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Summary 

Introduction. The invasion of cancer cells and metastasis formation is energetically highly de-

manding process. The increase of cancer cell mobility during metastasis formation is 

accompanied by a reinforcement of the cytoskeletal architecture, cell-cell, and cell-ECM inter-

actions. There is a tempting theory that more deformable cells (of lower Young modulus) are 

favoured for metastatic spreading. However, data regarding prostate tumors suggest the oppo-

site – a stiffening of cancer cells. The aim here is (a) to analyse prostate cell mechanical 

properties by a panel of methods, (b) to analyse how cell mechanical properties change through 

the cancerogenesis, (c) whether quantitative phase imaging correlates with standard approaches 

used for cell mechanophenotyping, (d) whether advanced image analysis algorithms can be 

used in the extraction of image features from quantitative phase images specific for aggres-

sive/stiff cells, (e) how metabolic reprogramming is linked with these processes, and (f) how 

these processes are regulated and potentially targeted. 

Methods. By using atomic force microscopy, quantitative phase imaging, confocal microscopy, 

transcriptomic techniques and migratory and cell invasiveness assays and by analysis of meta-

bolic intermediates the metabolic and biomechanical phenotype of cells was analysed. Deep 

learning approaches were used for image processing and translation. 

Results. We demonstrated potential of quantitative phase imaging for fast label-free and non-

contact cell mechanophenotyping. Primary prostate tumor-derived Caveolin-1 (CAV1)-non-

expressing-cells are more pliable and predominantly performing OXPHOS, while metastasis-

derived, high-CAV1-expressing cells are are mechanically stiffer and predominantly employing 

glycolysis and rerouting the use of amino acids as energetical sources, specifically aspartate. 

Upon induction of zinc resistance further increase of stiffness was observed in metastatic cells 

together with alteration in cancer cell metabolites, amino acids in particular. 

Conclusions. Here we demonstrated potential of machine learning in quantitative phase imag-

ing. It was shown to be a powerful tool for image segmentation, classification of aggressive 

cancer cells and extraction of features from quantitative phase image not visible by the naked 

eye and thus enabled to connect biophysical and mechanical features of the cells with biological 

cellular processes.  

 

Keywords: mechanobiology; prostate cancer; zinc; deep-learning; image analysis; quantitative 

phase imaging; migration; Warburg effect; caveolae  
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1 Papers included in the habilitation thesis 

Papers presented in this thesis aim to address how cell mechanical properties change during the 

pathogenesis of prostate cancer on in vitro model and how it relates with other well-described 

tumor hallmark –tumor metabolic state. Following papers are an integral part of this thesis. 

Their mutual connection and a broader context are discussed in the following chapters. 

 

1. STEPKA, P., V. VSIANSKY, M. RAUDENSKA, J. GUMULEC, et al. Metabolic and 

Amino Acid Alterations of the Tumor Microenvironment. Current Medicinal Chemistry,  

2021, 28(7), 1270-1289. 
Experimental work (%) Supervision (%) Manuscript (%) Research direction (%) 

- 30% 30% 30% 

 

2. RAUDENSKA, M., J. GUMULEC, J. BALVAN AND M. MASARIK Caveolin-1 in 

oncogenic metabolic symbiosis. International Journal of Cancer, Oct 2020, 147(7), 1793-

1807. 
Experimental work (%) Supervision (%) Manuscript (%) Research direction (%) 

- 40% 40% 50% 

 

3. GUMULEC, J., J. SOCHOR, M. HLAVNA, M. SZTALMACHOVA, et al. Caveolin-

1 as a potential high-risk prostate cancer biomarker. Oncology Reports, Mar 2012, 27(3), 831-

841. 
Experimental work (%) Supervision (%) Manuscript (%) Research direction (%) 

90% 0% 60% 15% 

 

4. VICAR, T., J. BALVAN, J. JAROS, F. JUG, et al. Cell segmentation methods for la-

bel-free contrast microscopy: review and comprehensive comparison. BMC Bioinformatics, 

June 28 2019, 20(1), 360. 
Experimental work (%) Supervision (%) Manuscript (%) Research direction (%) 

70% 90% 60% 90% 

 

5. VICAR, T., J. GUMULEC, J. BALVAN, M. HRACHO, et al. Label-Free Nuclear Stain-

ing Reconstruction in Quantitative Phase Images Using Deep Learning. In L. LHOTSKA, L. 

SUKUPOVA, I. LACKOVIC AND G.S. IBBOTT. World Congress on Medical Physics and 

Biomedical Engineering 2018, Vol 1. New York: Springer, 2019, vol. 68, p. 239-242. 
Experimental work (%) Supervision (%) Manuscript (%) Research direction (%) 

50% 40% 40% 70% 
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6. RAUDENSKA, M., M. KRATOCHVILOVA, T. VICAR, J. GUMULEC, et al. Cis-

platin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin 

accumulation. Scientific Reports, 2019/02/07 2019, 9(1), 1660. 
Experimental work (%) Supervision (%) Manuscript (%) Research direction (%) 

50% 30% 70% 30% 

 

7. ELSAYAD, K., G. URSTOGER, C. CZIBULA, C. TEICHERT, et al. Mechanical Prop-

erties of cellulose fibers measured by Brillouin spectroscopy. Cellulose, May 2020, 27(8), 4209-

4220. 
Experimental work (%) Supervision (%) Manuscript (%) Research direction (%) 

25% 5% 20% 5% 

 
8. KRATOCHVILOVA, M., M. RAUDENSKA, Z. HEGER, L. RICHTERA, et al. Amino 

Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progres-

sion. Prostate, May 2017, 77(6), 604-616. 
Experimental work (%) Supervision (%) Manuscript (%) Research direction (%) 

30% 100% 80% 70% 

 

9. HEGER, Z., J. GUMULEC, N. CERNEI, H. POLANSKA, et al. Relation of exposure 

to amino acids involved in sarcosine metabolic pathway on behavior of non-tumor and malig-

nant prostatic cell lines. Prostate, May 2016, 76(7), 679-690. 
Experimental work (%) Supervision (%) Manuscript (%) Research direction (%) 

25% 20% 40% 20% 

 

10. RAUDENSKA, M., J. BALVAN, M. FOJTU, J. GUMULEC, et al. Unexpected thera-

peutic effects of cisplatin. Metallomics, Jul 2019, 11(7), 1182-1199. 
Experimental work (%) Supervision (%) Manuscript (%) Research direction (%) 

- 30% 40% 30% 

 

  



Cell mechanics – important cancer hallmark 2.1 

8 

2 Introduction 

During a multistep oncogenic process, cancer cells need to perform changes in metabolic phe-

notype to maintain energy for cancer cell invasion, survival in circulation, or homing in a distant 

site [3]. Accordingly, aberrant tumor cell metabolism is one of the key tumor hallmarks and 

a possible therapeutic target [4]. Historically, metabolic changes were first linked with glucose 

metabolism. A phenomenon described in 1924 by Otto Warburg – the “Warburg effect” is char-

acterized by a switch from oxidative phosphorylation (OXPHOS) to glycolysis in a presence of 

oxygen – the aerobic glycolysis. Despite the inefficiency of this process from the perspective 

of ATP-per-glucose extraction ratio, its inevitable advantage over oxidative phosphorylation is 

speed, making glycolysis beneficial for the rapidly dividing cancer cells[3], although it is ener-

getically harmful on the whole-body level. 

Cancer cell invasion and metastasis formation is energetically highly demanding process. The 

cancer cells not only need to increase their migratory capacity, but they also pass through the 

mechanical barriers during the metastasis formation. The energetic demands of cancer cells to 

overcome mechanical barriers during the cancer progression are high, consuming up to 50% of 

cellular ATP [5]. These barriers cause significant physical forces to affect cancer cells during 

their migration through extracellular matrix (ECM) (stretching, internal tension), crossing the 

endothelial barrier into circulation, presence in circulation (shear stress), and during migration 

to a secondary niche (increased motility). To overcome this, cancer cells adapt to these forces 

by several strategies. The cells undergo epithelial-mesenchymal transition, which enables mi-

gratory and invasive properties by changes in cell-cell and cell-ECM adhesions and by 

cytoskeletal remodelation [3]. These factors trigger mechanotransduction which in turn modu-

late the cancer cells’ signalling by favouring metabolic and mechanic settings enabling 

successful invasion and cell survival in hostile environments. Rearrangement of cancer cells’ 

actin cytoskeleton associated with cell stiffening is a key process resulting from mechanotrans-

duction. Changes in cell mechanic phenotype and metabolic reprogramming are therefore not 

separate cancer hallmarks. Instead, these two processes are highly interdependent. For instance, 

glycolysis responds to architectural features of actomyosin cytoskeleton via TRIM21-mediated 

regulation of phosphofructokinase [6]. 

Prostate tumors are the most common type of tumors in men. These tumors share unique meta-

bolic and biomechanical features. Metabolic specificity is attributed to the prostate-specific 
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effects of zinc ions. Due to the physiological zinc accumulation in benign cells, mitochondrial 

aconitase is inhibited, which causes a blockage of Krebs cycle and thus a decrease in OXPHOS. 

On the other hand, malignant cells show a decrease in zinc accumulation and thus increased 

OXPHOS. Therefore, no Warburg effect is observable in primary tumors of prostate [7]. How-

ever, the metabolic phenotype of prostate cancer changes during its progression with an increase 

of aerobic glycolysis in secondary tumors [8]. Therefore, although metabolic targeting seems to 

be an attractive therapeutic target, simplistic strategies like glycolysis inhibition fail, because 

this problem is multidimensional (metabolism changes during cancer progression as well as 

there are differences between cell populations in tumor microenvironment (TME)).  

This thesis aims to characterize how the metabolic phenotype changes through the prostate can-

cer progression and how it scales with changes of biomechanical features of the cancer cells. 

Together with routinely used methods to analyse cell biomechanics, a potential way to describe 

the mechanical phenotype of cells using label-free quantitative phase microscopy is tested. The 

informative value of the quantitative phase image (QPI) is further expanded utilizing machine 

learning methods.  

In a series of scientific papers, we demonstrated (on an in vitro model) that highly aggressive 

prostate cancer cells are mechanically stiffer and at the same time characteristic by a spectrum 

of metabolic shifts – cells are more anaerobic and overly metabolize essential amino acids.  

2.1 Cell mechanics – important cancer hallmark 

From the spectrum of the existing mechanical properties of the materials, the most relevant 

cellular biomechanical parameters include elasticity, viscosity and adhesiveness [9]. Cells have 

viscoelastic properties, however, from the perspective of cancer cells, the elastic properties 

dominate over the viscous properties [10]. The elastic properties – “stiffness” of the material – 

is defined as the extent to which the material resists the deformation with a defined applied 

force [11]. Stiffness of the structures is determined by the material properties – its composition 

and its organisation [12]. Specifically, the determinant of tissue stiffness is the composition and 

the organisation of extracellular matrix and the main determinants of cellular stiffness are cyto-

skeleton, focal adhesions and nuclear deformability [12]. Stiffness is expressed as Young 

modulus in Pascals and in the context of biomedical applications it scales in the orders of 101–

103 Pa in most cells, 104 Pa in muscle, 107 Pa in tendons and up to 109 Pa in bone [9]  

Tumor tissues are typically stiffer as a consequence of higher fibrous tissue crosslinking in ex-

tracellular matrix – desmoplastic reaction [13]. As extracellular matrix (ECM) stiffness is linked 
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with tumor aggressiveness and patient prognosis, there has been an extensive effort to charac-

terize how the mechanical properties of the ECM can affect the cancer cells. Physiologically, 

cells can sense the physical properties of the environment and transduce signals to the cellular 

level. Integrins and focal adhesion proteins act as transducers that convert the extracellular ma-

trix signals downstream to the cells in a process called mechanotransduction.  

The mechanical signals from stiff ECM are transduced to cells through integrins and focal ad-

hesion proteins, which in turn regulate processes favouring cell survival. Such mechanical 

stimuli can modulate epithelial-to-mesenchymal transition, intravasation and affect metabolic 

adaptation, cell death and resistance to radiotherapy and chemotherapy [3; 14]. Therefore, tu-

mors with higher desmoplasia were characterized as more aggressive and more resistant to 

conventional treatments [15; 16]. Accordingly, the cell mechanical properties are altered by this 

mechanism.  

These cytoskeletal rearrangements, together with changes of numbers of focal adhesions and 

with the deformability of nucleus, are factors that affect cellular mechanical properties. Gener-

ally, most tumor cells isolated from tumor tissues are usually softer compared to non-tumor 

counterparts [17]. The (cancer) cell migration and the cell mechanical properties are tightly con-

nected processes because cytoskeletal rearrangements are associated with both of these. 

Therefore, migration (metastatic potential) and stiffness are typically inversely proportional 

[12]. Soft and deformable cells are favoured in multistep oncogenesis – for such cells, it is easier 

to migrate through small gaps or crowded ECM [10]. However, despite many studies, the asso-

ciation of cellular stiffness with metastatic potential is not as unequivocal as the ECM stiffness. 

The uncertainness is underlined by several factors, such as a particular type of technique used 

to determine cellular stiffness and cell culture method [12]. 

As different physical forces affect cells throughout the process of cancer progression, a spec-

trum of methods to describe cell mechanical properties is used. In the circulation, cell 

deformation occurs during intravasation and extravasation. Aggressive cells are usually more 

deformable, and deformability cytometry might be employed to measure this. During the pas-

sage through the endothelial wall, aggressive cells are predominantly softer. This can be 

measured by atomic force microscopy (AFM). In the secondary site, tensile and contractile 

forces affect the cells. To measure this, tensile biaxial stretching or traction force microscopy is 

usually employed [18; 19]. Quantitative phase imaging (QPI) demonstrated to be a new prom-

ising technique to study cell mechanic phenotype. As the light passes through physically 

different structures of the cell, the light phase is changing. The quantitative phase imaging is a 

non-invasive technique with high intrinsic contrast even for naturally transparent objects such 
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as live cells [20]. Using this technique it is possible to extract cell dry mass (in pg/μm2) from 

the phase (in radians) according to the Barer and Davies [21; 22]. Since the changes of cyto-

skeletal architecture are associated with the consequent changes in the cell biomechanical 

characteristics including cell stiffness and cell motility [23], cell dry mass is also expected to 

be correlated with changes of cell mechanics. Such finding was demonstrated by Eldridge et al: 

the authors applied QPI to characterize cellular stiffness by using an effective spring constant. 

The authors also showed that this metric further correlated to cellular mass distribution [24]. 

However, the association between the phase shift and cell biomechanics is still under research 

and a direct comparison of this technique with AFM is not straightforward. Nevertheless, the 

deployment of QPI in cell mechanics might provide significant benefits over AFM as the latter 

is characteristic by low throughput and cell-cantilever mechanical stress [18].  

Taken together, changes in biomechanics are crucial for tumor development. The consequences 

of mechanotransduction in stiff environments were intensively studied and relatively rigidly 

show a link between increased ECM stiffness and worse prognosis. However, the crosstalk be-

tween cell adhesion molecular machinery and metabolic reprogramming is still far from being 

understood [3]. Similarly, the determinants of cellular stiffness, underlying mechanisms, con-

sequences, and an impact of cancer cells stiffening or softening on patient prognosis is still not 

satisfactorily clarified. 

2.2 Metabolic changes through tumor progression 

As mitochondrial ATP production is dramatically more effective in ATP-per-glucose ratio, most 

differentiated eukaryotic cells use OXPHOS as a main source of ATP. Glucose is typically me-

tabolised to pyruvate during glycolysis. This results from a generation of small amounts of ATP. 

Subsequently, pyruvate is transferred to mitochondria and undergoes oxidation to acetyl-CoA, 

which in turn enters the Krebs cycle. Protons created during Krebs cycle are transferred by 

NAD+ and FADH to an inner mitochondrial membrane and thereby creating pH gradient. This 

gradient is in turn discharged in oxidative phosphorylation (OXPHOS) in the presence of oxy-

gen by producing high amounts of ATP. OXPHOS is, therefore, a major strategy to synthesize 

energy.  

On the other hand, cancer cells are characterized by the urgent needs of energy supplies, not 

concerning the effectivity of ATP production. Although the OXPHOS is highly effective, it is a 

highly complex process. Glycolysis, on the other hand, is despite low ATP extraction levels per 

glucose molecule extremely fast process. As a consequence, in the cancer cells, the Warburg 
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effect reroutes the synthesis of ATP to glycolysis, which results in the accumulation of interme-

diate metabolites needed for cell proliferation.  

Although tumor cells typically shift to aerobic glycolysis, some tumor cells preserve high 

OXPHOS, a “reverse Warburg effect”. One of such examples are primary prostate cancer cells. 

The resulting metabolic phenotype is however not a constant phenomenon – it changes through 

the tumor progression according to the actual needs of individual cells. Accordingly, a focus 

cannot be given only to the metabolism of glucose, but also to other macronutrients. For in-

stance, the supply of amino acids is important for tumor cells to sustain their proliferative drive. 

Alongside their direct role as substrates for protein synthesis, they can have roles in energy 

generation and a redox balance [25]. This is of great importance in nutrient-poor situations 

which often develop in tumor microenvironment. Moreover, it has been shown that cancer cells 

are specific by auxotrophism, that is inability to synthetize compounds required for growth. 

From the perspective of amino acids, the perspective of essential and non-essential might not 

apply in every situation [25]. Author’s experimental publications on these topics are discussed 

in chapters 4.3.1 and 4.3.2. 

In the following review [8] we summarize current evidence on how amino acid metabolism 

changes throughout progression and point out to specific tumor types which differ in auxo-

trophism for specific amino acids. 

 

 

STEPKA, P., V. VSIANSKY, M. RAUDENSKA, J. GUMULEC, et al. Metabolic and Amino 

Acid Alterations of the Tumor Microenvironment. Current Medicinal Chemistry,  2021, 

28(7), 1270-1289. 
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2.3 Caveolin-mediated metabolic symbiosis in tumor stroma 

Multiple populations exist within the tumor microenvironment (stromal cells, immune cells, 

various subpopulations of cancer cells). From the perspective of metabolism, a specific symbi-

osis between the stromal and tumor cells develops in order to reroute the nutrients to energy-

demanding cancer cells. For instance, cancer-associated fibroblasts (CAFs) surrounding malig-

nant cells are characteristic by enhanced aerobic glycolysis and high lactate efflux via MCT4 

transporter [26]. This enables the uptake of CAF-produced nutrients by the cancer cells. Similar 

symbiosis was described also in tumor-associated macrophages or between multiple subpopu-

lations of cancer cells [4; 27].  

Interestingly, these populations often vary in caveolin-1 (CAV1) expression (low CAV1 in CAFs 

and high CAV1 in cancer cells). CAV1 is a 21 kDa protein predominantly localized in caveolar 

membrane structures, caveolae. It regulates cellular metabolism via providing docking sites for 

glycolysis enzymes (aldolase, phosphofructokinase), it affects mitochondrial bioenergetics via 

upregulation of mitochondrial amounts and respiration rate, it regulates glutaminolysis and af-

fects autophagy [28]. Within tumor microenvironment, it is a regulator of cellular metabolic 

reprogramming. For example, in colorectal cancer, it has been shown that an increase of CAV1 

resulted in increased glucose intake and increased ATP production. Nevertheless, CAV1 effect 

is context dependent. In some cell types, high CAV1 support the glycolytic phenotype while in 

others CAV1 knockdown is associated with higher levels of glycolysis [29].  

However, the effects of CAV1 are far beyond regulation of cellular metabolism and it partici-

pates in mechanotransduction [30], cell migration and mechanical stress responses [31; 32], 

indicating that caveolins are crucial regulators of cell mechanic and cell metabolic phenotype 

during tumor progression. Physiologically caveolin-rich caveolae are important in cell types 

under mechanic stress like smooth muscle cells, which are exposed to stretch, and endothelial 

cells, which face high shear stress [33; 34]. Caveolae flattening may provide a buffer for tensile 

forces and prevent the cell lysis due to mechanical stress. During mechanical stress surface-to 

volume ratio may increase as the caveolar membrane is released, resulting in cellular protection 

[35]. 

Prostatic tumors are – compared to most epithelial tumors – not characteristic by high glucose 

intake and high glycolysis (no Warburg effect). This is important diagnostically as primary pros-

tate tumors are usually not detectable by FDG-PET scans. Nevertheless, Warburg effect is 

detectable in later stages of cancerogenesis. These findings resulted in a formulation of hypoth-

eses for this thesis (chapter 3): That is: the level of CAV1 differs in various prostate tumor cell 
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populations and throughout the tumor progression is associated with changes in cell mechanics 

and metabolic reprogramming. 

In the review by Raudenska et al. [4], a role of caveolin-1 in the cancer cell metabolic repro-

gramming is discussed. Moreover, a link between cell mechanics and CAV1 is discussed here. 

 

RAUDENSKA, M., J. GUMULEC, J. BALVAN AND M. MASARIK Caveolin-1 in oncogenic 

metabolic symbiosis. International Journal of Cancer, Oct 2020, 147(7), 1793-1807. 
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2.4 Prostate cancer – the unique mechanic and metabolic model 

Non-tumor prostate tissue and prostate cancer cells are metabolically highly specific. In primary 

tumors, no Warburg effect was described. The non-tumor prostatic cells accumulate zinc ions. 

Due to the inhibitory effect of zinc to mitochondrial aconitase, the non-tumor prostatic cells 

accumulate citrate. Therefore, citrate metabolization to alpha-ketoglutarate is inhibited and cit-

rate cannot be used as a source of protons in Krebs cycle by non-tumor cells.  

On the other hand, malignant cells show a decrease in zinc accumulation and thus increased 

OXPHOS and no Warburg effect in primary tumors [7]. In addition, the “metabolic phenotype” 

of prostate cancer differs during its progression. Cells from metastatic sites are characteristic 

by decreased OXPHOS [8]. The causes and consequences of altered zinc balance are further 

discussed in detail in a Gumulec et al review [36]. 

The prostate cancer is not just unique metabolically, but also from the view of cell mechanics. 

Generally, most tumor cells isolated from tumor tissues are usually softer compared to their 

non-tumor counterparts, which facilitates migration through confined spaces [17]. In prostate 

cancer, however, a controversy with this exist: Bastatas and colleagues described increased 

stiffness (Elastic modulus) in vitro as a result of intensified tensile stress generated by the actin 

cytoskeleton [37]. Kim et al described stiffening together with epithelial-mesenchymal transi-

tion in more aggressive paclitaxel-resistant prostate cells DU-145TxR as a result of vimentin, 

ZEB1 and Snail upregulation [38]. Our results indicate an accordance with this finding [2]. As 

higher cellular pliability is needed during metastatic cell migration, this may be perceived as an 

evolutionary disadvantage of prostate tumors. However, hypothetically, such increased pliabil-

ity is needed just in a short period of metastasis development – once cells reach the secondary 

niche (typically in a bone metastasis), no such phenotype is needed. 

Additionally, we also indicated that zinc ions might be involved in this mechanism. As shown 

in our Gumulec et al in vitro study, more aggressive bone metastasis-derived PC-3 cells were 

highly sensitive to zinc ions while keeping a high level of resistance to cisplatin, as compared 

to less aggressive cells from primary tumor [39].  

Interestingly, a linkage with prostate tumor aggressiveness and CAV1 gene expression was also 

shown in our study on patients with prostate adenocarcinoma. The membrane structures caveo-

lae, or specifically the integral caveolae protein CAV1 is an important regulator of cell 

mechanical properties, oncogenic metabolic symbiosis and metabolic phenotype [28] (see chap-

ter 2.3). Following study performed on a cohort of patients with prostate cancer confirms the 

importance of caveolin: Patients with high grade and high stage tumors were characteristic by 
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higher serum CAV1 levels compared to low stage/low grade tumor-bearing patients [40]. Im-

portantly, complexity of CAV1 regulation is underlined by a fact that its association with grade 

is measurable not just on a cellular level or in the tumor in situ: it is also reflected in the patient 

serum.  

 

GUMULEC, J., J. SOCHOR, M. HLAVNA, M. SZTALMACHOVA, et al. Caveolin-1 as a po-

tential high-risk prostate cancer biomarker. Oncology Reports, Mar 2012, 27(3), 831-841. 
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2.5 Cell mechanics assessment in the era of imaging 

Taken together, our in vivo and patient-based [40] experiments indicate accordingly with liter-

ature that both prostate cells’ mechanic phenotype, CAV1 signalling and zinc(II) regulation 

differ through prostate cancer progression. As metabolism and biomechanical hallmarks of 

prostatic tumors are unique, the specific interplay between these processes and specific regula-

tory mechanisms are expected. However, there are no clear conclusions regarding the necessity 

of these processes for cancerogenesis in the prostate as the evolutionary advantages and con-

straints of these metabolic and mechanical changes are not known. However, novel high-

throughput high-resolution imaging techniques like QPI might be promising in the understand-

ing of prostatic biomechanical phenotype. Moreover, because this technique enables direct 

visualisation of mitochondrial network and simultaneous multimodal fluorescence imaging, this 

approach might be suitable in the understanding of metabolic and mechanical interplay in pros-

tate cancer cells. 

Different methods to study cell mechanics are used nowadays with dramatically differing force 

profiles (AFM, real-time deformability, tensile biaxial stretching, traction-force microscopy, 

etc.) [18; 19]. For the most commonly used technique – AFM, the cell-cantilever contact is 

needed, causing distinct mechanical stress to cells [18] and making correlative imaging prob-

lematic and time-lapse experiments near-impossible. Thus, there is a growing interest in using 

non-invasive label-free optical methods to probe mechanical properties such as Brillouin mi-

croscopy [41-43] and quantitative phase imaging [2; 44; 45]. With this in mind, the combination 

of techniques or ideally correlative acquisition could provide new meta-information on cell 

mechanical properties.  

However, these techniques differ in frequency scale of measurement and need different models 

to determine Young modulus. Absolute Young modulus values are therefore typically tech-

nique-dependent making the biological significance of the measured parameters still not fully 

understood [18]. Brillouin shift depends only on mechanical properties (i.e., the longitudinal 

modulus and the mass density) and is itself a mechanical property [43]. For modulus recon-

struction, however, a correlative image of refractive index (n) is needed, further enabling to 

study how modulus scales with n in various cells/subcellular regions under various conditions.  

2.5.1 Quantitative imaging provides physical specificity 

Cells are optically thin objects. Therefore, it is challenging to generate intrinsic contrast in such 

objects [46] and contrast enhancement based on phase information is needed [47]. The downside 
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of contrast enhancement is an introduction of artefacts; phase contrast images contain halo and 

shade-off, differential image contrast introduces non-uniform shadow-cast artefacts [47]. In ad-

dition, the phase contrast image is an intensity distribution, in which the phase information is 

coupled nonlinearly and cannot be retrieved quantitatively [46]. 

Quantitative phase image, on the other hand, does not provide molecular specificity. Neverthe-

less, the label-free quantitative phase image is specific physically. Moreover, compared to the 

fluorescence image, the acquired data do not correspond to relative intensity range, but instead 

are quantitative by nature – data reconstructed from the holograms is represented in physical 

units – radians [48]. It therefore provides quantitative information about local thickness of the 

sample as well as about its refractive index. Nevertheless, molecular specificity is needed in 

biological experiments. With this regard, multimodal imaging was developed. 

2.5.2 Multimodal correlative microscopy 

Fluorescence microscopy is the most commonly used microscopic technique in the current bi-

ology. It provides molecular specificity in sample [49]. Quantitative phase imaging, although 

physically specific, lacks this specificity and this restricts broader use of this technique. To 

overcome this, multimodal approaches were developed, combining phase imaging with Raman 

spectroscopy [50], Brillouin spectroscopy [51], multispectral light sources [52], structural illu-

mination microscopy [53], or with fluorescent imaging.  

Such imaging of the sample with more complementary modalities combined creates new com-

posite which is not just a combination of the two modalities, it provides additional meta-

information about the sample. Specifically, the combination of quantitative phase imaging with 

fluorescent microscopy was demonstrated to benefit from a high spatial resolution of QPI to-

gether with molecular specificity of fluorescent staining [49]. Such benefit was shown in cell 

death classification and prediction [44; 45], analysis of cytoskeleton or cell movement [54; 55]. 

As the acquisition of QPI is fast, the generation of large datasets makes it possible to extract 

complex information from these datasets using advanced image analysis methods. For instance, 

machine learning has enabled the translation of qualitative and quantitative phase images into 

fluorescence images [48]. The possibilities of such approaches are discussed in the next chapter. 

2.5.3 Artificial intelligence in biomedical image 

During 2015-2020, deep learning algorithms have become methods of choice for biomedical 

image analysis [56]. Nowadays, these techniques are used for image classification (pathology 



Cell mechanics assessment in the era of imaging 2.5 

65 

vs physiology), detection of objects (lesions, cells, organelles, or others), segmentation of re-

gions of images (tissues, cells, subcellular regions), registration or other tasks. Most 

applications are observed in neurology, retinal images, chest X-ray imaging, and in digital pa-

thology. The broadness of deep learning (DL) is evident for analysis of MRI brain images, where 

DL was deployed for disorder classification (Alzheimer disease, mild cognitive impairment, 

schizophrenia), segmentation of anatomical sites, detection of lesions (tumors, micro bleedings, 

lacunes), survival prediction, image enhancement [56].  

Deep learning has been widely adopted also on retinal fundus images to classify diabetic reti-

nopathy and retinopathy of prematurity, the glaucoma-like disc, macular oedema and age-

related macular degeneration[57], showing performance similar to a panel of experts [56]. The 

tremendous potential of deep learning in the medical images can be evidenced by Poplin et al 

study also on retinal fundus images: The authors demonstrated it is possible to extract even 

gender, age or systolic blood pressure with remarkable accuracy just from retinal images – the 

parameters which are beyond the possibilities of human experts in the field [58]. While experts 

would annotate the gender based on fundus images with accuracy close to 50:50, the custom-

designed DL network did so with area under curve (AUC) 0.97. Such results were made possi-

ble because of enormous dataset size – it was trained on data from 284,335 patients and 

validated on two independent datasets [58]. This example demonstrates that images contain 

patterns indiscernible by the human eye which can be advantageously extracted using machine-

learning strategies. 

The most commonly used network designs deployed on medical images are convolutional neu-

ral networks and recurrent neural networks. In medical images, the networks are used as 

“supervised”, meaning that an expert manually annotates a portion of dataset used for training, 

which is then used for the network in the learning process (expert annotates tumor vs non-tumor 

zone, cell vs background, neutrophils vs macrophages, etc.). Of the convolutional neural net-

work architectures, U-Net [59] is the most commonly used one for microscopic image cell 

detection, morphometry, or counting. Regardless of the architecture used, it still holds that the 

dataset size is a bottleneck for the network performance. If either image acquisition is slow or 

manual annotation by expert is time-consuming and introduces some level of subjectivity, the 

capabilities of the machine learning are untapped. Seen from cellular mechanobiology perspec-

tive, atomic force microscopy or Brillouin spectroscopy provide valuable data, but the 

acquisition speed of these methods is slow, roughly one field of view per tens of minutes. Due 

to the low throughput of these techniques, the deployment of contemporary machine learning 

techniques on such datasets is highly challenging. 
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New deep learning approaches – Variational autoencoder or Generative adversarial networks 

provide a great advantage – user annotation is not necessary. These architectures can mainly be 

deployed in data augmentation or in specific scenarios like shown in our study by Vicar et al. 

[60] discussed in a results section 4.2.2. 

The deep learning neural networks are typically criticized to be uninterpretable black boxes, 

where researchers cannot deduce biological explanations that drive the machine decisions. This 

might not be an issue as approaches to overcoming this exist, as shown in Zaritsky et al study 

on classification of highly aggressive melanoma cells [61]. The authors “reverse-engineered” 

the neural network and in silico generated cell images based on machine-made classification 

decisions. In the other words, this approach was used to amplify cellular features of metastatic 

efficiency. These images unveiled pseudopodial extensions and increased light scattering as 

functional hallmarks of metastatic cells compared to non-metastatic ones [61]. In our Majercik 

et al. study [62] we performed a classification of highly aggressive prostate cancer cells based 

on quantitative phase imaging. In a similar way as performed by Zaritsky et al study, we gen-

erated “attention maps” of the cells to highlight the areas based on which the network decisions 

were made in order to avoid the “black box bias”. 

Machine learning is also suitable in the microscopic analysis of quantitative phase imaging. 

Specifically, it has been employed in quantitative phase imaging to overcome low molecular 

specificity of this technique [49]. Recently, deep learning has enabled the translation of quali-

tative and quantitative phase images into fluorescence images [48]. Such combination – when 

powered by AI – can enable diagnosis of diseases based on molecular specificity and morphol-

ogy at single-cell level [49]. Machine learning was employed in image classification based on 

QPI data for cancer cells [63], red[64] and white blood cells[65], bacteria[66],[67] and others 

[68]. Such approaches open new avenues for biomedical research and diagnosis [49]. 

In this thesis, artificial intelligence was demonstrated to solve several tasks. It was shown to be 

powerful for image segmentation [47; 69-71] (chapter 4.1), cancer cells classification [62], ex-

traction of features from quantitative phase image not visible by naked eye [60; 72] and thus 

enabled to explain the molecular specificity of a technique primarily showing biophysical and 

mechanical features of the cells. The aspects of deep learning in medical imaging are further 

discussed in Gumulec and Vicar book chapter [69]. 
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3 Key points of the habilitation thesis 

Papers presented in this thesis aim to address how cell mechanical properties change during the 

pathogenesis of prostate cancer on in vitro model and how it relates with other well-described 

tumor hallmarks – such as tumor metabolic state. As the existing mechanophenotyping methods 

are low-throughput, low-resolution and invasive, with atomic force microscopy as a typical 

example, the potential of label-free optical techniques was evaluated. It was furthermore inves-

tigated whether quantitative phase image contains data not evident by the naked eye, which can 

be deployed in aggressive cell classification. Finally, mechanisms underlying the altered me-

chanical and metabolic phenotype were studied. Specifically, the following hypotheses were 

addressed: 

• Mechanics of the prostate cancer cells changes during cancer progression 

• Quantitative phase imaging is suitable to describe biomechanical properties of cells 

• There are patterns in quantitative phase maps of cancer cells which are not evident by 

the naked eye but underline the change of mechanical phenotype (that is, label-free 

quantitative phase image contains specific “meta-information”). 

• Caveolin-1 is involved in the mechanical and metabolic reprogramming of prostate can-

cer cells. 

3.1 Key methods 

Key methodological approaches are mentioned in this chapter. Details of these methods specific 

for particular experiments and more routine methods are in the Methods section of respective 

papers. The thesis lies on a combination of cellular and molecular biology techniques to describe 

cell features like migration rate, cell death or division, metabolomic techniques to describe cell 

metabolic states, microscopic techniques to acquire data, bioinformatic techniques for image 

analysis.  

3.1.1 Imaging techniques 

Multiple microscopic techniques were employed in this study to describe the physical and mo-

lecular properties of cells. These include contrast-enhancing live-cell label-free methods (phase 
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contrast, differential image contrast), quantitative phase imaging, atomic force microscopy, con-

focal and epifluorescence microscopy, and Brillouin spectroscopy. The details of these methods 

are explained in the Methods sections of the respective articles, while here, the principle and 

methodological details of crucial microscopic methods are described. 

Quantitative phase imaging was performed on two designs of microscopes: coherence-con-

trolled holographic microscope capturing 2D images of cell dry mass and optical diffraction 

tomography, acquiring 3D images of refractive index. For coherence-controlled holographic 

microscopy Q-PHASE (Telight, Brno) was used. Objectives Nikon Plan 10/0.30 were chosen. 

Holograms were captured by CCD camera (XIMEA MR4021 MC-VELETA). The entire image 

reconstruction and image processing were performed in Q-PHASE control software.  

Refractive index tomograms were acquired on an optical diffraction tomography microscope 

with rotational scanning 3D Cell Explorer (Nanolive SA, Lausanne, Switzerland) with Nikon 

BE Plan 60x NA 0.8. The size of the acquired tomogram was 93.1×93.1×35.7 μm (xyz). Samples 

were measured in cell medium which refractive index was measured on digital refractometer 

DR201-95 (Krüss, Germany) and used as a reference. Software Steve 1.6.3496 (Nanolive SA) 

was used for image acquisition. Image processing and statistic techniques 

Atomic force microscopy was performed on bioAFM microscope JPK NanoWizard 3 (JPK, 

Berlin, Germany) placed on the inverted optical microscope Olympus IX-81 (Olympus, Tokyo, 

Japan). The typical approach/retract settings were identical with a 15 μm extend/retract length, 

Setpoint value of 1 nN, a pixel rate of 2048 Hz and a speed of 30 μm/s. The system operated 

under closed-loop control. After reaching the selected contact force, the cantilever was re-

tracted. The retraction length of 15 μm was sufficient to overcome any adhesion between the tip 

and the sample and to make sure that the cantilever had been completely retracted from the 

sample surface. Force-distance (FD) curve was recorded at each point of the cantilever ap-

proach/retract movement. The Young’s modulus (E) was calculated by fitting the Hertzian-

Sneddon model on the FD curves measured as force maps (64 × 64 points) of the region con-

taining either a single cell or multiple cells. Soft uncoated AFM probes HYDRA-2R-100N 

(Applied NanoStructures, Mountain View, CA, USA), i.e., silicon nitride cantilevers with sili-

con tips are used for stiffness studies because they are maximally gentle to living cells (not 

causing mechanical stimulation). 
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3.1.2 Methods to study cell migration and invasiveness 

To study aggressiveness, invasiveness and migration, a panel of assays was used. MTT was 

used to analyse the toxicity of selected inductors/inhibitors. Wound healing assay was per-

formed to analyse migration speed. For this approach, cells were incubated for 24h after a 

formation of the wound in a fully confluent well. A ratio between the wound area in a time point 

0 and 24 was used as an approach metric of migration. Migration was also measured in open 

area with low-density seeded cells and the individual cell migration was tracked using QPI. Cell 

growth and invasiveness were analysed in real-time on an impedance-based device (xCELLi-

gence (Acea Biosystems, CA, USA). Colony-forming assays were performed mostly to 

determine cell reproductive death after cytotoxic treatment. In 6-well plates cells were seeded 

in a density ranging 100-2000 cells and after 1-3 weeks the number of colonies was calculated 

using an in-house software script. 
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4 Commentary to the articles 

The key aim of this thesis is to link the prostate cancer cell mechanical properties with cancer 

cell metabolic reprograming and cancer cell aggressiveness - well-described tumor hallmarks. 

As discussed in the chapter 2.5.1, quantitative phase imaging has potential to describe the bio-

mechanical properties of prostate cancer cells of varying aggressiveness and their connection 

to these cells’ metabolism is investigated in this thesis. Therefore, first, bioinformatic strategies 

employing artificial intelligence in computer vision are designed to meaningfully extract fea-

tures from the quantitative phase image suitable for mechanobiology. As these techniques were 

optimized and the potential of QPI was established in this field, its biological function was 

explained using traditional cell biological and molecular biological approaches. Finally, its link-

age with changes in metabolic phenotype was described. 

4.1 Image segmentation: an important step of image data processing 

Computer vision in biomedical images is applicable for various tasks – detection of pathologic 

lesions, classification of tissue/cell types, and many others. Nevertheless, prior these tasks area 

of interest needs to be segmented from an unwanted background (e.g., tumor region and non-

tumor region in hematoxylin-eosin slides, brain tissue from other tissues in MRI, cells from the 

surface in microscopy). Such task is a process which divides the image into several logical and 

meaningful areas. 

Quantitative phase image is a new imaging modality. Therefore, no standardized image pro-

cessing pipelines exist either for classification of such data, but also for its segmentation. 

Therefore, the following study by Vicar et al. [47] was designed, aiming to define optimal image 

segmentation pipeline. In addition, its “segmentability” was compared to routinely used label-

free microscopy techniques – phase contrast microscopy, differential interference contrast mi-

croscopy, and Hoffman modulation contrast microscopy.  

A three-step strategy was proposed in this study: First, areas of interest (cells) were separated 

from a background in a semantic segmentation step. In this first step, however, individual cells 

are not separated from each other. This separation is initiated in the following step – object 

detection. Based on semantic segmentation and object detection, individual cells can be suc-

cessfully identified (instance segmentation).  
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This study provided us valuable conclusions important for further research: first, it confirmed 

the advantage of quantitative phase image over other contrast-enhancing label-free microscopy 

methods: QPI is artefact-free and is quantitative – meaning that similar structures (nucleoli, 

nuclei, mitochondria) have identical values (radians, or cell dry mass density) between experi-

ments. In the other words, nuclei, nucleoli, and other structures are physically specific [41]. Due 

to these properties, the “segmentability” of QPI image is more accurate, facilitating further QPI 

data processing. Second, it was clearly demonstrated that machine-learning strategies dominate 

over traditional model-based approaches. Of note, no deep-learning strategies were employed, 

instead, networks with simpler architecture, random-forest based like Ilastik [73], Trainable 

Weka Segmentation [74] were tested in pipelines. For deep-learning strategies even higher lev-

els of segmentation accuracy are expected and possible deep-learning based segmentation 

approaches are discussed in Gumulec et al. [69] book chapter. 

For QPI, relatively simple strategies like thresholding followed by watershed were sufficient. 

However, a combination of Weka probability map segmented with Graph-cut [75], followed by 

object detection with generalized radial symmetry transform [76] and finally segmented by 

marker-controlled watershed [77] gives superior results. Segmentation pipelines proposed in 

this study were subsequently deployed on the following quantitative phase imaging workflows 

so data extraction from this technique can be standardized.  

Despite Vicar et al [47] 2019 study demonstrated higher “segmentability” of objects (adherent 

cells) acquired by QPI over other microscopic techniques, it did not show the highest-possible 

segmentation scores for cells. That is because model-based techniques were used Therefore, in 

a following 2021 study [70] we aimed to increase the segmentation score for objects – cells – 

in a QPI microscopy image by use of deep-learning techniques. In order to remove inevitable 

features of deep learning, that is limited transferability to microscopic images (of cells) not used 

in the learning process, unique pipeline was designed. Non-deep learning transfer with adjust-

able parameters is used in the post-processing step. Additionally, we proposed a self-supervised 

pretraining technique using nonlabelled data of images of multiple cell types, which is trained 

to reconstruct multiple image distortions and improved the segmentation performance [70]. Be-

cause no manual annotation was necessary for this pre-training stage, large amounts of 

microscopic images (~ 2000) might be used in the network, that is an amount hardly feasible 

in a supervised, that is annotated, type of network. The proposed self-supervised pretraining 

method improved both segmentation performance and transferability to different cell types [70]. 

Nevertheless, despite these two approaches for QPI cell segmentation, the model-based one, as 

well as the deep-learning-based one were intended to segment whole cells. Therefore, an effort 
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was also given to segment subcellular elements, specifically nuclei and nucleoli. Another quan-

titative phase method, the optical diffraction tomography with 60x magnification was used in 

this aim. We have managed to distinguish between objects and background with average dice 

coefficients of 0.83, 0.78 and 0.63 for whole cells, nuclei and nucleoli respectively. Also in this 

step the pretraining further improved the segmentation performance especially for nuclei and 

nucleoli, 21% and 16% respectively [71].  

 

 

VICAR, T., J. BALVAN, J. JAROS, F. JUG, et al. Cell segmentation methods for label-free 

contrast microscopy: review and comprehensive comparison. BMC Bioinformatics, June 28 

2019, 20(1), 360. 
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4.2 Artificial intelligence in quantitative microscopy 

Quantitative phase enables high-throughput imaging of subtle changes of the cell mass distri-

bution. Cell dry mass is calculated from phase according to Barer and Davies [21; 22]. Due to 

the inherent low phototoxicity of this technique, long time-lapse acquisitions are feasible. Cell 

dry mass is a dynamically changing during degradative or biosynthetic cell processes and there-

fore the technique enables to extract detailed quantitative information on cell morphology and 

cell topography during various processes including cell division, cell growth, cell communica-

tion, or cell death [44]. This technique, therefore, has a promising role in the cancer studies. 

Quantitative nature of this microscopic technique and possibility to acquire large dataset (hun-

dreds to thousands of fields of view per time-lapse) open a possibility of machine learning 

deployment in image analysis instead of mere visual assessment of the images or simple mor-

phometry (measuring areas or intensities).  

In the following subchapters, the potential of QPI to include information not evident by naked 

eye will be tested to reconstruct specific subcellular structures originally labelled fluorescently. 

Specifically, synthetic imaging of nuclear staining from a quantitative phase image without the 

presence actual fluorescence information (DAPI, Hoechst, or another nuclear staining) was per-

formed in a paper by Vicar et al [47]. Furthermore, deep learning-based classification of two 

types of prostatic cells characteristic by varying degrees of aggressiveness was performed (con-

ference proceedings by Majercik et al. [62]) 

4.2.1 Synthetic nuclei reconstruction from the label-free quantitative phase 

Compared to fluorescent dyes routinely used in fluorescence microscopy, label-free quantitative 

phase imaging does not provide biological specificity but provides a physical specificity to un-

derlying structures of samples (DNA, proteins, lipids...). Although some cellular structures can 

be well recognized by the naked eye in a quantitative phase (nucleus, nucleoli, mitochondria, 

and some others), most others are not.  

 “Synthetic” staining using deep learning is however possible in this case: such approach is 

applicable to highlight fluorescently labelled structures from a label-free image without actual 

fluorescent labelling [78].  

Such approach is of great biological interest for live-cell imaging as in many cases fluorescent 

staining is not possible (due to technical obstacles), requires fixation or causes phototoxicity 

and is thus not suitable for time-lapse experiments. First, we employed a U-Net and SegNet 
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convolutional neural networks (CNN) to generate the synthetic staining in the following pa-

per [72] and used a segmentation overlap with nuclei masks (segmented based on the nuclear 

channel) as a metric. We determined a dice coefficient 0.78 for PNT1A and DU-145 cell line 

synthetic nuclei staining (this metric is explained in our Vicar et al study [47], chapter 4.1).  

 

VICAR, T., J. GUMULEC, J. BALVAN, M. HRACHO, et al. Label-Free Nuclear Staining Re-

construction in Quantitative Phase Images Using Deep Learning. In L. LHOTSKA, L. 

SUKUPOVA, I. LACKOVIC AND G.S. IBBOTT. World Congress on Medical Physics and 

Biomedical Engineering 2018, Vol 1. New York: Springer, 2019, vol. 68, p. 239-242. 
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4.2.2 Quantitative phase nuclei reconstruction from unpaired images 

The approach presented in chapter 4.2.1, however, needs a paired training image (correlative 

imaging of the same field of view acquired label-free and with staining), which is not always 

doable. There might exist limitations related to different sample preparation conditions, or con-

struction aspects of microscopes disabling the correlative imaging. 

Cycle-consistent generative adversarial network [79] (CycleGAN) is a machine learning tech-

nique overcoming this limitation – it is suitable for learning on non-paired data (e.g. one dataset 

of brightfield microscopy, the second dataset of atomic force microscopy, fluorescent or other 

technique). In addition to the U-Net based paired approach shown in chapter chapter 4.2.1 , this 

CycleGAN-based approach demonstrates that nuclear image reconstruction is possible from 

another dataset of quantitative phase imaging. Specifically – DU-145 cells stained with Hoechst 

33258. Generation of virtual fluorescence from QPI is doable using CycleGAN: Improved Was-

serstein loss [80] was used for training of dataset and results were compared to a standard 

supervised U-Net (Figure 1). We determined mean squared error 3.23 x 10-4 for U-Net and just 

slightly lower, but sufficient performance of CycleGAN 5.1 x 10-4 verifying the possibility of 

such approach [60].  

 

 

Figure 1 Generation of synthetic nuclei from quantitative phase image. a. architecture of standard paired 

network. b. network design of unpaired network. c. comparison of real staining and synthetic image-based 

on quantitative phase image. d. performance of the network. Taken from Vicar, Gumulec et al, [60], 



Imaging to characterize cell mechanics 4.3 

105 

4.3 Imaging to characterize cell mechanics 

This chapter is based on the hypothesis that quantitative phase imaging provides information 

on cell mechanics. The rationale of such hypothesis is based on the physical properties of quan-

titative phase imaging (chapter 2.5.1) and the motivation is based on a fact that, compared to 

atomic force microscopy, QPI is faster and less invasive. In the following chapters, QPI is cor-

related with atomic force microscopy, Brillouin spectroscopy, confocal imaging of 

cytoskeleton, and related to molecular phenotype, cell migration and invasiveness. 

4.3.1 Quantitative phase imaging correlates with Young modulus 

In the Majercik et al. study [62] we provided a piece of evidence that prostate cancer cells 

characteristic by higher degree of in vitro aggressiveness (PC-3 zinc-resistant) differ from their 

wild-type counterparts (PC-3) in physical composition – its quantitative phase image. These 

findings however do not provide any clue how the cell dry mass distribution differs between 

wild-type and zinc-resistant cells nor what is the underlying mechanism of this finding. 

With this regard, a study which further became a crucial part of this thesis was performed: In a 

Raudenska et al. [81] paper we focused on how cell dry mass scales with Young modulus deter-

mined by atomic force microscopy and with cytoskeletal rearrangement and therefore to 

provide evidence how cell dry mass is linked with cell biomechanics. Furthermore, the molec-

ular basis of this process was explained. 

Tumor cells are usually softer (of lower Young modulus as determined by AFM) compared to 

non-tumor counterparts and more aggressive tumor cells are usually softer than less aggressive 

ones  [19], which is useful as an indicator of malignant potential. In the following study, we 

observed a disagreement with this concept: metastatic cell lines (PC-3 and LNCaP) character-

istic by increased aggressiveness in vitro and in vivo were significantly stiffer than cells derived 

from the primary tumor (22Rv1) [2]. The Young modulus of these cells scaled with cell dry mass 

and with the expression of membrane protein caveolin, implicating its involvement in mecha-

notransduction and confirming the predictive value of QPI for biomechanical studies. 

This study provides one other implication: either Young modulus or cell dry mass is in relation 

to the gene expression of Caveolin-1. The function of this pleotropic protein includes metabolic 

reprogramming, mechanotransduction, cell migration and mechanical stress responses and are 

in depth discussed in chapter 2.3. Here the data indicate that cells expressing high CAV1 are 

stiffer compared to CAV1-non-expressing cells.  
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Furthermore, in the next experiment we compared the Young modulus of wild-type PC-3 and 

zinc-resistant PC-3-50 cells using AFM with 5 µm silica sphere probe qp-SCONT (0,01 N/m). 

The Young moduli calculated using Derjaguin‐Muller‐Toporov model were 0.99 and 2.0 kPa 

for wild-type and zinc-resistant PC-3 cells (Figure 2), suggesting that the zinc resistant coun-

terparts characteristic by higher migration and invasiveness rates in vitro are stiffer, being in 

agreement with Kim et al study on docetaxel-resistant prostate cancer cells [2]. 

Mechanical properties of cells affect cell migration, adhesion, differentiation and subcellular 

organelle transport as well as cell metabolic state[82]. These properties are not only related to 

physiological functions but are also linked to a pathophysiological mechanism of diseases, can-

cer development in particular. One of the key features of cancer cells is the ability to migrate 

and invade tissues – cancer spreading, which leads to the development of metastatic tumors in 

distant organs [83]. More deformable cells are favoured for key cancer spreading processes – 

extravasation and extravasation [10]. As compared to non-tumor cells, a decrease in stiffness of 

cancer cells was accordingly described by numerous studies in a spectrum of tumor types [10]. 

Accordingly, such change of mechanical properties of cancer cells is a promising indicator of 

malignant potential[19], because it is a direct measurement of the cells` phenotype. This con-

trasts with a number of molecular markers, which, despite their high predictive value, do not 

correspond with the actual development of the disease. For instance, although prostatic specific 

antigen is a powerful diagnostic tool for prostate cancer, its function is not cancer-specific, in-

stead, it is needed for sperm liquefaction.  

Figure 2 Young moduli and setpoint height maps determined using atomic force microscopy, representative FOVs 

of wild-type and zinc-resistant PC-3 cells and per-cell-average Young modulus values of 32 measured cells. From 

Gumulec et al. [1] and Raudenska et al. [2] 
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However, the increase in deformability remains controversial. It is not clear whether all cells or 

just some subpopulation of cancer cells is softer [84], and how this depends on tumor type and  

tumor progression. Also, mechanisms leading to cell softening are still not explained satisfac-

torily.  

In our lab we studied a prostate cancer model and observed a disagreement with this concept: 

metastatic cell lines (PC-3 and LNCaP) characteristic by increased aggressiveness in vitro and 

in vivo were significantly stiffer than cells derived from the primary tumor (22Rv1) [2]. In a 

spite of the fact that zinc plays an important role in prostate cancer development, we further 

developed a zinc-resistant metastatic prostate tumor cells “PC-3-res-50” [85], which demon-

strated to be even stiffer (to have higher Young modulus determined by atomic force 

microscopy, AFM) and even more aggressive, as determined by wound-healing, colony-form-

ing, migration assays and partly by growth speed in animal models and higher levels of 

glycolysis and respiration (Kratochvilova et al, in preparation). Gene expression profiling of 

those cells revealed enrichment of pathways associated with stress response, positive regulation 

of metabolic processes, DNA repair and cell ageing mediated mostly by RAS signalling. More-

over, our results also suggest a positive correlation between cell stiffness and cell dry mass 

density as determined by quantitative phase imaging and an association between Caveolin-1 

expression and the total stiffness of prostate cancer cells [2]. In prostate cancer cells, an increase 

of stiffness in more aggressive cells was described similarly in literature [37; 38]. However, as 

shown by Raudenska et al study, this stiffening was not attributed to the change in actin cyto-

skeleton network architecture, one of the major factors determining the cell stiffness [2]. 

 

RAUDENSKA, M., M. KRATOCHVILOVA, T. VICAR, J. GUMULEC, et al. Cisplatin en-

hances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin 

accumulation. Scientific Reports, 2019/02/07 2019, 9(1), 1660. 
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4.3.2 Shear modulus estimation using quantitative phase imaging 

Previous study revealed an association between cell cry mass and cell Young modulus [2], chap-

ter 4.3.1. To further examine the possibilities of using QPI to analyse the mechanical properties 

of cells, QPI was employed in a microfluidic setup with cells exposed to shear stress [86]. The 

approach is used to estimate cell viscoelastic properties upon fluid shear tress induction. In this 

system QPI is used because it enables optical path length measurement as higher objects cause 

higher phase shifts. Approach is based on a study by Eldridge et al. [24] and is further improved 

by a possibility to extract refractive index and to estimate cell height in a single measurement. 

In addition, the proposed method highly benefits from a parametric deconvolution of a flow 

signal measured by flow meter; this parameter is highly dependent on a fluidics and syringes 

used, adding a capacity to the system. Therefore, cell viscosity estimation in particular can be 

highly distorted. To suppress this effect, we applied a correction method utilizing parametric 

deconvolution of the flow system’s optimized impulse response [87]. Achieved results were 

compared with the direct fitting of the Kelvin-Voigt viscoelastic model and the basic steady-

state model. The results showed that our novel parametric deconvolution approach is more ro-

bust and provides a more reliable estimation of viscosity with respect to changes in the syringe’s 

compliance compared to Kelvin-Voigt model [87]. 

We demonstrated that this setup is suitable for high throughput and robust cell viscoelasticity 

estimation and work even in a time-lapse scenario. The great advantage if of the system is that 

apart from the viscoelastic properties estimation per cell also parameters derived from quanti-

tative phase image can be extracted – cell morphology, cell dry mass, or parameters like 

circularity or others. Simultaneous measurement of refractive index, which is used to calculate 

the cell height, further complements a number of determinable parameters for individual cells 

[86]. 

4.3.3 Complementarity of Brillouin spectroscopy and quantitative phase imaging  

In the chapter 4.3.1, a correlation between cell dry mass and Young modulus of prostatic cells 

was described [2]. In an Elsayad et al [88] study, we focused on an alternative approach of 

measurement of cell mechanical properties based on Brillouin spectroscopy. Compared to 

AFM, the advantages of Brillouin microscopy are that it is a completely non-invasive, non-

contact method that can measure mechanical properties in short acquisition times. Spontaneous 

scattering is based on the inelastic scattering of light from acoustic phonons that are inherently 

present in the probed material [88]. It enables to calculate the storage modulus and thus elastic 

properties of the sample by the relation 
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𝜈𝐵 ~ 𝑛√
𝑀′

𝜌
 

where 𝜈𝐵 is a Brillouin peak frequency shift, n is a refractive index of a material, M’ is a storage 

modulus and 𝜌 is the mass density. Critical in this relation is a need for knowing the refractive 

index of the sample. As 𝜌 and n are directly coupled in most samples, there is no need to meas-

ure both. Quantitative phase imaging extracts the phase shift from which cell dry mass can be 

approximated. Another quantitative phase technique – optical diffraction tomography enables 

to separate two components of the cell dry mass – that is the physical (optical) property of the 

sample (its refractive index) and sample height.  

In this study, we have effectively demonstrated that a combination of both techniques in a cor-

relative setup provides a more accurate way of estimating storage modulus – estimating the 

mechanical properties of the sample.  Brillouin microspectroscopy was performed on a custom-

build setup in Vienna Biocenter Advanced microscopy core facility, while the refractive index 

was determined in our lab.  

In sum, the paper shows the complementary roles of Brillouin spectroscopy and quantitative 

phase imaging. Therefore, in this experiment instead of living prostate cancer cells, the imaging 

was performed on simple-to analyse non-moving objects – cellulose fibres, as the acquisition 

of correlative dataset of fast-migrating cells is still a challenging issue. 

 

ELSAYAD, K., G. URSTOGER, C. CZIBULA, C. TEICHERT, et al. Mechanical Properties of 

cellulose fibers measured by Brillouin spectroscopy. Cellulose, May 2020, 27(8), 4209-4220. 
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4.3.4 Mitochondrial network increases mass density in zinc resistant cells 

Changes in cellular biomechanical properties play a crucial role in the development of metas-

tases in cancers. Although cell stiffness decrease is described in most tumor types, in a model 

of prostate cancer we previously described an increase of stiffness of metastatic tumor-derived 

cells compared to primary tumor-derived cells and increase of cell stiffness in a more aggressive 

zinc-resistant variant of PC-3 cells (chapter 4.3.1). As this stiffening was not related to actin 

cytoskeleton organisation, the most predominant factor affecting cell mechanics, we next aim 

to explain the underlying mechanism by using a combination of microscopical methods (coher-

ence-controlled holographic microscopy, confocal microscopy of actin and tubulin and 

refractive index tomography). 

In the wild-type PC-3 cells individual mitochondria are well discernible in refractive index 

tomograms (Figure 3A) from rest of perinuclear structures [1]. On the other hand, in zinc-re-

sistant cells, individual mitochondria are barely visible compared to wild-type cells due to 

Figure 3 Mitochondrial network is predominantly altered in zinc-resistant cells. a. refractive index tomography (op-

tical diffraction tomography) of wild-type cells with evident mitochondrial network. Single slice of tomogram. White 

arrow indicates mitochondrial branching. right: profile of RI map of cell, nucleoli are the most prominent structures 

regarding refractive index. b. tomograms of more aggressive zinc resistant PC-3 cells and respective profile. Evident 

density increase in perinuclear region. c. principal component analysis of parameters extracted from multiple zones 

of the cells illustrated in a cartoon cell.  These parameters are suitable (N=235 cells) to distinguish PC-3 cell variants 

with increased aggressiveness. d. correlative imaging of RI tomography with fluorescent staining of mitochondria 

(mitoTracker Green FM). From Gumulec et al [1] 
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accumulation of these organelles (Figure 3B). Based on parameters extracted from refractive 

index tomograms, quantitative phase microscopy can be used to distinguish between more met-

abolically active and more aggressive „zinc-resistant“ PC-3 cells and wild-type counterparts 

(Figure 3C). Combination of refractive index tomography, AFM and confocal microscopy pro-

vided more robust evidence that mass redistribution and increase of metabolic plasticity is 

characteristic for aggressive prostate cancer model rather than just increase of cell stiffness as 

seen by AFM.  

Based on these findings, the attention was directed on a metabolic reprogramming of cancer 

cells, and specifically, on the dysregulation of use of metabolic substrates, amino acids, and, on 

the mitochondria [1; 89; 90].  

4.4 Mechanical phenotype is linked also with metabolic phenotype 

Metabolic reprogramming is an important prostate cancer hallmark as indicated by multiple 

evidence. First, malignant cells derived from prostatic tumors show a decrease in zinc accumu-

lation and thus mitochondrial aconitase-mediated increased OXPHOS and no Warburg effect in 

primary tumors [7]. Based on our experiments, zinc levels differ dramatically in tumorous tissue 

of patients and benign prostate [91] and cell line models derived from aggressive tumors are 

highly sensitive to zinc ions [39]. Second, as indicated by refractive index tomography, the 

mitochondrial network architecture is altered in zinc-resistant prostate cancer cells [1]. With this 

regard, the focus on oxidative metabolism was given in the next steps. 

4.4.1 Amino acid metabolism in prostate cancer 

In a study by Raudenska et al [2] on highly aggressive prostate cancer cells discussed in chapter 

4.3.1 it is shown that cells derived from metastatic site are stiffer, of higher cell dry mass, and 

expressing CAV1 compared to the primary tumor-derived cells of low aggressiveness. To further 

explain which energy-rich compounds are predominantly metabolised, the following study was 

performed. Here we show a link between changes in amino acid utilization and aggressiveness 

of the prostate cancer cells. 

The non-tumor prostatic cells accumulate citrate due to inhibitory effect of zinc to mitochondrial 

aconitase. Therefore, citrate metabolization to alpha-ketoglutarate is inhibited and citrate cannot 

be used as a source of protons in Krebs cycle in non-tumor cells. Although glucose cannot be 

effectively transferred to energy in cancer cells, other substrates can enter the Krebs cycle. Glu-

cogenic amino acids in particular. In prostate cells, Accumulation of high amount of citrate is 

manged via acetyl-CoA through pyruvate and oxalacetate regeneration in the end of the Krebs 
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cycle. Oxalacetate is synthesized from aspartate, which is in turn increasingly imported to the 

prostatic cells. For the prostate cells, aspartate can therefore be considered an “essential” amino 

acid [92]. Prostate cancer, on the other hand, loses the ability of citrate accumulation as the 

inhibitory effect of zinc diminishes. As a result, mitochondrial aconitase is disinhibited and this 

results from an increased metabolic effectiveness of cancer cells [93; 94] (reviewed in Gumulec 

et al. [36]). 

In a Kratochvilova et al. [95] study, shifts in amino acid pattern were described in relation to 

the aggressiveness and degree of zinc resistance [85]. Higher aspartate accumulation and lower 

levels of alanine, methionine leucine, lysine and threonine were present in aggressive cells 

(characteristic by high Young modulus, high cell dry mass, more stemness-like phenotype and 

higher migration rates) compared to less aggressive primary tumor-derived cells of low Young 

modulus and low cell dry mass. Results of the amino acid profiling in prostate cancer are sum-

marized in Kratochvilova et al.  

In sum, here we demonstrated that alanine, methionine leucine, lysine and threonine are “es-

sential” for zinc-resistant PC-3 cells and the results also confirm that enzymes of citrate cycle 

are intact in these cells, otherwise no Asp increase would not be possible.  

 

KRATOCHVILOVA, M., M. RAUDENSKA, Z. HEGER, L. RICHTERA, et al. Amino Acid 

Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression. 

Prostate, May 2017, 77(6), 604-616. 
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4.4.2 Cellular Amino acid levels associated with cancer progression 

A dysregulation of amino acid profiles was described in a previous study [95], chapter 4.4.1, 

highlighting specifically a role of alanine, methionine leucine, lysine and threonine for prostate 

cancer cells characteristic by high aggressiveness in vitro. In the following study an effect of 

amino acids on prostate tumors is analysed from a different perspective: Recently, a role of non-

coding amino acid N-methyl glycine (sarcosine) was related to prostate cancer progression [96].  

Specifically, an elevated levels of this amino acid were described in metastatic tumors. There-

fore, exogenous supplementation of amino acids – precursors of sarcosine metabolic pathway 

– was performed and levels of the coding amino acids were monitored together with analysis 

of cancer cell migration and division rate in vitro. 

The data observed in this study [97] indicate that the production of sarcosine by prostate cancer 

cells is inducible by its amino acid precursors – glycine, and, in particular dimethylglycine. The 

treatments by these precursors further modify the levels of coding amino acids in cancer cells, 

enabling to differentiate cell lines of different degree of in vitro aggressiveness. In both, treated 

and untreated PC-3 cells significantly higher levels of serine, glutamic acid, and aspartate, 

linked with prostate cancer progression were found. These phenomena followed migration rates 

of these cells: The highest migration of metastatic cancer cells PC-3 was induced by sarcosine 

and glycine. The highest cell division was achieved after treatment of 22Rv1 and PC-3 cells 

with sarcosine [97].  

In the context of the previous study focusing on the association of amino acid patterns and 

prostate cancer aggressiveness [95] and together with the findings that the cells differ also in 

Young modulus, cell dry mass, stemness-like phenotype and higher migration rates, data indi-

cate that alterations of amino acid metabolites is inextricably associated with the changes in cell 

mechanical properties in prostate tumors. 

 

HEGER, Z., J. GUMULEC, N. CERNEI, H. POLANSKA, et al. Relation of exposure to amino 

acids involved in sarcosine metabolic pathway on behavior of non-tumor and malignant pros-

tatic cell lines. Prostate, May 2016, 76(7), 679-690. 
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4.4.3 Modulation of cell metabolic and mechanical properties as a drug target 

Targeting of cancer cell migration and adhesion accompanied by or resulting in changes of cell 

stiffness, as well as changes in differentiation and metabolic state is commonly used as an anti-

cancer strategy. Interestingly, the mechanism of action of some of the commonly used 

anticancer agents exceeds their canonical mechanism. For instance, data indicate DNA damage 

is not the only mechanism cisplatin; our previous study [2] in agreement with literature data 

points out that that cisplatin induces the formation the actin stress fibers and thereby affects the 

cytoskeleton and membrane mechanical properties [98-101]. The ability of cisplatin to modify 

microtubule disassembly by direct tubulin modification was also shown [102]. Moreover, also 

cancer cell metabolism is affected by this drug. In proliferating cancer cells, pyruvate is shifted 

away from the tricarboxylic acid cycle and fermented into lactate. Cisplatin exerts an inhibiting 

effect on glucose transport, glycolysis and lactate production and stimulates ROS generation by 

OXPHOS which contributes to the mitochondrial dysfunction and cell death. Evidence on these 

mechanisms are discussed in a following review [103].  

 

RAUDENSKA, M., J. BALVAN, M. FOJTU, J. GUMULEC, et al. Unexpected therapeutic 

effects of cisplatin. Metallomics, Jul 2019, 11(7), 1182-1199. 
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5 Concluding remarks 

Mechanical properties of cells affect cell migration, adhesion, differentiation and subcellular 

organelle transport as well as cell metabolic state [82]. These properties are not only related to 

physiological functions but are also linked to a pathophysiological mechanism of diseases, can-

cer development in particular. One of the key features of cancer cells is the ability to migrate 

and invade tissues – cancer spreading, which leads to the development of metastatic tumors in 

distant organs [83]. More deformable cells are favoured for key cancer spreading processes – 

extravasation and extravasation [10]. As compared to non-tumor cells, a decrease in stiffness of 

cancer cells was accordingly described by numerous studies in a spectrum of tumor types [10]. 

Accordingly, such change of mechanical properties of cancer cells is a promising indicator of 

malignant potential [19], because it is a direct measurement of the cells` phenotype. This con-

trasts with a number of molecular markers, which, despite their high predictive value, do not 

correspond with the actual development of the disease. For instance, although prostatic specific 

antigen is a powerful diagnostic tool for prostate cancer, its function is not cancer-specific, in-

stead, it is needed for sperm liquefaction.  

However, the increase in deformability remains controversial. It is not clear whether all cells or 

just some subpopulation of cancer cells is softer [84], and how this depends on tumor type and  

tumor progression. Also, mechanisms leading to cell softening are still not explained satisfac-

torily.  

5.1 Metastatic prostate cells are stiffer 

In our lab we studied a prostate cancer model and observed a disagreement with this concept: 

metastatic cell lines (PC-3 and LNCaP) characteristic by increased aggressiveness in vitro and 

in vivo were significantly stiffer than cells derived from the primary tumor (22Rv1) [2]. In a 

spite of the fact that zinc plays an important role in prostate cancer development, we further 

developed a zinc-resistant metastatic prostate tumor cells “PC-3-res-50” [85], which demon-

strated to be even stiffer (to have higher Young modulus determined by atomic force 

microscopy, AFM) and even more aggressive, as determined by wound-healing, colony-form-

ing, migration assays and partly by growth speed in animal models and higher levels of 

glycolysis and respiration[1; 90]. Gene expression profiling of those cells revealed enrichment 

of pathways associated with stress response, positive regulation of metabolic processes, DNA 
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repair and cell ageing mediated mostly by RAS signalling. Moreover, our results also suggest 

a positive correlation between cell stiffness and cell dry mass density as determined by quanti-

tative phase imaging and an association between Caveolin-1 expression and the total stiffness 

of prostate cancer cells [2]. In prostate cancer cells, an increase of stiffness in more aggressive 

cells was described similarly in literature [37; 38]. However, as shown by Raudenska et al study, 

this stiffening was not attributed to the change in actin cytoskeleton network architecture, one 

of the major factors determining the cell stiffness [2].  

5.2 Quantitative imaging in mechanobiology 

Atomic force microscopy-based determination of cell mechanical properties, however, provides 

a single value of modulus per cell – the Young modulus. Cells are however highly complex 

structures and therefore, the description of their mechanical properties just by a single of few 

moduli is difficult [10]. Moreover, the obtained value is related to the model used in experi-

mental technique, and experimental conditions (temperature, substrate stiffness, etc.) [104]. 

Furthermore, Young modulus determined from AFM is typically affected by the rigidity of 

plasma membrane. Nonetheless, higher deformability of this structure is needed just during a 

specific moment of metastatic dissemination – during migration in confined spaces and during 

intravasation and extravasation. Only a set of phenotyping methods provides the full picture of 

cell mechanics: As shown in Holenstein study, in which a combination of atomic force micros-

copy, tensile biaxial deformation, real-time deformability, and cell traction was measured using 

two-dimensional and micropost-based traction force microscopy gave a complex picture of the 

metastatic potential of osteosarcoma cells [19]. 

As mechanical properties are closer to the viable phenotype of cancer cells compared to indirect 

evidence provided by flow cytometry or molecular markers, analysis of cell biomechanics is of 

great interest in diagnostics. However, technical challenges still exist. Although different tech-

niques could provide similar results, they usually differ in the absolute values of the moduli, 

even if performed on similar equipment. Standardization of the results is therefore limited. 

Combination of techniques which work on different scales might therefore be promising [10; 

105-107].  

In this series of commented articles, we combined atomic force microscopy with quantitative 

phase microscopy techniques –coherence-controlled holographic microscopy. Although the im-

aging was not performed in a correlative manner, there was an agreement between AFM and 
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QPI, which suggest a potential of QPI for fast label-free and non-contact cell mechanopheno-

typing. The cellular changes range from cytoskeletal rearrangements on the short scale to 

alteration of gene expression on the long scale, thereby introducing an error to the measure-

ments [108; 109]. QPI was also used in a microfluidic setup where cells were exposed to shear 

stress induced by fluid flow. By this approach we directly demonstrate that QPI is also suitable 

to estimate shear modulus of cells, which is in correlation with Young modulus determined by 

AFM [86; 87]. 

The robustness of QPI also opens up new possibilities for the image analysis – usage of machine 

learning. As the acquisition of large FOV numbers is not possible with AFM, rough metrics can 

be extracted used for cell classification. Modulus of whole cells or prominent subcellular struc-

tures like cell nucleus is de facto the only (and the most commonly used) metric. On the other 

hand, measurement of moduli of subtle subcellular structures on a statistically large enough 

dataset of live cells is not feasible with AFM. Accordingly, focal adhesion protein-mediated 

transduction of ECM signals, which is linked with cytoskeletal rearrangements and signalling 

favouring cancer cell migration, proliferation and survival not necessarily affect whole-cell 

modulus.  

However, cancer cells are highly heterogeneous structures by nature and subcellular strucutres 

might be hidden in this heterogeneity and therefore may not be observable by naked eye [61]. 

Accordingly, we used the neural network for localization of subcellular areas, notably nucleus 

and nucleolus [71].  

5.3 Caveolin-1 – the crossroad of mechanics and metabolism? 

The transcriptomic screening was performed to identify the molecular basis of the metabolic 

reprogramming and change of mechanic phenotype. Our results point out particularly to one 

multifunctional protein – caveolin-1. Our results suggest that CAV1 gene expression correlates 

with the total stiffness of prostate cancer cells. However, this trend was only observable in the 

wild-type prostate cancer cells. On the other hand, the establishment of zinc resistance, although 

associated with increased stiffness, was not associated with further CAV1 expression changes. 

Changes in expression however might not necessarily correlate with altered caveolin regulation. 

As shown by Jiu study, caveolin cytoplasmic dynamics is preferentially altered upon vimentin 

depletion, which serves as a physical barrier for this protein. [110] 

CAV1 is a component of plasma membrane structures caveolae and also exists in multiple sub-

cellular pools (discussed in chapter 2.3). CAV1 was described to affect cellular metabolism [30], 
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cell migration and mechanical stress responses [31; 32]. Yet the roles of either CAV1 and the 

caveolae remains enigmatic either in physiology and in disease. [111]. CAV1 was demonstrated 

to affect both glycolysis and mitochondrial ATP production. Glycolysis is modulated via insulin 

and IGF1 receptor through AKT signalling. Caveolin also provides a docking site for glycolytic 

enzymes. This facilitates increased glucose uptake and lactate output and increased glycolysis, 

and such mechanism is possibly employed in our metastatic in vitro model. CAV1 modulates 

mitochondria through Ca++ signalling and via modulation of cholesterol efflux from mitochon-

dria [28]. The causal connection between CAV1 expression and glycolysis was also shown in 

advanced colon cancer, where high CAV1 expression increased glucose uptake and ATP pro-

duction by stimulating glucose transporter 3 (SLC2A3) transcription in tumor cells [112]. If 

CAV1 expression in prostate cancer is associated with dependency on glucose [113], then it pro-

vides an attractive prospect of using CAV1 expression levels to identify prostate cancer patients 

who could benefit from inhibitors of glucose transport and inhibitors of OXPHOS or glycolysis.  

CAV1 crosstalks with the actin cytoskeleton and therefore contributes to adaptation to mechan-

ical stimuli through mechanosensing [114]. CAV1 regulates actin organisation, actomyosin 

contraction and focal adhesion stability through Rho signalling [111; 115; 116]. In many cases a 

linear pattern of CAV1 that co-aligns with actin stress fibres is evident in confocal images. The 

reasons for this co-alignment are still not completely clear, but some kind of coordination be-

tween two tension-controlling systems has been proposed as an explanation [111]. The 

expression of CAV1 or the presence of CAV1-rich membrane structures caveolae was described 

predominantly in mechanically stressed cells like endothelial or muscle cells. Accordingly, me-

chanical stimuli like tension, stretching, shear stress or osmotic swelling was linked with 

caveolae flattening, which suggest that caveolae and CAV1 act as a buffer system preventing a 

rupture of plasma membrane [111]. Such fact is possibly employed in aggressive cancer cells, 

which are exposed to mechanical stress through migration and invasion and such phenomenon 

was supported by our results. We demonstrated no CAV1 expression in primary prostate cancer 

cells, which do not induce tumors in vivo and pronounced expression in metastasis-derived cells 

[2]. Inconsistently, zinc-resistance, which was linked with increase in migration and colony-

forming capacity was not linked with further CAV1 expression increase. Yet, the role of CAV1 

and the caveolae remains enigmatic [111]. According to the EMBO Workshop on Caveolae 2019 

[111], several questions need to be addressed either in caveolae physiology as well as in pathol-

ogy, namely what is the role of non-caveolar CAV1, what are the dynamics of caveolae in 

different tissues in vivo and what is the relationship between exosomes and caveolae[111].  
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In disease, specifically in the tumor progression, the link between CAV1 and the long-term cel-

lular response to mechanical and metabolic signals still remains unanswered. Specifically, in 

cancer cells the fact whether CAV1 is a tumor suppressor or oncogene is not straightforward 

[117-119]. The cellular context is important and changes during cancer progression and between 

cell types exist [120]. CAV1 expression reflects the actual needs of the cancer cells and therefore 

this expression can differ during cancer  progression [4; 118]. Beyond that, multiple cell types 

in tumor microenvironment were shown to differ in CAV1 expression. Through this mechanism, 

a modulation of metabolic symbiosis between populations of cells might be established. As 

described by Dimmer and colleagues, low-CAV1-expressing cancer-associated fibroblasts were 

characteristic by lactate production and excretion, thereby supplying nutrients for high-CAV1-

expressing cancer cells [4; 26].  

Metabolism targeting seems to be an attractive therapeutic target. However, because such mech-

anisms exist, simplistic strategies, like glycolysis inhibition, fail. To fully understand the role 

of CAV1 in cancer, more complex models might be needed, and it still remains an exciting area 

of research.  
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6 Conclusions 

Invasion of cancer cells and metastasis formation is energetically highly demanding process. 

Increase of mobility and overcoming of mechanical stress during metastasis formation is ac-

companied by a reinforcement of the cytoskeletal architecture and by changes of cell-cell and 

ECM-cell interactions. During past decades, key understandings were made to address ques-

tions how the cells interact with ECM and how they transduce mechanical signals, however, 

the aspect of mechanical properties of cancer cells itself is not fully addressed. Accordingly, 

how the metabolic reprogramming of cancer cells is related to the change of cell mechanical 

properties remains to be explained. There is a tempting theory that more deformable cells are 

favoured for metastatic spreading. However, data regarding prostate tumor cells and some other 

cell types indicate this is not always that straightforward.  

Although a panel of approaches exists to describe cell mechanical properties, the results are 

technique-, model- and experimental-condition dependent. Above that, the metastatic process 

of cancer cells is complex, and cell biomechanical parameters cannot be reduced to a single 

value of modulus. Most of the existing mechanophenotyping methods are either low-through-

put, low-resolution or invasive, with atomic force microscopy as a typical example. Here we 

demonstrated potential of quantitative phase imaging for fast label-free and non-contact cell 

mechanophenotyping. As the acquisition is fast, the generation of large datasets makes it pos-

sible to extract complex information from these datasets using machine learning in image 

analysis. In this habilitation thesis, artificial intelligence was demonstrated to be powerful for 

image segmentation cellular and as well subcellular structures. Artificial intelligence thus ena-

bles, at least to some extent to explain the organelle specificity of a technique primarily showing 

biophysical and mechanical features of the cells.  
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