of glycolysis, not
respiration damage directly. The metabolic flexibility of cancer cells
allows the possibility to altemate between glycolysis and oxidative
phosphorylation.**”" However, cisplatin generates a high level of
oxidative stress which is accompanied by cytosolic and mitochon-
drial acidification, rapid shifts in carbon metabolism and severe
decrease of cancer cell metabolic plasticity.*®*'** Cytosolic acidifica-
tion is known to inhibit glycolysis in many ways, for example by the
reduction of the glucose transporters expression, and by the inhibi-
tion of phosphofructokinase {PFK) and other glycolytic enzymes,
while activating oxidative phosphorylation.***** Forced stimulation
of oxidative phosphorylation in cancer cells with cisplatin-damaged
mitochondria raises ROS production and oxidative stress and can
restore cancer cells' sensitivity to cell death.*® Accordingly, anti-
oxidants and mitochondrial uncoupling proteins neutralize
cisplatin-induced cytotoxicity in tumor cells and on the contrary,
lactate dehydrogenase or pyruvate dehydrogenase kinase 1 (PDK1)
inhibitors can further sensitize cancer cells to cisplatin,***%**=*

non-tumor tumor
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Cisplatin down-regulates the expression of many glycolysis-
related proteins, including hexokinases, phosphofructokinases,
pyruvate kinases, glucose transporters 1 and 4 {GLUT-1/SLC2A1
and GLUT-4/SLC2A4), and lactate dehydrogenase B {LDHE).>%*°
Consequently, lactate production is reduced after cisplatin treatment
in cancer cells.*’*® Lactate is probably a key signaling molecule in
the tumor microenvironment necessary for all main hallmarks
of carcinogenesis, including immune escape, angiogenesis, cell
migration, metastasis and self-sufficient metabolism.*** The
lactate levels are highly correlated with cancer aggressiveness,
and poor survival and reduction of lactate may have a beneficial
effect on the cancer therapy.”’®® The effect of cisplatin on
glucose metabolism is summarized in Fig. 2.

Other key signaling molecules in the cancer microenviron-
ment are ATP and adenosine. The ATP levels in the resting/
healthy tissues are very low {in the nanomolar range], whereas it
can reach hundreds of pmol L ' in stimulated or cancer
tissues.” Cell death-inducing chemotherapeutic agents such as
etoposide, oxaliplatin, cisplatin, staurosporine, and doxorubicin
may trigger the release of ATP from the tumor and dendritic
cells.®* Virtually, all tumor cell lines and many primary human
tumors express purinergic receptors and are sensitive to ATP.>
Nevertheless, the activation of purinergic receptors has very
heterogeneous and contradictory effects on tumorigenesis.®*
Some results suggest that cisplatin can induce a Cl current
by activating volume-sensitive chloride channels through the

itumor, cisplatin treatment
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Fig. 2 Changes in cancer metabolism; effect of cisplatin. In most healthy cells with ample oxygen supply, glucose is metabolized to pyruvate which is
transformed to acetyl-CoA by pyruvate dehydrogenase (PDH) for entering the respiratory chain. In proliferating cancer cells, increased expression of
pyruvate dehydrogenase kinases (PDKs) shifts the pyruvate away from the tricarboxylic acid (TCA) cycle by inhibiting its conversion to acetyl-CoA 85%
pyruvate in malignant cells is fermented into lactate and only 5% pyruvate goes into the TCA cycle by the Warburg effect. Cisplatin exerts an inhibiting
effect on glucose transport, glycolysis and lactate production and stimulates ROS generation by OXPHOS which contributes to the mitochondrial
dysfunction and cell death. Pyruvate dehydrogenase kinase 1 (PDK1) inhibitors can sensitize cancer cells to cisplatin.
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P2Y purinergic receptor pathway.*® Volume-sensitive chloride
channels are involved in the apoptotic cellular volume decrease
and cell death after cisplatin treatment.”®™ Interestingly,
ATP suppresses the antiproliferative activity of paclitaxel and
etoposide, while it enhances the antineoplastic effect of cisplatin
in human lung epithelial tumor cells.*®

Taken together, cisplatin exerts an inhibiting effect on
glycolysis and lactate production;®” it stimulates ROS genera-
tion and purinergic signaling and contributes to mitochondrial
dysfunction and cell death.**”® Targeting mitochondria and
lactate production seem to be an important contribution to the
treatment efficacy of cisplatin.

Cisplatin, endoplasmic reticulum, and
nucleus-independent apoptosis

Cisplatin can react with nucleophiles other than DNA. It was
reported that cisplatin could trigger apoptotic signaling inde-
pendently of nuclear DNA damage even in enucleated cells
through increased cytosolic calcium and calpain-dependent
activation of the ER-specific caspase-12.”%”* Cisplatin-mediated
activation of calpain protease was found to occur early in the
apoptotic process and to coincide with BH3-interacting domain
death agonist (BID) cleavage.”® In contrast to cisplatin, etoposide,
which is also a DNA-damaging agent, failed in inducing apoptosis
in these enucleated cells.”* Moreover, the inhibition of ER-specific
caspase-12 with the anti-caspase-12 antibody significantly decreased
cisplatin-induced apoptosis, indicating that ER stress is involved
in the cisplatin-induced cell death.”* Accordingly, the expression
of chaperone glucose regulated-protein 78 (GRP-78/HSPA5), which
is an ER stress marker, is up-regulated after cisplatin treatment.”
This phenomenon is probably not caused by reactive oxygen
species {ROS), because ROS scavenger N-acetyl cysteine (NAC) failed
to inhibit calpain activation and apoptosis in cisplatin-treated
cells and the presence of NAC did not affect the up-regulation
of GRP-78 levels after cisplatin treatment.”” These facts suggest
that the endoplasmic reticulum {ER) might be a non-nuclear
target of cisplatin. Disturbances in the normal functions of the
ER lead to a stress response because protein folding in the ER is
sensitive to various deleterious conditions such as ecalcium
concentrations, the redox state, misglycosylation of glyco-
proteins, and low ATP levels.”® The ER stress mechanism is a
key response to deleterious environmental factors and triggers
the unfolded protein response {UPR). A moderate UPR activation
enables compensation for damage and has an anti-apoptotic
role that enhances tumor cell survival and drug resistance.””
However, the compensatory phase of the ER stress response is
not limitless. When ER stress becomes severe, cell death is
triggered even in the presence of high levels of GRP-78.7% The
key factor in this phenomenon is the transcription factor CCAAT-
enhancer-binding protein homologous protein {CHOP/DDITS3).
The increased expression of CHOP triggers the activation of pro-
apoptotic pathways.”” Apparently, cisplatin treatment induces
significant ER stress followed by the upregulation of pro-
apoptotic signaling molecules CHOP or protein disulfide
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isomerase {PDI)." % Furthermore, cisplatin inhibits the expression
of X-chromosome- linked inhibitor of apoptosis protein {(XIAP).%**

Adaptation to ER stress depends not only on the activation of
the UPR but also on autophagy.® Knockdown of pa2 {adaptor for
autophagic degradation, SQSTM1) or the autophagy inhibitors
3-methyladenine and chloroquine increases the level of ubiqui-
tinated proteins, which elevates the ER stress and results in a
higher apoptotic rate of cancer cells treated with cisplatin.®**’
In conclusion, the activation of UPR and CHOP in various
cancer cell lines indicates that cisplatin may induce apoptosis
through the ER stress pathways.

Cisplatin and mechanical properties of
tumor cells

The cell has a complex internal structure that changes in response
to its microenvironment as well as to the physiological state.
Altered cellular functions can markedly remodel the cellular bio-
mechanical properties. The cellular shape, mechanical response,
and mechanical deformability are primarily determined by the
cytoskeleton. In concert with accessory proteins, the cytoskeleton
also plays a key role in important cellular processes such as
mechanotransduction, migration, and mitosis.*® The struc-
tures of the cytoskeleton, cellular membrane, and extracellular
matrix are transformed during cancer progression, which
changes the deformability of the cancer cells. As a result, the
motility of cancer cells can be different from that of normal
cells, causing them to migrate through the tissue to different
sites in the human body and inducing metastasis.5*®® 1t was
also shown that cytoskeletal remodelling is a key process in the
formation of cancer stem cells (CSCs).*! It seems that cisplatin
can strongly influence the actin stress fiber formation and
affects the cytoskeleton.”™® The actin cytoskeleton strongly
influences the membrane mechanical properties and is con-
nected to mechanosensitive channels and transporters, such as
NHE-1.”” The significance of this sodium/hydrogen exchanger
in carcinogenesis was discussed in the previous text. The ability
of cisplatin to modify microtubule disassembly by direct tubulin
modification was also shown. In contrast to cisplatin, carboplatin
did not produce microtubule disassembly abnormalities.®®
Accordingly, the treatment with cisplatin caused a significant
increase in the cell stiffness of the prostate cancer cells.”
Changes in the cell stiffness due to cisplatin treatment probably
do not result from metal accumulation in the cells because no
such increase was shown in the zinc-treated cells. Under cisplatin
treatment, the cytoskeletal tubules and filaments, which are
normally distributed as a gently organized network spreading
through the whole cytoplasm and forming delicate protrusions
such as filopodia, ageregated to dense areas on the leading edge
of the cell or to the cap-like structures around the nucleus. These
phenomena are dependent on the dose of cisplatin applied.”*
This effect of cisplatin was observable also in breast cancer cells,
where cisplatin produced changes in the cell morphology and the
actin cytoskeleton. These changes were manifested as a loss of
lamellipodia/filopodia and the appearance of membrane ruffles.
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The activation of acid sphingomyelinase {ASMase/SMPD1)
was shown to be required upstream of these morphological
changes.” Cisplatin activates ASMase and ceramide produc-
tion, which triggers the redistribution of CD95 into the plasma
membrane rafts. Such redistribution sensitizes tumor cells to
CD95-mediated apoptosis.”® Furthermore, cisplatin induces
dephosphorylation of the actin-binding protein ezrin {EZR),
and its relocation from the membrane to the cytosol.”* Cyto-
solic non-phosphorylated ezrin represents a dormant form
of ezrin,”® while phosphorylated {active) ezrin regulates the cytos-
keletal dynamics by cross-linking the actin filaments to the
plasma membrane. The membrane localization of ezrin plays a
pivotal role in the progression of malignant diseases."”'*" Ezrin
has been shown to support cancer dissemination by several
mechanisms including changes in proliferative signaling, cell
motility, and anoikis resistance. Ezrin probably regulates these
processes through the influence on the expression levels of
E-cadherin and CD44. The suppression of ezrin active state also
sensitized cells to anti-cancer drugs.”*""

Nevertheless, the tumor-suppressive effect of cisplatin
through cytoskeletal remodeling is probably context depen-
dent. Some types of cancer cells such as prostate cancer cells
and ovarian cancer cells surviving cisplatin treatment are stiffer
with a cytoskeleton composed of long actin stress fibers created
due to RhoA activation.”'** These stiffer cells are more resis-
tant but less aggressive showing a significant decrease in cell
migration, invasion, and formation of colonies.®> On the other
hand, cisplatin-treated melanoma cells exhibit a significant
decrease in cell stiffness and the up-regulation of FAK-mediated
and MAPK-mediated signaling promoting the malignancy, chemo-
resistance, and invasiveness of these cells.”*" Accordingly,
cisplatin is not effective against melanoma.'® We can speculate
that highly aggressive cells need to be rather more pliahle®?%%%1%
with low levels of Rho GTPase activation and low stress fiber
formation,®*'%*"%” because tumor cells with high deformability
and low RhoA activation preferentially engulf and outcompete
neighboring cells with low deformability in heterogeneous cancer
cell populations.’ Accordingly, changes in cell stiffness may
be a promising marker of the cisplatin treatrment response of
individual cancer cells.

Other cellular targets and binding sites
of cisplatin

Recent studies suggest that cisplatin has multiple cellular
targets beyond DNA. Cisplatin could inactivate essential RNA
molecules such as the RNA components of ribosomes and
splicing machineries, catalytic RNA motifs, or tRNA and also
membrane lipids, proteins, and cellular enzymes>”!%112
65-98% of cisplatin molecules have formed adducts with proteins
such as hemoglobin, serum albumin, transferrin, metallo-
thionein, and glutathione after 24 h of cisplatin administration
to the patient.”**"'* However, it is possible that upon several
ligand exchange reactions, cisplatin may exchange the chlorido/
aquo and both ammine ligands with nucleophilic amino acids of
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a protein and may form a Ptadduct while causing functional
disruption of the targeted molecules. Accordingly, cisplatin
reduced telomerase activity in a specific and concentration-
dependent manner in human testicular tumor cells, while
bleomycin, doxorubicin, methotrexate, or melphalan had no
effect. The telomerase inhibition could be a decisive reason for
cisplatin’s success in the therapy of testicular cancer. 1%

In addition to telomerase, there are other cancer-associated
proteins identified as cisplatin binding sites, including high-
affinity copper transporter 1 (hCtr1/SLC3141), non-muscle
myosin IIA (Myosin-9, MYH9), heat shock protein 90 {HSP90),
endoplasmin  {GRP-94/HSP90B1), valosin-containing protein
{vCP), or f, microglobulin (B2Mm).*7 %

High-affinity copper transporter 1 functions as homotrimer
having three transmembrane domains forming a pore through
the plasma membrane. hCTrl mediates cellular copper uptake,
but has also been shown to be invelved in the cellular import of
cisplatin.***"*** Whereas Cu triggers internalization of hCTrl
from the plasma membrane, cisplatin does not.”*® Conversely,
cisplatin may stabilize hCTrl trimeric pores by spanning
the methionine-rich motifs of the interacting hCtrl subunits
facilitating the cisplatin cross through the membrane into the
cytoplasm.'® Cisplatin also induces the expression of hCtrl in
time- and concentration-dependent manners. Abundance and
multimeric state of hCtrl in various tumors reflect their
response to cisplatin.'®® Other cisplatin binding sites were
found on copper chaperone Cox17, copper chaperone Atox-1
and the Cu-ATPase ATP7B.""“*** The ability of cisplatin to form
protein dimers was observed in the case of Atox-1. Since Atox-1
is transferred to the nucleus after copper exposure, it may be
also involved in the transport of cisplatin to DNA. Furthermore,
cisplatin bound to Atox-1 may alter copper homeostasis and
cellular defense against oxidative stress, therefore providing an
alternative route to cell killing.**® Cox17 seems to be involved in
cisplatin transfer to mitochondria."** Cisplatin bound to ATP7B
stimulates its catalytic phosphorylation with the formation of a
transient acyl-phosphate intermediate {which is unstable at
basic pH, but stable at acidic conditions).*** Hyperphosphoryla-
tion is associated with the transfer of ATP7B from the trans-Golgi
network to vesicles.”*®

Another cisplatin-binding protein, whose activity could be
changed by cisplatin is myosin-9.'"7 Myosin-9 is a class IT non-
muscle myosin that regulates cell motility and maintains
an equilibrium between the actomyosin and microtubule
systems.'”® Elevated myosin-9 expression was associated with
poor prognosis, lymph node positivity, and advanced tumor
stage in oesophagal squamous cell carcinoma patients.*®
Myosin-9 was also found as a key protein for the invasion of
MCF-7 breast cancer cells."® On the other hand, p53 failed to
accumulate and/or remain in the nucleus in the absence of
endogenous myosin-9 activity in squamous-cell carcinoma
cells."®® Myosin-9 also interacts with the cytoplasmic tail of Golgi
glycosyltransferases and creates a force for Golgi disorganiza-
tion, which is typical for colon and prostate cancer progression.
Myosin-9 is more stably associated with the Golgi of androgen-
refractory prostate cancer cells than androgen-sensitive cells
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and inhibition of myosin-9 restored compact Golgi morphology
in prostate and colon cancer cells."® Myosin-9 inhihitors {such
as cisplatin] could also block the development of tolerogenic
dendritic cells.**®

Cisplatin also binds heat shock protein 90 {HSP90} and
inhibits its activity."*” HSP90 is a molecular chaperone that is
generally thought to function in assisting protein folding, and
degradation of misfolded proteins. Nevertheless, a critical role
of HSP90 in cancer was also revealed. HSP90 can protect
mutated and overexpressed oncoproteins from degradation,
facilitating cancer cell survival."** HSP90 was also identified as
an inhibitor of the mammalian pro-apoptotic protein inositol
hexakisphosphate kinase 2 {IP6K2) in cancer cells. Consequently,
HSP90 inhibition should be cytotoxic for cancer cells.™* Further-
more, HSP90 inhibition caused by cisplatin halts adipogenesis
and differentiation of adipocytes.'**3* Adipocytes secrete a
great number of pro-inflammatory adipokines, which support
tumorigenesis and metastasis.”®>® Also, the adipocyte mediated
conversion of androgens to estrogen contributes to the develop-
ment of endometrial cancer.*® Cisplatin binds to the C-domain
and N-domain of the human HSP90 and inhibits HSP90 chaper-
one activity.”>’"** Because the HSP90 N-domain is the binding
site of the aryl hydrocarbon receptor {AhR), AhR is dissociated
from the HSP90 chaperone complex in the presence of cisplatin
and is degraded through the 265 proteasome. AhR is a transcrip-
tion factor and induces an enzyme of the cytochrome P450
family, CYP1A1. In the presence of cisplatin, the CYP1A1 mRNA
level was strongly reduced.”® CYP1A1 was shown to regulate
breast cancer proliferation and survival, and its knockdown
decreased colony formation and cell proliferation, and increased
apoptosis associated with a reduction of survival.'*® HSP90 is
stable as a dimer; however, oncogene-induced stress, such as
MYC hyperactivation, can lead to chaperone oligomerization and
hyper-connectivity. The oligomerization may activate functions
that are normally silent including NF-«B signaling and autophagy.
Cisplatin could disrupt oligomerization by binding to HSP90 and
impair the formation of signaling loops in cancer cells that enable
resistance to kinase inhibitors."*"

Another cisplatin binding protein is GRP-94 {HSP90B1), the
HSP90-like chaperone functioning in the lumen of the endo-
plasmic reticulum.*” An elevated level of GRP-94 has been
reported in many types of cancer such as breast cancer,**? lung
cancer,"® esophageal adenocarcinoma,’** and colon, and
gastric cancer.****® GRP94 overexpression is probably involved
in the migration and proliferation of cancer cells.™’

Cisplatin further binds valosin-containing protein {VCP; or
p97). VCP is an ATPase belonging to the AAA family which is
involved in the ubiquitin/proteasome degradation pathways."*®
VCP influences both increased cell proliferation and the
attenuation of cell death in cancer cells by regulating NF-xB
signaling."*® High VCP expression in tumor tissue was corre-
lated with poor prognosis in patients with non-small cell lung
carcinoma, hepatocellular carcinorma, gastric carcinoma, follicular
thyroid and prostate cancer.”>" ">

Cisplatin binding sites also contain f,-microglobulin.
B.-microglobulin is a component of major histocompatibility
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complex class 1 molecules and can act as a growth factor and
signaling molecule inducing epithelial to mesenchymal transition in
cancer."*® f,-microglobulin expression increases during the progres-
sion of many human cancers such as hreast cancer,'*® prostate
cancer,”’ lung cancer,”® or colon cancer.’® f,-microglobulin
was also proved as a proaging factor that impairs cognitive
functions and neurogenesis.’®® Inhibition of f; microglobulin
improved radiation sensitivity in prostate cancer cells.*®*

Other important cisplatin binding sites were found on
cytochrome ¢, calmodulin, insulin, ribonuclease A, cytochrome ¢
oxidase, insulin growth factor, ep-macroglobulin, o;-anti-trypsin,
apolipoprotein A1 and A2, superoxide dismutase, specificity pro-
tein 1 {SP1), or on ribosomal protein 15."*"7*%*1%* Furthermore,
cisplatin binds to the CXXC motif of proteins containing a
ferrodoxin-like fold."® Cisplatin is also able to induce the
formation of higher oligomers of proteins viz crosslinking.
The ability of cisplatin to form protein dimers was observed
in the case of human serum albumin and is suggested for
insulin."* Furthermore, acute inhibition of mechanosensitive
transporters and channels such as Na'/H" exchanger NHE-1
and K’ channel TREK-1 (KCNK2) was ohserved after cisplatin
treatment.”® TREK-1 is abundantly expressed in the PC-3 and
LNCaP prostate cancer cell lines but is not detectable in healthy
prostate epithelial cells. The overexpression of TREK-1 resulted
in a significant increase in cell proliferation in normal prostate
epithelial cells and Chinese hamster ovary cells."®® TREK-1
overexpression was also related to shorter castration resistance
free survival in prostate cancer patients.’®” Cisplatin also
interacts with proteins that comprise high-mobility-group
domains, such as upstream binding factor (UBF), and in this
way influences ribosomal RNA transcription by RNA poly-
merase 1. Cisplatin causes a redistribution of UBF, TATA-
binding protein {TBP), TBP-associated factors for RNA poly-
merase I, and RNA polymerase L. Consequently, cisplatin blocks
the synthesis of ribosomal RNA, while the activity of RNA
polymerase II stays intact.'®® Furthermore, clinically relevant
concentrations of cisplatin inhibit MEK1 and MEK2 activity.®
MEK?1 and MEK2 are protein kinases that are the gatekeepers of
ERK1/2 activity.™ Many types of turnor cells exhibit hyperactiva-
tion of ERK, and a range of MEK inhibitors are in late-stage clinical
trials.’”® Moreover, cisplatin can inhibit the Na’/K™-ATPase
(NKA).Y"! Several reports suggest that the alpha subunits of
the NKA could be interesting anti-cancer targets."’>”*

In conclusion, cisplatin has a pleiotropic effect on cellular
proteins significantly affecting their conformation and function
and takes part in the disruption of rRNA synthesis, which is
stimulated in proliferating cells. Cisplatin can also influence
the transport of amino acids, which are the basic building units
of proteins."”* As some cancer cells are auxotrophic for special
amino acids, the inhibition of essential amino acid transporters by
cisplatin may be an important part of the clinical success of
cisplatin as well as the inhibition of key oncoproteins. Nevertheless,
in the above-mentioned studies, cisplatin or cisplatin derivatives
were usually prepared by challenging the drug with one purified
protein. This is not a realistic situation because cisplatin is
simultaneously challenged with a huge variety of different
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proteins in a real organism. Consequently, the biological actions
of cisplatin will be most probably the result of thousands of
cisplatin-protein interactions and their functional consequences.
Competitive binding experiments can give valuable insight into
the selectivity of platinum-based drugs with mixtures of small
molecules, proteins or peptides and oligonucleotides.*’

Cisplatin and the immune system

According to the FDA prescribing information (https://www.
drugs.com/pro/eisplatin.html), platinum  concentrations in
tumors after cisplatin treatment are usually somewhat lower
than the concentrations in the organ where a tumor is located.
Consequently, some effect exceeding simple damage of tumor
cells should be considered. Recent studies suggest that an impor-
tant part of the antitumor effect of cisplatin occurs through
mechanisms counteracting cancer immune evasion.'”>"® 1t is
well known that an immune escape of tumor cells is associated
with the major histocompatibility complex class I (MHGC-I) down-
regulation and the capacity to induce upregulation of MHC class 1
cell surface expression is a critical step in the tumor rejection.’””
Some studies have recently demonstrated that cisplatin may
upregulate the tumor cells’ MHC-I expression and may boost
CD8+ T cellmediated anti-cancer immunity."”*™*" Such MHC
class 1 recovery might well synergize with some forms of
immunotherapy.'”’ 17515 Interestingly, cisplatin chemotherapy
broadened the range of tumor antigens recognized by cytotoxic
CD8+ T cells.”® The cancer immune editing of the host’s
immune system represents one of the major mechanisms by
which tumors evade anti-cancer immunity. The cancer immune
editing includes T cell anergy, regulatory T cells and their
immune suppressive mediators, and systemic defects of antigen
presenting cells. The ability of the immune system to fight
against tumor cells is highly dependent on the accumulation
and activation of immune effector cells."®! Some studies suggest
that low-dose cisplatin could promote the accumulation of
antigen presenting cells such as CD11c+ dendritic cells in tumor
loci*® and support the recruitment and proliferation of immune
effector cells such as M1 macrophages, tumor-specific CD8+ T
cells, #1188 and cytokine-induced killer cells.*® =% Cigplatin can
also activate murine peritoneal macrophages to the turnoricidal
state™® and cisplatin-treated monocytes enhance the proliferation
of CD4+ T cells by the increased production of IFN-f. No such
effect was seen in dexamethasone, doxorubicin, or irinotecan-
treated monocytes.”™"” Cisplatin can also enhance the immuno-
stimulatory potential of dendritic cells (DCs) and decrease the
immunosuppressive capahility of tumor cells.” This immuno-
modulatory activity is based on the inhibition of STAT6-mediated
expression of co-inhibitory molecule PD-12. Decreased PD-L2
expression led to the increased activation and proliferation of T
cells by DCs and enhanced recognition of tumor cells by T cells."*?
Cisplatin also sensitizes tumor cells to attack of cytotoxic T
cells."® This attack may be mediated by the up-regulation of
mannose-6-phosphate receptors on the surface of tumor cells,
which makes the tumor cells sensitive to granzyme B,** or hy
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enhanced expression of death receptor Fas/CD95 on the cancer
cells.’®® Stimulation of the anti-cancer immune response is also
mediated by the exposure of calreticulin, which is a dominant
pro-phagocytic signal, on the surface of the cancer cells facil-
itating their uptake by dendritic cells and the following pre-
sentation of tumor-associated antigens to T lymphocytes.™ In
contrast to oxaliplatin, cisplatin probably fails to induce the
translocation of calreticulin to the cell surface.'®® Nevertheless,
the calreticulin effect is counterbalanced by CD47 in multiple
human cancers*® and a significant reduction in CD47 surface
expression occurs after cisplatin treatment.’®® The enhanced
expression of the CD47 molecule on cancer cells has been
found in many cancers, including malignant blood tumors.**®

Cisplatin is also able to modulate immune-suppressive milieu of
tumor tissues. Treatment with cisplatin significantly reduced the
levels of myeloid-derived suppressor cells (MDSCs) and regulatory T
cells (Tregs) in the tumor microenvironment ' &1857188:200
Inflammatory mediators including cytokines can participate in
tumor progression, as the important component of the tumor
microenvironment, inflammatory mediators including cytokines
can participate in tumor promotion and progression. Cisplatin
inhibits the growth, migration, and invasion of cewvical cancer cells
by downregulating the IL-17E/IL-17RB pathway’”™ and enhances
the tumoricidal activity of bone marrow-derived macrophages
through the production of extracellular and membrane-associated
interleukin-1 {IL-1) and tumor necrosis factor {TNF-o)."* Further-
more, cisplatin-treated phytohemagglutinin-stimulated human
peripheral blood lymphocytes displayed enhanced IL-2, IL-2R,
IFN-y and TNF-o mRNA levels compared to non-treated
controls.>™ I1-1 is known to be required for tumor eradication
mediated by tumor-specific Thl cells and was also shown to
synergize with IFN-y for induction of tumoricidal activity in
tumor-infiltrating macrophages.*” Simultaneous administration
of TNF-o. with IFN-y resulted in synergistic effects manifested
by the retardation of tumor growth®™ and local combined
treatments with IL-1 and IL-2 can induce T cell- mediated
anti-cancer effects.””

In conclusion, cisplatin promotes the antigen presentation
and function of effector immune cells while simultaneously
counteracting nurmnerous immune-suppressive mechanisms which
stay behind cancer immune evasion. Although cisplatin does not
induce immunogenic cell death per se, which is probably caused by
the lack of calreticulin exposure after cisplatin treatiment, cisplatin
could still potentiate immunogenic cell death by coadministration
with another kind of therapy, such as radiotherapy. Radiotherapy is
a potent inducer of calreticulin exposure and combining cisplatin
with induced calreticulin exposure consequently leads to immuno-
genic cell death.”**

Cisplatin and the microbiome

In the previous chapter, we have shown that cisplatin may exert
its anti-cancer effect by influencing the immune system. Some
studies indicate that the ROS required for platinum toxicity
in vivo is mostly derived from tumor-associated inflammatory

Metallomics, 2019, 11, 1182-1199 | 1189

170



Mechanical phenotype is linked also with metabolic phenotype

4.4

Metallomics

cells.

Recently, it was shown that anti-cancer Immunity
could also be significantly influenced by the intervention of
the intestinal microbiota.””"**"® Compared with controls with a
normal gut microbiome, the antibiotic-treated and germ-free
mice reacted poorly to immunotherapy and chemotherapy by
cisplatin. It is possible that cisplatin influences gut microbes to
make immune cells ready to produce reactive oxygen species
{ROS), which then kill tumor cells.>™ Accordingly, the absence
of gut microbiota in mice was shown to prevent the paracrine
production of ROS by tumorinfiltrating myeloid ecells.*®
Conversely, administration of antibiotic-treated mice with
Lactobacillus acidophilus renews the cisplatin anti-cancer effect
and restores some of the cisplatin-induced inflammatory gene
expression that is observed in ordinarily raised mice.”*” The
ROS production in intra-tumor myeloid cells after platinum
treatment seems to be managed by signaling through myeloid
differentiation primary response 88 (MYD88)-associated innate
immune receptors also known as pattern recognition receptors
{PRRs) which detect molecules typical for the pathogens.**®>"
Microbes highly influence the effect of cisplatin, but this
effect is two-sided. Cisplatin can also modify proliferation
and the resulting effect of microbes. It was shown that cisplatin
protects macrophages from lysis by Bacillus anthracis lethal toxin
{LT).*" Cisplatin also inhibits protein splicing in Mycobacteria by
decreasing the activation of inteins. In addition to M. fuberculosis,
self-splicing inteins are critical proteins in Mycobacterium leprae,
Coxtella burnetii, and Cryptococcus neoformans. Moreover, cisplatin
is a potent inhibitor of RecA intein splicing and DNA gyrase
in Escherichia coli®**"* It has been shown that Escherichia coli
{B2 phylogenetic group) promotes the pro-tumoral activities of
macrophages in colon cancer by inducing sustained COX-2
expression.”™® Furthermore, E coli {B2 phylogenetic group)
harbours the pks island (pks+ E. coli} coding colibactin.**®
Colibactin is a bacterial genotoxin promoting colon tumor
growth by inducing a senescence-associated secretory phenotype
while simultaneously making the epithelial cells that line the gut
more prone to DNA damage.””” Colonization of mice with the
pks+ strain of E. coli was sufficient to drive tumorigenesis,
whereas germ-free mice were protected,®® hence inhibition of
E. coli by cisplatin may also contribute to its treatment effect.

Conclusion

Cisplatin is one of the most effective anti-cancer drugs exten-
sively used for the cure of different types of neoplasms {ovarian,
head and neck, lung, breast, leukaemia, brain, kidney, and
testicular cancers). Generally, cisplatin is known as a cytotoxic
drug which kills cancer cells by damaging DNA, inhibiting
mitosis, and triggering cell death. However, other interesting
mechanisms should be considered such as immunomodula-
tion and interference in the communication between the tumor
cells and their microenvironment. Cisplatin can also change
the mechanical properties of cancer cells and significantly
encroach on cancer cell metabolism. Recently the modulating
effect of cisplatin on the intestinal microbiome was also
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proved. Uncovering of the cellular pathways that could be
influenced by cisplatin may provide us with an important clue
for designing new cancer treatment strategies by finding new
potential targets for therapeutic intervention. The mechanisms
of cisplatin action in the context of the whole body are weakly
studied in humans and need further elucidation and deep
cooperation between biologists, chemists and clinicians. Study
of cisplatin may also benefit from competitive binding experi-
ments and from global omics studies which can give valuable

insight into the non-DNA binding sites of cisplatin.
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5 Concluding remarks

Mechanical properties of cells affect cell migration, adhesion, differentiation and subcellular
organelle transport as well as cell metabolic state [82]. These properties are not only related to
physiological functions but are also linked to a pathophysiological mechanism of diseases, can-
cer development in particular. One of the key features of cancer cells is the ability to migrate
and invade tissues — cancer spreading, which leads to the development of metastatic tumors in
distant organs [83]. More deformable cells are favoured for key cancer spreading processes —
extravasation and extravasation [10]. As compared to non-tumor cells, a decrease in stiffness of
cancer cells was accordingly described by numerous studies in a spectrum of tumor types [10].
Accordingly, such change of mechanical properties of cancer cells is a promising indicator of
malignant potential [19], because it is a direct measurement of the cells’ phenotype. This con-
trasts with a number of molecular markers, which, despite their high predictive value, do not
correspond with the actual development of the disease. For instance, although prostatic specific
antigen is a powerful diagnostic tool for prostate cancer, its function is not cancer-specific, in-
stead, it is needed for sperm liquefaction.

However, the increase in deformability remains controversial. It is not clear whether all cells or
just some subpopulation of cancer cells is softer [84], and how this depends on tumor type and
tumor progression. Also, mechanisms leading to cell softening are still not explained satisfac-

torily.

5.1 Metastatic prostate cells are stiffer

In our lab we studied a prostate cancer model and observed a disagreement with this concept:
metastatic cell lines (PC-3 and LNCaP) characteristic by increased aggressiveness in vitro and
in vivo were significantly stiffer than cells derived from the primary tumor (22Rvl) [2]. In a
spite of the fact that zinc plays an important role in prostate cancer development, we further
developed a zinc-resistant metastatic prostate tumor cells “PC-3-res-50 [85], which demon-
strated to be even stiffer (to have higher Young modulus determined by atomic force
microscopy, AFM) and even more aggressive, as determined by wound-healing, colony-form-
ing, migration assays and partly by growth speed in animal models and higher levels of
glycolysis and respiration[1; 90]. Gene expression profiling of those cells revealed enrichment

of pathways associated with stress response, positive regulation of metabolic processes, DNA
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repair and cell ageing mediated mostly by RAS signalling. Moreover, our results also suggest
a positive correlation between cell stiffness and cell dry mass density as determined by quanti-
tative phase imaging and an association between Caveolin-1 expression and the total stiffness
of prostate cancer cells [2]. In prostate cancer cells, an increase of stiffness in more aggressive
cells was described similarly in literature [37; 38]. However, as shown by Raudenska et al study,
this stiffening was not attributed to the change in actin cytoskeleton network architecture, one

of the major factors determining the cell stiftness [2].

5.2 Quantitative imaging in mechanobiology

Atomic force microscopy-based determination of cell mechanical properties, however, provides
a single value of modulus per cell — the Young modulus. Cells are however highly complex
structures and therefore, the description of their mechanical properties just by a single of few
moduli is difficult [10]. Moreover, the obtained value is related to the model used in experi-
mental technique, and experimental conditions (temperature, substrate stiffness, etc.) [104].
Furthermore, Young modulus determined from AFM is typically affected by the rigidity of
plasma membrane. Nonetheless, higher deformability of this structure is needed just during a
specific moment of metastatic dissemination — during migration in confined spaces and during
intravasation and extravasation. Only a set of phenotyping methods provides the full picture of
cell mechanics: As shown in Holenstein study, in which a combination of atomic force micros-
copy, tensile biaxial deformation, real-time deformability, and cell traction was measured using
two-dimensional and micropost-based traction force microscopy gave a complex picture of the
metastatic potential of osteosarcoma cells [19].

As mechanical properties are closer to the viable phenotype of cancer cells compared to indirect
evidence provided by flow cytometry or molecular markers, analysis of cell biomechanics is of
great interest in diagnostics. However, technical challenges still exist. Although different tech-
niques could provide similar results, they usually differ in the absolute values of the moduli,
even if performed on similar equipment. Standardization of the results is therefore limited.
Combination of techniques which work on different scales might therefore be promising [10;
105-107].

In this series of commented articles, we combined atomic force microscopy with quantitative
phase microscopy techniques —coherence-controlled holographic microscopy. Although the im-

aging was not performed in a correlative manner, there was an agreement between AFM and
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QPI, which suggest a potential of QPI for fast label-free and non-contact cell mechanopheno-
typing. The cellular changes range from cytoskeletal rearrangements on the short scale to
alteration of gene expression on the long scale, thereby introducing an error to the measure-
ments [108; 109]. QPI was also used in a microfluidic setup where cells were exposed to shear
stress induced by fluid flow. By this approach we directly demonstrate that QPI is also suitable
to estimate shear modulus of cells, which is in correlation with Young modulus determined by
AFM [86; 87].

The robustness of QPI also opens up new possibilities for the image analysis —usage of machine
learning. As the acquisition of large FOV numbers is not possible with AFM, rough metrics can
be extracted used for cell classification. Modulus of whole cells or prominent subcellular struc-
tures like cell nucleus is de facto the only (and the most commonly used) metric. On the other
hand, measurement of moduli of subtle subcellular structures on a statistically large enough
dataset of live cells is not feasible with AFM. Accordingly, focal adhesion protein-mediated
transduction of ECM signals, which is linked with cytoskeletal rearrangements and signalling
favouring cancer cell migration, proliferation and survival not necessarily affect whole-cell
modulus.

However, cancer cells are highly heterogeneous structures by nature and subcellular strucutres
might be hidden in this heterogeneity and therefore may not be observable by naked eye [61].
Accordingly, we used the neural network for localization of subcellular areas, notably nucleus

and nucleolus [71].

5.3 Caveolin-1— the crossroad of mechanics and metabolism?

The transcriptomic screening was performed to identify the molecular basis of the metabolic
reprogramming and change of mechanic phenotype. Our results point out particularly to one
multifunctional protein — caveolin-1. Our results suggest that CAV1 gene expression correlates
with the total stiffness of prostate cancer cells. However, this trend was only observable in the
wild-type prostate cancer cells. On the other hand, the establishment of zinc resistance, although
associated with increased stiffness, was not associated with further CAV1 expression changes.
Changes in expression however might not necessarily correlate with altered caveolin regulation.
As shown by Jiu study, caveolin cytoplasmic dynamics is preferentially altered upon vimentin
depletion, which serves as a physical barrier for this protein. [110]

CAVl is a component of plasma membrane structures caveolae and also exists in multiple sub-

cellular pools (discussed in chapter 2.3). CAV1 was described to affect cellular metabolism [30],
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cell migration and mechanical stress responses [31; 32]. Yet the roles of either CAV1 and the
caveolae remains enigmatic either in physiology and in disease. [111]. CAV1 was demonstrated
to affect both glycolysis and mitochondrial ATP production. Glycolysis is modulated via insulin
and IGF1 receptor through AKT signalling. Caveolin also provides a docking site for glycolytic
enzymes. This facilitates increased glucose uptake and lactate output and increased glycolysis,
and such mechanism is possibly employed in our metastatic in vitro model. CAV1 modulates
mitochondria through Ca™" signalling and via modulation of cholesterol efflux from mitochon-
dria [28]. The causal connection between CAV1 expression and glycolysis was also shown in
advanced colon cancer, where high CAV1 expression increased glucose uptake and ATP pro-
duction by stimulating glucose transporter 3 (SLC2A3) transcription in tumor cells [112]. If
CAVI1 expression in prostate cancer is associated with dependency on glucose [113], then it pro-
vides an attractive prospect of using CAV1 expression levels to identify prostate cancer patients
who could benefit from inhibitors of glucose transport and inhibitors of OXPHOS or glycolysis.
CAVI crosstalks with the actin cytoskeleton and therefore contributes to adaptation to mechan-
ical stimuli through mechanosensing [114]. CAV1 regulates actin organisation, actomyosin
contraction and focal adhesion stability through Rho signalling [111; 115; 116]. In many cases a
linear pattern of CAVI1 that co-aligns with actin stress fibres is evident in confocal images. The
reasons for this co-alignment are still not completely clear, but some kind of coordination be-
tween two tension-controlling systems has been proposed as an explanation [I11]. The
expression of CAV1 or the presence of CAVI-rich membrane structures caveolae was described
predominantly in mechanically stressed cells like endothelial or muscle cells. Accordingly, me-
chanical stimuli like tension, stretching, shear stress or osmotic swelling was linked with
caveolae flattening, which suggest that caveolae and CAV1 act as a buffer system preventing a
rupture of plasma membrane [111]. Such fact is possibly employed in aggressive cancer cells,
which are exposed to mechanical stress through migration and invasion and such phenomenon
was supported by our results. We demonstrated no CAV1 expression in primary prostate cancer
cells, which do not induce tumors in vivo and pronounced expression in metastasis-derived cells
[2]. Inconsistently, zinc-resistance, which was linked with increase in migration and colony-
forming capacity was not linked with further CAV1 expression increase. Yet, the role of CAV1
and the caveolae remains enigmatic [111]. According to the EMBO Workshop on Caveolae 2019
[111], several questions need to be addressed either in caveolae physiology as well as in pathol-
ogy, namely what is the role of non-caveolar CAVI1, what are the dynamics of caveolae in

different tissues in vivo and what is the relationship between exosomes and caveolae[111].
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In disease, specifically in the tumor progression, the link between CAV1 and the long-term cel-
lular response to mechanical and metabolic signals still remains unanswered. Specifically, in
cancer cells the fact whether CAV1 is a tumor suppressor or oncogene is not straightforward
[117-119]. The cellular context is important and changes during cancer progression and between
cell types exist [120]. CAV1 expression reflects the actual needs of the cancer cells and therefore
this expression can differ during cancer progression [4; 118]. Beyond that, multiple cell types
in tumor microenvironment were shown to differ in CAV1 expression. Through this mechanism,
a modulation of metabolic symbiosis between populations of cells might be established. As
described by Dimmer and colleagues, low-CAV1-expressing cancer-associated fibroblasts were
characteristic by lactate production and excretion, thereby supplying nutrients for high-CAV1-
expressing cancer cells [4; 26].

Metabolism targeting seems to be an attractive therapeutic target. However, because such mech-
anisms exist, simplistic strategies, like glycolysis inhibition, fail. To fully understand the role
of CAVI in cancer, more complex models might be needed, and it still remains an exciting area

of research.
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6 Conclusions

Invasion of cancer cells and metastasis formation is energetically highly demanding process.
Increase of mobility and overcoming of mechanical stress during metastasis formation is ac-
companied by a reinforcement of the cytoskeletal architecture and by changes of cell-cell and
ECM-cell interactions. During past decades, key understandings were made to address ques-
tions how the cells interact with ECM and how they transduce mechanical signals, however,
the aspect of mechanical properties of cancer cells itself is not fully addressed. Accordingly,
how the metabolic reprogramming of cancer cells is related to the change of cell mechanical
properties remains to be explained. There is a tempting theory that more deformable cells are
favoured for metastatic spreading. However, data regarding prostate tumor cells and some other
cell types indicate this is not always that straightforward.

Although a panel of approaches exists to describe cell mechanical properties, the results are
technique-, model- and experimental-condition dependent. Above that, the metastatic process
of cancer cells is complex, and cell biomechanical parameters cannot be reduced to a single
value of modulus. Most of the existing mechanophenotyping methods are either low-through-
put, low-resolution or invasive, with atomic force microscopy as a typical example. Here we
demonstrated potential of quantitative phase imaging for fast label-free and non-contact cell
mechanophenotyping. As the acquisition is fast, the generation of large datasets makes it pos-
sible to extract complex information from these datasets using machine learning in image
analysis. In this habilitation thesis, artificial intelligence was demonstrated to be powerful for
image segmentation cellular and as well subcellular structures. Artificial intelligence thus ena-
bles, at least to some extent to explain the organelle specificity of a technique primarily showing

biophysical and mechanical features of the cells.
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