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Abstract

This habilitation thesis discusses geometries with distinguished (local) transfor-
mations and (local) properties of the geometries following from the existence of
these (local) transformations. We focus mostly on parabolic geometries, [ČaSl09],
that form an important subclass of Cartan geometries, [Sha97].

Main part of the work is based on collaboration with Jan Gregorovič devoted
to various generalizations of symmetric spaces. We combine several methods de-
veloped for parabolic geometries. My viewpoint is more geometric and is based
on studying (local) Weyl connections, their relation to curvatures and their com-
patibility with (local) transformations, [Zal09, Zal10a] and [Zal10b] (Chapter 1).
The viewpoint of Jan Gregorovič focuses on homogeneous geometries and their de-
scription via functorial constructions based on algebraic methods, [Gre12c, Gre12a,
Gre13]. The combination of the methods allows to give complete description of
(both local and global) geometric properties of generalized symmetric geometries
and their classification, [GrZa16b, GrZa15b] and [GrZa17](Chapter 2). Generalized
symmetries of almost CR structures, [GrZa18] (Chapter 3), serve as an example.

The next part of the work deals with submaximally symmetric parabolic ge-
ometries. Complex submaximally symmetric parabolic geometries are completely
described in [KrTh14], and it follows from their discussion that real submaximally
symmetric parabolic geometries shall be studied case by case. In the collaboration
with Boris Kruglikov and Henrik Winther we study submaximally symmetric almost
quaternionic structures, which are real parabolic geometries. We give submaximal
dimensions and models in [KrWiZa18] (Chapter 4).

Finally, there are interesting applications in geometric control theory. In my col-
laboration with Jaroslav Hrdina, Aleš Návrat and Petr Vaš́ık, we focus on control
theory on Lie groups. For various non–holonomic mechanisms, their configura-
tion spaces are filtered manifolds that often form parabolic geometries modeled on
nilpotent Lie groups. We study controllability and optimal control of these mecha-
nisms (with respect to a suitable sub-Riemannian metric) using properties of these
geometries and their transformations, [HrZa19] (Chapter 5).

We use the CAM system Maple and the package DifferentialGeometry by Ian
Anderson to realize computations, [AnTo12].
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Chapter 0: Introduction
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1. Motivation: Affine geometries

1.1. Homotheties on affine geometries. Affine spaces An and their transfor-
mations are the best known examples of geometrical objects, [KoNo63]. The affine
plane A2 is already studied at secondary schools and affine transformations are de-
scribed there as translations, scalings and homotheties, similarity transformations,
reflections, rotations, shear mappings, and compositions of them in any combination
and order. Affine manifolds generalize affine spaces to the curved setting. An affine
manifold or affine geometry is a smooth manifold M together with a linear con-
nection ∇. A (local) affine transformation f is a (local) smooth map f : M → M
such that f∗∇ = ∇. There always are two basic invariants of affine manifolds pre-
served by all affine transformations, the torsion T (ξ, η) = ∇ξη − ∇ηξ − [ξ, η] and
the curvature R(ξ, η)(ν) = ∇ξ∇ην −∇η∇ξν −∇[ξ,η]ν for ξ, η, ν ∈ TM . The space
An is (globally) the only affine manifold equipped with a connection with vanishing
curvature and torsion.

It is a general principle in geometry that the existence of non–trivial curvature
or torsion implies restrictions on (the existence of) transformations. Conversely,
the existence of a non–trivial transformation can restrict the curvature and the
torsion of the geometry. Let us demonstrate this principle on homotheties. The
affine space An carries homotheties fx,k of any ratio k 6= 0 with the center at any
point x. Indeed, since fx,k(x) = x, we can identify An with the vector space Vn
with the origin x. Then the homothety is given in each basis of Vn by multiplying
the coordinates by the matrix 


k 0 ... 0
0 k ... 0
...

...
. . .

...
0 0 ... k


 .

To define a (local) homothety of the ratio k 6= 0 at some point x of a general
(curved) affine manifold (M,∇), we identify TxM with Vn. Thus we consider a
(local) transformation such that fx,k(x) = x and Txfx,k.ξ = kξ for all ξ ∈ TxM .
Let us point out that (local) homotheties fx,k are (local) affine transformations
with natural tangent action at x which means that

• the (local) morphism preserves the point x, and
• for all bases of TxM , the coordinate descriptions of its differential (viewed

as a linear endomorphism) are equal.

Then, at the center x of the (local) homothety fx,k, the torsion T equals to f∗x,kT =

kT , because T is an invariant tensor of type (2, 1), and the curvature R equals to
f∗x,kR = k2R, because R is an invariant tensor of type (3, 1). Thus there cannot

exist (local) non–trivial homotheties at points with non–vanishing torsion. The
only (local) homotheties that can exist on torsion–free but curved affine manifolds
are

• the identity for k = 1, and
• the (local) point symmetry for k = −1.

Moreover, if there is a (local) point symmetry fx,−1 =: fx, then, at the center x,
∇R equals to f∗x∇R = −∇R, because ∇R is an invariant tensor of type (4, 1).
Thus if there is a (local) point symmetry at x, then T and ∇R vanish at x.

Altogether, there can exist (local) point symmetries on affine geometries (M,∇)
only if T = 0 and ∇R = 0, while there are no (local) homotheties for k 6= ±1.
Conversely, there always exist (local) point symmetries at each point of (M,∇) if
T = 0 and ∇R = 0, [KoNo69, Chapter XI] or [Hel01]. They are given by (local)
geodesic symmetries of the geodesics of ∇, or equivalently, by symmetries in normal
geodesic coordinates of ∇ (on a normal neighborhood of x). In particular, they are
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given uniquely and they change smoothly from point to point, i.e., form a unique
smooth system of symmetries.

1.2. Homotheties on affine geometries revisited. Let us consider the first
order frame bundle p : P1M → M over an n–dimensional manifold M , which is a
principal bundle with the structure group GL(n,R), the general linear group. The
fiber over each x ∈ M consists of all bases of TxM and elements of GL(n,R) are
transition matrices acting as changes of bases. There is the canonical form θ ∈
Ω1(P1M,Rn) such that θ(u)(ξ) are coordinates of the projection Tp.ξ ∈ Tp(u)M at

the basis u. Then we have TM ' P1M×GL(n,R)Rn, where the pair [[u,X]] ∈ Tp(u)M
represents the tangent vector at p(u) with coordinates X in the basis u. Indeed,
[[u,X]] = [[ut, t−1X]] holds for t ∈ GL(n,R), which reflects the fact that the change
of the basis gives the change of coordinates for the transition matrix t. Altogether,
(P1M → M, θ) is a first order G–structure with the structure group GL(n,R),
[KoMiSl93].

There is the well known 1–1 correspondence between affine connections ∇ on
M and principal connections γ ∈ Ω1(P1M, gl(n,R)), where gl(n,R) is the general
linear Lie algebra. The correspondence is given by inducing the connection on the
associated bundle TM . Each (local) map f : M →M induces a (local) bundle map
P1f : P1M → P1M preserving θ, and f is a (local) affine transformation of ∇ if
and only if P1f preserves γ.

It is now illustrative to study (local) affine transformations f with natural tan-
gent action at x from this viewpoint. If f(x) = x, then P1f(u) = us for u ∈ p−1(x)
and some s ∈ GL(n,R). Then the tangent map Tf satisfies at the point x

Txf.[[u,X]] = [[P1f(u), X]] = [[us,X]] = [[u, sX]].(1)

The change of u to ut for some transition t ∈ GL(n,R) gives P1f(ut) = (ut)t−1st.
Then the coordinate description of Txf in all frames is equal if t−1stX = sX for all
X ∈ Rn and t ∈ GL(n,R). Thus maps with natural tangent actions correspond to
elements s of the center Z(GL(n,R)) of GL(n,R). In fact, P1f is constant along
the fiber over x for s ∈ Z(GL(n,R)). Direct computation gives

Z(GL(n,R)) =







k 0 ... 0
0 k ... 0
...

...
. . .

...
0 0 ... k


 : k ∈ R×



 = {k · idRn : k ∈ R×},(2)

where R× := R \ {0}. Thus the only possible (local) morphisms f with natural
tangent action at x satisfy Txf.[[u,X]] = [[u, kX]] for k ∈ R× and we are back in the
classical setting from Section 1.1. In particular, homotheties are the only possible
(local) morphisms of affine manifolds with natural tangent actions.

Altogether, we have got a simple algebraic restriction on possible transformations
with natural tangent action. Contrary to the classical viewpoint, this concept can
be generalized to many types of geometric structures that can be described as
Cartan and parabolic geometries, [ČaSl09].

1.3. Symmetric and (sub)maximal affine geometries. The above concept
leads to so–called (locally) symmetric spaces. A manifold M with an affine connec-
tion ∇ is locally symmetric if T = 0 and ∇R = 0, [KoNo69, Hel01]. Then there
are point symmetries defined locally at each point of M . If the symmetries are
globally defined, then the manifold M is homogeneous and the group generated
by symmetries acts transitively on M . Then we call the pair (M,∇) symmetric
space, [KoNo69, Hel01]. Let us remind that there is also algebraic definition of a
symmetric space as a space M together with a map S : M ×M →M such that

• S(x, x) = x,
• S(x, S(x, y)) = y,
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• S(x, S(y, z)) = S(S(x, y), S(x, z)), and
• x is an isolated fixed point of S(x,−)

for all x, y, z ∈ M , [Kow80, Loo67]. In the case M is a smooth manifold and S is
a smooth system of affine transformations, we recover exactly the classical setting.
In particular, (local) symmetric spaces are examples of affine manifolds carrying
many (local) affine transformations. However, there are other interesting affine
geometries with many (local) transformations.

It is well known, [Sha97], that affine transformations of an affine manifold form
a finite–dimensional Lie group. In the case of n–dimensional affine manifold, the
biggest possible dimension of this group is n2 + n. This happens in the case of the
affine space An, where the group is exactly the group A(n,R) of affine transforma-
tions X 7→ AX + b for the regular matrices A of order n and vectors b ∈ Rn.

There is a natural question what are the possible smaller dimensions. Similarly
to symmetric spaces, this question is closely related to the existence of a curvature
and a torsion. It is proved in [Ego67] that if the dimension of the group of affine
transformations is not maximal, than it cannot be bigger than n2. In particular, for
an affine manifold (M,∇) with non–zero curvature, the maximal possible dimension
of the transformation group is n2 and the group acts transitively on M . Their
realizations can be found in [Ego67, Section 3.A]. It is also proved there that such
manifold is projectively flat. Let us note that the third possible dimension is n2−1
and its realization can be found in [Ego67, Section 3.B].

Consider the action of A(n,R) on An. The stabilizer of a point x ∈ An is
GL(n,R) ⊂ A(n,R), so the group of affine transformations of Axn := An \ {x}
has dimension n2. However, Axn is locally equivalent to An and its transformation
group is locally maximal. Moreover, local transformations do not extend generally
to global ones and we are mostly interested in the local viewpoint. To avoid these
problems, it is convenient to swap to infinitesimal level and to study corresponding
Lie algebras instead of the transformation groups. Thus we study infinitesimal
transformations, i.e., vector fields whose flows are affine transformations at all times,
[Ego67, Section 2]. This leads to the so–called gap phenomenon studied for many
geometric structures with finite-dimensional transformation groups, [KrTh14, Kr16,
KrMaTh16, KrMa14, DoTh14]. The authors ask the following question:

• What is the maximal possible dimension of Lie algebra of infinitesimal
transformations among all manifolds that are not everywhere flat?

The dimension is then called submaximal. In addition to [Ego67], let us mention
here paper [KrMa14] where authors study submaximal metric affine structures. Let
us remark that the submaximal models discovered in [Ego67] are not metric.

2. Results: Cartan geometries

2.1. Automorphisms with natural tangent actions. The concept of Cartan
geometries provides a natural generalization of affine geometries and G-structures
which allows to study wide class of geometries in a uniform way, [Sha97, ČaSl09].
Let G be a Lie group, P ⊂ G its closed subgroup and p ⊂ g their Lie algebras. A
Cartan geometry of type (G,P ) is a principal P–bundle p : G → M together with
a 1–form ω ∈ Ω1(G, g) such that

(1) (rp)∗ω = Adp−1 ◦ω for all p ∈ P , where Ad denotes (the restriction of) the
Adjoint action of G on g,

(2) ω(ζX(u)) = X for all X ∈ p, where ζX are the fundamental vector fields,
(3) ω(u) : TuG → g is a linear isomorphism for all u ∈ G.

We are interested in local properties, so we can assume M connected and locally
connected. A (local) automorphism of the Cartan geometry is a (local) principal

4



P–bundle morphism ϕ : G → G such that ϕ∗ω = ω. Each (local) automorphism
ϕ determines a (local) underlying morphism f : M → M , and we assume that the
groups P ⊂ G are chosen in such a way that there is 1–1 correspondence between
(local) automorphisms ϕ and the (local) underlying morphisms f , [ČaSl09, Section
1.5.3]. Automorphisms of Cartan geometries always form a finite–dimensional Lie
group Aut(G, ω), [ČaSl09, Section 1.5]. In fact, a choice of u ∈ G provides an
inclusion Aut(G, ω) ↪→ G given by ϕ 7→ ϕ(u).

As an example, let us consider G to be the affine group A(n,R) = GL(n,R)oRn
and P = GL(n,R). Then the frame bundle p : P1M → M together with the form
ω := θ+γ for a fixed principal connection form γ forms an affine Cartan geometry.
(Local) automorphisms of affine Cartan geometries are (local) automorphisms of
the bundle P1M preserving the soldering form θ and the connection form γ. Their
(local) underlying morphisms are (local) affine transformations of (M,∇) for ∇
corresponding to the principal connection γ.

Affine Cartan geometries are typical examples of reductive Cartan geometries,
i.e., the quotient g/p may be identified with an Ad(H)–invariant subspace of g. In
general, Cartan geometries are not reductive. Cartan bundles can be viewed as ab-
stract analogs of frame bundles. The points of G are (higher-order) frames on which
P acts by transitions, while ω is a straight generalization of the affine connections,
[Sha97, ČaSl09]. In general, it is not reasonable to speak about homotheties for
general Cartan geometries. Nevertheless, affine Cartan geometries suggest a way
to generalize the concept of automorphisms with natural tangent action to general
Cartan geometries. In fact, automorphisms with natural tangent action give the
only reasonable generalization of homotheties on affine spaces.

Let us consider (local) automorphisms ϕ with underlying (local) maps f such
that f(x) = x and let u ∈ p−1(x). The action of each such (local) automorphism
ϕ is described by the transition s ∈ P between u and ϕ(u) = us at x. It holds
TM ' G ×P g/p via factorizing of [u,X] 7→ Tp.ω−1(u)(X) by the action of P and
we get

Txf.[[u,X + p]] = [[ϕ(u), X + p]] = [[us,X + p]] = [[u,Ads(X + p)]](3)

on TxM , where Ad is the truncated Adjoint action. In fact, if we view u ∈ G as
frame, then X+p plays the role of coordinates in TxM ' g/p in the basis u and Ads
realizes the change of coordinates for the change of the basis from u to us (viewed as
an endomorphism of g/p). Let ut, t ∈ P , be a different frame from the fiber over x.
If ϕ is represented by the element s at u ∈ p−1(x), then the same ϕ is represented
by the element t−1st at ut ∈ p−1(x). So we get a direct analog of behavior from
the affine case. Motivated by homotheties and affine transformations with natural
tangent actions in the affine geometries, we are interested in the following (local)
morphisms.

Definition 1. We call a (local) automorphism ϕ of a Cartan geometry an auto-
morphism with natural tangent action at x if for the (local) underlying morphism
f : M →M induced by the automorphism ϕ it holds

• for the point x ∈M we have f(x) = x, and
• for all frames u ∈ p−1(x) ⊂ G, the coordinate descriptions of the endo-

morphism Txf : TxM → TxM (viewed as an endomorphism of g/p) are
equal.

It follows from (3) that (local) automorphisms with natural tangent actions at x
are exactly (local) automorphisms represented (at arbitrary frame u ∈ p−1(x)) by
elements s ∈ P such that Ads = Adt−1st on g/p for all t ∈ P . Thus they correspond
to elements of the center Z(Ad(P )) of the image of P in GL(g/p) for Ad.
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The curvature is the basic invariant of any Cartan geometry (with respect to all
automorphisms). It is given by

κ : G → ∧2(g/p)∗ ⊗ g, κ(u)(X,Y ) = [X,Y ]− ω([ω−1(X), ω−1(Y )])(u).

The curvature κ vanishes if and only if the Cartan geometry is locally isomor-
phic with the flat model (G → G/P, ωG). Flat models are the simplest examples
of homogeneous Cartan geometries which are geometries (G → M,ω) such that
Aut(G, ω) is transitive on M (by means of underlying morphisms). Let us empha-
size that local automorphisms of a flat model can be always globally extended, the
automorphism group of the flat model coincides with G and has maximal possible
dimension among all Cartan geometries of type (G,P ), [ČaSl09, Section 1.4.].

In general, the existence of special (local) automorphisms like automorphisms
with natural tangent actions can induce restrictions on the curvature of Cartan
geometry. Let us demonstrate it on automorphisms with natural tangent actions on
affine Cartan geometries. Let us write elements of A(n,R) as (1, n)–block matrices
( 1 0
b A ) , where b ∈ Rn and A ∈ GL(n,R), and GL(n,R) ⊂ A(n,R) consists of

elements satisfying b = 0. Then the Lie algebra a(n,R) consists of (1, n)–block
matrices ( 0 0

w C ) , where w ∈ Rn and C ∈ gl(n,R), and the subalgebra gl(n,R)
consists of elements with w = 0. We have

Ad( 1 0
0 B ) ( 0 0

w C ) = ( 1 0
b B ) ( 0 0

w C )
(

1 0
0 B−1

)
=
(

0 0
Bw BCB−1

)
.

According to the reductivity, the Ad–action of GL(n,R) on a(n,R) decomposes into
the action on Rn = a(n,R)/gl(n,R) and the action on gl(n,R). Then Ad = Ad|Rn

is the map given by B 7→ (X 7→ BX) for all X ∈ Rn. Computation gives

Z(Ad(P )) = {k · idRn : k ∈ R×} = Z(GL(n,R))

as in (2). Thus (local) automorphisms of affine Cartan geometries with natural
tangent actions are (local) automorphisms represented by elements Z(GL(n,R)),
in accordance with Section 1.2. Let us emphasize that there is 1–1 correspondence
between Z(Ad(P )) and Z(GL(n,R)), which can be viewed as the preimage of the
center of the image of the Ad–action in P .

In the affine case, κ : P1M → ∧2Rn∗⊗ (Rn⊕gl(n,R)) decomposes (with respect
to the action of GL(n,R)) into the torsion valued in ∧2Rn∗⊗Rn and the curvature
valued in ∧2Rn∗ ⊗ gl(n,R). We get κ(u) = κ(us) = s.κ(u) for an automorphism
corresponding to s ∈ Z(GL(n,R)). Assume s = k · idRn . Then the restriction of
κ(u) to ∧2Rn∗ ⊗ Rn, which corresponds to the torsion, equals to k · κ(u), while
the restriction of κ(u) to ∧2Rn∗ ⊗ gl(n,R), which corresponds to the curvature,
equals to k2 · κ(u). So we recover the classical setting. The flat model is the affine
space An = Rn, A(n,R) acts transitively on An and, in particular, it contains all
homotheties.

2.2. Automorphisms with natural tangent actions on filtered manifolds.
We focus on a special class of Cartan geometries over filtered manifolds. A parabolic
geometry is a Cartan geometry (G → M,ω) of type (G,P ) for a semisimple Lie
group G and its parabolic subgroup P , [ČaSl09, Section 3.1]. We assume M is
connected and simply connected and G is simple1. We consider g to be |k|–graded
simple Lie algebra g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk such that p = g0 ⊕ · · · ⊕ gk. We fix
the Levi decomposition P = G0 oexp(p+), where p+ := g1⊕· · ·⊕gk, and G0 is the
Lie group of grading–preserving elements of P . We write g− := g−k ⊕ · · · ⊕ g−1.
There always is the P–invariant filtration of g given by gi = gi ⊕ · · · ⊕ gk which
induces a filtration T iM ' G ×P gi/p of TM .

1All results can be formulated with slightly weaker assumptions, [GrZa15b].
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We always consider regular parabolic geometries, i.e., the curvature κ only has
components of positive homogeneity, [ČaSl09, Section 3.1.7.]. Each such geometry
is equivalent to the underlying structure on the manifold which consists of

• a filtration T iM of TM such that the associated graded bundle gr(TM) =
gr−k(TM)⊕ · · · ⊕ gr−1(TM) of TM , where gri(TM) = T iM/T i+1M , sat-
isfies gr(TxM) ' g− for all x ∈M , and

• a reduction of the structure group of gr(TM) with respect to Ad : G0 →
Autgr(g−).

This correspondence is 1–1 assuming that the parabolic geometry is normal, i.e.,
∂∗ ◦ κ = 0 for the codifferential ∂∗ in the standard complex computing Lie algebra
homology of p+ with coefficients in g, [ČaSl09, Section 3.1.10.]. Then the basic
invariant of regular normal parabolic geometries is the harmonic curvature κH
defined as the projection of κ to ker(∂∗)/im(∂∗). The curvature κ can be computed
explicitly from κH using a differential operator, [ČaSlSo01].

The existence of the canonical filtration {T iM} on parabolic geometries (p : G →
M,ω) implies that it is not reasonable to ‘fix ratios of homotheties’ on the whole
TM , [Zal06, GrZa13] and [Zal10b] (Chapter 1). Let us remind that (local) mor-
phisms of Cartan geometries with natural tangent actions correspond to elements
s ∈ P such that Ads = Adt−1st on g/p for all t ∈ P. For parabolic geometries,
s = g0 expZ and t = h0 expV , g0, h0 ∈ G0 and Z, V ∈ p+, and

t−1st = h−1
0 g0h0 exp(−Adg0h0

V ) exp(Adh0
Z) expV.

In particular, we have Adg0 = Adh−1
0 g0h0

on g−1 ' g−1/p and p+ acts trivially

on g−1. Thus to study the action on T−1M , we can focus on elements of the
center Z(G0). Let us emphasize that viewing g−1 as G0–module, each element
of Z(G0) acts on each irreducible component of g−1 as multiplication by a single
eigenvalue. Thus if X,Y ∈ g−1 such that Adg0X = kX and Adg0Y = lY for
g0 ∈ Z(G0), then Adg0 [X,Y ] = [Adg0X,Adg0Y ] = kl · [X,Y ]. In particular, we still
have ‘multiplication by eigenvalue’ as for homotheties, but possible eigenvalues are
different on different components.

In general, we can prescribe the tangent action only on the distinguished distri-
bution T−1M ' G ×P g−1/p in TM , because underlying morphisms for parabolic
geometries respect Lie brackets. The above computation shows that on the level
of the associated grading gr(TM), underlying morphisms with natural tangent ac-
tions are determined uniquely by their actions on T−1M . However, it is generally
difficult to study such morphisms on TM because of the action of exp(p+).

The above observations motivate to study (local) automorphisms of parabolic
geometries with natural tangent actions on T−1M , [GrZa15b, GrZa17, GrZa16b].

Definition 2. A (local) automorphism ϕ of a parabolic geometry has a natural
tangent action at x on T−1M if

• the (local) underlying morphism f of ϕ satisfies f(x) = x, and
• the restricted tangent action Txf : T−1

x M → T−1
x M of f is such that for

all frames u ∈ p−1(x), the coordinate descriptions of the endomorphism
Txf : T−1

x M → T−1
x M (viewed as an endomorphism of g−1/p ' g−1) are

equal.

Thus we get from above that the (local) automorphisms ϕ with natural tangent
actions at x on T−1M enjoy the following two equivalent descriptions:

(1) they are represented by elements s such that Ads = Adt−1st on g−1/p for
all t ∈ P ,

(2) they correspond to elements of the center Z(Ad|g−1/p(P )) of the image of

Ad : P → GL(g−1/p).
7



The preimage of Z(Ad|g−1/p(P )) in P has the form Z(G0)oexp(p+), where elements

of Z(G0) determine the action on g−1 ' g−1/p while exp(p+) acts trivially on
g−1/p. The existence of exp(p+) implies that elements having the same action on
g−1/p are not unique. Let us remind that there is 1–1 correspondence between
elements of the center of the Ad–action and their preimages in P in the case of
reductive Cartan geometries, while exp(p+) makes the situation more complicated
for parabolic geometries.

We can also describe (local) automorphisms ϕ with natural tangent actions at x
on T−1M corresponding to s exp(Z) ∈ Z(G0)o exp(p+) locally on a neighborhood
of x. Let us consider the normal coordinate system at u ∈ p−1(x) given by flows of
constant fields ω−1(X) for X in some neighborhood of 0 in g−. Then we have

ϕ : Fl
ω−1(X)
1 (u) 7→ Fl

ω−1(X)
1 (us exp(Z))

over the normal neighborhood of x. Then s provides a linear change of coordinates
of X in g− while exp(p+) changes the normal coordinate system itself and its action
is non–linear. (Local) automorphisms represented by elements s ∈ Z(G0) at some
u then form a distinguished class of automorphisms which are given by a geodesic
transformation in suitable normal coordinates.

Let us emphasize that there is just one normal coordinate system in the case of
affine Cartan geometries which reflects the non–existence of exp(p+) in the affine
case.

Definition 3. We call a (local) automorphism ϕ with natural tangent action at x
on T−1M (local) s–symmetry for s ∈ Z(G0) or (local) generalized symmetry at x,
if there is a frame u ∈ p−1(x) such that ϕ(u) = us. Thus (local) s–symmetries are
morphisms of the form

ϕ(Fl
ω−1(X)
1 (u)) = Fl

ω−1(X)
1 (us) = Fl

ω−1(AdsX)
1 (u)

for X in a maximal possible neighborhood of 0 in g− preserved by Ads, [GrZa15b,
Definition 2], [GrZa17, Definition 1.1](Chapter 2).

The term ‘generalized’ justifies the fact that manifolds carrying generalized
symmetries cover various generalizations of symmetric spaces, [Kow80, KaZai00,
Loo67]. We study relations of automorphisms with natural tangent actions on
T−1M and generalized symmetries on homogeneous geometries in [GrZa15b]. The
main result of [GrZa15b] given in Theorem 4.1 states that on homogeneous par-
abolic geometries, there are automorphisms with natural tangent actions at x on
T−1M corresponding to some s exp(Z) ∈ Z(G0) exp(p+) if and only there are s–
symmetries. This result does not apply for general (non–homogeneous) parabolic
geometries. However, it turns out that the existence of (local) generalized symme-
tries implies (local) homogeneity for many interesting types of parabolic geometries
and it is reasonable to focus only on (local) generalized symmetries in general.

2.3. Existence and uniqueness of generalized symmetries. The only non–
identical (local) generalized symmetries that can exist on affine geometries are (lo-
cal) point reflexions and there can be at most one (local) symmetry at each point
depending on the curvature and torsion of the affine geometry, [KoNo69, Hel01].
They are given by geodesic symmetries in the only normal coordinate system.

This is not necessarily true for parabolic geometries. For example, if there is
an s–symmetry for some s ∈ Z(G0) at the frame e ∈ P ⊂ G on the flat model
(G → G/P, ω), then there are infinitely many symmetries at eP represented by
s at arbitrary frame g ∈ P , and transitivity gives symmetries at each point of
G/P . In particular, for G and s ∈ Z(G0), the flat model G/P is s–symmetric
and there is infinite number of s–symmetries at each point, [Zal06]. We proved
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in our work [GrZa17, GrZa16b, Zal09, Zal10b, GrZa13] that uniqueness of (local)
s–symmetries also often occurs for non–flat parabolic geometries of various types
(G,P ) for various elements s ∈ Z(G0).

An important feature of (regular, normal) parabolic geometries is that we can
study the actions of generalized symmetries on components of the harmonic cur-
vature κH instead of the whole curvature κ. Let us stress that the harmonic
curvature κH : G → ker(∂∗)/im(∂∗) is P–equivariant and exp(p+) acts trivially
on ker(∂∗)/im(∂∗). Thus κH descends to a G0–equivariant function valued in
ker(∂∗)/im(∂∗) ' H2(g−, g), which is completely reducible G0–module, [ČaSl09,
Section 3.1.12]. Thus κH decomposes according to the decomposition of H2(g−, g)
into irreducible components µ and there is an algorithmic way to describe its com-
ponents using the Kostant’s theorem, [ČaSl09, Section 3.3.].

Since elements of Z(G0) act on each irreducible component of g by a multiple,
the same holds for components of H2(g−, g) and we can firstly mimic naively ideas
from the affine case. Assume there is a (local) s–symmetry ϕ for s ∈ Z(G0) at x
and a component κµ : G → µ ⊂ g∗a1 ∧ g∗a2 ⊗ ga3 of κH (where µ is irreducible as

a G0–submodule of H2(g−, g)). The element s acts (in the frame u ∈ p−1(x)) by
multiples ki on corresponding components of gai . At the point x then

ϕ∗(κµ)(u) = κµ(ϕ(u)) = κµ(us) = s.κµ(u) =
k3

k1k2
· κµ(u),(4)

where . denotes the action on corresponding tensor product. This gives the rough
restriction k3(k1k2)−1 = 1 on the possible multiples ki. Thus the curvature κH
can have values only in the components of H2(g−, g) satisfying these restrictions
for given s. In this way, we get the following trivial but the crucial result, which
is the first step in restricting possible generalized symmetries and components of
harmonic curvature, [Zal09],[Zal10b](Chapter 1) and [GrZa17](Chapter 2).

Theorem 1. If s ∈ Z(G0) is such that µ is not contained in an 1–eigenspace of
the action of s, then there is no s–symmetry at the points with non–zero κH valued
in µ.

However, it is often not sufficient to study only the G0–action because of the
possible action of exp(p+). At this point, it is reasonable to swap to the setting of
Lie algebras. For φ ∈ µ ⊂ H2(g−, g), let us denote by

ann(φ) := {A ∈ g0 : A.φ = 0}(5)

the annihilator of φ in g0, which contains the infinitesimal version of elements from
(4). In the next step, we define the ith prolongation of the annihilator of φ by

pr(φ)i = {Z ∈ gi : ad(X1) . . . ad(Xi)(Z) ∈ ann(φ) for all X1, . . . Xi ∈ g−1}.(6)

Then we define the crucial property of the geometry generalizing classical prolon-
gation rigidity, [KrTh14, Yam93].

Definition 4. For arbitrary fixed s ∈ Z(G0) and irreducible component µ ⊂
H2(g−, g) (viewed as a component of κH), we say that the triple (g, p, µ) is pro-
longation rigid outside of the 1–eigenspace of s, if for all φ ∈ µ, all prolongations
pr(φ)i are contained in the 1–eigenspace of s, [GrZa17, Definition 1.5.].

Assume there are two (local) s–symmetries ϕ1, ϕ2 at x for s ∈ Z(G0). If u ∈
p−1(x) is such that ϕ1(u) = us, then ϕ2(u) = us exp(Z). We prove in [GrZa17,
Proposition 3.1] that if Z = Zi + · · · + Zk for Zj ∈ gj , where i is the smallest
index such that Zi is non–zero, then s acts non–trivially on each component of
Zi ∈ gi. Moreover, we prove in [GrZa17, Proposition 3.2] that Zi ∈ pr(κH(u))i,
where Z = Zi + · · · + Zk as above. These facts are summarized in the following
statement, [GrZa17, Theorem 1.6] (Chapter 2).
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Theorem 2. If s ∈ Z(G0) is such that (g, p, µ) is prolongation–rigid outside of
the 1–eigenspace of s, then there is at most one (local) s–symmetry of a parabolic
geometry of type (G,P ) at each point x with a non–zero component of harmonic
curvature in µ.

Thus prolongation rigidity outside of the 1–eigenspace of s is a crucial algebraic
condition for studying (local) generalized symmetries.

Let us emphasize that although proofs of [GrZa17, Proposition 3.1 and 3.2]
are technical, the main idea of the proofs is based on inductive derivation of κH
with respect to suitable admissible connections and studying actions of both (local)
symmetries ϕ1, ϕ2 on them, so it generalizes the observation on parallel curvature
for affine geometries with (local) point symmetries. In particular, as a consequence
of the proof of [GrZa17, Proposition 3.2] we get that

∇ξκH(x) = ∇ξfixκH(x)

for a distinguished admissible connection, where ξfix ∈ TxM is the component of
ξ ∈ TxM on which s acts trivially, [GrZa17, Corollary 3.3].

We give the complete classification of triples that are prolongation rigid outside
of the 1–eigenspace of s for all possible s ∈ Z(G0) in [GrZa17, Section 5]. We also
provide some geometric properties of corresponding (local) s–symmetric geometries.
These geometries display very diverse properties and therefore the classification list
is split according to them.

Remark 1. The result also follows from [GrZa16b, Theorem 1.3] in the case of
homogeneous geometries. However, we discuss non–homogeneous s–symmetric ex-
amples in [GrZa16b, Section 6]. For AHS and parabolic contact geometries in the
case of s such that Ads = −id on g−1, the result was already proved using more
direct but less generally applicable methods in [Zal09] and [Zal10b](Chapter 1).

In general, there need not exist (local) s–symmetries at each point of M . If
there is a (local) s–symmetry ϕx at each x ∈ M , the geometry is (locally) s–
symmetric. Then we consider the system of (local) symmetries S : M → Aut(G, ω)
given by x 7→ ϕx and the corresponding system f : M → Diff(M) of (local)
underlying morphisms fx on M . Contrary to the affine symmetric spaces, such
systems are not necessarily smooth in general. One can easily find non–smooth
systems on flat models. We constructed examples of non–homogeneous locally–flat
s–symmetric geometries that do not carry any smooth system of s–symmetries in
[Zal14, GrZa15a], motivated by [Pod89], and examples of such non–flat geometries
can be found in [GrZa16a].

However, we give the following crucial characterization of smooth systems on
non–flat geometries, [GrZa17, Theorem 1.8] (Chapter 2).

Theorem 3. Suppose s ∈ Z(G0) is such that (g, p, µ) is prolongation rigid outside
of the 1–eigenspace of s. Suppose that the parabolic geometry (G → M,ω) of type
(G,P ) has got an everywhere non–zero component of the harmonic curvature in µ.

(1) The geometry is (locally) s–symmetric if and only if there is a smooth sys-
tem S of (local) s–symmetries.

(2) In such case, the system S is unique.

Remark 2. For AHS and parabolic contact geometries in the case of s such that
Ads = −id on g−1, the result and some further consequences were already shown
in [Zal10a, GrZa13].

The result can be strengthen in the case of homogeneous parabolic geometries,
because the existence of an s–symmetry at one point implies the existence of a
system of s–symmetries, [GrZa16b]. The general result for homogeneous geometries
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can be found in [GrZa16b, Proposition 7.1]. As an example, let us present here
the following result for homogeneous AHS geometries proved also by more direct
methods in [Zal09, Zal10a].

Corollary 1. Let us consider an AHS structure of type (G,P ). Assume κ 6= 0 and
assume there is a non–trivial s–symmetry at a point of a homogeneous parabolic
geometry of type (G,P ). Then M is either (locally) symmetric or (locally) Z3–
symmetric space (i.e., s3 equals the identity).

2.4. Invariant admissible connections. In the case of affine symmetric spaces,
there is a distinguished admissible affine connection which is invariant with respect
to all symmetries, [KoNo69, Hel01]. There is a class of Weyl connections on each
parabolic geometry playing a significant role in the theory of parabolic geometries,
[ČaSl09, Section 5.1.] and [ČaSl03]. These are admissible affine connections satisfy-
ing a certain normalization condition on their curvature and torsion. They form an
affine space modeled over the space of one–forms on M and there are explicit formu-
las for transformations of Weyl connection in [ČaSl03, Proposition 3.9]. Formulas

are generally complicated and one shortly writes ∇̂ = ∇+ Υ for Υ ∈ Ω1(M).
Analogously to (local) point symmetries in the affine case, there are (local) geo-

desic transformations l∇x of geodesics of Weyl connections ∇ with a fixed point x,
which are simply given in the normal coordinate system for the Weyl connection
∇ as (local) diffeomorphisms with coordinates Ads ∈ GL(g−) for s ∈ Z(G0) at x.
Clearly, these (local) transformations can be different for different Weyl connec-
tion. It is natural to question the invariance of Weyl connections with respect to
(local) generalized symmetries. Thus, at a point x we ask whether there is a Weyl
connection allowing (local) s–symmetries as its (local) geodesic transformation. If
there is a (local) s–symmetry at each point, then one seeks for a Weyl connection
(or at least a class of Weyl connections) such that the above holds for the (local)
s–symmetries at all points.

Assume there is a (local) s–symmetry ϕ at some point x. The simplest situation
appears if there is an invariant Weyl connection ∇, i.e., f∗∇ = ∇ holds on a
neighborhood of x for the underlying morphism f of ϕ. The following result,
motivated by the affine case, was achieved in [GrZa17, Theorem 1.8] (Chapter 2).

Theorem 4. Suppose s ∈ Z(G0) is such that (g, p, µ) is prolongation rigid outside
of the 1–eigenspace of s. Suppose that a (locally) s–symmetric parabolic geometry
(G → M,ω) of type (G,P ) has everywhere non–zero component of the harmonic
curvature valued in µ. If Ad(s) ∈ GL(g−) has no eigenvalue 1, then there is exactly
one Weyl connection invariant with respect to the (local) s–symmetries at all points.

Remark 3. Special cases for AHS and parabolic contact geometries were stud-
ied earlier in [Zal09, Zal10a, Zal10b, GrZa15a, GrZa13], based on different direct
methods.

In general, there need not exist invariant Weyl connections. However, there can
still exist an invariant class of Weyl connections. It turns out that the correct
concept is the following, [GrZa17, Definition 1.7] (Chapter 2).

Definition 5. Let [∇̂] be the maximal subclass of the class of Weyl connections
such that

• for all connections ∇ ∈ [∇̂], the corresponding geodesic transformations l∇x
share the same tangent action Txl

∇
x at each x ∈M , and

• all connections from [∇̂] restrict to the same partial connection on all
smooth subbundles of TM for all eigenvalues of Txl

∇
x different from 1.

Let f be a smooth map assigning to each x ∈M the (local) diffeomorphism l∇x for

some Weyl connection ∇ (depending on x) in [∇̂].
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(1) The class [∇̂] is f–invariant if f(x)∗∇ ∈ [∇̂] and f(x)∗∇(x) = ∇(x) for

each Weyl connection ∇ ∈ [∇̂].

(2) The Weyl connections ∇ in the f–invariant class [∇̂] are called almost f–
invariant Weyl connections.

(3) An almost f–invariant Weyl connection ∇ is invariant at x if f(x)∗∇ = ∇.
(4) An almost f–invariant Weyl connection ∇ is invariant if f(x)∗∇ = ∇ for

all x ∈M .

Remark 4. Details about invariant and almost invariant Weyl connections can be
also found in [GrZa16b, Definition 5] for homogeneous case, and [Zal09, Zal10a,
GrZa13] for AHS and parabolic contact geometries.

We summarize the results of [GrZa17](Chapter 2) concerning almost invariant
Weyl connections in the following statement.

Theorem 5. Suppose s ∈ Z(G0) is such that (g, p, µ) is prolongation rigid outside
of the 1–eigenspace of s. Suppose that the parabolic geometry (G → M,ω) of type
(G,P ) has everywhere non–zero component of the harmonic curvature in µ. The
geometry is (locally) s–symmetric if and only if there is a non–trivial f–invariant
class of Weyl connections.

This statement clearly generalizes the Theorem 4 in which the class consists of
exactly one connection which is invariant.

The complete description of (locally) s–symmetric geometries with invariant
(classes of) Weyl connections and the description of their geometric properties
was given in [GrZa17, Section 5]. These properties depend on the specific type of
the triple which is prolongation rigid outside of the 1–eigenspace of s and on the
properties of (almost) invariant Weyl connections. In particular, they cannot be
summarized easily.

In the case of homogeneous s–symmetric geometries, we can describe geome-
tries with invariant (classes of) Weyl connections and their properties nicely in the
language of holonomy reductions for parabolic geometries, [ČaGoHa14]. For homo-
geneous geometries, we can describe explicitly the group generated by all (global)
generalized symmetries and we consider holonomy reductions with respect to this
group, [GrZa16b]. We give two methods of construction of examples of s–symmetric
homogeneous parabolic geometries in [GrZa16b, GrZa15b]. Many examples and
partial classifications can be also found in [Gre12a, Gre13, Gre12b].

2.5. Example: Symmetries of almost CR structures. Non–degenerate par-
tially integrable almost CR structures of hypersurface type are the best known
examples of parabolic contact structures, [ČaSl09, Section 4.2.]. We study s–
symmetries for s such that Ads = −id on g−1, i.e., we consider s–symmetries
inducing −id on the contact distribution. These symmetries on almost CR geome-
tries were firstly studied in [KaZai00, AltMeNa10], where authors however involve a
compatible metric on the distribution. We get the existence of a compatible metric
as a new result.

An almost CR structure (of hypersurface type) is a smooth manifold M of di-
mension 2n + 1 together with a distribution H ⊂ TM of dimension 2n and an
almost complex structure J on H, i.e., J : H → H is an endomorphism with the
property J2 = −id. We assume n > 1. The almost CR structure is non–degenerate
if H is completely non–integrable and thus defines a contact structure on M . The
endomorphism J extends by complex linearity to an endomorphism of the com-
plexification CH of H. It decomposes as CH = H1,0 ⊕H0,1 into holomorphic and
anti–holomorphic bundles which are exactly eigenbundles for eigenvalues i and −i
of J . An almost CR structure is partially integrable if [H1,0,H1,0] ⊂ H1,0 ⊕ H0,1,
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or equivalently, if [ξ, η]− [J(ξ), J(η)] ∈ Γ(H) for all ξ, η ∈ Γ(H). The component of
[H1,0,H1,0] in H0,1 corresponds (up to a multiple) exactly to the complexification
of the Nijenhuis tensor

N(ξ, η) = J([ξ, η]− [J(ξ), J(η)])− [J(ξ), η]− [ξ, J(η)]

for all ξ, η ∈ Γ(H). An almost CR structure is integrable if the Nijenhuis tensor
vanishes. The signature of an almost CR structure is the signature of its Levi form.

We consider oriented non–degenerate partially integrable almost CR structures
(M,H, J) of signature (p, q). Such almost CR structures can be equivalently de-
scribed as regular normal parabolic geometries of type (PSU(p + 1, q + 1), P ),
where the group PSU(p+ 1, q + 1) is the projectivization of the group of matrices
preserving the pseudo–Hermitian form

m((u0, . . . , un+1), (v0, . . . , vn+1)) = u0vn+1 + un+1v0 +

p∑

k=1

ukvk −
n∑

k=p+1

ukvk

on Cn+2 and P is the stabilizer of the complex line generated by the first basis vector
in the standard basis of Cn+2. In particular, the flat model PSU(p+1, q+1)/P is a
smooth real hypersurface in CPn+1 that can be also viewed as the projectivization
of the null cone of m in Cn+2. The Lie algebra su(p+ 1, q+ 1) of PSU(p+ 1, q+ 1)
consists of elements represented by (1, n, 1)–block matrices

(
a Z iz
X A −IZ∗

ix −X∗I −ā

)
,

where g0 = csu(p, q) = {(a,A) : a ∈ C, A ∈ u(n), a + tr(A) − ā = 0}, X ∈
g−1 = Cn, Z ∈ g1 = Cn∗, x ∈ g−2 = R and z ∈ g2 = R∗ is a contact |2|–grading.
Here I denotes the diagonal matrix with the first p entries equal to 1 and the
remaining q entries equal to −1. The Lie algebra p consists of the (1, n, 1)–block
upper triangular matrices and decomposes as p = csu(p, q) ⊕ Cn∗ ⊕ R∗. We have
P ∼= CSU(p, q) exp(Cn∗⊕R∗). Then H = T−1M carries natural complex structure
induced from g−1 = Cn, [ČaSl09, Section 4.2.4].

A (local) CR transformation of an almost CR structure (M,H, J) is a (lo-
cal) diffeomorphism of M such that the tangent map preserves H and its re-
striction to H is complex linear. (Local) CR transformations are precisely (lo-
cal) diffeomorphisms covered by (local) automorphisms of parabolic geometries
of type (PSU(p + 1, q + 1), P ). Direct computation gives that the diagonal ma-
trix s = diag(−1, 1, . . . , 1,−1) represents an element of Z(CSU(p, q)) satisfying
Ads = −id on g−1.

Definition 6. (Local) symmetries sx on CR geometries are the underlying mor-
phisms of s–symmetries with Ads = −id on g−1.

Thus each (local) symmetry sx at x on CR geometry satisfies

• sx(x) = x,
• Txsx = −id on H, and
• sx is a (local) CR transformation.

We can describe all symmetries and compatible metrics on the flat model, [Zal10b]
(Chapter 1) and [GrZa18](Chapter 3).

Theorem 6. There exists an infinite number of symmetries at each point kP of
PSU(p + 1, q + 1)/P given by matrices of the form ksZ,zk

−1 for all Z ∈ Cn∗ and
z ∈ R∗, where

sZ,z =

(
−1 −Z iz+ 1

2ZIZ
∗

0 E −IZ∗
0 0 −1

)
.

Here E denotes identity matrix. In particular:
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(1) There exists an infinite number of involutive symmetries at each point char-
acterized by the condition z = 0. For each such symmetry, there is a dif-
ferent metric preserved by this symmetry compatible with the CR geometry.

(2) There exists an infinite number of non–involutive symmetries at each point
characterized by the condition z 6= 0. They do not preserve any metric
compatible with the CR geometry.

General (curved) CR geometries have two components of harmonic curvature
which are the harmonic torsion valued in g∗−1 ∧ g∗−1 ⊗ g−1 and the harmonic cur-
vature valued in g∗−1 ∧ g∗−1⊗ g0. The harmonic torsion coincides (up to a multiple)
with the Nijenhuis tensor N and the harmonic curvature is known as the Chern-
Moser tensor or Weyl tensor W . The existence of (local) symmetries gives the
following restriction on curvature, [Zal10b, GrZa18] (Chapters 1 and 3).

Theorem 7. Following facts hold for an almost CR structure (M,H, J).

(1) If there is a (local) symmetry at x ∈M , then N(x) = 0.
(2) If there is a non–involutive (local) symmetry at x, then W (x) = 0.
(3) There is at most one (local) symmetry at each x with W (x) 6= 0.
(4) The (local) symmetry at x is involutive if and only if there is an invariant

Weyl connection ∇ at x defined locally on a neighborhood of x.
(5) It holds ∇ξW (x) = 0 for each invariant Weyl connection at x and ξ ∈ H.

In particular, Txsx is involutive and TxM decomposes into ±1–eigenspaces,
whereHx is the −1–eigenspace and there is the one–dimensional 1–eigenspace T+

x M
complementary to H.

Remark 5. The results were proved in [Zal10b] using methods analogous to the
affine case. We also confirmed the results using prolongation rigidity outside of
the 1–eigenspace of s of the triple (su(p+ 1, q + 1), p,W ) in [GrZa17, Section 5.4].
Finally, we improved the results and their proofs in [GrZa18].

Altogether, (locally) symmetric almost CR structures are integrable. Moreover,
they admit only systems of involutive (local) symmetries if W is not vanishing.

Let us now swap to global symmetries and globally symmetric CR geometries.
The local version of most of the following result is also available and can be found
in [GrZa17, Section 5.4] (Chapter 2). The results are more difficult to formulate
because of technicalities but they are analogous to global results.

We show in [GrZa17, Section 5.4] that the triple (su(p+1, q+1), p,W ) is prolon-
gation rigid outside of the 1–eigenspace of s. The results summarized in previous
two sections then imply that if the geometry is symmetric and W 6= 0, then the
uniquely given symmetries form a smooth system. Let us remark that we have many
smooth as well as non–smooth systems of symmetries on flat geometries (which par-
ticularly satisfy N = 0, W = 0). We describe the smooth system by a smooth map
S : M ×M →M given by S(x, y) = sx(y) for the symmetry sx at x ∈M .

In [GrZa18, Proposition 2] (Chapter 3), we prove an important characterization
of symmetric CR structures. The following object plays an important role there.
A reflexion space (in the sense of [Loo67]) is a space M together with a map
S : M ×M →M satisfying the following conditions

• S(x, x) = x,
• S(x, S(x, y)) = y, and
• S(x, S(y, z)) = S(S(x, y), S(x, z))

for all x, y, z ∈ M . Let us emphasize that contrary to the definition of symmetric
spaces, reflexion spaces do not assume that x is an isolated fixed point of S(x,−).

Theorem 8. Suppose that (M,H, J) is a symmetric CR geometry. Then either
14



(1) W = 0 and the CR geometry is locally equivalent to the flat model PSU(p+
1, q + 1)/P , or

(2) W 6= 0 and the group generated by symmetries is a Lie group that acts
transitively on M , i.e., the CR geometry is homogeneous and (M,S) is
a homogeneous reflexion space, where S is the smooth system of uniquely
given symmetries.

Remark 6. The result was firstly proved under stronger assumptions in [GrZa17]
and partially follows from results given in Section 2.3. In [GrZa18] we give a com-
plete proof of this statement.

We study properties of parabolic contact structures with smooth systems of
symmetries in detail in [GrZa13]. In particular, we get the following more detailed
description of symmetric CR geometries.

Theorem 9. Let S be a smooth system of involutive symmetries on (M,H, J). The
following statements are equivalent:

(1) The pair (M,S) is a reflexion space.
(2) There exists an almost S–invariant Weyl connection.
(3) All symmetries from the system S preserve the subbundle T+M formed by

the subspaces T+
x M .

(4) The smooth system S induces a structure of a symmetric space on the leaf
space N of the foliation for the involutive distribution T+M .

In particular, if (M,H, J) is a CR geometry with a smooth system of symmetries
S such that (M,S) is a reflexion space, then

• M = K/H, where K is the Lie group generated by symmetries from S and
H is the stabilizer of a point,
• the stabilizer L of the leaf F going through eH is a closed subgroup of K,
• N = K/L and F = L/H.

We discuss in [GrZa13, Section 3] conditions under which the underlying sym-
metric space is a pseudo–Hermitean symmetric space.

Let us finally focus on pseudo–Riemannian metrics compatible with symmetries
on non–flat CR geometries (M,H, J). The following crucial result studies dis-
tinguished compatible Weyl connections and pseudo–Riemannian submetrics and
metrics, [GrZa18, Theorem 16] (Chapter 3).

Theorem 10. Let K be the Lie group generated by all symmetries of a non–flat
symmetric CR geometry (M,H, J). Suppose that Ad(H0)|q/h = Ad(H)|q/h, where

H0 denotes connected component of identity of the stabilizer H ⊂ K of a point and
q is the 1–eigenspace of s in k. There exist

• a distinguished Weyl connection ∇ preserving the corresponding Reeb field,
• a K–invariant pseudo–Riemannian metric ḡ on H, and
• a K–invariant Webster metric g on TM ,

such that

(1) ∇ḡ = 0,∇g = 0,
(2) g|H = ḡ and the Reeb field of ∇ is orthogonal to H and has length 1,
(3) choosing the Reeb field of ∇ as a trivialization of TM/H⊗C, the pseudo–

Riemannian metric ḡ on H coincides with the real part of the Levi form up
to a constant multiple,

(4) the symmetry at x is linear in geodesic coordinates of ∇ at x, reverses the
directions of Hx and preserves the direction of the Reeb field of ∇ at x.
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2.6. Submaximal models for almost quaternionic structures. An infinites-
imal transformation of a parabolic geometry (G →M,ω) is a P–equivariant vector
field ξ on G such that Lξω = 0. The crucial fact is that flows of ξ at all times
then are automorphisms of the parabolic geometry. For all parabolic geometries
of type (G,P ), the maximal possible dimension of the Lie algebra of infinitesimal
transformations is dim(g). This is realized for geometries that are locally isomor-
phic to the flat model (G → G/P, ωG). Let us remark that the maximal possible
dimension of transformation group is dim(g), too, and this is realized for the flat
model. However, it can be smaller for geometries that are only locally flat. One
can e.g. remove a point from the flat model to get a manifold with the dimension
of the Lie algebra of transformations being dim(g) and the dimension of the Lie
group of transformations being dim(p), see Section 1.3.

There is a natural question on submaximal dimension of the Lie algebra of in-
finitesimal transformations and realizations of corresponding geometries, because
submaximal geometries are other interesting examples of geometries with many
symmetries. Thus we ask the following question:

• What is the maximal possible dimension of the Lie algebra of infinitesimal
transformations among all (regular normal) parabolic geometries of type
(G,P ) that are not everywhere flat?

Let us emphasize that regularity and normality are technical assumptions from
this viewpoint, because one is always interested in (infinitesimal) transformations
of underlying structures and among all parabolic geometries that induce the same
underlying structure, there always is a regular normal one, [ČaSl09, Section 3.1.].

In [KrTh14] authors study submaximal dimensions and corresponding models
for (regular normal) complex parabolic geometries. They use the theory of Tanaka
prolongations, [Tan70, Tan79], prolongation rigidity, [Yam93], and properties of
minimal orbits, [OnVi90], to give a complete classification of submaximal dimen-
sions for complex parabolic geometries, [KrTh14, Appendix C]. They also show that
their restriction is sharp which means that they can always realize explicit examples
of submaximal geometries. Indeed, they give a method of construction of these ex-
amples in [KrTh14, Section 4]. The method of construction of submaximal models
is based on deformations of flat models. In fact, the method is closely related to
one of methods of the construction of symmetric parabolic geometries, [GrZa15b].
Indeed, submaximal models are homogeneous and we show in [GrZa15b, Zal09] that
they are always symmetric for suitable s ∈ Z(G0).

It turns out that the theory of [KrTh14] cannot be applied in the case of real
parabolic geometries of non–split type, although main ideas still work, and they
must be treated case by case. There are known results e.g. for CR geometries and
c–projective geometries, [Kr16, KrMaTh16]. There also are results in [DoTh14] for
conformal parabolic geometries developed by slightly different method. We give
results for almost quaternionic structures in [KrWiZa18] (Chapter 4).

Classically, an almost quaternionic structure on a manifold M is a rank three
subbundle Q ⊂ End(TM) such that locally (in a neighborhood of each point) we
can find a basis I, J,K of Q with I2 = J2 = K2 = −id and IJ = K. A manifold M
with a fixed almost quaternionic structure Q is an almost quaternionic manifold. A
(local) automorphism of (M,Q) is a (local) diffeomorphism of M that preserves Q,
[AleMar96]. An almost quaternionic manifold (M,Q) can be described as a normal
parabolic geometry (G →M,ω) of type (PGL(n+1,H), P ), where P is the stabilizer
of a quaternionic line in Hn+1, [ČaSl09, Section 4.1.8.]. The flat model then is the
quaternionic projective space HPn which is the set of quaternionic lines in Hn+1.
The group PGL(n+1,H) acts transitively on HPn as automorphisms of the natural
quaternionic structure. In particular, maximal possible dimension of a Lie algebra of
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infinitesimal transformations for quaternionic manifolds of quaternionic dimension
n is dim(sl(n+ 1),H) = 4(n+ 1)2 − 1.

In the case of general (curved) almost quaternionic structures, the harmonic
curvature κH has two components:

• the structure torsion κ1 of homogeneity 1 valued in g∗−1 ∧ g∗−1 ⊗ g−1, and
• the quaternionic Weyl curvature κ2 of homogeneity 2 valued in g∗−1∧g∗−1⊗

g0.

Let us sketch the idea of finding the submaximal dimension: Each choice of u ∈ G
provides an inclusion Aut(G, ω) ↪→ G. On the level of corresponding algebra of infin-
itesimal transformations inf(G, ω) we get the inclusion inf(G, ω) ↪→ g, ξ 7→ ω(ξ(u)).
The image f(u) together with the new bracket [X,Y ]f(u) := [X,Y ] − κ(u)(X,Y )
for X,Y ∈ f(u) forms a filtered Lie algebra. We consider its associated grading
s(u) = gr(f(u)) = s−1(u)⊕ s0(u)⊕ s1(u). It holds

dim(inf(G, ω)) = dim(s(u)).

In particular, s0(u) ⊂ ann(κH(u)) ⊂ g0. Moreover, the annihilator is of maximal
dimension if and only if the G0–orbit through the component of κH has minimal
dimension in the projectivization of H2(g−1, g). Since almost quaternionic struc-
tures are prolongation rigid, [KrTh14, Corollary 3.4.8], the component s1(u) does
not appear. Thus

s(u) ⊂ g−1 ⊕ ann(κH(u)) ⊂ g−1 ⊕ g0.

Finally, there are two possibilities for κ = κH = κ1 and κ = κH = κ2 giving
the possible maximal bound. In [KrWiZa18] (Chapter 4), we prove the following
statement.

Theorem 11. The maximal dimension of the Lie algebra of infinitesimal trans-
formations for almost quaternionic structures (M,Q) with dim(M) = 4n > 4 and
κH = κ1 +κ2 6= 0 is 4n2− 4n+ 9. This is realized in both cases, when κ = κH = κ1

and κ = κH = κ2.

We exclude the case n = 1 because it is equivalent to a conformal structure and
it is studied in [DoTh14]. In this case, the submaximal dimension is 8.

We give the proof of the submaximal dimension in [KrWiZa18, Section 4] (Chap-
ter 4). In [KrWiZa18, Section 5], we show that the dimension is realizable in both
cases and we give a complete description of the models. It turns out that the model
for κ2 6= 0 is locally an affine symmetric space which is not Riemannian. Among
all Weyl connections, there is the distinguished Ricci–flat connection with vanish-
ing torsion and parallel curvature, so this is the connection compatible with the
symmetries. The model for the case κ1 6= 0 is locally representable as a Lie group.

3. Applications: Geometric control theory

Transformations of Cartan geometries find interesting applications in geometric
control theory and robotics. We focus on (local) control theory of various mechani-
cal systems, [HrZa19] (Chapter 5). Instead of reminding the whole theory in detail,
we just review the general concepts and we demonstrate them on the example of
vertical rolling disc, which is one of the simplest mechanical systems, [Blo15, Bro82].

It is a natural question in robotics to discuss the controllability and find local
extremal trajectories of various mechanisms that move in the plane. Examples of
such mechanisms are snake robots, [HrNáVa16], or trident snake robots, [Ish04,
PiTho14, HrNáMaVa17]. For example, the 3-link snake consists of thee rigid links
of constant length interconnected by rotating joints and to each link, there is a
wheel attached at the center of the link. The classical trident snake consists of a
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body in the shape of an equilateral triangle and three rigid links of constant length
connected to the vertices of the body by rotating joints.

Configuration spaces of such mechanisms locally coincide with Rn for suitable n.
For example, the configuration space of the 3–link snake is locally R5 and local co-
ordinates can be chosen as [x, y, θ, ϕ1, ϕ2] according to Figure 1. The configuration
space of classical trident snake coincides locally with R6, where coordinates can be
chosen as [x, y, θ, ϕ1, ϕ2, ϕ3] according to Figure 1.

(a) 3–link snake (b) classical trident snake

Figure 1. Snake robots

We can also generalize these classical mechanisms by changing their configuration
spaces. For example, we consider a generalized trident snake which consists of a
body in the shape of an equilateral triangle and three prismatic links connected
to the vertices of the body, where two of them are attached by fixed joints and
one of them by rotating joint according to Figure 2. Its configuration space locally
coincides with R7 and coordinates can be chosen as [x, y, θ, ϕ2, `1, `2, `3].

Figure 2. Generalized trident snake

Moreover, there are natural non–holonomic constraints coming from natural re-
strictions on the movement of mechanisms given by the fact that wheels cannot
move in directions perpendicular to their velocities. These restrictions give addi-
tional (local) structure on the configuration space. Indeed, such condition on each
wheel determines one pfaffian form and altogether, we get a pfaffian system which
determines (locally, at regular points) a distribution on Rn. If this distribution is
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bracket generating at some point of the configuration space, then the mechanical
system is controllable in a neighborhood of this point, i.e., we can reach each point in
this neighborhood, [AgBaBo19]. In such case, the distribution determines (locally,
at these points) a filtration of the configuration space and often carries additional
geometric structure that can be described as a Cartan or even parabolic geome-
try. For example, the 3-link snake corresponds to the famous (2, 3, 5)-geometry of
Cartan, [Car1894, Car10], and the classical trident snake corresponds to the fa-
mous (3, 6)-geometry of Bryant, [Bry16]. The generalized trident snake carries the
so-called generalized path geometry in dimension 7, [ČaSl09, Section 4.4.3].

Example 1. Let us consider a vertical disc rolling in the plane according to Figure
3. Its configuration space is (locally but not globally) R3 with coordinates [x, y, θ]

Figure 3. Vertical rolling disc

given by the touch point P0 = [x, y] ∈ R2 and the velocity orientation θ ∈ [0, 2π].
The constraint given by the fact that the disc cannot move in the direction per-
pendicular to its velocity gives the pfaffian − sin(θ)dx + cos(θ)dy, and its kernel
is (locally) the bracket generating 2–distribution on R3 generated by vector fields
v1 := ∂

∂θ and v2 := cos(θ) ∂
∂x + sin(θ) ∂∂y . In fact, these two fields correspond to two

natural movements of the disc which are

• the rotation around an axis parallel with z at P0, and
• the move in the plane in the direction (cos(θ), sin(θ)) from P0.

Their Lie bracket [v1, v2] = v3 := − sin(θ) ∂
∂x + cos(θ) ∂∂y is not contained in the

distribution. Thus we have (locally) a bracket-generating distribution giving a
filtration (2, 3) and the system is everywhere controllable. Let us remark that
together with [v1, v3] = −v2 these two brackets are the only non-trivial brackets.

Let us emphasize that the above Cartan and parabolic geometries are defined
locally and they can generally have non–trivial invariants (i.e., the harmonic cur-
vature in the case of parabolic geometries). The usual way to avoid this problem in
robotics is to swap to nilpotent approximation at a suitable point, [AgSar87, Her86].
Geometrically, the nilpotent approximation is a suitable representative of the as-
sociated grading and it can be viewed as the maximally symmetric model of the
geometry (i.e., flat model for Cartan and parabolic geometries).

Example 2. The nilpotent approximation at the origin [0, 0, 0] of configuration
space of the vertical rolling disc is given by a distribution generated by fields
n1 := ∂

∂θ , n2 := ∂
∂x + θ ∂

∂y . Their bracket equals to [n1, n2] = n3 := ∂
∂y . This

is the only non-trivial bracket and all remaining brackets are trivial. We get a
contact distribution giving a filtration (2, 3) and the vector fields model the three-
dimensional Heisenberg algebra.
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Methods of control theory can be used efficiently to study extremal trajecto-
ries and local minimizers for optimal control problems that are related to plane
mechanisms, [AgBaBo19, AgSac04].

Example 3. Let us start with the original mechanical system. Configuration space
of the vertical rolling disc can be (locally) viewed as a Lie group S with solvable
Lie algebra generated by the elements e1, e2, e3 corresponding to the vector fields
v1, v2, v3. The Lie algebra is given by [e1, e2] = e3, [e2, e3] = e1. So we can use the
concepts of control theory on Lie groups.

To study optimal movements, we consider the canonical control metric gS on the
distribution DS = 〈e1, e2〉, i.e., e1, e2 are orthogonal and both have the length 1.
Let us emphasize that DS and gS are invariant with respect to the action given by
multiplication in S and we have an invariant control system (S,DS , gS). We would
like to study the following optimal control problem

ċ(t) = u1

(
0
0
1

)
+ u2

(
cos(θ)
sin(θ)

0

)

for c ⊂ S and the control u = (u1, u2) ∈ R2 with the boundary condition c(0) = s1,

c(t0) = s2 for arbitrary fixed s1, s2 ∈ S, where we minimize 1
2

∫ t0
0

(u2
1 + u2

2)dt.
We use the Hamiltonian viewpoint and the Pontryagin’s maximum principle to

find a system whose solutions are extremal trajectories, [AgBaBo19, Section 7].
Thus on T ∗S we get the Pontryagin’s system

h′1(t) = −h3(t)h2(t), h′2(t) = h3(t)h1(t), h′3(t) = −h1(t)h2(t),

x′(t) = h2(t) cos(θ(t)), y′(t) = h2(t) sin(θ(t)), θ′(t) = h1(t),

where (x, y, θ) are base coordinates and hi = 〈λ, vi〉, λ ∈ T ∗S are (fiber) coordinate
functions. The system can be solved explicitly but the solution is given using Jacobi
functions, [SaMo10], and it is not possible to use it in practical applications.

Let us thus swap to the nilpotent approximation. It corresponds to the Lie group
N with Heisenberg algebra, i.e., the nilpotent algebra given by elements f1, f2, f3

corresponding to n1, n2, n3 such that [f1, f2] = f3. We again consider the canonical
control metric gN on the distribution DN = 〈f1, f2〉, i.e., f1, f2 are orthogonal and
both have the length 1. Thus we have an invariant control system (N,DN , gN ) on
the nilpotent Lie group N . Thus we study the following optimal control problem

ċ(t) = u1

(
0
0
1

)
+ u2

(
1
θ
0

)

for c ∈ N and the control u = (u1, u2) with the boundary condition c(0) = p1,

c(t0) = p2 for arbitrary fixed p1, p2 ∈ N , where we minimize 1
2

∫ t0
0

(u2
1 + u2

2)dt. In
this case, we get on T ∗N the Pontryagin’s system

h′1(t) = −h3(t)h2(t), h′2(t) = h3(t)h1(t), h′3(t) = 0,

x′(t) = h2(t), y′2(t) = h2(t)θ(t), θ′(t) = h1(t),

where (x, y, θ) are base coordinates and hi = 〈λ, ni〉, λ ∈ T ∗N are (fiber) coordinate
functions. This system can be solved explicitly. Its solutions are extremal trajec-
tories and these project to local minimizers (x(t), y(t), θ(t)). The fiber (vertical)
system has (in the generic case h3 6= 0) the solutions of the form

h1 = C2 sin(C1t) + C3 cos(C1t)

h2 = C3 sin(C1t)− C2 cos(C1t)

h3 = C1

20



for constants C2, C3 and C1 6= 0. Then the base (horizontal) system has solutions
satisfying the initial condition x(0) = y(0) = θ(0) = 0 of the form

x(t) =
1

C1
(C3 − C2 sin(C1t)− C3 cos(C1t))

y(t) =
1

4C2
1

(2C1(C2
2 + C2

3 )t− 4C2C3 cos(C1t) + 2C2C3 cos(2C1t)

− 4C2
2 sin(C1t) + (C2

2 − C2
3 ) sin(2C1t) + 2C2C3)

θ(t) =
1

C1
(C2 − C2 cos(C1t) + C3 sin(C1t))

(7)

for constants C1, C2, C3 as above. These curves are arc-length parametrized if
C2

2 + C2
3 = 1. Let us point out that it is sufficient to consider solutions with

x(0) = y(0) = θ(0) = 0 because solutions with different starting point can be found
using multiplication in N .

Finally, let us look at explicit local minimizers in order to see how the solutions
of the nilpotent system approximate the solutions of the original system, in a neigh-
borhood of the origin. We can solve the original system numerically in Maple. Then
we can compare the numeric solutions with solutions of the nilpotent system with
the same initial condition. On the figures, we provide two examples of local mini-
mizers c(t), t ∈ [0, 2π] with the initial conditions x(0) = y(0) = θ(0) = 0, h1(0) = 1

2 ,

h2(0) =
√

3
2 and for two choices of h3(0), namely h3(0) = 2 and h3(0) = 20. Here

the dot line denotes the numeric solution of the original system and the solid line
denotes the analytic solution of the nilpotent system.

(a) Choice h3(0) = 2. (b) Choice h3(0) = 20.

Figure 4. Comparison of solutions

By a transformation of a control system we consider a (local) diffeomorphism
of the configuration space preserving the control distribution and the control met-
ric. As usual, the infinitesimal transformations are vector fields whose flows are
transformations of a control system at each time. In many cases, they simply are
(local) infinitesimal transformations of the corresponding parabolic geometry that
in addition preserve the control metric. In the case of nilpotent control systems
(e.g. nilpotent approximations determined by mechanical systems), infinitesimal
transformations form a Lie algebra which is a subalgebra of g due to the flatness,
see Section 2.1. In particular, there can be transformations preserving the origin,
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i.e., the isotropy subalgebra is often non–trivial. For example, in the case of the
trident snake, infinitesimal transformations of the corresponding nilpotent control
system form a 9–dimensional subalgebra of so(3, 4), where 6 fields reflect the brack-
ets generating (3, 6)-structure and the isotropy subalgebra is isomorphic to so(3),
[Mya02]. Infinitesimal transformations of corresponding nilpotent control system
of generalized trident snake with filtration (4, 7) form a 10–dimensional subalgebra
of sl(5,R), where 7 fields reflect the brackets generating (4, 7)-structure and the
isotropy subalgebra is isomorphic to so(3), [HrZa19] (Chapter 5). Let us emphasize
that in the (3, 6)-case, the isotropy subalgebra is simply the orthogonal algebra of
the metric on the distribution at the origin while in the (4, 7)-case, it is the restric-
tion of the orthogonal algebra to a 3–dimensional subspace of the distribution at
the origin given canonically by the generalized path geometry, [ČaSl09].

Infinitesimal transformations of nilpotent control systems are usually easy to find
and they give a tool to study points at which local minimizers c(t) stop to be opti-
mal. Consider a trajectory c(t) starting at the origin o of the system (N,DN , gN )
to some p ∈ N and assume there is a transformation f of (N,DN , gN ) such that
f(o) = o and f(p) = p. If the path c(t) is not contained in the fixed point set of
f , then ĉ(t) := f ◦ c(t) gives another local minimizer of the same length such that
ĉ(o) = o and ĉ(p) = p. In this way, we construct two different paths from o to p of
the same length, so the local minimizer cannot be optimal after the point p. This
is done by [Mya02, MonMor17] for the (3, 6)-case. We study infinitesimal transfor-
mations of nilpotent system for the mechanism with the growth vector (4, 7) and
their possible action on local minimizers in [HrZa19].

Example 4. In the case of the nilpotent control system (N,DN , gN ) for the vertical
rolling disc form, the Lie algebra of infinitesimal transformations is generated by

fields t1 = ∂
∂x , t2 = x ∂

∂y + ∂
∂θ , t3 = ∂

∂y and t4 = θ ∂
∂x − x ∂

∂θ + θ2−x2

2
∂
∂y . The

transformations t1, t2, t3 satisfy [t1, t2] = t3 and generate the Heisenberg algebra.
The only isotropy transformation is t4. The fixed point set of t4 is of the form
B = {[0, b, 0] : b ∈ R}. One can verify that each local minimizer (7) intersects with

B at the point [0,
(C2

2+C2
3 )π

C2
1

, 0] at the time t = 2π
C1

. This is the first point with this

property and there is a one-parametric family of such minimizers. In particular,
each arc-length parametrized local minimizer (7) intersects with B at the point
[0, π

C2
1
, 0] at the time t = 2π

C1
.

Let us finally remark that the analytic curves (solid-line) in Figure 4 are pictured
exactly to the points where they stop to be optimal.
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Informacii, Moscou

[FuHa04] W. Fulton, J. Harris, Representation theory. A first course. Graduate Texts in Mathe-

matics. 129. Readings in Mathematics. Springer-Verlag, New York, 1991.
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[Gre12c] J. Gregorovič, Local reflexion spaces. Arch. Math. (Brno) 48 (2012), no. 5, 323–332.
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[GrZa16b] J. Gregorovič, L. Zalabová, Geometric properties of homogeneous parabolic geometries

with generalized symmetries. Differential Geom. Appl. 49 (2016), 388–422.
[GrZa17] J. Gregorovic, L. Zalabova, Local generalized symmetries and locally symmetric par-

abolic geometries. SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), Paper

No. 032, 33 pp.
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[Zal09] Zalabová L., Symmetries of parabolic geometries. Differential Geom. Appl. 27 (2009), no.
5, 605–622.
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SYMMETRIES OF PARABOLIC CONTACT STRUCTURES

LENKA ZALABOVÁ

Abstract. We generalize the concept of locally symmetric spaces to para-

bolic contact structures. We show that symmetric normal parabolic contact
structures are torsion-free and some types of them have to be locally flat. We

prove that each symmetry given at a point with non-zero harmonic curvature

is involutive. Finally we give restrictions on number of different symmetries
which can exist at such a point.

Affine locally symmetric spaces are well known and studied objects in differential
geometry. The classical definition says that a local symmetry at x on a manifold
M with an affine connection ∇ is a locally defined affine transformation such that
sx(x) = x and Txsx = −id on TxM . We can understand ∇ as a geometric structure
on M such that the symmetry sx preserves this structure. There is a natural
generalization of this concept: For a manifold with an arbitrary geometric structure,
one can define a local symmetry as an automorphism of this geometric structure,
which satisfies the two above conditions. Best known examples of this concept
are Riemannian symmetric spaces, which play an important role in theoretical
physics, see [1, 2], and projective symmetric spaces, see [3]. This concept also
generalizes nicely to geometric structures which can be described as |1|-graded
parabolic geometries, see [4, 5].

In this article, we are interested in symmetries of contact manifolds endowed
with some additional structures which can be described as parabolic geometries,
the so-called parabolic contact structures, see [6]. Discussion of the Levi bracket
implies that we cannot define a symmetry in the classical sense, see [4]. Motivated
by the definition of a symmetry for Cauchy-Riemann structures from [7], we de-
fine a symmetry at x as a morphism of the contact geometry such that sx(x) = x
and Txsx = −id on the contact distribution at x. This definition works nicely
for all parabolic contact structures. Then, to study symmetries on parabolic con-
tact structures, we can use general techniques known from the theory of parabolic
geometries, see [8, 6].

In this article, we discuss the curvature of symmetric parabolic contact geome-
tries in detail. The theory of harmonic curvature for parabolic geometries allows us
to prove that symmetric normal parabolic contact geometries must be torsion-free.
Moreover, some types of them have to be locally flat, if they are symmetric.

Contrary to the classical case, symmetries of parabolic contact structures do not
satisfy sx ◦ sx = id in general, i.e. they are not necessarily involutive. We use the
theory of Weyl structures to study this question. More precisely, we show that only
locally flat geometries can carry non-involutive symmetries at each point. More-
over, for each involutive symmetry on a parabolic contact geometry, there exists
an admissible affine connection which is invariant with respect to the symmetry.
Finally we show that in many cases, there can exist at most one symmetry at points
with non-zero curvature.

The author would like to mention very useful discussions with Andreas Čap during the work on

this paper and the support of Eduard Čech Center for Algebra and Geometry for her participation
in the conference The 30th Winter School Geometry and Physics, 2010.
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1. Parabolic contact structures

We recall here basic definitions and summarize the properties of parabolic ge-
ometries. We discuss parabolic contact structures in detail. We also introduce Weyl
structures, which will be our main tool to deal with parabolic contact geometries.
We follow the concepts and notation of [6, 8] and the reader can find all the details
and proofs therein.

1.1. Contact structures and parabolic geometries. Consider a manifold M
endowed with a distribution H of TM of corank one. Then H ⊂ TM forms a
filtration and, on the graded bundle gr(TM) = H ⊕ TM/H, there is the Levi
bracket L : H × H → TM/H which is a bilinear bundle map induced by the Lie
bracket of vector fields. The well known definition says that H ⊂ TM forms a
contact structure on M if the Levi bracket is non-degenerate at each point. The
subbundle H is then called contact distribution.

We will discuss here contact manifolds endowed with some additional structures
which can be described as parabolic geometries. Let us recall that, for a semisimple
Lie group G and its parabolic subgroup P , a parabolic geometry of type (G,P ) is
a pair (p : G → M,ω) consisting of a principal P -bundle G → M and a 1-form
ω ∈ Ω1(G, g), called the Cartan connection, which is P -equivariant, reproduces
generators of fundamental vector fields and induces a linear isomorphism TuG ∼= g
for each u ∈ G. The Lie algebra g of G is then equipped (up to the choice of Levi
factor g0 in p) with a grading of the form g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk such that the
Lie algebra of P is exactly p = g0 ⊕ · · · ⊕ gk. There is the usual notation such
that g− := g−k ⊕ · · · ⊕ g−1, p+ := g1 ⊕ · · · ⊕ gk and P+ ⊂ P is the subgroup
corresponding to p+. By G0 we denote the subgroup in P , with Lie algebra g0,
consisting of all elements whose Ad-action preserves the grading of g. Each element
g of P can be uniquely written as g0 expZ1 · · · expZk for suitable g0 ∈ G0 and
Zi ∈ gi, thus expZ1 · · · expZk ∈ P+. Let us recall that for each parabolic geometry,
there is an element E ∈ g0 with the property [E,X] = iX for each X ∈ gi, the
so-called grading element. To study contact structures, we have to focus on a
special case of |2|-grading: A contact grading of a simple Lie algebra g is a grading
g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 such that g−2 is one-dimensional and the Lie bracket
[−,−] : g−1 × g−1 → g−2 is non-degenerate. Let us remark that for each contact
grading, the subspace [g−2, g2] coincides with the subspace generated by E.

It is well known that the Cartan connection ω provides an identification TM '
G ×P g/p. Suppose we have a parabolic geometry corresponding to a contact grad-
ing. Because each contact grading of g induces P -invariant filtration of the form
g = g−2 ⊃ g−1 ⊃ g0 ⊃ g1 ⊃ g2 = g2, the subspace g−1/p ⊂ g/p defines a sub-
bundle T−1M := G ×P g−1/p of corank one in TM . There is the Levi bracket
on gr(TM) = T−1M ⊕ TM/T−1M and the geometry is called regular if the Levi
bracket corresponds to the Lie bracket [−,−] : g−1 × g−1 → g−2 under the above
identification. Then, for regular parabolic geometries corresponding to contact
gradings, the underlying filtration T−1M ⊂ TM defines a contact structure on
M , and each such geometry is called parabolic contact structure or parabolic con-
tact geometry. Moreover, define G0 := G/P+, which is a principal G0-bundle over
M . This is the reduction of the natural frame bundle of gr(TM) with respect to
Ad : G0 → Gl(g−1) and, in this way, we get an additional geometric structure on
T−1M .

Let us recall some more facts on parabolic contact structures that will be needed:
The P -bundle G → G/P together with the (left) Maurer-Cartan form ωG ∈
Ω1(G, g) forms a geometry that is called homogeneous model. A morphism be-
tween geometries of type (G,P ) from (G → M,ω) to (G′ → M ′, ω′) is a P -bundle
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morphism ϕ : G → G′ such that ϕ∗ω′ = ω. We will suppose that the maximal
normal subgroup of G which is contained in P is trivial. With this assumption,
there is one-to-one correspondence between morphisms of parabolic geometries and
their base morphisms. Let us recall that such geometries are called effective.

The curvature is described by P -equivariant mapping κ : G → ∧2(g/p)∗ ⊗ g, the
so-called curvature function. The Maurer-Cartan equation implies that the curva-
ture of the homogeneous model vanishes. Conversely, it can be proved that if the
curvature of a geometry vanishes, then it is locally isomorphic to the homogeneous
model of the same type. If κ has its values in a subbundle ∧2(g/p)∗ ⊗ p, we call
the geometry torsion-free. The regular geometry is called normal if the curvature
satisfies ∂∗ ◦ κ = 0, where ∂∗ is the differential in the standard complex computing
Lie algebra homology of p+ with coefficients in g. Then we can define the harmonic
curvature κH which is the composition of the curvature function with the projection
ker(∂∗)→ ker(∂∗)/im(∂∗). There is the following general statement, see [6]:

Theorem. On a regular normal parabolic geometry, the curvature κ vanishes if
and only if the harmonic curvature κH vanishes.

It can be proved that ker(∂∗)/im(∂∗) is a G0-submodule of ∧2g∗− ⊗ g and de-
composes into the direct sum of components each of which is contained in some
g∗−i ∧ g∗−j ⊗ gk. According to this decomposition, κH decomposes into the sum of

components of homogeneity ` = i + j + k that we denote by κ(`). One can use
the Kostant’s version of the Bott-Borel-Weil theorem to find all the components of
κH . For parabolic contact geometries, it turns out that there can exist only the
following three types of components:

• κ(1) valued in g∗−1 ∧ g∗−1 ⊗ g−1,

• κ(2) valued in g∗−1 ∧ g∗−1 ⊗ g0 and

• κ(4) valued in g∗−2 ∧ g∗−1 ⊗ g1.

See the Appendix for summary of all contact gradings and corresponding geometries
with their components of harmonic curvature. Detailed description and computa-
tion of components of harmonic curvature for parabolic contact structures can be
found in Section 4.2. of [6].

1.2. Adjoint tractor bundles and Weyl structures. Here, let us briefly intro-
duce the concept of adjoint tractor bundles, which allows us to write formulas and
make computations in a more convenient form. The adjoint tractor bundle is the
natural bundle AM := G×P g corresponding to the restriction of Ad-action of G on
g. For each parabolic contact geometry, the filtration of g induces a filtration AM =
A−2M ⊃ A−1M ⊃ A0M ⊃ A1M ⊃ A2M such that AiM = G ×P gi, and there is
the associated graded bundle gr(AM) = A−2M ⊕A−1M ⊕A0M ⊕A1M ⊕A2M ,
where AiM = AiM/Ai+1M equals to G0 ×G0

gi. Clearly, TM ' AM/A0M
and T ∗M ' A1M . On the graded bundle gr(AM), there is the algebraic bracket
{−,−} : AiM ×AjM → Ai+jM defined by means of the Lie bracket on g. Clearly,
its part A−1M × A−1M → A−2M on gr(TM) = A−2M ⊕ A−1M coincides with
the Levi bracket thanks to the regularity. Since each fiber of gr(AM) is isomor-
phic to g, the grading element defines a unique element E(x) ∈ gr0(AxM) such
that {E(x),−} is a multiplication by i on gri(AxM). In fact, these elements form
a section E of gr0(AM) which is called the grading section. Let us also remark
that we simultaneously get an action • of gr(AM) on arbitrary tensor products
of gr(AM) which is given using the tensoriality of the algebraic bracket. In par-
ticular, the grading section acts on each homogeneous component of the tensor as
multiplication by its homogeneity.

Now we should recall basic facts on Weyl structures. For any parabolic contact
geometry (G →M,ω) with the underlyingG0-bundle p0 : G0 →M , a Weyl structure
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is a global smooth G0-equivariant section σ : G0 → G of the canonical projection π :
G → G0. Weyl structures always exist, and for any two Weyl structures σ and σ̂,
there are G0-equivariant functions Υ1 : G0 → g1 and Υ2 : G0 → g2 such that

σ̂(u0) = σ(u0) exp Υ1(u0) exp Υ2(u0)

for all u0 ∈ G0. Clearly, Υi ∈ Γ(AiM) and Υ := (Υ1,Υ2) is a smooth section
of gr(T ∗M). Moreover, the Campbell-Baker-Hausdorff formula implies exp Υ =
exp Υ1 exp Υ2 = exp(Υ1 + Υ2) = exp Υ2 exp Υ1, see [9].

For each Weyl structure σ, we can form the pullback σ∗ω ∈ Ω1(G0, g). This
decomposes as σ∗ω = σ∗ω− + σ∗ω0 + σ∗ω+, of which the part σ∗ω− ∈ Ω1(G0, g−)
is called the soldering form. Each Weyl structure σ induces, by means of its sol-
dering form, an isomorphism TM ' gr(TM) which we write as ξ 7→ (ξ−2, ξ−1).
If σ exp Υ1 exp Υ2 is another Weyl structure, the isomorphism changes as ξ 7→
(ξ−2, ξ−1−{Υ1, ξ−2}). In particular, σ and σ exp Υ2 induce the same isomorphism
for an arbitrary Υ2 : G0 → g2.

The part σ∗ω0 ∈ Ω1(G0, g0) defines a principal connection on p0 : G0 → M
which we call the Weyl connection. This connection induces connections on all
associated bundles. In particular, for each σ we get a preferred connection on
gr(TM) = G0×G0 g− and, via the above isomorphism, we get a preferred connection
on the tangent bundle, cotangent bundle and their tensor products. We call each
such connection Weyl connection, too. For a Weyl structure σ, we denote the
corresponding connection by ∇σ. For σ and σ̂ = σ exp Υ1 exp Υ2 we have

∇σ̂ξ s = ∇σξ s+
(1

2
{Υ1, {Υ1, ξ−2}} − {Υ2, ξ−2} − {Υ1, ξ−1}

)
• s,(1)

where ξ ∈ X(M) and s is a section of an appropriate bundle. The positive part
σ∗ω+ ∈ Ω1(G0, p+) is called Rho-tensor and is denoted by Pσ. We will not need it
explicitly, see [6, 8] for details.

Let us finally recall the so-called normal Weyl structures. A normal Weyl struc-
ture at u is the only G0-equivariant section σu : G0 → G satisfying σu ◦ π ◦
Fl
ω−1(X)
1 (u) = Fl

ω−1(X)
1 (u), where by Fl

ω−1(X)
t (u) we denote flows of constant vec-

tor fields ω−1(X) ∈ X(G). Each normal Weyl structure σu is defined locally over
some neighborhood of p(u) and depends only on the G0-orbit of u ∈ G, see [6].

2. Basic facts on symmetries

We formulate here the definition of a symmetry on a parabolic contact geometry
and describe its basic properties. We study the action of symmetries on Weyl
structures and describe some interesting subclasses of them. We focus here on the
question of involutivity of our symmetries.

2.1. Definitions. Let (G → M,ω) be a parabolic contact structure. A (local)
symmetry with the center at x ∈ M is a (locally defined) diffeomorphism sx on M
such that:

(1) sx(x) = x,
(2) Txsx = −id on T−1

x M ,
(3) sx is a base morphism of some (locally defined) automorphism ϕ of the

parabolic contact geometry.

The geometry is called (locally) symmetric if there is a (local) symmetry at each
point x ∈M .

Clearly, each symmetry is a local symmetry. In this article, we discuss local
symmetries and local properties of locally symmetric geometries and for conciseness
will say ‘symmetry at x’ and ‘symmetric’ instead of ‘local symmetry at x’ and
‘locally symmetric’, respectively. Global symmetries and their systems we will
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discuss elsewhere. Moreover, we will also call the automorphism ϕ of G and its
underlying automorphism ϕ0 of G0 a ‘symmetry at x’.

2.2. Basic properties of symmetries. Let sx be a symmetry on a parabolic
contact geometry and let ϕ be as above. Since each symmetry sx preserves x,
the (uniquely given) automorphism ϕ has to preserve the fiber over x. Then for
each frame u ∈ p−1(x) we have ϕ(u) = ug0 expZ = ug0 expZ1 expZ2 for suitable
g0 ∈ G0, Z1 ∈ g1 and Z2 ∈ g2, where Z = Z1 + Z2. Let us describe the element
g0 expZ1 expZ2 in detail:

For each ξ(x) = [[u,X]] ∈ T−1
x M , i.e. for each X ∈ g−1/p, we have

Txsx.ξ(x) = [[ϕ(u), X]] = [[ug0 expZ1 expZ2, X]] =

= [[u,Adexp(−Z2)Adexp(−Z1)Adg−1
0
X]]

(2)

and simultaneously Txsx.ξ(x) = −ξ(x) = [[u,−X]]. All together, the element
g0 expZ1 expZ2 has to induce−id on g−1/p by the Ad-action. Moreover, expZ1 expZ2

acts trivially on g−1/p. Indeed, there is the formula

AdexpZX =
∞∑

j=0

1

j!
adjZX = X + [Z,X] +

1

2
[Z, [Z,X]] + · · ·(3)

for all X ∈ g− and Z ∈ p+ and if X ∈ g−1, all brackets on the right hand side
belong to p. In fact, along the fiber over x, the P+-parts of the above elements
are determined by ϕ and can be arbitrary in general, one only has to impose the
compatibility of ϕ with the right action of P . Then the element g0 has to cause
the sign change on g−1/p ' g−1. Since our geometries are effective, there can exist
at most one element g0 ∈ G0 which gives −id on g−1 and it has to be the same
element along the fiber. In particular, the underlying morphism ϕ0 is of the form
ϕ0(u0) = u0g0 for each u0 ∈ p−1

0 (x). Clearly, the element g0 has to induce identity
on g−2 = [g−1, g−1].

One of basic properties of classical symmetries is their involutivity and there is a
natural question on involutivity of our symmetries. Thus let us focus on s2

x := sx ◦
sx. Let us first point out that ϕ◦ϕ = idG if and only if sx ◦sx = idM , which follows
directly from effectivity. Clearly, ϕ0 is then involutive, too. Thus it suffice to study
the morphism ϕ2. In the above notation, ϕ2(u) = ug0 expZ1 expZ2g0 expZ1 expZ2

holds, and using the known fact expXg0 = g0 exp(Adg0X), we can rewrite this as
ug2

0 exp(−Z1) expZ2 expZ1 expZ2. Moreover, g2
0 acts as id on g−1 and thus on g,

because g−1 generates g−, p = g∗− and g0 ⊂ g∗− ⊗ g−. Thus it lies in the kernel
of the Ad-action which coincides with the maximal normal subgroup of G which is
contained in P . Effectivity then gives g2

0 = e. All together, we have got ϕ2(u) =
u exp 2Z2. In another frame uh for h ∈ P we then have ϕ2(uh) = uh exp 2AdhZ2.
Thus we can simply view Z2 as P -equivariant function Z2 : p−1(x) → g2. In fact,
we have proved the following statement:

Lemma. On a parabolic contact geometry, each symmetry sx at x defines uniquely
a covector Z2 ∈ T ∗xM through the equation

ϕ2(u) = u exp 2Z2(u)(4)

along the fiber over x. The symmetry sx is involutive if and only if the covector Z2

equals to zero.

Thanks to the above observations, it is easy to describe the differential of each
symmetry at its center.

Proposition. For each symmetry sx at x on a parabolic contact geometry, the map-
ping Txsx : TxM → TxM is involutive, thus TxM decomposes into two eigenspaces
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with eigenvalues −1 and 1. The eigenspace corresponding to the eigenvalue −1 has
to coincide with T−1

x M , the contact distribution, and there exists a one-dimensional
eigenspace corresponding to the eigenvalue 1.

Proof. For each ξ(x) = [[u,X]] from TxM we have

Txs
2
x.ξ(x) = [[ϕ2(u), X]] = [[u exp 2Z2(u), X]] = [[u,Adexp(−2Z2(u))X]]

= [[u,X]] = ξ(x),

which follows directly from formulas (4) and (3). The rest follows immediately from
the definition of the symmetry. �

2.3. Action of symmetries on Weyl structures. Let us now discuss relations
of various Weyl structures to the symmetry sx. For each Weyl structure σ we can
write

ϕ(σ(u0)) = σ(ϕ0(u0)) exp Υ1(u0) exp Υ2(u0)(5)

for each u0 ∈ G0 and for suitable functions Υ1 : G0 → g1 and Υ2 : G0 → g2 which
are generally determined by ϕ and σ. With the notation from the last section, we
have Υ2(u0) = Z2(σ(u0)) in the fiber over x. The Lemma 2.2 then shows that Υ2

does not depend on the choice of a Weyl structure σ and coincides for all Weyl
structures at x. Clearly, Υ2 vanishes at x if and only if sx is involutive. The
function Υ1 depends on the choice of a Weyl structure σ at x and with the above
notation, Υ1(u0) = Z1 for σ(u0) = u.

Let us now focus on the role of Υ1 for the isomorphism TM ' gr(TM) given
by the Weyl structure σ: For a tangent vector ξ(x) = [[σ(u0), X−2 + X−1]] where
Xi ∈ gi we have

Txsx.[[σ(u0), X−2 +X−1]] = [[σ(ϕ0(u0)) exp Υ1(u0) exp Υ2(u0), X−2 +X−1]]

= [[σ(u0), X−2 −X−1 − [Υ1(u0), X−2]]],

which follows from the fact that ϕ0(u0) = u0g0 for g0 giving −id on g−1 and from
formulas (5) and (3). In particular, the isomorphism TM ' gr(TM) given by a
Weyl structure σ reflects the decomposition of TxM into ±1-eigenspaces for Txsx
if and only if the Weyl structure σ satisfies Υ1(u0) = 0 for each u0 from the fiber
over x.

Lemma. On a parabolic contact geometry with a symmetry sx at x, there are
Weyl structures σ̂ such that ϕ(σ̂(u0)) = σ̂(ϕ0(u0)) exp Υ̂1(u0) exp Υ2(u0) holds for

suitable Υ̂1 such that Υ̂1(u0) = 0 for each u0 from the fiber over x.

Proof. Consider an arbitrary Weyl structure σ and let (Υ1,Υ2) be determined by
σ as above. Let us verify that the Weyl structure

σ̂(u0) = σ(u0) exp(−1

2
Υ1(u0))

satisfies the condition: The formula (5) and the Campbell-Baker-Hausdorff formula
allow us to write

ϕ(σ̂(u0)) = ϕ(σ(u0)) exp(−1

2
Υ1(u0))

= σ(ϕ0(u0)) exp Υ1(u0) exp Υ2(u0) exp(−1

2
Υ1(u0))

= σ(ϕ0(u0)) exp
1

2
Υ1(u0) exp Υ2(u0).
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Equivariancy of Υ1 gives Υ1(ϕ0(u0)) = Υ1(u0g0) = −Υ1(u0) in the fiber over x for
g0 giving −id on g−1 and we can rewrite the above expression as

σ(ϕ0(u0)) exp(−1

2
Υ1(ϕ0(u0))) exp Υ2(u0) = σ̂(ϕ0(u0)) exp Υ2(u0)

in the fiber over x. Thus σ̂ is the required Weyl structure. �

Let us call each Weyl structure σ̂ satisfying the condition in the lemma an almost
sx-invariant Weyl structure at x. All almost sx-invariant Weyl structures form a
family of Weyl structures which is parametrized over g2 at x. Really, all Weyl
structures inducing the same isomorphism TxM ' gr(TxM) as σ̂ are of the form
σ̂ expF1(u0) expF2(u0) for arbitrary functions F2 : G0 → g2 and F1 : G0 → g1

where F1(u0) = 0 in the fiber over x, see 1.2.
Let us finally describe the involutivity of our symmetries in the language of Weyl

structures.

Proposition. On a parabolic contact geometry with a symmetry sx at x, the fol-
lowing facts are equivalent:

(a) the symmetry sx is involutive,
(b) there exists a Weyl structure σ such that ϕ(σ̂(u0)) = σ(ϕ̂0(u0)) holds in the

fiber over x,
(c) there exists a Weyl structure σu such that ϕ(σu(u0)) = σu(ϕ0(u0)) holds

over some neighborhood of x.

Proof. (a) ⇒ (b) Let σ̂ be an arbitrary almost sx-invariant Weyl structure. The
Lemma 2.2 says that the involutivity implies vanishing of Υ2 in the fiber over x.
Thus if sx is involutive, the almost sx-invariant Weyl structure σ̂ has to satisfy (b).

(b)⇒ (c) Let σ̂ be an arbitrary Weyl structure satisfying ϕ(σ̂(u0)) = σ̂(ϕ0(u0)) in
the fiber over x. Consider the normal Weyl structure σu such that σu(u0) = σ̂(u0)
for p0(u0) = x. The condition of the normality prescribes σu uniquely on a normal
neighborhood of x ∈ M , see 1.2 for definition. But then, because ϕ(σu(u0)) =
σu(ϕ0(u0)) holds in the fiber over x, it has to hold over some normal neighborhood
of x and σu satisfies (c).

(c)⇒ (a) Consider an arbitrary Weyl structure σ satisfying (c). This can be equiva-
lently written as ϕ−1(σ(ϕ0(u0))) = σ(u0) which means that the corresponding Weyl
connection is invariant with respect to sx. Since the isomorphism TxM ' gr(TxM)
reflects the decomposition of TxM into ±1-eigenspaces, we can describe sx on a
neighborhood of x nicely via geodesics of the invariant connection. Indeed, each
vector (ξ−2(x), ξ−1(x)) ∈ TxM determines uniquely a geodesic at x, and the sym-
metry sx maps it on a geodesic at x, which is uniquely determined by a vector
(ξ−2(x),−ξ−1(x)). This describes sx on a neighborhood of x and one can see di-
rectly that it has to be involutive. �

Let us call each Weyl structure satisfying the condition (b) of the Proposition
sx-invariant Weyl structure at x and each Weyl structure satisfying the condition
(c) of the Proposition sx-invariant Weyl structure on a neighborhood of x.

3. Symmetries of homogeneous models

In this section, we focus on homogeneous models, which are the simplest exam-
ples of parabolic contact geometries. We describe explicitly their symmetries and
we give some concrete examples of homogeneous symmetric geometries.
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3.1. Description of symmetries. Let (G→ G/P, ωG) be a homogeneous model
of a parabolic contact geometry of type (G,P ). It is well known that all automor-
phisms of the homogeneous model are just left multiplications by elements of G
and an analog of the Liouville theorem states that any local automorphism can be
uniquely extended to a global one, see [10, 6]. Thus if the homogeneous model is
locally symmetric, then it is symmetric. Moreover, because G acts transitively on
G/P , it suffices to find a symmetry at the origin to decide whether the homogeneous
model is symmetric.

Proposition. All symmetries of the homogeneous model of a parabolic contact
geometry centered at the origin o = eP are given by left multiplications by elements
g0 expZ1 expZ2 ∈ P , where Z1 ∈ g1 and Z2 ∈ g2 are arbitrary and g0 ∈ G0 is such
that Adg0 = −id on g−1. In particular, if there is one symmetry at a point, then
there is an infinite amount of them.

Proof. For homogeneous models, T−1(G/P ) = G×P g−1/p. Then we can write each
tangent vector ξ(o) ∈ T−1

o (G/P ) as ξ(o) = [[e,X]] for suitable X ∈ g−1/p. Since
automorphisms of the homogeneous model are left multiplications λg by elements
g ∈ G, all symmetries at the origin are exactly left multiplications λg satisfying
λg(o) = o and Toλg.ξ(o) = −ξ(o) for all contact vectors ξ(o). The first condition is
equivalent to the fact that g ∈ P . Then g can be written as g = g0 expZ1 expZ2

and the second condition means that

Toλg0 expZ1 expZ2
.[[e,X]] = [[g0 expZ1 expZ2, X]] = [[e,Ad−1

g0 expZ1 expZ2
X]]

and −ξ(o) = [[e,−X]] coincide for each X ∈ g−1/p. Thus we look for elements
g ∈ P such that Adexp(−Z2)Adexp(−Z1)Adg−1

0
X = −X for all X ∈ g−1/p and the

rest follows immediately from observations in Section 2.2. �

Let us finally discuss involutivity of these symmetries. The symmetry g0 expZ1 expZ2

is involutive if and only if the element (g0 expZ1 expZ2)2 induces identity on G/P
and effectivity says that it has to be equal to e. We have

g0 expZ1 expZ2g0 expZ1 expZ2 = e exp 2Z2.

Thus involutive symmetries at the origin are left multiplications by elements g0 expZ1

where g0 and Z1 are as above and Z2 has to be equal to zero. If Z2 is non-zero, then
the symmetry is not involutive. In particular, there exist non-involutive symmetries
on homogeneous models.

Clearly, if g induces (involutive) symmetry at the origin o = eP , then hgh−1

induces (involutive) symmetry at the point hP .

3.2. Examples. Let us introduce here some examples of parabolic contact struc-
tures and discuss symmetries on their homogeneous models, see [6] for detailed
description.

Lagrangean contact structures. Let us start with g = sl(n + 2,R), the split real
form of sl(n+ 2,C), for n ≥ 1. This admits a contact grading which is given by the
following decomposition into blocks of sizes 1, n and 1:

(
g0 gL

1 g2

gL
−1 g0 gR

1

g−2 gR
−1 g0

)
.

The splittings g±1 = gL±1 ⊕ gR±1 are g0-invariant and gL−1 and gR−1 are isotropic for
[−,−] : g−1 × g−1 → g−2. Let us choose G = PGL(n + 2,R), the quotient of
GL(n + 2,R) by its center. Then P consists of classes of block upper triangular
matrices and G0 of block diagonal matrices. In particular, G0 coincides by means of
the Ad-action with the group of all automorphisms of graded Lie algebra g−2⊕g−1
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which in addition preserve the decomposition g−1 = gL−1⊕gR−1. Thus for a parabolic
contact geometry of type (G,P ), the underlying geometry consists of a contact
distribution together with a fixed decomposition of the form T−1M = L ⊕ R into
two subbundles (of rank n), each of which is isotropic with respect to L. These
geometries are known as Lagrangean contact structures. The homogeneous model
is the flag manifold of lines in hyperplanes in Rn+2.

Let us now discuss symmetries at the origin of the homogeneous model. We look
for an element g0 ∈ G0 such that Adg0X = −X for each X ∈ g−1. Elementary
matrix computation shows that there is a solution which is represented by the
matrix of the form

g0 =
(−1 0 0

0 E 0
0 0 −1

)
,

where E is the identity matrix, and thus the homogeneous model is symmetric. All
symmetries at the origin are represented by matrices of the form

(−1 −V γ
0 E W
0 0 −1

)
,

where V ∗,W ∈ Rn and γ ∈ R are arbitrary, and the involutive ones have to satisfy
γ = − 1

2VW .

Non-degenerate partially integrable almost CR-structures of hypersurface type. Con-
sider the real form g = su(p + 1, q + 1) of sl(n + 2,C) for p + q = n ≥ 1. For a
suitable choice of Hermitian product, this admits a contact grading of the same
block form as the Lagrangean case. Denoting I the diagonal n × n-matrix with
the first p entries equal to 1 and the remaining q entries equal to −1, we write the
elements explicitly as (

a Z iz
X A −IZ∗

ix −X∗I −ā

)
,

where x, z ∈ R, a ∈ C, X,ZT ∈ Cn, A ∈ u(n) and a+trA−ā = 0. The bracket g−1×
g−1 → g−2 is given by [X,Y ] = Y ∗IX−X∗IY , which is twice the imaginary part of
the standard Hermitian product of signature (p, q). Choose G = PSU(p+ 1, q+ 1),
the quotient of SU(p + 1, q + 1) by its center. Then P consists of classes of block
upper triangular matrices, and elements of G0 are represented by block diagonal
matrices. For parabolic contact geometries of type (G,P ), the underlying geometry
consists of a contact distribution T−1M together with a complex structure J such
that L(Jξ, Jη) = L(ξ, η) for all ξ, η ∈ Γ(T−1M). Such geometries are known as
partially integrable almost CR-structures of hypersurface type. The homogeneous
model is the projectivized null cone of a Hermitian form of signature (p+ 1, q+ 1),
which is a real hypersurface in CPn+1.

Let us now discuss briefly symmetries of the homogeneous model at the origin.
We look for an element g0 ∈ G0 such that Adg0X = −X for all X ∈ g−1. Elemen-
tary computation shows that the solution exists and is given by the same matrix
g0 as in the Lagrangean case. Then all symmetries at the origin are represented by
matrices of the form (

−1 −Z iz
0 E −IZ∗
0 0 −1

)

where Z ∈ Cn∗ and z ∈ R are arbitrary, and the involutive ones have to satisfy
iz = ZIZ∗.

4. Curvature restrictions

In this section, we discuss restrictions on the curvature of a parabolic contact
geometry, which are caused by the existence of a symmetry. We study the torsion of
symmetric parabolic contact geometries in detail. We show that there are relations
between the curvature of a symmetric geometry and involutivity of its symmetries.
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4.1. Torsion restrictions. Let us work with normal parabolic contact geometries
here. In fact, the normality assumption is only some technical restriction which
plays no role, if we understand symmetries as morphisms of the underlying geom-
etry, and this clearly is the most reasonable point of view. For such underlying
geometry, there are various non-isomorphic parabolic geometries inducing this un-
derlying structure and it can be proved that the normal one always exists, see [6].
Assuming normal geometry, we can discuss its components of harmonic curvature,
which are easily computable and provide information on the whole curvature of the
parabolic geometry, see Section 1.1 and Appendix. Let us start with the harmonic
torsion κ(1), which has its values in g∗−1 ∧ g∗−1 ⊗ g−1.

Lemma. If there is a symmetry sx at x on a normal parabolic contact geometry,
then κ(1) vanishes at x.

Proof. Let ϕ be as usual. For u ∈ p−1(x) we have ϕ(u) = ug0 expZ for suitable
g0 ∈ G0 and Z ∈ p+, see 2.2. Then for each X,Y ∈ g−1 we get

κ(1)(ϕ(u))(X,Y ) = κ(1)(ug0 expZ)(X,Y ) = exp(−Z)g−1
0 · κ(1)(X,Y )

where · denotes the induced Ad-action on g∗−1 ∧ g∗−1 ⊗ g−1. The action of g−1
0 is of

the form

g−1
0 · κ(1)(X,Y ) = Adg−1

0
(κ(1)(u)(Adg0X,Adg0Y )) =

−κ(1)(u)(−X,−Y ) = −κ(1)(u)(X,Y )

since the element g0 acts as −id on g−1, and the action of exp(−Z) is trivial.
Because automorphisms preserve curvature, −κ(1)(u)(X,Y ) has to be equal to
κ(1)(u)(X,Y ) in the fiber over x and then it has to vanish at x. �

Proposition. Each normal symmetric parabolic contact geometry is torsion-free.
Moreover, normal symmetric

• Lie contact structures,
• parabolic contact geometries corresponding to exceptional Lie algebras

have to be locally isomorphic to the homogeneous models of the same type.

Proof. Thanks to the regularity, the curvature satisfies κ(u)(gi, gj) ⊂ gi+j+` for all
u ∈ G and for some ` ≥ 1 in general. Moreover, it can be proved that the component
of degree ` mapping gi × gj to gi+j+` corresponds to the component of κH(u) of
degree `, see [6]. The above lemma shows that ` ≥ 2 for symmetric geometries.
Moreover, if the component of degree 2 is non-zero, then the only possibility is that
it maps g−1 × g−1 to g0. Thus it has its values in g∗− ∧ g∗− ⊗ p. It follows directly
from the homogeneity reasons that components of degree ≥ 3 have to have their
values in this subbundle, too, and the geometry is torsion-free.

Finally, let us recall that vanishing of the harmonic curvature implies vanishing
of the whole curvature, see Theorem 1.1. This applies if κH coincides with κ(1)

which has to vanish for symmetric geometries, and they are locally isomorphic to
homogeneous models. Now, it suffices to discuss components of harmonic curvature
for concrete geometries, see Appendix. �

4.2. Obstructions to flatness and involutive symmetries. One can see from
the discussion of the harmonic curvature that among all normal parabolic contact
geometries, only

• contact projective structures,
• Lagrangean contact structures,
• partially integrable almost CR-structures of hypersurface type
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can carry a symmetry at a point with non-zero harmonic curvature. For each
such symmetric geometry, there is exactly one obstruction to being locally isomor-
phic to the homogeneous model of the same type. For three-dimensional almost
CR-structures and three-dimensional Lagrangean contact structures, there is the
harmonic curvature κ(4) valued in g∗−1 ∧ g∗−2 ⊗ g1. For the other ones, we have the

harmonic curvature κ(2) valued in g∗−1 ∧ g∗−1 ⊗ g0.

Let us first focus on κ(2). Let sx be a symmetry at x on a normal symmetric
parabolic contact geometry and let ϕ be as usual. For u ∈ p−1(x) and X,Y ∈ g−1

we have

κ(2)(ϕ(u))(X,Y ) = κ(2)(ug0 expZ)(X,Y ) = exp(−Z)g−1
0 · κ(2)(u)(X,Y ),

where · is the induced Ad-action on g∗−1 ∧ g∗−1 ⊗ g0. For the action of g−1
0 we can

write

g−1
0 · κ(2)(u)(X,Y ) = Adg−1

0
(κ(2)(u)(Adg0X,Adg0Y )) =

Adg−1
0

(κ(2)(u)(−X,−Y )) = Adg−1
0

(κ(2)(u)(X,Y )).

Because g0 is a subspace of L(g−1, g−1) ' g∗−1 ⊗ g−1, the element g−1
0 has to act

trivially on g0 and thus on κ(2)(u)(X,Y ) for each X,Y . Because also exp(−Z) acts
trivially on κ(2)(u), we get no additional restriction. In fact, κ(2) is a tensor of type
∧2T−1∗M ⊗ T−1∗M ⊗ T−1M which is invariant with respect to the symmetry sx.
Let us denote this tensor by W .

We try to differentiate W with respect to various Weyl connections. We focus
on connections corresponding to almost sx-invariant Weyl structures, i.e. Weyl
structures σ satisfying ϕ(σ(u0)) = σ(ϕ0(u0)) exp Υ1(u0) exp Υ2(u0) for suitable Υ2

and Υ1 such that Υ1 = 0 at x, see Section 2.3 for details.

Lemma. On a symmetric normal parabolic contact geometry with a symmetry sx
at x, let σ be an arbitrary almost sx-invariant Weyl structure and ∇σ the corre-
sponding Weyl connection. Then

(a) ∇σξW = 0 holds at x for each ξ from the contact distribution,

(b) {Υ2, ξ} •W = 0 holds at x for each ξ such that Txsx.ξ(x) = ξ(x) and Υ2

is determined by sx at x.

Proof. In general, ϕ(σ(u0)) = σ(ϕ0(u0)) exp Υ1(u0) exp Υ2(u0) holds for each Weyl
structure σ and suitable Υ1 and Υ2, and this can be rewritten as

ϕ−1(σ(ϕ0(u0))) = σ(u0) exp(−Υ1(u0)) exp(−Υ2(u0))

or simply ϕ∗σ = σ exp(−Υ1) exp(−Υ2). For corresponding Weyl connections we
then have ∇ϕ∗σ = ∇σ exp(−Υ1) exp(−Υ2) and if we apply this on W , we get

∇ϕ
∗σ
ξ W = ∇σ exp(−Υ1) exp(−Υ2)

ξ W(6)

for each vector field ξ. Because we suppose that σ is almost sx-invariant Weyl
structure, then moreover Υ1 is equal to zero in the fiber over x.

Let us discuss both sides of Eq. (6) at x in detail. We start with the left hand
side. At the point x we have

∇ϕ
∗σ
ξ W (η, µ)(ν) = (s∗x∇σ)ξW (η, µ)(ν) =

Txs
−1
x .∇σTxsx.ξW (Txsx.η, Txsx.µ)(Txsx.ν) =

(−1)4∇σTxsx.ξW (η, µ)(ν) = ∇σTxsx.ξW (η, µ)(ν)

for each ξ ∈ X(M) and η, µ, ν ∈ Γ(T−1M) since Txsx gives −id on T−1
x M .
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Now we focus on the right hand side of (6). We use the general formula for
the change of Weyl connections, see formula (1) in Section 1.2. Because our Weyl
structure σ satisfies Υ1 = 0 over x, the right hand side of (6) simplifies to

∇σ exp(−Υ1) exp(−Υ2)
ξ W = ∇σξW + {Υ2, ξ−2} •W

in the fiber over x. If we put the above observations together, we see that Eq. (6)
can be rewritten as

∇σTxsx.ξW = ∇σξW + {Υ2, ξ−2} •W(7)

in the fiber over x. Let us discuss some concrete choices of the vector ξ(x):

(a) Suppose ξ is contained in the contact distribution T−1M . In particular, ξ(x) =
ξ−1(x). Then Txsx.ξ(x) = −ξ(x) and Eq. (7) simplifies to

∇σ−ξW = ∇σξW
at x. The algebraic bracket simply vanishes because ξ−2(x) = 0 in this case. This
implies ∇σξW = 0 at x for each ξ from the contact distribution.

(b) Let us now suppose that Txsx.ξ(x) = ξ(x). Such vectors exist and for an almost
sx-invariant Weyl structure σ, these are exactly the vectors satisfying ξ = ξ−2 at
x, see Section 2.3. Then the Eq. (7) simplifies to

∇σξW = ∇σξW + {Υ2, ξ} •W
and we get the restriction {Υ2, ξ} •W = 0 in the fiber over x. �

Part (a) is not surprising. Actually, ∇σW defines a tensor of type T−1∗M ⊗
∧2T−1∗M ⊗T−1∗M ⊗T−1M , i.e. of odd degree, which is invariant with respect to
sx. The consequences of the part (b) we formulate in the following statement.

Proposition. On a symmetric normal parabolic contact geometry with a symmetry
sx at x, suppose that W is non-zero at x. Then each almost sx-invariant Weyl
structure has to be sx-invariant.

Proof. With the above notation, we will discuss the formula (b) from the lemma
for an almost sx-invariant Weyl structure σ and for some vector field ξ such that
ξ(x) is non-zero and satisfies Txsx.ξ(x) = ξ(x). Let us point out that such vectors
exist and satisfy ξ(x) = ξ−2(x) in the isomorphism TM ' gr(TM) given by σ,
see 2.3. In some concrete frame u = σ(u0) from the fiber over x, we can write
ξ(x) = [[u,X]] for suitable non-zero X ∈ g−2. Similarly, Υ2(x) = [[u, Z]] for suitable
Z ∈ g2 and the algebraic bracket {Υ2, ξ} corresponds to [[u, [Z,X]]] at x. Moreover,
if Z 6= 0, we can choose X such that [Z,X] is exactly the grading element E, see
Section 1.1. Then {Υ2, ξ} corresponds to the grading section E(x), see Section 1.2.
In particular, it acts by the algebraic action • on W by its homogeneity. Because
W has homogeneity two, we get

{Υ2, ξ} •W = 2W

in the fiber over x and we have a restriction of the form 2W = 0 at x. This
is a contradiction with the assumption that W is non-zero at x. Thus the only
possibility is that Z = 0 and thus Υ2 has to vanish at x. But this means that the
almost sx-invariant Weyl structure is sx-invariant, see Section 2.3. �

Before we proceed further, let us return to κ(4) valued in g∗−1 ∧ g∗−2 ⊗ g1. The

discussion of κ(4) is parallel to the discussion of κ(2) and we summarize it very
briefly. If κ(4) is non-zero, then it defines a tensor of even degree which has to be
invariant with respect to the symmetry sx. Really, for each X ∈ g−1 and V ∈ g−2

we have

κ(4)(ϕ(u))(X,V ) = κ(4)(ug0 expZ)(X,V ) = exp(−Z)g−1
0 · κ(4)(u)(X,V ) =
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Adg−1
0

(κ(4)(u)(Adg0X,Adg0V )) = −κ(4)(u)(−X,V ) = κ(4)(u)(X,V ).

Let us denote this tensor by C. Again, we can differentiate C with respect to a
Weyl connections corresponding to almost invariant Weyl structures. For an almost
sx-invariant Weyl structure σ we have the equation

∇ϕ
∗σ
ξ C = ∇σ exp(−Υ1) exp(−Υ2)

ξ C

for each vector field ξ and suitable Υ1 and Υ2 corresponding to σ, where Υ1 vanishes
at x. The left hand side can be rewritten as

∇ϕ
∗σ
ξ C(η, µ) = (s∗x∇σ)ξC(η, µ) = Txs

−1
x .∇σTxsx.ξC(Txsx.η, Txsx.µ)

= (−1)2∇σTxsx.ξC(η, µ) = ∇σTxsx.ξC(η, µ)

for each ξ ∈ X(M), η ∈ Γ(T−1M) and µ ∈ X(M) such that µ = µ−2 via the
isomorphism given by σ at x. Really, Txsx gives −id on T−1

x M and Txsx.µ(x) =
µ(x). Thus we get the restriction of the form

∇σTxsx.ξC = ∇σξC + {Υ2, ξ−2} • C
and we have ∇σξ−1

C = 0 and {Υ2, ξ−2} • C = 0 in the fiber over x. Because C is

of homogeneity four, the same arguments as in the proof of the above proposition
shows that Υ2 vanishes at x and then each sx-invariant Weyl structure has to be
sx-invariant. All these observations together with the last proposition give us the
following statement.

Theorem. On a symmetric normal parabolic contact geometry with a symmetry sx
at x, suppose that its harmonic curvature is non-zero at x. Then sx is involutive.

Proof. In such case, almost sx-invariant Weyl structures have to be sx-invariant
and the rest follows from Section 2.3. �

Corollary. On a symmetric normal parabolic contact geometry with a symmetry
sx at x, suppose that its harmonic curvature is non-zero at x. Then there are
admissible affine connections which are invariant with respect to the symmetry sx:
We take Weyl connections corresponding to sx-invariant Weyl structures.

5. Uniqueness of symmetries

We discuss here the question how many different symmetries can exist at a
point with non-zero curvature. We first give one general restriction and then some
consequences for concrete geometries.

5.1. Algebraic restriction. Let sx and s̄x be two different symmetries at x on a
symmetric normal parabolic contact geometry with non-zero harmonic curvature at
x and denote by ϕ and ϕ̄ corresponding automorphisms of the parabolic geometry.
Clearly, sx 6= s̄x if and only if ϕ 6= ϕ̄. Symmetries sx and s̄x are involutive and
there exist sx-invariant and s̄x-invariant Weyl structures, see Sections 4.2 and 2.3.

Lemma. For each two different involutive symmetries sx and s̄x at x on a sym-
metric parabolic contact geometry, sx-invariant and s̄x-invariant Weyl structures
form two disjoint families of Weyl structures.

Proof. Suppose there is a Weyl structure σ which is sx-invariant and s̄x-invariant
at x, i.e. ϕ(σ(u0)) = σ(ϕ0(u0)) and simultaneously ϕ̄(σ(u0)) = σ(ϕ̄0(u0)) in the
fiber over x. Then, the corresponding Weyl connection ∇σ is invariant with respect
to both symmetries sx and s̄x. But similarly as in the last part of the proof of
Proposition 2.3, the connection ∇σ determines uniquely the symmetry via behavior
of its geodesics at x. Consequently, sx = s̄x on a neighborhood of x. �



14 LENKA ZALABOVÁ

Let σ be an sx-invariant Weyl structure and let σ̄ be s̄x-invariant Weyl structure.
Then σ̄ = σ exp Υ1 exp Υ2 holds for suitable Υ1 : G0 → g1 and Υ2 : G0 → g2. The
last lemma says that Υ1 has to be non-zero at x.

Proposition. Suppose there are two different involutive symmetries at x on a sym-
metric normal parabolic contact geometry and let σ and σ̄ are corresponding invari-
ant Weyl structures. For all ξ from the contact distribution, the bracket {Υ1, ξ} acts
trivially by the algebraic action on W or Y , respectively, at x.

Proof. Let us start with W . Let ξ be an arbitrary vector field from the contact
distribution, thus ξ = ξ−1 for each Weyl structure. The Lemma 4.2 gives ∇σξ−1

W =

0 and ∇σ̄ξ−1
W = 0 at x. Simultaneously, we have σ̄ = σ exp Υ1 exp Υ2 and the

formula (1) from Section 1.2 gives

∇σ̄ξ−1
W = ∇σξ−1

W + {ξ−1,Υ1} •W
at x, since ξ−2(x) = 0. Because both covariant derivatives vanish at x, we get
the restriction of the form {ξ−1,Υ1} • W = 0 at x for each ξ from the contact
distribution. One can see from Section 4.2 that the same line of arguments works
for C and we get the restriction of the form {ξ−1,Υ1} •C = 0 at x for each ξ from
the contact distribution. �

Remark. Let us again point out that the existence of a non-involutive symmetry
at x causes vanishing of the harmonic curvature at x, see Section 4.2.

5.2. Examples. Let us now discuss the above restrictions for concrete types of
geometries. The key point is to find sufficiently nice ξ such that the action of the
above algebraic bracket is easily understandable.

Lagrangean contact structures. Let us first point out that we use here the notation
from Section 3.2. The decomposition of the contact distribution into two isotropic
subbundles T−1M = L ⊕ R can be interpreted as a product structure on T−1M ,
which an operator J : T−1M → T−1M satisfying J2 = id. The subbundles L
and R are simply eigenspaces of J . The Levi bracket L : T−1M × T−1M →
TM/T−1M is non-degenerate antisymmetric bilinear map, and then, L(−, J−) is
a non-degenerate symmetric map which defines a conformal class of pseudometrics
on T−1M of signature (n, n). We denote the class by g. Each pseudometric is then
given by the choice the identification TM/T−1M ' R. In particular, the question
whether g(ξ, η) equals to zero for some ξ, η ∈ T−1M makes sense, because the
answer does not depend on the choice of the metric from the class.

Proposition. Suppose there are two different involutive symmetries at x on a sym-
metric normal Lagrangean contact structure, and denote by σ and σ exp Υ1 exp Υ2

corresponding invariant Weyl structures. Identify Υ1 with its image in T−1M =
L ⊕ R via an isomorphism given by a metric from g and denote by ΥL

1 and ΥR
1

corresponding components in L and R. If g(ΥR
1 ,Υ

L
1 ) 6= 0 at x, then the harmonic

curvature vanishes at x.

Proof. We discuss the restriction from the Proposition 5.1 for Lagrangean contact
structures in detail. Let us write Υ1(x) = [[u, Z]] for suitable

Z =
(

0 S 0
0 0 T
0 0 0

)
∈ g1,

which has to be non-zero, see Lemma 5.1. Choose ξ−1 ∈ Γ(T−1M) such that
ξ−1(x) = [[u,X]] for X of the form

X =
(

0 0 0
T 0 0
0 S 0

)
∈ g−1.



SYMMETRIES OF PARABOLIC CONTACT STRUCTURES 15

The bracket {ξ−1,Υ1} then corresponds to [[u, [X,Z]]] at x, where

[X,Z] =
(−ST 0 0

0 0 0
0 0 ST

)
∈ g0.

It is easy to verify that with this choice, [X,Z] is simply a grading element multiplied
by a non-zero number −ST . Then the bracket {ξ−1,Υ1} is a non-zero multiple of
the grading section E(x). Via the identification given by the metric from g, the
components S and T correspond to components ΥR

1 and ΥL
1 of Υ1 in subbundles

R and L at x and the fact that ST 6= 0 means that g(ΥR
1 ,Υ

L
1 ) 6= 0 at x. Because

the grading section acts on W by its homogeneity, {ξ−1,Υ1} acts trivially on W if
and only W vanishes at x. Clearly, the same arguments work for C. �

Partially integrable almost CR-structures. Let us first point out that we use here
the notation from Section 3.2. Moreover, suppose that the geometry is oriented
and then, we can speak about the signature of the structure. Using the com-
plex structure J given on T−1M , we can define a non-degenerate symmetric map-
ping L(−, J−), which defines a conformal class of pseudometrics on T−1M . The
signature is given by the signature of the structure. Let us denote the class by
g. Each pseudometric from the class is given by the choice of the identification
TM/T−1M ' R. In particular, the question whether g(ξ, ξ) 6= 0 for ξ ∈ T−1M
makes sense, because the answer does not depend on the choice of the pseudometric
from the class.

Proposition. Suppose there are two different involutive symmetries at x on a
symmetric normal partially integrable almost CR-structure and denote by σ and
σ exp Υ1 exp Υ2 corresponding invariant Weyl structures. Identify Υ1 with its image
in T−1M via an isomorphism given by a metric from g. If g(Υ1,Υ1) 6= 0 at x, i.e.
if the length of Υ1 is non-zero at x, then the harmonic curvature vanishes at x.

Proof. We discuss the restriction from the Proposition 5.1 for CR-structures in
detail. Let us write Υ1(x) = [[u, Z]] for suitable

Z =
(

0 0 0
IS∗ 0 0

0 −S 0

)
,

which has to be non-zero, see Lemma 5.1. Choose ξ−1 ∈ T−1M such that ξ−1(x) =
[[u,X]] for X of the form

X =
(

0 0 0
S 0 0
0 −S∗I 0

)
∈ g1.

The bracket {ξ−1,Υ1} then corresponds to [[u, [X,Z]]] at x, where

(−SIS∗ 0 0
0 0 0
0 0 SIS∗

)
∈ g0.

It is easy to verify that with this choice, [X,Z] is simply a grading element multiplied
by a number −SIS∗. Then the bracket {ξ−1,Υ1} is a multiple of the grading section
E(x). Using the identification T−1M ' T−1∗M given by a metric from g, −SIS∗
corresponds to g(Υ1,Υ1) and SIS∗ 6= 0 means that g(Υ1,Υ1) 6= 0. Because the
grading section acts on W by its homogeneity, {ξ−1,Υ1} acts trivially on W if and
only W vanishes at x. Clearly, the same arguments work for Y . �

Corollary. Suppose there are two different involutive symmetries at x on a symmet-
ric normal strictly pseudoconvex partially integrable almost CR-structure. Then
the harmonic curvature vanishes at x.
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Appendix: Contact gradings and corresponding geometries

Let us sketch here briefly a classification of contact gradings of real semisimple
Lie algebras. There is the well know classification of all (complex) semisimple Lie
algebras in the language Dynkin diagrams and description of all their real forms in
the language of Satake diagrams, see [6, 11]. It can be proved that if a Lie algebra
admits a contact grading, then it has to be simple. It turns out that except sl(2,R),
sl(n,H), so(n− 1, 1), sp(p, q) and some real forms of E6 and F4, any non-compact
non-complex real simple Lie algebra admits a unique real contact grading, see [6].

Let us start with real classical Lie algebras, i.e. real forms of Lie algebras of
type A`, B`, C` and D`. In the first column of the following table, we indicate a
real simple Lie algebra which admits a contact grading. In the second column we
specify the geometry, which corresponds to the unique contact grading and in the
last column we write its components of harmonic curvature.

real simple g contact geometry components of κH

sl(3,R) Lagrangean contact structures of
dimension 3

g−2 × g−1 → g1

g−2 × g−1 → g1

sl(n + 2,R) for
n ≥ 2

Lagrangean contact structures of
dimension 2n+ 1

g−1 × g−1 → g−1

g−1 × g−1 → g−1

g−1 × g−1 → g0

su(2, 1) and
su(1, 2)

partially integrable almost CR
structures of dimension 3

g−2 × g−1 → g1

su(p + 1, q + 1)
for p+ q ≥ 2

partially integrable almost CR
structures of dimension 2p+2q+
1

g−1 × g−1 → g−1

g−1 × g−1 → g0

so(p + 2, q + 2)
p+ q 6= 4

Lie contact structures of dimen-
sion 2p+ 2q + 1

g−1 × g−1 → g−1

g−1 × g−1 → g−1

so(p + 2, q + 2)
for p+ q = 4

Lie contact structures of dimen-
sion 9

g−1 × g−1 → g−1

g−1 × g−1 → g−1

g−1 × g−1 → g−1

sp(n+2) for n ≥
1

contact projective structures g−1 × g−1 → g0

Let us also give a brief overview of contact gradings corresponding to exceptional
Lie algebras. For types G2 and F4, there is exactly one real algebra admitting
contact grading, the split real form. For E6, there are three real forms which
admit a contact grading, the split form and two su-algebras. For E7, there are
three different real forms and for E8, there are two different real forms admitting
a contact grading. The description of corresponding geometries can be found in
[6]. All these geometries have harmonic curvatures only of type κ(1) valued in
g∗−1 ∧ g∗−1 ⊗ g−1.
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LOCAL GENERALIZED SYMMETRIES AND LOCALLY

SYMMETRIC PARABOLIC GEOMETRIES

JAN GREGOROVIČ AND LENKA ZALABOVÁ

Abstract. We investigate (local) automorphisms of parabolic geometries that
generalize geodesic symmetries. We show that many types of parabolic ge-

ometries admit at most one generalized geodesic symmetry at a point with
non–zero harmonic curvature. Moreover, we show that if there is exactly one

symmetry at each point, then the parabolic geometry is a generalization of an

affine (locally) symmetric space.

1. Introduction

Symmetric spaces are extremely useful geometric objects on smooth manifolds.
There are also many generalizations of symmetric spaces appearing in several areas
of differential geometry and the theory of Lie groups and algebras. We are interested
in generalizations of symmetric spaces in the setting of parabolic geometries, see [3,
Section 3.1]. We consider regular normal parabolic geometries (G →M,ω) of type
(G,P ) on smooth connected manifolds M . We assume that G is a Lie group with
a |k|–graded simple Lie algebra g = ⊕ki=−kgi and P is the parabolic subgroup of G

with the Lie algebra p = ⊕ki=0gi such that the Klein geometry (G,P ) is effective.
We fix the reductive Levi decomposition P = G0oexp(p+), where p+ := ⊕ki=1gi and
G0 is the Lie group of grading preserving elements of P . We write g− := ⊕−1

i=−kgi.
Regular normal parabolic geometries provide a solution to the equivalence prob-

lem for a wide class of geometric structures. In the first step, so called prolongation,
one constructs the P–bundle G over M and the Cartan connection ω, which is a
P–equivariant g–valued absolute parallelism on G that reproduces the generators
of fundamental vector fields of the P–action. The precise process of the prolon-
gation is not directly related to the results presented in this article and will not
be reviewed. In the second step, one computes the harmonic curvature κH which
is the basic invariant of all normal parabolic geometries that (in principle) solves
the equivalence problem for normal parabolic geometries. We recall that κH is the
projection of the curvature [ω, ω] + dω of the Cartan connection ω viewed as a
function κ : G → ∧2(g/p)∗ ⊗ g into the cohomology space H2(g−, g) of cochains on
g− with values in g.

A (local) automorphism of (G → M,ω) is a (local) P–bundle morphism ϕ on G
such that ϕ∗ω = ω holds. We denote by ϕ the underlying (local) diffeomorphism of
ϕ on M . We say that a (local) diffeomorphism f on M preserves the parabolic ge-
ometry (G →M,ω) if f = ϕ for some (local) automorphism ϕ of (G →M,ω). Local
automorphisms of parabolic geometries are uniquely determined by the underlying
diffeomorphisms under our assumption of effectivity of the Klein geometry (G,P ).
We are interested in a class of (local) diffeomorphisms f on M for which we know
a priori the (local) P–bundle morphisms ϕ on G covering (local) diffeomorphisms f

2010 Mathematics Subject Classification. 53C10; 53C22; 53C15; 53C05; 53B15; 53A55.
Key words and phrases. parabolic geometries; generalized symmetries; generalizations of sym-

metric spaces; automorphisms with fixed points; prolongation rigidity; geometric properties of
symmetric parabolic geometries.
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and we ask when they preserve the parabolic geometry, see the Definition 1.1. Let
us explain that these diffeomorphisms are closely related to geodesic symmetries.

We recall that a normal coordinate system of a linear connection ∇ on M given

by the frame u of TxM is given by projections of flows Fl
B(X)
t of the standard

horizontal vector fields B(X) for X ∈ Rn on the first order frame bundle starting

at u, see [16, Section III.8.]. Indeed, the projection of Fl
B(X)
t (u) onto M is the

geodesic of ∇ going through x in the direction with coordinates X in the frame
u. A geodesic symmetry of ∇ at the point x is the unique diffeomorphism with
coordinates −idRn in all normal coordinate system given by any frame u of TxM .

The pair (M,∇) is an affine locally symmetric space if each geodesic symmetry
of ∇ is an affine transformation. In [14] or [1] the authors studied the theory of
symmetric spaces, where the geodesic symmetries preserve a geometric structure
such as Riemannian metric or quaternionic Kähler structure. The first author
classified in [8] all parabolic geometries preserved by all geodesic symmetries on
semisimple symmetric spaces. Typical examples of such parabolic geometries are
provided by the projective class of ∇ of the affine (locally) symmetric space (M,∇)
or the conformal class of the metric on the Riemannian symmetric space or the
(para)–quaternionic geometry given by the (para)–quaternionic Kähler symmetric
space.

A normal coordinate system on the parabolic geometry (p : G →M,ω) given by

u ∈ G is given by projections p ◦ Fl
ω−1(X)
t (u) of flows of the constant vector fields

ω−1(X) for coordinates X ∈ g−. If we consider (local) diffeomorphisms f on M that
are linear in some normal coordinate system of (G →M,ω), then we know a priori
the (local) P–bundle morphisms ϕ on G covering (local) diffeomorphisms f and we
ask when they preserve the parabolic geometry. The action of G0 on G induces
a linear change of the normal coordinates, but the change of coordinates induced
by the action of exp(p+) is highly non–linear. Nevertheless, we can consider the
class of (local) automorphisms of parabolic geometries with the property that their
underlying (local) diffeomorphisms on M , analogously to geodesic symmetries, have
the same coordinates in all normal coordinate systems in which the coordinates are
linear.

Definition 1.1. For s in the center Z(G0) of G0 and u ∈ G, let su be the (local)
P–bundle morphism of G induced by the formula

su(Fl
ω−1(X)
1 (u)) := Fl

ω−1(X)
1 (us) = Fl

ω−1(Ad(s)(X))
1 (u)s

for all X in a maximal possible neighbourhood of 0 in g− preserved by Ad(s).

(1) The (local) P–bundle morphism su is a (local) s–symmetry of the parabolic
geometry (G →M,ω) at x = p(u) if s∗uω = ω.

(2) We write su for the underlying (local) diffeomorphism on M of the P–
bundle morphism su which has coordinates Ad(s) ∈ Gl(g−) in the normal
coordinate system given by u.

(3) All (local) s–symmetries at all x ∈M for all s ∈ Z(G0) together are called
(local) generalized symmetries of parabolic geometries.

(4) The parabolic geometry is (locally) s–symmetric if there is a (local) s–
symmetry at each point of M .

Remark 1.2. We always assume that s is not the identity element e in Z(G0),
because idG is the unique e–symmetry of each parabolic geometry, and therefore,
the results presented in this article are trivial for e–symmetries.

Firstly, let us focus on the automorphisms ϕ of parabolic geometries such that
ϕ has coordinates −idg− in the normal coordinate system given by u ∈ G. If such
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an automorphism exists, then there is m ∈ Z(G0) such that Ad(m) = −idg− .
Therefore we will always speak about (local) m–symmetries in this case.

The bundle morphisms mu (and thus diffeomorphisms mu) are generally different
for different u from the fiber Gx over x and each of them can be a (local) m–
symmetry. In particular, there can be infinitely many (local) m–symmetries at x.
In fact, this is the case of all models G/P of AHS–structures, where the bundle
maps mu are m–symmetries for all u ∈ G. On the other hand, the second author
proved in [23, Theorem 2.5] that projective, conformal and (para)–quaternionic
geometries are the only types of parabolic geometries allowing m–symmetries at a
point x with a non–zero Weyl (harmonic) curvature. Moreover, there is at most
one m–symmetry at the point x with a non–zero Weyl curvature.

The second author showed in [23, Theorem 3.2] that if a geodesic symmetry at
x for some linear connection on M is an automorphism of (G → M,ω), then the
geodesic symmetry has coordinates −idg− in the normal coordinate system given
by some u ∈ Gx. We prove in this article that there is the following characterization
of non–flat parabolic geometries which are preserved by all geodesic symmetries on
affine (locally) symmetric spaces.

Theorem 1.3. Suppose there is a parabolic geometry on a smooth connected mani-
fold M with a non–zero harmonic curvature at one point. Then the following claims
are equivalent:

(1) The parabolic geometry is (locally) m–symmetric, i.e., at each point x of
M , there is a (local) automorphism of the parabolic geometry such that
the underlying (local) diffeomorphism on M has coordinates −idg− in the
normal coordinate system for some u ∈ Gx.

(2) The parabolic geometry is preserved by each geodesic symmetry on an affine
(locally) symmetric space (M,∇).

In particular, if one of the above claims is satisfied, then the parabolic geometry
is (locally) homogeneous, the affine (locally) symmetric space (M,∇) from Claim
(2) is unique and ∇ is a distinguished (Weyl) connection of the parabolic geometry.

Remark 1.4. Let us emphasize that (local) m–symmetries can appear only on
|1|–graded parabolic geometries and only the projective, conformal and (para)–
quaternionic geometries (and their complexifications) can satisfy the assumptions
and conditions of Theorem 1.3.

The global version of this statement was proved in [21] for projective geome-
tries and in [24, Corollary 4.5] for conformal and (para)–quaternionic geometries
under the additional assumption of homogeneity or under the assumption that m–
symmetries depend smoothly on the point x. In [13, Theorem 1], we proved the
global version of Theorem 1.3 for conformal geometries. In this article, we obtain
Theorem 1.3 as a special case of Theorem 1.8.

There are many other interesting types of parabolic geometries, e.g., parabolic
contact geometries, where there is no element m ∈ P such that Ad(m) = −idg− .
Thus they cannot be preserved by geodesic symmetries of any affine (locally) sym-
metric space. On the other hand, there are generalizations of symmetric spaces
appearing in the literature that are nearly related to contact geometries. In [2] and
[15] the authors study sub–Riemannian and CR geometries preserved by so–called
geodesic reflexions on reflexion spaces, see [19]. A geodesic reflexion on a reflexion
space is given by an endomorphism s ∈ Gl(Rn) such that s2 = idRn in a normal
coordinate system of an admissible linear connection on the reflexion space, see
[19].

We studied in [9, 10] parabolic geometries on reflexion spaces preserved by ge-
odesic reflexions. We proved that a geodesic reflexion at x preserving a parabolic
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geometry (G → M,ω) is given by an endomorphism Ad(s) ∈ Gl(g−) for some
s ∈ G0 such that s2 = id in a normal coordinate system of the parabolic geometry
given by some u ∈ Gx. However, if s ∈ G0 is not contained in Z(G0), then we
cannot expect the uniqueness of the automorphisms ϕ such that ϕ has coordinates
Ad(s) ∈ Gl(g−) in the normal coordinate system given by some u ∈ Gx. Indeed, if
there is an other automorphism ψ such that ψ has coordinates Ad(g0) ∈ Gl(g−) for

some g0 ∈ G0 in the normal coordinate system given by u ∈ Gx, then ψϕψ−1 is in
general a different automorphism such that ψϕψ−1 has coordinates Ad(s) ∈ Gl(g−)
in the normal coordinate system given by ug0 ∈ Gx. On the other hand, the second
author proved in [25, Section 5] that on some parabolic contact geometries, there
is at most one s–symmetry at a point x with a non–zero harmonic curvature for
s ∈ Z(G0) such that Ad(s)|g−1

= −id. We prove in this article that this holds for
all parabolic contact geometries.

We classified in [12] all elements s ∈ Z(G0) that can appear as coordinates of
underlying diffeomorphisms of automorphisms of parabolic geometries in a normal
coordinate system at a point with a non–zero harmonic curvature. For example, we
have found out that for complex |1|–graded parabolic geometries with a harmonic
curvature of homogeneity 3, we have to consider elements s ∈ Z(G0) such that
s3 = id. Moreover, we constructed in [11, Proposition 6.1] and [12, Proposition
7.2] examples of such parabolic geometries on Z3–symmetric spaces, which are
generalizations of symmetric spaces that are studied in [18].

In fact, there are many known examples of (locally) s–symmetric parabolic ge-
ometries. Each locally flat parabolic geometry is locally s–symmetric for each
s ∈ Z(G0). We classified in [12] the elements s ∈ Z(G0) for which all locally s–
symmetric parabolic geometries are flat. Further, we showed in [11, Proposition 6.1]
that all submaximally symmetric parabolic geometries constructed in [17, Section
4.1] are locally s–symmetric parabolic geometries for elements s ∈ Z(G0) that do
not impose flatness. Let us emphasize that some of these examples carry more than
one s–symmetry at each point and explicit examples can be found in [11, Section
6]. This shows that the results we obtain in this article do not hold for all types
of parabolic geometries. There are also further examples of (locally) s–symmetric
parabolic geometries in [2, 7, 8, 13, 21].

Let us now summarize our main results for (local) s–symmetries and (locally) s–
symmetric parabolic geometries we obtain in this article. The first main result states
that there is a large class of types of parabolic geometries whose algebraic structure
enforces uniqueness of (local) s–symmetries at points with a non–zero harmonic
curvature. We characterize these types in a way that is related to the theory
of prolongations of annihilators of the harmonic curvature and the prolongation
rigidity from [17, Section 3.4] as follows.

Definition 1.5. Let µ be a component of the harmonic curvature (irreducible as a
G0–submodule of H2(g−, g)) of regular normal parabolic geometries of type (G,P ).

(1) For φ ∈ µ, let us denote by

ann(φ) := {A ∈ g0 : A.φ = 0}

the annihilator of φ in g0. We define the ith prolongation of the annihilator
of φ as

pr(φ)i = {Z ∈ gi : ad(X1) . . . ad(Xi)(Z) ∈ ann(φ) for all X1, . . .Xi ∈ g−1}.

(2) For s ∈ Z(G0), we say that the triple (g, p, µ) is prolongation rigid outside
of the 1–eigenspace of s if for all weights φ ∈ µ, all prolongations of the
annihilator of φ in g0 are contained in the 1–eigenspace of s.
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We will see that there are triples (g, p, µ) that are prolongation rigid outside of
the 1–eigenspace of s only for some s ∈ Z(G0). In particular, such triples (g, p, µ)
are not prolongation rigid. Indeed, a triple (g, p, µ) is prolongation rigid if and only
if it is prolongation rigid outside of the 1–eigenspace of s for all s ∈ Z(G0).

In Section 3.2, we show how to classify all triples (g, p, µ) that are prolongation
rigid outside of the 1–eigenspace of s for some s ∈ Z(G0) using the results in [17].
The following Theorem shows that for our purposes, it is enough to carry out the
classification only for the components µ that are contained in the 1–eigenspace of
s.

Theorem 1.6. Consider a triple (g, p, µ).
If s ∈ Z(G0) is such that µ is not contained in the 1–eigenspace of s, then there

is no (local) s–symmetry of a parabolic geometry of type (G,P ) at each point x with
a non–zero component of the harmonic curvature in µ.

If s ∈ Z(G0) is such that (g, p, µ) is prolongation rigid outside of the 1–eigenspace
of s, then there is at most one (local) s–symmetry of a parabolic geometry of type
(G,P ) at the point x with a non–zero component of the harmonic curvature in µ.

We proved Theorem 1.6 in [12, Theorem 1.3] under the assumption that the par-
abolic geometry is homogeneous, but we can also easily construct non–homogeneous
(locally) s–symmetric parabolic geometries of type (G,Q) for certain triples (g, q, µ)
that are prolongation rigid outside of the 1–eigenspace of s. It suffices to con-
sider correspondence spaces for parabolic subgroups Q ⊂ P ⊂ G over (locally)
s–symmetric parabolic geometries of type (G,P ) for (g, p, µ) that is prolongation
rigid outside of the 1–eigenspace of s, see [12, Proposition 6.1]. We prove Theorem
1.6 in Section 3.1.

Let us now focus on (locally) s–symmetric parabolic geometries. We say that a
map S that picks a (local) s–symmetry at each point of M is a system of (local)
s–symmetries. In general, systems of (local) s–symmetries are neither smooth nor
unique. The conditions in Theorem 1.6 can be used to prove the uniqueness of a
system of (local) s–symmetries.

Our second main result concerns the conditions for the smoothness of a system
of (local) s–symmetries. We consider the following generalization of affine locally
symmetric spaces. There is a class of Weyl connections on each parabolic geometry
playing a significant role in the theory of parabolic geometries, see [3, Chapter 5]
and Section 2.1. Each Weyl connection is given by a reduction of G to G0, i.e., by
a smooth G0–equivariant section σ of the projection from G to G0 := G/ exp(p+).
The sections σ are called Weyl structures and we denote by ∇σ the Weyl connection
given by the Weyl structure σ. Each point of σ(G0)x defines a different frame of
TxM . However, the (local) diffeomorphism with coordinates Ad(s) ∈ Gl(g−) in a
normal coordinate system of a Weyl connection∇σ given by a frame σ(u0) ∈ σ(G0)x
is independent of the actual choice of u0 ∈ (G0)x, see Section 3.2. We denote such
a (local) diffeomorphism by sσx .

If we choose a class of Weyl connections satisfying Txs
σ
x = Txs

σ′
x for all Weyl

connections ∇σ,∇σ′ in the class and all x ∈ M , then the tangent bundle TM has
a common decomposition into smooth subbundles according to the eigenvalues of
Txs

σ
x for all ∇σ in the class. We can further consider a subclass [∇] of such a

class of Weyl connections that restrict to the same partial connection on all smooth
subbundles of TM for all eigenvalues of Txs

σ
x different from 1. Such a subclass

[∇] is equivalently characterized by the condition that the 1–forms Υ measuring
the ‘differences’ (see the formula (2)) between arbitrary two connections in [∇]
satisfy (sσx)∗Υ(x) = Υ(x) for all x ∈ M and some (and thus all) Weyl connections
∇σ ∈ [∇]. In general, (local) diffeomorphisms sσx are different for different Weyl
connections ∇σ ∈ [∇]. Therefore we can consider smooth maps S assigning some
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of these diffeomorphisms to each x ∈ M . Equivalently we can directly assign to
each x ∈M the Weyl structure σ defining sσx .

Definition 1.7. Let [∇] be a maximal subclass of the class of Weyl connections
satisfying that

• Txsσx = Txs
σ′
x holds for all Weyl connections ∇σ,∇σ′ ∈ [∇] and all x ∈M ,

• all connections in [∇] restrict to the same partial connection on all smooth
subbundles of TM for all eigenvalues of Txs

σ
x different from 1.

Let S be a smooth map assigning to each x ∈M the (local) diffeomorphism sσx for
some Weyl connection ∇σ (depending on x) in [∇].

(1) The class [∇] is called S–invariant if S(x)∗∇σ ∈ [∇] and S(x)∗∇σ(x) =
∇σ(x) hold for some (and thus each) Weyl connection ∇σ ∈ [∇] and all
x ∈M .

(2) Weyl connections ∇ in the S–invariant class [∇] are called almost S–
invariant Weyl connection.

(3) The almost S–invariant Weyl connection ∇ is called invariant at x ∈M if
S(x)∗∇ = ∇.

(4) The almost S–invariant Weyl connection∇ is called S–invariant if S(x)∗∇ =
∇ holds for all x ∈M .

We show in Section 4.1 that if there is an almost S–invariant Weyl connection,
then each S(x) preserves (G → M,ω), i.e., S defines a smooth system S of (local)
s–symmetries such that S(x) are the underlying (local) diffeomorphisms of S(x) for
all x. Thus the notation S is consistent with the Definition 1.1.

If there is a smooth system S of (local) s–symmetries of (G → M,ω), then we
need the prolongation rigidity outside of the 1–eigenspace of s to show the existence
of an S–invariant class of Weyl connections, see Section 4.2. For all |1|–graded
parabolic geometries and s such that Ad(s) = −idg− , i.e., s = m, we obtain affine
(locally) symmetric spaces, because the class [∇] consists of a single connection. For
all parabolic contact geometries and s such that Ad(s)|g−1 = −id we obtain reflexion
spaces, but the S–invariant class [∇] is not the class of admissible connections from
[19].

For triples (g, p, µ) that are prolongation rigid outside of the 1–eigenspace of s,
we get the following existence result, which in particular implies Theorem 1.3.

Theorem 1.8. Suppose s ∈ Z(G0) is such that (g, p, µ) is prolongation rigid outside
of the 1–eigenspace of s. Suppose that the parabolic geometry (G → M,ω) of type
(G,P ) has everywhere non–zero component of the harmonic curvature in µ. Then
the following conditions are equivalent:

(1) The parabolic geometry is (locally) s–symmetric.
(2) There is a smooth system S of (local) s–symmetries.
(3) There is an S–invariant class [∇] of Weyl connections.

Moreover, the smooth system S is unique and S consists of the underlying dif-
feomorphisms of S on M . The equality S(x) ◦ S(y) = S(S(x)(y)) ◦ S(x) holds
whenever the compositions are defined. If Ad(s) ∈ Gl(g−) has no eigenvalue 1,
then [∇] consists of a single S–invariant Weyl connection, which is locally affinely
homogeneous.

We prove the claims of Theorem 1.8 except the last one in Section 4. The last
claim does not hold without additional assumptions on the 1–eigenspace. We prove
the last claim in Section 5, where we study additional properties that follow from
assumptions on the position and shape of the 1–eigenspace of s in g−.

Outline of the article. We recall basic facts and formulas for Weyl connections
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in Section 2. In particular, we characterize automorphisms of parabolic geome-
tries with their actions on Weyl structures. We recall the relation between normal
coordinates and normal Weyl structures.

In Section 3, we prove Theorem 1.6 and we provide the characterization of the
triples (g, p, µ) that are prolongation rigid outside of the 1–eigenspace of s.

In Section 4, we prove Theorem 1.8. We also obtain further properties of (lo-
cally) s–symmetric parabolic geometries of type (G,P ) that have everywhere non–
zero component of the harmonic curvature in µ for the triples (g, p, µ) that are
prolongation rigid outside of the 1–eigenspace of s.

In Section 5, we classify all triples (g, p, µ) that are prolongation rigid outside of
the 1–eigenspace of s such that µ is in the 1–eigenspace of s. The classification is
separated in the tables according to the common properties of the triples (g, p, µ)
and elements s ∈ Z(G0). The notation for the tables and details on the classification
can be found in Section 5.1. We show in Section 5.2 that there are triples (g, p, µ)
for which the S–invariant class [∇] of Weyl connections consists of a single S–
invariant Weyl connection. In particular, such an S–invariant Weyl connection is
always (locally) affinely homogeneous. In Sections 5.3 and 5.5, we show that there
are triples (g, p, µ) for which the (locally) s–symmetric parabolic geometries are
locally correspondence spaces over some other s–symmetric parabolic geometries.
In Section 5.4, we prove that there are triples (g, p, µ) for which the condition of
(local) homogeneity is satisfied for more complicated S–invariant class [∇] of Weyl
connections.

In the Appendix A we recall from [11] the construction of (locally) homogeneous
s–symmetric parabolic geometries that we need in Section 5.

2. Automorphisms of parabolic geometries

In this Section, we introduce necessary techniques and establish notation from
the theory of parabolic geometries that we will use in the article, see [3, Section 5.1].
We focus here on actions of automorphisms on Weyl structures and connections.

2.1. Weyl structures and connections. Consider a parabolic geometry (G →
M,ω) of type (G,P ). Many geometric objects on M can be identified with sections
of natural bundles V associated to the P–bundle G for representations V of P .
We can equivalently view the sections of V as P–equivariant functions G → V .
In other words, the points of G are (higher order) frames and the P–equivariant
functions are the coordinate functions. A crucial tool that allows us to reduce the
number and order of the frames are Weyl structures. A (local) Weyl structure is
a (local) G0–equivariant section σ : G0 → G of the projection π : G → G0, where
G0 := G/ exp(p+) and p0 : G0 →M is a G0–bundle over M .

Definition 2.1. Assume σ : G0 → G is a Weyl structure. Then for a section τ of a
natural bundle V, we denote by (τ)σ the G0–equivariant function G0 → V satisfying

(τ)σ := t ◦ σ,
where t : G → V is the P–equivariant function corresponding to τ .

In particular, vector fields ξ and 1–forms Υ on M are sections of bundles G×P g/p
and G ×P p+, respectively, and there are corresponding G0–equivariant functions
(ξ)σ : G0 → g− and (Υ)σ : G0 → p+.

Weyl structures always exist on parabolic geometries and for each two Weyl
structures σ and σ̂, there exist a 1–form Υ and G0–equivariant functions Υi : G0 →
gi for i = 1, . . . , k such that

σ̂ = σ exp(Υ)σ = σ exp(Υ1) . . . exp(Υk).



8 JAN GREGOROVIČ AND LENKA ZALABOVÁ

The G0–equivariant function (Υ)σ : G0 → p+ is related to the functions Υi via the
Baker–Campbell–Hausdorff (BCH)–formula.

We can decompose the pullback σ∗ω : TG0 → g into G0–equivariant 1–forms
ωσi : TG0 → gi according to the grading gi of g. These forms clearly depend on the
choice of the Weyl structure σ. For a Weyl structure σ̂ = σ exp(Υ)σ, there is the
following formula describing the change of the forms

ω
σ exp(Υ)σ
l =

∑

|i|+j=l

(−1)i

i!
(ad(Υk)ik ◦ · · · ◦ ad(Υ1)i1) ◦ ωσj ,(1)

where we write i! = i1! . . . ik!, |i| = i1 + 2i2 + · · · + kik and (−1)i = (−1)i1+···+ik

for the multi–index i = (i1, . . . , ik) with i1, . . . , ik ≥ 0.
The sum ωσ− of the forms ωσi for i < 0 is called the soldering form given by the

Weyl structure σ. Suppose (ξ)σ = ξ−k + · · · + ξ−1 holds for the vector field ξ on

M and for G0–equivariant functions ξi : G0 → gi. If (ξ)σ exp(Υ)σ = ξ̂−k + · · ·+ ξ̂−1

holds for G0–equivariant functions ξ̂i : G0 → gi and the Weyl structure σ exp(Υ)σ,
then

ξ̂l =
∑

|i|+j=l

(−1)i

i!
ad(Υk)ik ◦ · · · ◦ ad(Υ1)i1 .ξj ,

where . is the algebraic action of the values of functions G0 → p+ on the values of
the functions G0 → g−.

The form ωσ0 is a principal connection form on G0. Suppose that the finite–
dimensional representation of P on V is completely reducible as a representation
of G0. Then

(1) the form ωσ0 induces a linear connection ∇σ on the space of P–equivariant
functions G → V ,

(2) for each P–equivariant function τ : G → V , the connection ∇σ preserves
the decomposition of (τ)σ into G0–equivariant components.

The induced connections ∇σ on V are called Weyl connections. The Weyl con-
nection ∇σ exp(Υ)σ on V is related to the Weyl connection ∇σ on V by

(∇σ exp(Υ)σ
ξ τ)σ = (∇σξ τ)σ +

∑

|i|+j=0

(−1)i

i!
(ad(Υk)ik ◦ · · · ◦ ad(Υ1)i1(ξj)).(τ)σ,(2)

where τ is a section of V and . is the algebraic action of the values of functions
G0 → g0 on the values of the function (τ)σ : G0 → V .

The soldering form ωσ− together with the principal connection form ωσ0 form the
Cartan connection ωσ−⊕ωσ0 on G0 of a reductive type. In fact, we can view the first
order frame bundle P1M as the bundle G ×Ad Gl(g/p) for the adjoint action Ad of
P on g/p. Moreover, each Weyl structure σ provides a reduction ισ : G0 → P1M
over Ad : G0 → Gl(g/p) such that

ι∗σθ = ωσ− and ι∗σγσ = ωσ0

hold for the natural soldering form θ on P1M and the principal connection form γσ
on P1M of the Weyl connection ∇σ. This allows us to describe explicitly geodesics
of Weyl connections. The geodesic of the Weyl connection ∇σ on TM through x
in the direction ξ(x) ∈ TxM is the curve

p0 ◦ Fl
(ωσ−⊕ωσ0 )−1(ξ(x))σ(u0)
t (u0)(3)

for arbitrary u0 ∈ G0 in the fiber over x. Indeed, since (ωσ− ⊕ ωσ0 )−1((ξ(x))σ)
is contained in the kernel of the connection form ωσ0 = ι∗σγσ and Tp0 ◦ (ωσ− ⊕
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ωσ0 )−1((ξ(x))σ)(x) = ξ(x), the claimed curve is the projection of a flow of a standard
horizontal vector field of γσ and therefore a geodesic of ∇σ.

2.2. The characterization of automorphisms. Let ϕ : G → G be a (local)
automorphism of the parabolic geometry and denote by ϕ0 : G0 → G0 the underlying
(local) G0–bundle morphism. Then for each Weyl structure σ, there is a 1–form
Υσ,ϕ on M such that

ϕ(σ(u0)) = σ(ϕ0(u0)) exp((Υσ,ϕ)σ(u0))(4)

holds for all u0 ∈ G0. Consequently, the pullback of a Weyl structure is again a
Weyl structure, i.e.,

ϕ∗σ = ϕ−1 ◦ σ ◦ ϕ0 = σ exp(−(Υσ,ϕ)σ).

Lemma 2.2. Let ϕ : G → G be a (local) automorphism. Then

(Υσ exp(Υ)σ,ϕ)σ exp(Υ)σ = C(−(Υ)σ ◦ ϕ0, C((Υσ,ϕ)σ, (Υ)σ))(5)

holds for the Weyl structure σ exp(Υ)σ, where C represents the BCH–formula.

Proof. We get immediately from the formula (4) that

ϕ(σ(u0)) exp((Υ)σ(u0)) =

σ(ϕ0(u0)) exp((Υ)σ(ϕ0(u0))) exp((Υσ exp(Υ)σ,ϕ)σ exp(Υ)σ (u0))

holds for all u0 ∈ G. This implies

exp((Υσ exp(Υ)σ,ϕ)σ exp(Υ)σ ) = exp(−(Υ)σ ◦ ϕ0) exp((Υσ,ϕ)σ) exp((Υ)σ),

which gives the formula. �
Therefore if f = ϕ for a (local) automorphism ϕ of the parabolic geometry, then

f∗∇σ = ∇σ exp(−(Υσ,ϕ)σ)

holds for each Weyl connection ∇σ.
There is a unique lift P1f of each (local) diffeomorphism f on M to the (local)

Gl(g/p)–bundle morphism on P1M such that (P1f)∗θ = θ holds. If f∗∇σ = ∇σ′

is satisfied for some Weyl connections ∇σ and ∇σ′ , then (P1f)∗γσ = γσ′ holds.
However, this does not imply that such f preserves the parabolic geometry. The
(local) diffeomorphisms f that preserve the parabolic geometry also satisfy that

P1f(ισ′(G0)) = ισ(G0)

holds for reductions ισ(G0) and ισ′(G0) of P1M and it turns out that this is the
crucial property that distinguishes the diffeomorphisms preserving the parabolic
geometry among all diffeomorphisms preserving the set of all Weyl connections.

Proposition 2.3. Let f be a (local) diffeomorphism on M such that for some Weyl
structures σ and σ′ of the parabolic geometry (G →M,ω)

• f∗∇σ = ∇σ′ holds, and
• P1f maps a point of ισ′(G0) into the image ισ(G0).

Then f preserves the parabolic geometry.

Proof. The assumptions imply that ϕ0 := ι−1
σ ◦ P1f ◦ ισ′ is a well–defined (local)

G0–bundle morphism ϕ0 : G0 → G0 satisfying ϕ∗0ω
σ
0 = ωσ

′
0 and ϕ∗0ω

σ
− = ωσ

′
− . The

associated graded map (θ−k, . . . , θ−1) : TG0 → g−k⊕· · ·⊕g−1 corresponding to ωσ−
is independent of the choice of the Weyl structure according to the formula (1). In
fact, the tuple (p0 : G0 →M, (θ−k, . . . , θ−1)) is a regular infinitesimal flag structure
with a (local) automorphism ϕ0, see [3, Section 3.1.6-8]. Therefore the claim of
Theorem follows from [3, Theorem 3.1.14] except for projective and contact pro-
jective geometries. In the case of projective geometries, the claim trivially follows



10 JAN GREGOROVIČ AND LENKA ZALABOVÁ

from the assumption f∗∇σ = ∇σ′ . In the case of contact projective geometries,
ϕ0 is a (local) automorphism of the regular infinitesimal flag structure if and only

if f is a contactomorphism and the claim again follows from f∗∇σ = ∇σ′ , see [3,
Section 4.2] for details. �

2.3. Normal Weyl structures and generalized geodesics. There is a distin-
guished class of local Weyl structures, so–called normal Weyl structures at x = p(u),
each of which is determined by a choice of u ∈ G. More precisely, we consider local
Weyl structures νu given by

νu(π(Fl
ω−1(X)
1 (u))) := Fl

ω−1(X)
1 (u)

for X in some neighbourhood of 0 in g−. The Weyl structures νu for all u ∈
Gx exhaust all normal Weyl structures at x, see [3, Section 5.1.12]. These Weyl
structures are distinguished by the fact that

ϕ(Fl
ω−1(X)
1 (u)) = Fl

ω−1(X)
1 (ϕ(u))(6)

holds for all (local) automorphisms ϕ of the parabolic geometry and all X in some
neighbourhood of 0 in g. This particularly means that

ϕ∗νu = νϕ−1(u)

holds for all (local) automorphisms ϕ of parabolic geometries.
The curves of the form

p ◦ Fl
ω−1(X)
t (u)

for X ∈ g− and u ∈ G are called generalized geodesics. They always provide the
normal coordinate system given by u. The crucial observation is that the set of
generalized geodesics going through x coincides with the set of geodesics of normal
Weyl connections ∇νu for all u. Therefore there is the following description of
automorphisms of parabolic geometries.

Proposition 2.4. Let ϕ be a (local) P–bundle morphism on G and let f = ϕ be
its underlying (local) diffeomorphism of M . If ϕ is a (local) automorphism of the
parabolic geometry, then the equality f∗∇νu = ∇νϕ−1(u) holds for all u ∈ G and f
maps the set of generalized geodesics going through x onto the set of generalized
geodesics going through f(x).

Moreover, if f has coordinates Ad(g0) ∈ Gl(g−) for g0 ∈ G0 in the normal
coordinate system given by u ∈ G, then ϕ is a (local) automorphism of the parabolic
geometry if and only if f∗∇νu = ∇νu holds.

Proof. Since f∗∇σ = ∇ϕ∗σ holds for all Weyl structures σ and all (local) automor-
phisms ϕ of the parabolic geometry, the first claim follows from the formula (3).
If f has coordinates Ad(g0) ∈ Gl(g−) in the normal coordinate system given by
u ∈ G, then the second assumption of Proposition 2.3 is satisfied. Then the second

claim is a consequence of the first claim and Proposition 2.3, because ∇νu = ∇νug−1
0

holds. �

3. The uniqueness of s–symmetries and the prolongation rigidity

In this section, we prove Theorem 1.6. We also characterize all triples (g, p, µ)
that are prolongation rigid outside of the 1–eigenspace of s.
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3.1. Consequences of the existence of more s–symmetries at one point.
Let us recall that if V is an irreducible G0–module, then the element s ∈ Z(G0)
acts on V by a single eigenvalue. In particular, we can decompose each completely
reducible G0–module V into G0–submodules

V s(a) := {X ∈ V : s(X) = aX}

according to the eigenvalues of the action of s ∈ Z(G0). In particular, we will often
consider the 1–eigenspaces gs−(1), gsi (1) and ps+(1) in g−, gi and p+, respectively.

The following Proposition is a crucial technical result for the proof of Theorem
1.6.

Proposition 3.1. Let su be a (local) s–symmetry at x for some u ∈ Gx. Then for
each Weyl structure σ, there is a 1–form Υσ,su on M satisfying

(1) s∗uσ = σ exp(−(Υσ,su)σ),
(2) (Υσ,su)σ(π(u)) = C(−Ad(s)−1(Y ), Y ) for some Y ∈ p+, where C repre-

sents the BCH–formula on the nilpotent Lie algebra p+, and
(3) if (Υσ,su)σ(π(u)) = Zi + · · · + Zk holds for Zj ∈ gj, then the component

of Zi contained in gsi (1) is trivial, where i is the smallest index j such that
(Υσ,su)σ(π(u)) has a non–zero component in gi.

Moreover, if sv is a (local) s–symmetry at x for some v ∈ Gx, then su = sv if and
only if Υσ,su(x) = Υσ,sv (x) holds.

Proof. The normal Weyl structure νu always satisfies νu(π(u)) = u and therefore
the set of all Weyl structures σ satisfying σ(π(u)) = u is non–empty. Let su
be a (local) s–symmetry at x and consider arbitrary Weyl structure σ satisfying
σ(π(u)) = u. Then (Υσ,su)σ(π(u)) = 0 holds and Lemma 2.2 implies that (Υσ,su)σ
has the claimed properties (1) and (2) for arbitrary Weyl structure. The claimed
property (3) holds, because the BCH–formula implies that C(−Ad(s)−1(Y ), Y )i =
−Ad(s)−1(Yi) + Yi = Zi holds.

If sv is a (local) s–symmetry at x for some v ∈ Gx, then su = sv if and only
if us = su(u) = sv(u) holds. Thus we need to show that if Υσ,su(x) = Υσ,sv (x)
holds, then su = sv. We can assume σ(π(u)) = u for the Weyl structure σ,
because the equality Υσ,su(x) = Υσ,sv (x) is preserved if we change the Weyl struc-
ture σ. Suppose g0 ∈ G0 and Y ∈ p+ are such that v = ug0 exp(Y ) holds.
If σ̂ is a Weyl structure such that σ̂(π(u)) = ug0 exp(Y ), then Υσ,su(x) = 0,
Υσ̂,sv (x) = 0 and (Υσ,sv )σ(π(u)) = C(−Ad(s)−1(Ad(g0)(Y )),Ad(g0)(Y )) hold.
Since C(−Ad(s)−1(Ad(g0)(Y )),Ad(g0)(Y )) = 0 if and only if Ad(s)(Y ) = Y , the
element s commutes with g0 exp(Y ) and su = sv holds. �

The harmonic curvature κH is preserved by each (local) automorphism of the
parabolic geometry. Since κH is a section of an associated vector bundle to G for
a representation of P which is trivial on exp(p+), the function (κH)σ does not
depend on the choice of the Weyl structure σ and we will write κH(u) instead of
(κH)σ(π(u)). Consequently, κH(p(u)) = 0 if and only if κH(u) = 0.

If su is a (local) s–symmetry at p(u), then s∗uκH = κH . Thus s.κH(u) = κH(u)
trivially follows, where we denote by . the tensorial action of g0 on κH . This proves
the first claim of Theorem 1.6.

The second claim of Theorem 1.6 is a consequence of the following Proposition
and the Definition 1.5 of the prolongation rigidity.

Proposition 3.2. Assume there are (local) s–symmetries su and sv at x for some
u, v ∈ Gx. Suppose that (Υσ,sv )σ(π(u)) = 0 and (Υσ,su)σ(π(u)) = Zi+ · · ·+Zk hold
for some Weyl structure σ. Then Zi ∈ pr(κH(u))i.
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Proof. We show that ad(X1) . . . ad(Xi)(Zi).κH(u) = 0 holds for all X1, . . . Xi ∈
g−1. Consider an arbitrary Weyl structure σ and consider the iterated covariant

derivative (∇σ)jξ1,...,ξj for vector fields ξ1, . . . , ξj such that

(ξb)σ = ξb−1 : G0 → g−1,

(ξb)σ(π(u)) = Xb

hold for some Xb ∈ gs−1( 1
ab

) for some ab for all 1 ≤ b ≤ j. We assume j ≤ i unless
we state otherwise.

We compute

(s∗u∇σ)jξ1,...,ξjκH(u) = s∗u(∇σ)j(su)∗ξ1,...,(su)∗ξj
(su)∗κH(u)

= (∇σ)j(su)∗ξ1,...,(su)∗ξj
κH(u).

Since we assume Xb ∈ gs−1( 1
ab

), we get

((su)∗ξ
b)σ exp(Υσ,su )σ (π(u)) = ((su)∗ξ

b)σ(π(u)) = (ξb)σ(π(u)s)

= Ad(s)−1(ξb)σ(π(u)) = abX
b.

Thus

(s∗u∇σ)jξ1,...,ξjκH(u) = a1 · · · aj(∇σ)jξ1,...,ξjκH(u).(7)

If (Υσ,su)σ(π(u)) = Zi+· · ·+Zk holds for the Weyl structure σ, then the formula
(2) together with Proposition 3.1 imply

(s∗u∇σ)ξbκH(u) = ∇σ exp(−(Υσ,su )σ)

ξb
κH(u) = ∇σξ κH(u) + ad(Zi)(X

b).κH(u).

In particular, if i > 1, then

(s∗u∇σ)ξbκH(u) = ∇σ exp(−(Υσ,su )σ)

ξb
κH(u) = ∇σξ κH(u).

If we apply the above formulas onto the first connection in (s∗u∇σ)jξ1,...,ξjκH(u),

then we obtain

(s∗u(∇σ)j)ξ1,...,ξjκH(u) = ∇σξ1(s∗u∇σ)j−1
ξ2,...,ξjκH(u).

In the next step, the same formulas for the second connection lead to the formula

(s∗u∇σ)jξ1,...,ξjκH(u) = (∇σ)2
ξ1,ξ2(s∗u∇σ)j−2

ξ3,...,ξjκH(u)

− ad(X2)((∇σ)ξ1(Υσ,su)σ).(s∗u∇σ)j−2
ξ1,...,ξl−jκH(u).

Thus before we consider the next step, we need to characterize the components of
(∇σξbΥσ,su)σ(π(u)) in g1⊕· · ·⊕gj for j < i. Firstly, let us view (Υσ,su)σ as a section

of the adjoint tractor bundle G ×P g. Observe that the covariant derivative ∇σξb
coincides with the fundamental derivative on the components in g−⊕g0⊕g1⊕· · ·⊕gj
according to the formula from [3, Proposition 5.1.10]. We know that (Υσ,su)σ has
its values in p+ and the components of (∇σξbΥσ,su)σ(π(u)) in g1 ⊕ · · · ⊕ gj for j < i

are tensorial both in ξb and Υσ,su . Then, using the formula from [3, Corollary
1.5.8] and the P–equivariancy of ω, we get the following equality on the restriction
to g1 ⊕ · · · ⊕ gj for j < i

(∇σξbΥσ,su)σ(π(u)) = ω(σ(π(u)))([ω−1(ξb), ω−1(Zi)]) = −ad(Xb)(Zi).

Therefore

(s∗u∇σ)jξ1,...,ξjκH(u) = (∇σ)2
ξ1,ξ2(s∗u∇σ)j−2

ξ3,...,ξjκH(u).

If we iterate the computation of (∇σξbΥσ,su)σ(π(u)) for j < i, then we obtain by

the same arguments

((∇σ)jξ1,...,ξjΥ
σ,su)σ(π(u)) = (−1)jad(Xj) . . . ad(X1)(Zi)
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for the component in g1 ⊕ · · · ⊕ gi−j . Thus for j < i, we obtain

(s∗u∇σ)jξ1,...,ξjκH(u) = (∇σ)jξ1,...,ξjκH(u)− ad(Xj)((∇σ)j−1
ξ1,...,ξj−1(Υσ,su)σ).κH(u)

= (∇σ)jξ1,...,ξjκH(u)

and for j = i, we obtain

(s∗u∇σ)iξ1,...,ξiκH(u) = (∇σ)iξ1,...,ξiκH(u)

+ (−1)iad(Xi) . . . ad(X1)(Zi).κH(u).
(8)

If we compare the formulas (7) and (8) for (s∗u∇σ)jξ1,...,ξjκH(u), we obtain

(−1)j(a1 · · · aj − 1)(∇σ)jξ1,...,ξjκH(u) = ad(Xj) . . . ad(X1)(Zi).κH(u)(9)

for all j ≤ i.
If the Weyl structure σ satisfies (Υσ,sv )σ(π(u)) = 0, then we simultaneously have

(a1 · · · aj − 1)(∇σ)jξ1,...,ξjκH(u) = 0

for all j ≤ i if we follow the proof for sv instead of su. Thus if a1 · · · aj−1 6= 0, then
ad(Xi) . . . ad(X1)(Zi).κH(u) = 0. But since Zi has a trivial component in gsi (1),
we know that ad(Xi) . . . ad(X1)(Zi) 6= 0 implies a1 · · · aj − 1 6= 0 and the claim of
Proposition holds due to the linearity. �

If we follow the computations from the proof of Proposition 3.2 for a Weyl
structure σ satisfying Υσ,su(x) = 0, then most of the assumptions on the vector
fields ξb are vacuous and (s∗u∇σ)ξκH(u) = ∇σξ κH(u) holds for arbitrary vector field

ξ. Therefore we obtain the following corollary using the formula (7) for ξ from
particular eigenspaces of Txsu.

Corollary 3.3. Let su be a (local) s–symmetry at x = p(u) on a parabolic geometry
and assume Υσ,su(x) = 0. Then we get

∇σξ κH(x) = ∇σξfixκH(x),

where ξfix ∈ TxM is the component of ξ ∈ TxM such that (ξfix)σ(π(u)) ∈ gs−(1).
In particular, if gs−(1) = 0, then ∇σξ κH(x) = 0 holds for all ξ ∈ TxM .

Remark 3.4. The authors showed in [22] and [5] that there are projective and
conformal geometries satisfying ∇σκH(x) = 0 for all x ∈ M for a suitable Weyl
connection ∇σ, but (M,∇σ) are not an affine locally symmetric spaces. Therefore
Theorem 1.3 implies that the condition∇σκH = 0 is necessarily satisfied on (locally)
m–symmetric parabolic geometries, but is not sufficient to distinguish the (locally)
m–symmetric parabolic geometries among the geometries satisfying ∇σκH = 0.

3.2. The characterization of triples that are prolongation rigid outside
of the 1–eigenspace of s. We can estimate the dimension of pr(κH(u))i in the
following way: The result of [17, Proposition 3.1.1] states that the dimension of
ann(κH(u)) is bounded by the dimension of the annihilator a0 := ∩φ0

ann(φ0) of
all minus lowest weights φ0 in (the complexification of) all irreducible g0–modules
in which κH(u) has a non–zero component. Moreover, the dimension of pr(κH(u))i
is bounded by the dimension of the prolongation ai := ∩φ0pr(φ0)i of a0. The main
result of [17, Theorem 3.3.3 and Recipe 7] states that there is a semisimple Lie
subalgebra ḡ of g and a parabolic subalgebra p̄ of ḡ such that ai = ḡi for i > 0.

Let us prove that these estimates are compatible with the decomposition of gi
into g0–submodules, which allows us to characterize the triples (g, p, µ) that are
prolongation rigid outside of the 1–eigenspace of s.



14 JAN GREGOROVIČ AND LENKA ZALABOVÁ

Proposition 3.5. Suppose Z ∈ pr(κH(u))i decomposes as Z = Za +Zb for Za, Zb
in different g0–submodules of gi. Then Za ∈ pr(κH(u))i and Zb ∈ pr(κH(u))i.

Therefore the triple (g, p, µ) is prolongation rigid outside of the 1–eigenspace of
s if and only if ai corresponding to µ is a subspace of gsi (1) for all i.

Proof. Let (α1, . . . , αj) be an ordering of simple positive roots of g such that the
root space gαr satisfies gαr ∈ g1. Then we can uniquely assign a j–tuple (a1, . . . , aj)
to each irreducible g0–component of gi, where a` is the height of all root spaces in
the g0–component with respect to α`. This defines a multigrading of g and the Lie
bracket in g is multigraded.

Let us decompose the element Z ∈ pr(κH(u))i as the sum of the elements∑
Z(b1,...,bj) over all possible j–tuples with respect to this multigrading. Simi-

larly, let us decompose the module ⊗ig−1 as the sum of modules ⊕n(a1,...,aj) over
all possible j–tuples with respect to this multigrading. The multigrading of g0 is
of the form (0, . . . , 0), and therefore,

adi(X)(Z) =
∑

adi(X(a1,...,aj))(
∑

Z(b1,...,bj)) =
∑

adi(X(−b1,...,−bj))(Z(b1,...,bj))

holds for all X =
∑
X(a1,...,aj) ∈ ⊕n(a1,...,aj). Thus we get that

adi(X(−b1,...,−bj))(Z(b1,...,bj)) ∈ ann(κH(u))

holds for all X = X(−b1,...,−bj) ∈ n(−b1,...,−bj). Thus Z(b1,...,bj) ∈ pr(κH(u))i follows
from the linearity for all components Z(b1,...,bj) of Z.

The first claim implies that the proof of [17, Proposition 3.1.1] can be carried
separately for each component of pr(κH(u))i in g0–submodule in gi and thus the
second claim follows from [17, Theorem 3.3.3]. �

One can find in [12, Appendix C] tables containing the classification of the
triples (g, p, µ) such that µ is contained in the 1–eigenspace of s for some s ∈ Z(G0)
(different from identity), the classification of the modules ai and the classification
of the 1–eigenspaces of s in p+. This allows us to classify all triples (g, p, µ) that
are prolongation rigid outside of the 1–eigenspace of s such that µ is contained in
the 1–eigenspace of s.

We would like to present the classification together with additional properties
of the corresponding (locally) s–symmetric parabolic geometries. Therefore we
postpone the classification to Section 5.1 and continue by looking on geometric
properties of generic (locally) s–symmetric parabolic geometries.

4. Geometric properties of parabolic geometries of general types

We present here geometric properties that are common for (locally) s–symmetric
parabolic geometries for triples (g, p, µ) that are prolongation rigid outside of the 1–
eigenspace of s. In particular, we prove Theorem 1.8. In order to prove that Claim
(3) implies Claim (2), we discuss in Section 4.1 when a geodesic transformation sσx
of a Weyl connection ∇σ preserves the parabolic geometry. The Claim (1) follows
trivially from Claim (2) and we discuss the remaining implication in Section 4.2.

4.1. Automorphisms and normal coordinate systems of Weyl connec-
tions. Let us describe the (local) diffeomorphisms sσx in detail. We know from
the formula (3) that the (local) diffeomorphism sσx of M defined by the formula

sσx(p0 ◦ Fl
(ωσ−⊕ωσ0 )−1(ξ(x))σ(u0)

1 (u0)) : = p0 ◦ Fl
(ωσ−⊕ωσ0 )−1Ad(s)(ξ(x))σ(u0)

1 (u0)

= p0 ◦ Fl
(ωσ−⊕ωσ0 )−1(ξ(x))σ(u0)

1 (u0s)
(10)
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for some u0 ∈ (G0)x does not depend on the choice of u0 ∈ (G0)x. So sσx is the
unique (local) diffeomorphism with coordinates Ad(s) ∈ Gl(g−) for s ∈ Z(G0) in
the normal coordinate system for the Weyl connection ∇σ given by some u0 ∈ G0.

We also know from Proposition 2.4 that for a normal Weyl structure νu for
u ∈ Gx, the equality

sνux = su

holds. Thus sνux preserves the parabolic geometry (and therefore su is a (local)
automorphism of the parabolic geometry) if and only if (sνux )∗∇νu = ∇νu holds.

The situation is different for a general Weyl structure σ and the following Propo-
sition gives a sufficient condition for sσx to be a (local) s–symmetry.

Proposition 4.1. Assume the (local) diffeomorphism sσx satisfies

• (sσx)∗∇σ = ∇σ exp(Υ)σ for some 1–form Υ on M , and
• Υ(x) = 0.

Then sσ(u0) is a (local) s–symmetry at x for all u0 in the fiber over x such that
Υσ,sσ(u0) = −Υ, and sσ(u0) = sσx, i.e., sσx preserves the parabolic geometry.

Proof. Suppose (sσx)∗∇σ = ∇σ exp(Υ)σ holds for Υ such that Υ(x) = 0. Then the
inclusions ισ and ισ exp(Υ)σ of G0 into P1M coincide in the fiber over x by the

assumption Υ(x) = 0. Thus the formula (10) implies that P1sσx maps the frames
ισ(u0) = ισ exp(Υ)σ (u0) in the fiber over x onto frames ισ(u0s) = ισ exp(Υ)σ (u0s).
Therefore the conditions of Proposition 2.3 are satisfied and sσx preserves the par-
abolic geometry. Since Υ(x) = 0, it follows from Proposition 3.1 that the covering
of sσx maps σ(u0) onto σ(u0)s and thus coincides with sσ(u0) due to the formula
(6). �

In particular, if there is an S–invariant class of Weyl connections, then all (local)
diffeomorphisms S(x) for all x ∈ M satisfy the conditions of Proposition 4.1 and
therefore Claim (3) of Theorem 1.8 implies Claim (2) of Theorem 1.8.

A consequence of Propositions 4.1 and 3.1 is that the condition Υσ,su(p(u)) = 0
is necessary for the equality su = sσp(u) to hold for s–symmetry su at p(u). On the

other hand, it is clear that the condition Υσ,su(p(u)) = 0 is far from being sufficient.
There is the following consequence of the fact that the affine maps are determined
by the image of a single point in ισ(G0) ⊂ P1M .

Corollary 4.2. Let su be a (local) s–symmetry at x and assume Υσ,su ≡ 0 holds
for some Weyl structure σ. Then su = sσx.

4.2. The prolongation rigidity for s–symmetric parabolic geometries. Let
(g, p, µ) be prolongation rigid outside of the 1–eigenspace of s. Let U ⊂ M be the
open subset of M consisting of points x such that κH(x) has a non–zero component
in the g0–module given by µ. If the parabolic geometry is (locally) s–symmetric,
then there is a unique (local) s–symmetry su at each point of U , i.e., there is the
unique system S of (local) s–symmetries on U . This means that if there is an almost
S–invariant Weyl connection on U , then the system S coincides (due to uniqueness)
with the system of (local) diffeomorphisms su. We call a Weyl structure σ (almost)
S–invariant (at x) if ∇σ is (almost) S–invariant Weyl connection (at x).

The uniqueness of s–symmetries on U has the following consequences in the case
U = M .

Proposition 4.3. Assume (g, p, µ) is prolongation rigid outside of the 1–eigenspace
of s and κH(x) has a non–zero component in the g0–module given by µ at all x ∈M .
Let S be the unique system of (local) s–symmetries on the (locally) s–symmetric
parabolic geometry (G →M,ω) of type (G,P ). Then:
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(1) There exists an almost S–invariant Weyl structure σ and the map S is
smooth.

(2) If σ is an almost S–invariant Weyl structure, then σ exp(Υ)σ is an almost
S–invariant Weyl structure if and only if (Υ)σ has its values in ps+(1).

(3) For each x ∈ M , there is a local almost S–invariant Weyl structure σ,
which is invariant at x, and S(x) = sσx holds.

(4) The equality S(p0(u0)) = sσ(u0) holds for each almost S–invariant Weyl
structure σ for all u0 ∈ G0.

(5) The equality S(x) ◦ S(y) ◦ S(x)−1 = S(S(x)(y)) holds for x, y ∈ M , where
the compositions are defined.

(6) For each eigenvalue a, the union of the a–eigenspaces TxM
s(a) of TxS(x) in

TxM over all x ∈M defines a distribution TMs(a) on M that is preserved
by all (local) s–symmetries for each a.

(7) The equality TMs(a) = Tp0 ◦ (ωσ− + ωσ0 )−1(gs−(a)) holds for each almost
S–invariant Weyl structure σ.

(8) The decomposition TM = ⊕aTMs(a) is preserved by all almost S–invariant
Weyl connections ∇σ.

(9) All almost S–invariant Weyl connections restrict to the same partial linear
connection on TM corresponding to the distribution ⊕a 6=1TM

s(a).

We show that Claim (1) of Theorem 1.8 implies Claim (3) of the Theorem 1.8
and simultaneously obtain all the claims of Proposition.

Proof. Let us pick an arbitrary Weyl structure σ̂ and consider the G0–equivariant
function (S)σ̂ : G0 → {C(−Ad(s)−1(Y ), Y ), Y ∈ p+} defined by

S(p0(u0))∗σ̂(u0) = σ̂(u0) exp(−(S)σ̂(u0))

for all u0 ∈ G0. We show that (S)σ̂ is smooth.
We decompose

(S)σ̂ =
∑

a

τi(a) + · · ·+
∑

a

τk(a)

according to the grading and the eigenvalues a of Ad(s). It follows from Claim (3) of
Proposition 3.1 that τi(1) ≡ 0. Thus the formula (9) from the proof of Proposition
3.2 that holds under our assumptions at each point of M implies that each τi(a) is
smooth.

The formula (5) from Lemma 2.2 gives

(S)σ̂ exp(Υ)σ̂ = C(−Ad(s)−1(Υ)σ̂, C((S)σ̂, (Υ)σ̂)).

If we take Υ = rτi(a) for arbitrary r ∈ R, then

C(−Ad(s)−1(rτi(a)), C((S)σ̂, rτi(a)))i(a) =C(− r
a
τi(a), C(τi(a), rτi(a)))i(a)

=
r(1− a) + a

a
τi(a)

holds for the component of the BCH–formula in gi(a), while the components of
the BCH–formula in gi(b) for the other eigenvalues b 6= a of Ad(s) remain τi(b).
Consequently, if we take

Υi :=
∑

a 6=1

a

a− 1
τi(a)

and consider the Weyl structure σ̂ exp(Υi) instead of σ̂, then we get

(S)σ̂ exp(Υi) =
∑

a

τ̃i+1(a) + · · ·+
∑

a

τ̃k(a).

By induction, we obtain in finitely many steps a Weyl structure σ such that (S)σ ≡ 0
holds. Since (S)σ ≡ 0 and all the changes we made are smooth, the function (S)σ̂
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and the Weyl structure σ = σ̂ exp(Υi) · · · exp(Υk) are smooth. Let [∇σ] be the
class consisting of all Weyl connections for Weyl structures σ constructed for all
Weyl structures σ̂. We complete the proof by showing that [∇σ] is an S–invariant
class of Weyl connections and thus Claim (1) holds.

It is clear from the construction of σ that if we start with σ̂ exp(Υ)σ for (Υ)σ with
values in ps+(1), then we get σ exp(Υ)σ. Thus the class [∇σ] satisfies Claim (2) and
Claims (6), (7), (8) and (9) are then consequences of Claim (2) and the formulas
for the change of Weyl structures and connections. In particular, the class [∇σ] is

a maximal subclass of the class of Weyl connections that satisfy Txs
σ
x = Txs

σ′
x for

all Weyl connections ∇σ,∇σ′ ∈ [∇σ] and all x ∈ M , and that all connections in
[∇σ] restrict to the same partial connection on all smooth subbundles of TM for
all eigenvalues of Txs

σ
x different from 1.

If σ̂ = νu is the normal Weyl structure for u ∈ Gx satisfying S(x)(u) = us, then

σ exp(−(Υσ,S(x))σ) =νu exp(S(x)∗Υi) · · · exp(S(x)∗Υk)

=σ exp(−Υk) · · · exp(C(−Υi, S(x)∗Υi)) · · · exp(S(x)∗Υk).

Since the component of C(−Υi, S(x)∗Υi) contained in gi has a trivial component
in ps+(1) and (Υσ,S(x))σ has its values in ps+(1), the equality Υi = S(x)∗Υi holds.

Thus we get 0 = C(−Υi, S(x)∗Υi). Therefore σ exp(−(Υσ,S(x))σ) = σ follows by
induction, and thus S(x)∗σ = σ. The Corollary 4.2 and the last claim of Proposition
3.1 implies that

S(x) = su = sνu exp(Υi)··· exp(Υk)
x = sσ(π(u))

holds for all x ∈ M , all u ∈ Gx satisfying S(x)(u) = us and arbitrary σ such that
∇σ ∈ [∇σ]. In particular, S and S are smooth, because σ is smooth. Therefore
Claims (3) and (4) hold.

Since

S(x) ◦ S(y) ◦ S(x)−1(S(x)(σ(u0))) = S(x)(σ(u0))s

holds for u0 in the fiber over x, the composition S(x) ◦ S(y) ◦ S(x)−1 is an s–
symmetry at the point S(x)(y). The equality S(x) ◦ S(y) ◦ S(x)−1 = S(S(x)(y))
then follows from the uniqueness of s–symmetries. Therefore Claim (5) holds.

In particular, S(x) ◦ S(y)(y) = S(S(x)(y)) ◦ S(x)(y) holds. This implies that

σ′(v0) exp((Υσ′,S(x))σ′(v0s)) = (S(x) ◦ S(y))∗σ′(v0) = (S(S(x)(y)) ◦ S(x))∗σ′(v0)

= σ′(v0) exp((Υσ′,S(x))σ′(v0))

holds for v0 in the fiber over y for arbitrary σ′ such that ∇σ′ ∈ [∇σ]. Thus

Ad(s)(Υσ,S(x))σ(v0) = (Υσ,S(x))σ(v0)

holds and thus [∇σ] is an S–invariant class of Weyl connections. �

5. Geometric properties of parabolic geometries of distinguished
types and classification

In this section, we study properties of (locally) s–symmetric parabolic geometries
of particular types (G,P ) for triples (g, p, µ) that are prolongation rigid outside of
the 1–eigenspace of s for µ in the 1–eigenspace of s. The properties follow from
the position and shape of gs−(1) inside of g−. We classify all triples (g, p, µ) where
gs−(1) has such a position and shape for generic s.
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5.1. Classification results and notation. Let us use the characterization from
Section 3.2 for the classification of the triples (g, p, µ) that are prolongation rigid
outside of the 1–eigenspace of s ∈ Z(G0) such that µ is in the 1–eigenspace of s.
We separate the classification into the series of tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 and 13. The main reason for such a separation is that parabolic geometries
from different tables have different geometric properties and we divide the tables
according to these properties.

Theorem 5.1. Let (g, p, µ) be a triple obtained from one of the tables 1-13 in the
following way:

• The Lie algebra g is a simple Lie algebra of the (complex) rank n that is
at least A4, B4, C4, D5 or some explicit Lie algebra of lower rank from the
column g.
• The parabolic subalgebra p is the parabolic algebra from [3, Section 3.2.9]

for the set Σ in the column Σ.
• The component of the harmonic curvature µ is specified by an ordered pair

of simple roots of g from the column µ that provides the highest weight of
µ by the affine action of corresponding elements of the Weyl group, see [3,
Theorem 3.3.5].

• The component µ is contained in the 1–eigenspace of s for the elements s ∈
Z(G0) that have the eigenvalues jia from the columns jia on the irreducible
g0–components that are determined by the iath element of the set Σ.

Then (g, p, µ) is prolongation rigid outside of the 1–eigenspace of s if the eigenvalues
jia of s satisfy the condition in the column PR.

The tables 1-13 contain the complete classification of triples (g, p, µ) that are
prolongation rigid outside of the 1–eigenspace of s for µ in the 1–eigenspace of s
(except the cases that are conjugated by an outer automorphism of g to one of the
listed entries).

The remaining notation we will use in the tables is the following:
We characterize the real form of g by a number q and a field {R,C,H}.
The set Σ characterizes the set of crossed nodes in the Dynkin or Satake diagram

that provides the parabolic subalgebra p. We use the ordering of nodes which is
consistent with [3, Appendix B] and we will not add the conjugated crossed nodes
to Σ in the case of complex Lie algebras, su(q, n+1−q) and so(3, 5). We distinguish
the complex conjugated simple roots by ′.

If the column for the eigenvalue jia is blank, then the value of jia is generic. If
the eigenvalue jia /∈ R and ln(jia) = ria + iφia , then either ria = 0 or φia = 0 and
we specify only the non–zero one in the table.

If the column PR is missing or the condition is blank, then the triple (g, p, µ) is
either prolongation rigid or the condition that µ is contained in the 1–eigenspace
of s is sufficient for ai corresponding to µ to be a subspace of gsi (1) for all i.

The classification tables are presented in the following subsections and the triples
(g, p, µ) are obtained from the tables according to Theorem 5.1.

5.2. Parabolic geometries with gs−(1) = 0. The Table 1 contains all triples
(g, p, µ) with the property that if s ∈ Z(G0) is such that (g, p, µ) is prolongation
rigid outside of the 1–eigenspace of s, then gs−(1) = 0. In particular, all AHS–
structures that have a component of the harmonic curvature in the 1–eigenspaces
of some s ∈ Z(G0) are prolongation rigid outside of the 1–eigenspace of s and thus
are contained in this table.

Example 5.2. Before we formulate the general result, let us demonstrate how the
results for (locally) symmetric conformal geometries that we presented in [13] can
be obtained from the Table 1 and Theorem 5.3:
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Table 1. Theorem 5.3

g Σ ji1 µ

sl(3,C) {1} φ1 (α1, α1′)

sl(3,C) {1} 3
√

1 (α1′ , α2′)

sl(4, {R,C}) {1}
√

1 (α1, α2)
sl(4,C) {1} φ1 (α1, α1′)

sl(4,C) {1} 3
√

1 (α1′ , α2′)

sl(n+ 1, {R,C}) {1}
√

1 (α1, α2)
sl(n+ 1,C) {1} φ1 (α1, α1′)

sl(n+ 1, {R,C,H}) {2}
√

1 (α2, α1)

sl(n+ 1,C) {p} 3
√

1 (αp′ , αp+1′)
so(1, 5), so(2, 4), so(3, 3), so(6,C),

so(1, 6), so(2, 5), so(3, 4), so(7,C) , {1}
√

1 (α1, α2)
so(1, 7), so(2, 6), so(3, 5), so(4, 4), so(8,C)

so(6,C), so(7,C), so(8,C) {1} 3
√

1 (α1′ , α2′)

so(7,C) {3} 3
√

1 (α3, α2)

so(q, n− q), so(n,C) {1}
√

1 (α1, α2)

so(n,C) {1} 3
√

1 (α1′ , α2′)

so(2n,C) {n} 3
√

1 (αn′ , αn−2′)

so(2n+ 1,C) {n} 5
√

1 (αn′ , αn−1′)

sp(4,C) {1} 3
√

1 (α1, α2)

sp(4,C) {1} 3
√

1 (α1′ , α2′)

sp(4,C) {2} 3
√

1 (α2′ , α1′)

sp(6,C) {2} 5
√

1 (α2′ , α3′)

sp(6,C) {3} 3
√

1 (α3′ , α2′)

sp(2n,C) {n− 1} 5
√

1 (αn−1′ , αn′)

sp(2n,C) {n} 3
√

1 (αn′ , αn−1′)

e6(C) {1} 3
√

1 (α1′ , α2′)

e7(C) {1} 3
√

1 (α1′ , α2′)

There are rows with g = so(q, n− q) and Σ = {1} in the Table 1 and the triples
(so(q, n−q), p{1}, µ(α1,α2)) are prolongation rigid outside of the 1–eigenspace of s for

n > 5 and q > 0. We read of the corresponding line that the eigenvalue ji1 =
√

1.
Thus s = m and the m–symmetries in question are the symmetries of conformal
geometries presented in [13]. We get immediately from Theorem 5.3 that Theorem
1.3 holds for conformal geometries.

In the following theorem, we summarize geometric properties of geometries from
the Table 1 and prove the last claim of Theorem 1.8.

Theorem 5.3. Assume (g, p, µ) is prolongation rigid outside of the 1–eigenspace
of s for s ∈ Z(G0) such that gs−(1) = 0 holds. If the harmonic curvature κH of the
(locally) s–symmetric parabolic geometry (G →M,ω) of type (G,P ) has a non–zero
component in µ at some x, then:

(1) The parabolic geometry is (locally) homogeneous, κH(x) 6= 0 at all x ∈ M and
there is a unique smooth system of (local) s–symmetries S on M .

(2) There is a unique distinguished Weyl structure σ which is uniquely characterized
by one of the following equivalent properties:
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(a) The equalities ∇σTσ = 0, s.(Tσ)σ = (Tσ)σ, ∇σRσ = 0 and s.(Rσ)σ =
(Rσ)σ hold for the torsion and the curvature of the Weyl connection ∇σ.

(b) The Weyl connection ∇σ is S–invariant.
(c) All (local) automorphisms of the parabolic geometry cover affine transfor-

mations of ∇σ.
(d) All (local) diffeomorphisms sσx are affine transformations of ∇σ.
(e) All (local) P–bundle morphisms sσ(u0) are (local) s–symmetries.

(3) The pseudo–group generated by all local s–symmetries is transitive on M and
its connected component of identity is generated by the flows of the Lie algebra l,
which is the vector subspace of g−⊕ g0, generated by g− by the bracket (Tσ +Rσ)σ
on ∧2g∗− ⊗ l and the natural bracket on the rest of l.

(4) The equalities

S(x) = sσ(u0) = sσx

hold for the Weyl structure σ from Claim (2). In particular,

• the maps S(x) can be extended to a larger neighbourhood of x as long as
the corresponding geodesic transformations of ∇σ are defined,
• S(x) ◦ S(y) ◦ S(x)−1(z) = S(S(x)(y))(z) holds for (x, y, z) in some neigh-

bourhood of the diagonal in M ×M ×M , and
• for each eigenvalue a, the distribution TMs(a) is preserved by all (local)

automorphisms of the parabolic geometry.

Proof. Let U ⊂M be the set of points x such that κH(x) has a non–zero component
in µ. Then there is a unique system of (local) s–symmetries on U due to the
prolongation rigidity of the triple (g, p, µ) outside of the 1–eigenspace of s. It
suffices to prove Theorem under the assumption U = M , because if we prove Claim
(3) on U , then the equality U = M follows from the (local) homogeneity, i.e., Claim
(1) follows from Claim (3). Then Claim (4) follows from Claim (2) due to Claims
(5) and (7) of Proposition 4.3.

Therefore, it suffices to prove Claims (2) and (3) under the assumption U = M
to complete the proof. If gs−(1) = 0, then ps+(1) = 0 and Proposition 4.3 implies
that there is a unique S–invariant Weyl structure σ. It follows from Proposition
3.1 and Proposition 4.1 that the Weyl structure σ satisfies (2b) if and only if it
satisfies (2e). Further, Proposition 4.1 and the Corollary 4.2 imply that the Weyl
structure σ satisfies (2e) if and only if it satisfies (2d).

We show now that (2b) implies (2a). The torsion and the curvature of S–
invariant Weyl connection ∇σ are S–invariant. In particular,

s.(Tσ)σ(u0) = (S(p0(u0))∗Tσ(p0(u0)))σ(u0) = (Tσ)σ(u0)

and

s.(Rσ)σ(u0) = (S(p0(u0))∗Rσ(p0(u0)))σ(u0) = (Rσ)σ(u0)

hold for all u0 ∈ G0 for the natural action . of G0 on the values of (Tσ)σ and
(Rσ)σ. Since the same arguments can be applied on ∇σTσ and ∇σRσ, it follows
that (∇σξTσ)σ = s.(∇σξTσ)σ = a(∇σξTσ)σ and (∇σξRσ)σ = s.(∇σξRσ)σ = a(∇σξRσ)σ
hold for any vector field ξ on M such that (ξ)σ(u0) ∈ gs−(a−1) for all u0 ∈ G0. Thus
(2b) implies (2a), because gs−(1) = 0.

The Claim (2a) implies that ∇σ is a locally affinely homogeneous connection.
Therefore, according to [9, Section 1.5], the affine geometry (M,∇σ) can be encoded
as a locally homogeneous Cartan geometry of type (g− o Gl(g−), Gl(g−)) on the
first order frame bundle P1M . Moreover, the assumptions of [11, Lemma 2.2] are
satisfied, because (Tσ+Rσ)σ(ισ(u0)) is the bracket of the infinitesimal affine trans-
formation at ισ(u0) ∈ ισ(G0) ⊂ P1M . Thus there is a (local) affine transformation
A of ∇σ such that (A)σ(u0) = s. Therefore Claim (2d) follows from Claim (2a) and
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Proposition 4.1 due to the uniqueness of s–symmetries. In particular, if we consider
a (local) one–parameter subgroup exp(tξ) for an infinitesimal affine transformation
ξ, then exp(tξ)S(x) exp(−tξ) is the (local) s–symmetry at exp(tξ)(x) and the map
d
dt |t=0 exp(tξ)S(x) exp(−tξ)S(x)−1 maps ξ into l. If (P1ξ)σ(u0) = X, then the el-
ement X − Ad(s)(X) is contained in l. Thus g− ⊂ l as a vector subspace. Thus
the flows of the Lie algebra l generate a sub–pseudo–group, which is the connected
component of identity of the pseudo–group generated by local s–symmetries. Since
Ad(s) preserves l, Claim (3) follows.

We can use the results from [12, Theorem 1.3] due to the local homogeneity and
(2c) follows from (2a). Clearly (2c) implies (2d), which completes the proof. �

5.3. Parabolic geometries with distinguished parabolic subalgebras gs−(1)+
p. There are triples (g, p, µ) that are prolongation rigid outside of the 1–eigenspace
of s which admit 1–eigenspace in g− for some s such that q := gs−(1) + p is a para-
bolic subalgebra of g such that the harmonic curvature in µ vanishes on insertions
of elements of q/p at all points of M . These are listed in the Tables 2, 3 and 4 due
to [12, Proposition 6.2 and Proposition A.2].

Example 5.4. To demonstrate our results, let us look in the Table 2 on the row g =
sl(n+ 1,R) and Σ = {1, 2} which corresponds to generalized path–geometries (for
systems of second order ODEs), see [3, Sections 4.4.3-5]. These parabolic geometries
generally have two harmonic curvatures, one torsion κ(α1,α2) and one curvature
κ(α2,α1). However, they fall in the Table 2 only when the torsion κ(α1,α2) vanishes
and the harmonic curvature consists only of the curvature κ(α2,α1) corresponding
to µ(α2,α1). There are many s ∈ Z(G0) that act trivially on µ(α2,α1), but the triple
(sl(n + 1,R), p{1,2}, µ(α2,α1)) is prolongation rigid outside of the 1–eigenspace of s
only for s ∈ Z(G0) with eigenvalues j1 = 1, j2 = −1. In such case, q = p{2} is the
parabolic subalgebra of g corresponding to Σ = {2}.

The torsion–freeness of generalized path–geometries implies that the space of
local solutions of the corresponding ODEs carries a Grassmanian structure, which
is a parabolic geometry on the local leaf space of type (G,Q) from Theorem 5.5.
Therefore if (G → M,ω) is a (locally) s–symmetric torsion–free generalized path–
geometry with a non–zero harmonic curvature, then we conclude from Theorem 5.5
that the space of local solutions N is a locally symmetric space (N,S), while M
together with the system of (local) s–symmetries S is a reflexion space (M,S) over
(N,S), see [6]. Let us emphasize that due to dimensional reasons and the formula
[3, Theorem 5.2.9], the pseudo–group generated by all local s–symmetries is locally
transitive at x ∈M if and only if the Rho–tensor Pσ(n(x)) of the S–invariant Weyl
structure σ on N does not vanish on Tn(x)N .

We summarize geometric properties of geometries from the Tables 2, 3 and 4 in
the following theorem.

Theorem 5.5. Assume (g, p, µ) is prolongation rigid outside of the 1–eigenspace
of s for s ∈ Z(G0) such that q = gs−(1) + p is a parabolic subalgebra of g and
q/p inserts trivially into the harmonic curvature κH of the (locally) s–symmetric
parabolic geometry (G →M,ω) of type (G,P ). If κH has a non–zero component in
µ at some x, then:

(1) The inequality κH 6= 0 holds in an open dense subset of M , and there is a
unique smooth system of (local) s–symmetries S on M .

(2) There are

• a parabolic subgroup Q of G with the Lie algebra q such that P ⊂ Q,
• a neighbourhood Ux of each x ∈M with the local leaf space n : Ux → N for

the foliation given by the integrable distribution Tp ◦ ω−1(q), and
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Table 2. Theorem 5.5, part with |Σ| = 2.

g Σ ji1 ji2 µ PR

sl(3,C) {1, 2} 2r1 (α1, α1′)
sl(3,C) {1, 2} − 2

3φ2 (α1′ , α2′) r2 = 0, φ2 = 2π
sl(3,C) {1, 2} − 2

3φ1 (α2′ , α1′) r1 = 0, φ1 = 2π

sl(4, {R,C}) {1, 2} j−2
2 (α2, α1) j2 = −1

sl(4,R) {1, 2} j2
2 (α2, α3)

sl(4,C) {1, 2} 2r1 (α1, α1′)
sl(4,C) {1, 2} − 2

3φ2 (α1′ , α2′) r2 = 0, φ2 = 2π
sl(4,C) {1, 2} − 2

3φ1 (α2′ , α1′) r1 = 0, φ1 = 2π
sl(4,R) {1, 3} j2

1 (α1, α2)
sl(4,C) {1, 3} 2r1 (α1, α1′)

sl(n+ 1, {R,C}) {1, 2} j−2
2 (α2, α1) j2 = −1

sl(n+ 1,C) {1, 2} 2r1 (α1, α1′)
sl(n+ 1,R) {1, 3} j2

1 (α1, α2)
sl(n+ 1,C) {1, p} 2r1 (α1, α1′) r1 = 0

2 < p < n
sl(n+ 1, {R,C}) {1, p} j2

1 (α1, α2) j1 = −1
3 < p < n

sl(n+ 1,R) {1, n} j2
1 (α1, α2)

sl(n+ 1,C) {1, n} 2r1 (α1, α1′)
sl(n+ 1,R) {2, 3} j2

2 (α2, α1)
sl(n+ 1, {R,C,H}) {2, p} j2

2 (α2, α1) j2 = −1
3 < p < n

sl(n+ 1, {R,H}) {2, n} j2
2 (α2, α1)

sl(n+ 1,C) {p, p+ 1} − 2
3φp (αp+1′ , αp′) rp = 0, φp = 2π

so(2, 5), so(3, 4), so(7,C),

so(2, 6), so(3, 5), {1, 2}
√

1 (α1, α2) j2 = 1
so(4, 4), so(8,C)

so(4, 4) {1, 4} j2
1 (α1, α2)

so(q, n− q), so(n,C) {1, 2}
√

1 (α1, α2) j2 = 1
so(n, n), so(2n,C) {1, n} j2

1 (α1, α2) j1 = −1

Table 3. Theorem 5.5, part with |Σ| = 3.

g Σ ji1 ji2 ji3 µ PR

sl(4,R) {1, 2, 3} j1j
2
2 (α2, α1) j1 = 1

sl(n+ 1,R) {1, 2, 3} j1j
2
2 (α2, α1) j1 = 1

sl(n+ 1, {R,C}) {1, 2, p} j1j
2
2 (α2, α1) j1 = 1, j2 = −1

3 < p < n
sl(n+ 1,R) {1, 2, n} j1j

2
2 (α2, α1) j1 = 1

so(4, 4) {1, 2, 4} j2
1 (α1, α2) j2 = 1

so(n, n), so(4n,C) {1, 2, n} j2
1 (α1, α2) j1 = −1, j2 = 1

• a (locally) s–symmetric parabolic geometry (G′ → N,ω′) of type (G,Q)
satisfying the assumptions of Theorem 5.3

such that (G|Ux → Ux, ω|Ux) is isomorphic to an open subset of (G′ → G′/P, ω′) for
each x. In particular, there is a unique s–symmetry S(n(y)) on (G′ → N,ω′) at
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Table 4. Theorem 5.5, part with |Σ| = 4.

g Σ eigenvalues µ PR

sl(n+ 1,R) {1, 2, 3, p} jp = j1j
2
2j
−1
3 (α2, α1) j1 = 1, j3 = j2

2

3 < p < n
sl(n+ 1, {R,C}) {1, 2, p, q} jq = j1j

2
2j
−1
p (α2, α1) j1 = 1, j2 = −1, jp = 1

3 < p, q < n
sl(n+ 1,R) {1, 2, p, n} jn = j1j

2
2j
−1
p (α2, α1) j1 = 1, jp = 1

3 < p < n

each n(y) ∈ N such that n ◦ S(y) = S(n(y)) ◦ n holds for all y ∈ Ux in the fiber
over n(y).

(3) The connected component of identity of the pseudo–group generated by all local
s–symmetries is generated by the flows of the Lie algebra l, which is the vector sub-
space of qop, generated by qop+ by the bracket (Tσ(n(x))+Rσ(n(x)))σ on ∧2(qop+ )∗⊗ l
and the natural bracket on the rest of l for the S–invariant Weyl structure σ on
(G′ → N,ω′), where qop is the opposite parabolic subalgebra of g to q.

The pseudo–group generated by all local s–symmetries is locally transitive at x if
and only if q/p ⊂ l/(l ∩ p), i.e., if and only if (Rσ(n(x)))σ spans the whole q/p.

(4) There is a bijection between

• the almost S–invariant Weyl structures on Ux, and
• the reductions of the image in G′ of the (unique) S–invariant Weyl structure
σ on N (that exists due to Theorem 5.3) to exp(gs−(1)) oG0 ⊂ Q0.

A reduction corresponds to an S–invariant Weyl structure on Ux if and only if it
is a holonomy reduction of ∇σ.

(5) In particular,

• the maps S(x) can be extended to a larger neighbourhood of x as long as
the corresponding geodesic transformations of ∇σ on N are defined,

• S(x) ◦ S(y) ◦ S(x)−1(z) = S(S(x)(y))(z) holds for (x, y, z) in some neigh-
bourhood of the diagonal in M ×M ×M ,
• the distribution TMs(1) is the vertical distribution of the local leaf space
n : Ux → N ,
• for each eigenvalue a, Tn(TxM

s(a)) is the a–eigenspace of Tn(x)S(n(x)) in
Tn(x)N , and

• for each eigenvalue a, the distribution TMs(a) is preserved by all (local)
automorphisms of the parabolic geometry.

Proof. The Claim (1) is a direct consequence of Claims (2) and (3), because κH 6= 0
holds for the harmonic curvature of (G′ → N,ω′) and thus κH = 0 can hold only
in the subset of the fiber corresponding to a (Zariski) closed subset of Q. The
Claim (2) follows from [4, Theorem 3.3] and the fact that (qop+ )s(1) = 0. Then
Claim (3) is a clear consequence of Theorem 5.3. The Claim (4) follows from
the comparison of images in G′ of the S–invariant Weyl structure on N and the
almost S–invariant Weyl structures on Ux, because they intersect precisely in a
reduction to exp(gs−(1)) o G0 ⊂ Q0, i.e., in a subbundle with the structure group
exp(gs−(1))oG0. The Claim (5) is a consequence of Claim (4) of Theorem 5.3 and
Claim (2). �

5.4. Parabolic geometries with gs−1(1) = 0. There are triples (g, p, µ) that are
prolongation rigid outside of the 1–eigenspace of s which admit a 1–eigenspace in
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g− for some s such that gs−1(1) = 0 holds, but which do not generically satisfy
gs−(1) = 0. These are contained in the Tables 5 and 6.

Table 5. Theorem 5.7, part with |Σ| = 1.

g Σ ji1 µ

su(1, 2) {1} 4
√

1 (α1, α2)
su(1, 3), su(2, 2) {1} φ1 (α1, α3)

su(1, 3), su(2, 2) {1} 3
√

1 (α1, α2)
su(q, n+ 1− q) {1} φ1 (α1, αn)

su(q, n+ 1− q) {1} 3
√

1 (α1, α2)

su(q, n+ 1− q) {2} 3
√

1 (α2, α1)

so(3, 5) {3} 3
√

1 (α3, α2)
sp(4,C) {1} φ1 (α1, α1′)

sp(6, {R,C}) {1}
√

1 (α1, α2)
sp(6,C) {1} φ1 (α1, α

′
1)

sp(1, 2), sp(6, {R,C}) {2}
√

1 (α2, α1)

sp(2n, {R,C}) {1}
√

1 (α1, α2)
sp(2n,C) {1} φ1 (α1, α

′
1)

sp(q, n− q), sp(2n, {R,C}) {2}
√

1 (α2, α1)

g2({2,C}) {1} 4
√

1 (α1, α2)

Table 6. Theorem 5.7, part with |Σ| = 2.

g Σ ji1 ji2 µ

sl(3, {R,C}) {1, 2} 4
√

1 4
√

1
3

(α1, α2)

sl(3,C) {1, 2} 5
√

1 5
√

1
3

(α1, α2)

sl(4, {R,C}) {1, 3} j−1
1 (α1, α3)

sl(n+ 1, {R,C}) {1, n} j−1
1 (α1, αn)

so(2, 3), so(5,C) {1, 2} 4
√

1 4
√

1
3

(α1, α2)
so(5,C) {1, 2} j5

1 = 1 or j7
1 = 1 j3

1 (α1, α2)
so(3, 4) {1, 3} j3

3 (α3, α2)

Example 5.6. We see that partially integrable almost CR–structures of hypersur-
face type are contained in the Table 5, i.e., g = su(q, n + 1 − q), q > 0, n > 1 and
Σ = {1}. With the exception of the case n = 2, there are two possible components of
the harmonic curvature such that the triple (su(q, n+1−q), p{1}, µ) is prolongation
rigid outside of the 1–eigenspace of s for s ∈ Z(G0) with the specified eigenvalue.
Moreover, gs−(1) = g−2 holds in all the cases when (su(q, n + 1 − q), p{1}, µ) is
prolongation rigid outside of the 1–eigenspace of s. Let us emphasize that the pos-
sibility s3 = id is available for both components of the harmonic curvature. Since
gs−(1) = g−2, we need some additional assumptions in Theorem 5.7 to show that
(M,S) is (locally, under these assumptions) either a (locally) homogeneous one–
dimensional fiber bundle over (reduced) S1–space, or a Z3–space or a symmetric
space (due to [12, Proposition 7.3], see also [20]) that carries some S–invariant
Weyl connection on TM . In particular, all such parabolic geometries can be clas-
sified using [9, Theorem 5.1.4] and Theorem 5.7, if one knows the classification of
S1–spaces, Z3–spaces and symmetric spaces. Let us emphasize that a part of the
classification is done in [7].



SYMMETRIC PARABOLIC GEOMETRIES 25

As mentioned in the example, we need an additional assumption on where the
local s–symmetries are defined for parabolic geometries in question.

Theorem 5.7. Let (g, p, µ) be prolongation rigid outside of the 1–eigenspace of s for
s ∈ Z(G0) such that gs−1(1) = 0 holds. Assume that for the (locally) s–symmetric
parabolic geometry (G → M,ω) of type (G,P ), the open subset U of M containing
the points at which κH has a non–zero component in µ is non–trivial, and the maps
S(x)(y) and S(x) ◦ S(y)−1(z) are defined on neighbourhoods of diagonals in U ×U
and U × U × U for the unique system S of (local) s–symmetries on U . Then:

(1) The parabolic geometry is (locally) homogeneous and U = M , i.e., κH(x) 6= 0
at all x ∈M and there is a unique smooth system of (local) s–symmetries S on M .

(2) There is a class of distinguished Weyl structures characterized by one of the
following equivalent properties for each Weyl structure σ in the class:

(a) The equalities ∇σTσ = 0, s.(Tσ)σ = (Tσ)σ, ∇σRσ = 0 and s.(Rσ)σ =
(Rσ)σ hold for the torsion and the curvature of the Weyl connection ∇σ.

(b) The Weyl connection ∇σ is S–invariant.
(c) All (local) automorphisms of the parabolic geometry cover affine transfor-

mations of ∇σ.
(d) All (local) diffeomorphisms sσx are affine transformations of ∇σ.

Two Weyl structures σ and σ exp(Υ)σ from the class differ by a G0–equivariant
function (Υ)σ : G0 → ps+(1) which is invariant with respect to all (local) automor-
phisms of the parabolic geometry and is provided by an invariant element of ps+(1).

(3) The pseudo–group generated by all local s–symmetries is transitive on M and
its connected component of identity is generated by the flows of the Lie algebra l,
which is the vector subspace of g−⊕ g0, generated by g− by the bracket (Tσ +Rσ)σ
on ∧2g∗− ⊗ l and the natural bracket on the rest of l.

(4) The equalities

S(x) = sσ(u0) = sσx

hold for any Weyl structure σ from (2). In particular,

• the maps S(x) can be extended to a larger neighbourhood of x as long as
the corresponding geodesic transformations of ∇σ are defined,
• for each eigenvalue a, the distribution TMs(a) is preserved by all (local)

automorphisms of the parabolic geometry.

(5) The distribution TMs(1) is integrable and for each x ∈ M , the leaf Fx of the
foliation F of TMs(1) through x is a totally geodesic submanifold for arbitrary
Weyl structure.

Let n : Ux → N be a sufficiently small local leaf space of TMs(1).

(a) There is a unique local diffeomorphism S(n(y)) of the local leaf space N at
each n(y) ∈ N such that S(n(y)) ◦ n = n ◦ S(x) holds for all y ∈ Ux, and

(b) for each eigenvalue a, Tyn(TyM
s(a)) is the a–eigenspace of Tn(y)S(n(x))

in Tn(y)N for all y ∈ Ux.

Proof. The proof is similar to the proof of Theorem 5.3. However, we need a
different method to prove the local homogeneity in Claim (3), because the existence
of some S–invariant Weyl structure does not follow from Proposition 4.3 anymore.
Therefore we need an additional assumption on the system S on U in order to apply
the following lemma. Nevertheless, the fact from Proposition 4.3 that S(x) = sσ(u0)

holds for any almost S–invariant Weyl structure σ implies that the system S is
smooth on U .
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Lemma 5.8. Suppose the smooth system of (local) s–symmetries S on M satis-
fies that the maps S(x)(y) and S(x) ◦ S(y)−1(z) are defined on neighbourhoods of
diagonals in M ×M and M ×M ×M .

• If c(t) is a curve in M such that c(0) = x and ξ := d
dt |t=0c(t), then the

vector field

Lξ(y) :=
d

dt
|t=0S(c(t)) ◦ S(x)−1(y)

is defined for y in some neighbourhood of x in M .
• Then Lξ(y) is an infinitesimal automorphism of the parabolic geometry.
• If ξ is contained in the a–eigenspace of TxS(x), then Lξ(x) = (1− a)ξ.
• The map ξ 7→ Lξ for ξ ∈ TxM is a linear map onto the Lie algebra of local

infinitesimal automorphisms of the parabolic geometry. Its kernel consists
of the 1–eigenspace of TxS(x) in TxM , and it is injective on the sum of the
remaining eigenspaces in TxM .

Proof of Lemma 5.8. Since S(c(0)) ◦ S(x)−1 = idG , there is a natural lift of Lξ(y)

onto the P–invariant vector field d
dt |t=0S(c(t)) ◦ S(x)−1(u) for u ∈ G in the fiber

over y. Since S(c(t)) ◦ S(x)−1 is an automorphism, the vector field is P–invariant
and d

dt |t=0(S(c(t)) ◦ S(x)−1)∗ω = 0. Thus Lξ(y) is an infinitesimal automorphism.
Since S(c(t))(c(t)) = c(t), we conclude that Lξ(x) + (S(x))∗(ξ) = ξ. Thus

Lξ(x) = ξ − (S(x))∗(ξ) and the claim follows due to the linearity of TxS(x). �

Let us continue in the proof of Theorem 5.7. Since the map ξ 7→ Lξ from
Lemma 5.8 is injective on the bracket generating distribution given by g−1 due to
the assumption gs−1(1) = 0, the local homogeneity follows from the regularity of
the parabolic geometry. This implies Claim (1). Then Claim (4) follows again from
Claim (2).

Since we are on a (locally) homogeneous (locally) s–symmetric parabolic geome-
try, the parabolic geometry can be described as in Theorem A.1. It follows from [12,
Theorem 1.3] that there is aK–invariant Weyl connection∇ on theK–homogeneous
parabolic geometry described Theorem A.1 such that all local automorphisms of
the parabolic geometry are affine transformations of ∇. Therefore it follows from
the last claim of Theorem A.1 that the pullback of ∇ to M does not depend on
the local isomorphism with the K–homogeneous parabolic geometry. Therefore we
obtain a Weyl structure σ that satisfies (2c), which implies the remaining parts
(2a), (2b) and (2d). It is clear that the K–invariant Weyl connection ∇ from [12,
Theorem 1.3] is not unique and the difference between two such Weyl structures is
the claimed Υ provided by a K–invariant element of ps+(1).

The Proposition 4.1 implies that the Weyl structure σ satisfies (2b) if and only
if it satisfies (2d). Again, results in [12, Theorem 1.3] imply that (2b) implies (2c)
and the same arguments as in the proof of Theorem 5.3 show that (2b) implies (2a)
and (2a) implies (2d).

To prove Claim (5), we use the fact that s.(Tσ(x))σ = (Tσ(x))σ holds for the
torsion of the S–invariant Weyl connection ∇σ. Thus TMs(1) is involutive, because
each (almost) S–invariant Weyl connection ∇σ preserves TMs(1). Moreover, the
formula for the difference between ∇σ and arbitrary Weyl connection implies that
the difference in the parallel transport is an element of TMs(1) at each point of
Fx. Thus Fx is a totally geodesic submanifold for any Weyl connection.

We know that S(x) = sσx and this implies S(x)|Fx = sσx |Fx = idFx . If v =

Fl
ω−1(X)
1 (u) for X ∈ gs−(1), then S(x)v = vs holds and y = p ◦ Fl

ω−1(X)
1 (u) ∈ Fx,

because Fx is a totally geodesic submanifold. Thus S(x) is covered by the s–
symmetry at y and S(x) = S(y) holds in some neighbourhood of x due to the
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uniqueness of s–symmetries. Consequently, Claim (5a) holds on a sufficiently small
local leaf space and Claim (5b) is a clear consequence of Claim (4). �
5.5. Parabolic geometries with gs−1(1)+p in a distinguished parabolic sub-
algebra. There are triples (g, p, µ) that are prolongation rigid outside of the 1–
eigenspace of s that admit a 1–eigenspace in g− for some s such that gs−1(1) + p ⊂
q ⊂ gs−(1) + p holds for some parabolic subalgebra q of g such that the harmonic
curvature vanishes on insertions of elements of q/p at all points of M . These are
listed in the Tables 7, 8 and 9, due to [12, Proposition 6.2 and Proposition A.2].

Table 7. Theorem 5.10, part with |Σ| = 2.

g Σ ji1 ji2 µ PR

sl(4,C) {1, 2} j2
2 (α2, α3)

sl(4,C) {1, 3} j2
1 (α1, α2)

su(2, 2) {1, 2} 2r1 (α1, α3) r1 = 0
sl(n+ 1,C) {1, 3} j2

1 (α1, α2)
sl(n+ 1,C) {2, 3} j2

2 (α2, α1)
sl(n+ 1,C) {1, n} j2

1 (α1, α2)
sl(n+ 1,C) {2, n} j2

2 (α2, α1)
su(n, n) {1, n} 2r1 (α1, α2n−1) r1 = 0
so(7,C) {1, 3} j3

3 (α3, α2)
so(8,C) {1, 3} j2

1 (α1, α2)
sp(4,C) {1, 2} 2r1 (α1, α1′) r1 = 0

sp(6, {R,C}) {1, 2} j−2
2 (α2, α1) j2 = −1

sp(6, {R,C}) {1, 2} j2
1 (α1, α2)

sp(6, {R,C}) {1, 3} j2
1 (α1, α2)

sp(6,C) {1, 3} 2r1 (α1, α1′) r1 = 0
sp(6, {R,C}) {2, 3} j2

2 (α2, α1)

sp(2n, {R,C}) {1, 2} j−2
2 (α2, α1) j2 = −1

sp(2n, {R,C}) {1, n} j2
1 (α1, α2) j1 = −1

sp(n2 ,
n
2 ), sp(2n, {R,C}) {2, n} j2

2 (α2, α1) j2 = −1
sp(2n, {R,C}) {1, 2} j2

1 (α1, α2)
sp(2n,C) {1, n} 2r1 (α1, α1′) r1 = 0

Table 8. Theorem 5.10, part with |Σ| = 3.

g Σ ji1 ji2 ji3 µ PR

sl(4,C) {1, 2, 3} j1j
2
2 (α2, α1) j1 = 1

sl(n+ 1,C) {1, 2, 3} j1j
2
2 (α2, α1) j1 = 1

sl(n+ 1,C) {1, 2, n} j1j
2
2 (α2, α1) j1 = 1

sl(n+ 1, {R,C}) {1, p, n}, p > 2 j1jn (α1, αn) j1 = j−1
n

so(8,C) {1, 2, 4} j2
1 (α1, α2) j2 = 1

sp(6, {R,C}) {1, 2, 3} j1j
2
2 (α2, α1) j1 = 1

sp(2n, {R,C}) {1, 2, p}, p < n
√
j1j2

2 (α2, α1) j1 = 1, j2 = −1, jp = 1
sp(2n, {R,C}) {1, 2, n} j1j

2
2 (α2, α1) j1 = 1, j2 = −1

Example 5.9. Let us focus on Lagrangean complex contact geometries, i.e., g =
sl(n+ 1,C) and Σ = {1, n}. If we consider the triple (sl(n+ 1,C), p{1,n}, µ(α1,α2))
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Table 9. Theorem 5.10, part with |Σ| = 4.

g Σ eigenvalues µ PR

sl(n+ 1,C) {1, 2, 3, q}, q < n jq = j1j
2
2j
−1
p (α2, α1) j1 = 1, jp = j2

2

sl(n+ 1,C) {1, 2, p, n}, 3 < p jn = j1j
2
2j
−1
p (α2, α1) j1 = 1, jp = 1

from the Table 7 that is prolongation rigid outside of the 1–eigenspace of s, then
different situations arise depending on the choice of s ∈ Z(G0). If j1 = −1, then
q = gs−(1) + p is a parabolic subalgebra satisfying the assumptions of Theorem 5.5.

If j1 = 3
√

1, then gs−(1) = g−2 and we need the assumptions of Theorem 5.7 to state
the results. We can apply Theorem 5.3 for the other values j1.

In general, q can be a proper subspace of gs−(1) + p and we can (locally) apply
the general result for parabolic geometries from [4] to obtain the following theorem.

Theorem 5.10. Assume (g, p, µ) is prolongation rigid outside of the 1–eigenspace
of s for s ∈ Z(G0) such that q is a maximal parabolic subalgebra of g such that
gs−1(1) + p ⊂ q ⊂ gs−(1) + p and q/p inserts trivially into the harmonic curvature of
the (locally) s–symmetric parabolic geometry (G → M,ω) of type (G,P ). Assume
the open subset U of M containing all points at which κH has a non–zero component
in µ is non–trivial, and the maps S(x)(y) and S(x) ◦ S(y)−1(z) are defined on
neighbourhoods of diagonals in U × U and U × U × U for the unique system S of
(local) s–symmetries on U . Then:

(1) The set U is an open dense subset of M and there is a unique smooth system
of (local) s–symmetries S on M .

(2) There are

• a parabolic subgroup Q of G with the Lie algebra q such that P ⊂ Q,
• a neighbourhood Ux of each x ∈ M with a local leaf space n : Ux → N for

the foliation given by the integrable distribution Tp ◦ ω−1(q), and
• a (locally) s–symmetric parabolic geometry (G′ → N,ω′) of type (G,Q)

satisfying the assumptions of Theorem 5.7

such that (G|Ux → Ux, ω|Ux) is isomorphic to an open subset of (G′ → G′/P, ω′)
for each x. In particular, there is a unique s–symmetry S(n(y)) of (G′ → N,ω′) at
each n(y) ∈ N such that n ◦ S(y) = S(n(y)) ◦ n holds for all y ∈ Ux in the fiber
over n(y).

(3) The connected component of identity of the pseudo–group generated by all local
s–symmetries is generated by the flows of the Lie algebra l, which is the vector sub-
space of qop, generated by qop+ by the bracket (Tσ(n(x))+Rσ(n(x)))σ on ∧2(qop+ )∗⊗ l
and the natural bracket on the rest of l for arbitrary S–invariant Weyl structure σ
on (G′ → N,ω′).

The pseudo–group generated by all local s–symmetries is locally transitive at x if
and only if q/p ⊂ l/(l ∩ p), i.e., if and only if (Rσ(n(x)))σ spans the whole q/p.

(4) There is a class of almost S–invariant Weyl structures on Ux given by reductions
of the images in G′ of the S–invariant Weyl structures on N (that exist due to
Theorem 5.7) to exp(gs−(1))oG0 ⊂ Q0. A reduction corresponds to an S–invariant
Weyl structure on Ux if and only if it is a holonomy reduction.

(5) We get that

• the maps S(x) can be extended to a larger neighbourhood of x as long as
the corresponding geodesic transformations of ∇σ on N are defined,
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• the space TMs(1) is integrable, it contains the vertical space of the local leaf
space n : Ux → N , and Tn(TxM

s(a)) is the a–eigenspace of Tn(x)S(n(x))
in Tn(x)N ,
• for each eigenvalue a, the distribution TMs(a) is preserved by all (local)

automorphisms of the parabolic geometry, and
• all almost S–invariant Weyl connections from Claim (4) restrict to the

same partial linear connection on TM corresponding to the distribution
G0 ×G0 q

op
+ , which is preserved by S(x) for all x ∈M .

Proof. The Claim (1) is a direct consequence of Claims (2) and (3). The Claim (2)
follows from [4] and the fact that (qop1 )s(1) = 0 holds. Then Claim (3) is a clear
consequence of Theorem 5.7. The Claim (4) follows from the comparison of images
in G′ of the S–invariant Weyl structure on N and the almost S–invariant Weyl
structures on Ux, because they intersect precisely in the reduction to exp(gs−(1))o
G0 ⊂ Q0. The Claim (5) is a consequence of Claim (5) of Theorem 5.7 and the
properties of Weyl structures from Claim (4). �
5.6. Parabolic geometries with gs−1(1) that inserts non–trivially into the
harmonic curvature. There are also some remaining parabolic geometries, which
can have a part of gs−1(1) that inserts non–trivially into the harmonic curvature.
These are contained in the Tables 10, 11 and 12.

Example 5.11. Let us continue in the discussion of generalized path geometries
from the Example 5.4. The case when the harmonic curvature κ(α2,α1) vanishes
and the harmonic torsion κ(α1,α2) does not vanish can be found in the Table 10.
There are several possible situations depending on the eigenvalues of s ∈ Z(G0).

If j1 = 1, then we are precisely in the situation which is not covered by any of
the previous theorems and we can apply only the results of Propositions 4.3 and
5.12.

If j1 = −1 and j2 = 1, then we can apply Theorem 5.5 and we are in the situation
of a generalized path geometry on the projectivized cotangent space of an affine
locally symmetric space.

If j1 = −1 and j2 = −1, then gs−(1) = g−2 and we need the assumptions of
Theorem 5.7 to show that we are in the situation of a generalized path geometry
on a (locally) homogeneous (n− 1)–dimensional fiber bundle over an affine locally
symmetric space.

Finally, if j1 = −1 and j2 6=
√

1, then we can apply Theorem 5.3.

The properties of these geometries are as follows.

Proposition 5.12. Assume (g, p, µ) is prolongation rigid outside of the 1–eigenspace
of s for some s ∈ Z(G0). Assume the harmonic curvature κH of a (locally) s–
symmetric parabolic geometry (G → M,ω) of type (G,P ) has a non–zero compo-
nent in µ at all x ∈ M and S is the unique system of (local) s–symmetries on
M . Then the distribution TMs(1) is integrable and for each x ∈M , the leaf Fx of
the foliation F of TMs(1) through x is a totally geodesic submanifold for arbitrary
Weyl connection.

Let n : Ux → N be a sufficiently small local leaf space of TMs(1).

• There is a unique local diffeomorphism S(n(y)) of the local leaf space N at
each n(y) ∈ N such that S(n(y)) ◦ n = n ◦ S(x) holds for all y ∈ Ux, and
• for each eigenvalue a, Tyn(TyM

s(a)) is the a–eigenspace of Tn(y)S(n(y))
for all y ∈ Ux.

Proof. The proof is analogous to the proof of Claim (6) of Theorem 5.7, but, instead
of an S–invariant Weyl structure σ, we need to consider some almost S–invariant
Weyl structure invariant at x from Claim (3) of Proposition 4.3 for each x ∈M . �
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Table 10. Theorem 5.12, part with |Σ| = 2.

g Σ ji1 ji2 µ

sl(3,C) {1, 2} 2φ2 (α1, α2′)

sl(4, {R,C}) {1, 2}
√

1 (α1, α2)
sl(4,C) {1, 2} 2φ2 (α1, α2′)
sl(4,C) {1, 3} 2φ3 (α1, α3′)

su(2, 2) {1, 2} r1

√
1 (α2, α1)

su(2, 2) {1, 2} 3
√

1 (α1, α2)

sl(n+ 1, {R,C}) {1, 2}
√

1 (α1, α2)
sl(n+ 1, {R,C}) {1, p}, 2 < p < n 1 (α1, αp)

sl(n+ 1,C) {1, p} 2φp (α1, αp′)
su(q, n− q + 1) {1, 2} − 2

3φ1 (α2, α1)

so(3, 4), so(7,C) {2, 3} 3
√

1 (α3, α2)
so(2, 5), so(3, 4), so(7,C)

so(2, 6), so(3, 5), {1, 2} 1 (α2, α1)
so(4, 4), so(7,C)

so(3, 5) {2, 3} 3
√

1 (α3, α2)
so(q, n− q), so(n,C) {1, 2} 1 (α2, α1)

sp(4, {R,C}) {1, 2} 3
√

1 (α1, α2)
sp(4,C) {1, 2} 2φ2 (α1, α2′)
sp(4,C) {1, 2} − 2

5φ2 (α1′ , α2′)
sp(6, {R,C}) {1, 3} 1 (α1, α3)
sp(6, {R,C}) {2, 3} 1 (α2, α3)

sp(6,C) {1, 3} 2φ3 (α1, α3′)
sp(6,C) {2, 3} − 2

5φ3 (α2′ , α3′)
sp(2n, {R,C}) {1, n} 1 (α1, αn)
sp(2n, {R,C}) {n− 1, n} 1 (αn−1, αn)

sp(2n,C) {1, n} 2φn (α1, αn′)
sp(2n,C) {n− 1, n} − 2

5φn (αn−1′ , αn′)

g2({2,C}) {1, 2} 4
√

1 (α1, α2)

Table 11. Theorem 5.12, part with |Σ| = 3.

g Σ ji1 ji2 ji3 µ PR

sl(4, {R,C}) {1, 2, 3} j2
1 (α1, α2)

sl(n+ 1, {R,C}) {1, 2, 3} j2
1 (α1, α2)

sl(n+ 1, {R,C}) {1, 2, p}, 3 < p < n j2
1 (α1, α2) j1 =

√
1

sl(n+ 1, {R,C}) {1, 2, n} j2
1 (α1, α2)

sl(n+ 1, {R,C}) {1, 2, n} j1jn (α1, αn)
so(3, 4), so(7,C) {1, 2, 3} j3

3 (α3, α2)

Table 12. Theorem 5.12, part with |Σ| = 4.

g Σ ji1 ji2 ji3 ji4 µ PR

sl(n+ 1, {R,C}) {1, 2, 3, n} j1j
2
2j
−1
p (α2, α1) j1 = 1

5.7. Parabolic geometries that do not admit non–flat examples. There are
triples (g, p, µ) that are prolongation rigid outside of the 1–eigenspace of s for some
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s ∈ Z(G0), but they admit only flat (locally) s–symmetric parabolic geometries
due to the structure of the harmonic curvature and [11, Lemma 2.2]. These are
contained in the Table 13.

Table 13. Flat geometries.

g Σ ji1 ji2 µ

sl(3,C) {1} 3
√

1 1 (α1, α2)
sl(3, {R,C}) {1, 2} j4

1 6= 1, j5
1 6= 1 j3

1 (α1, α2)

so(5,C) {1} 3
√

1 1 (α1, α2)
so(2, 3), so(5,C) {1, 2} j4

1 6= 1, j5
1 6= 1, j7

1 6= 1 j3
1 (α1, α2)

5.8. Parabolic geometries with more non–zero components of the har-
monic curvature. Let us also look at the parabolic geometries that allow a har-
monic curvature κH with several non–zero components µi such that for each µi the
triple (g, p, µi) is not prolongation rigid outside of the 1–eigenspace of s. In the
Table 14, we present the complete classification of all triples (g, p, µi) that are not
prolongation rigid outside of the 1–eigenspace of s for the same s ∈ Z(G0), but for
which ai in Proposition 3.5 is contained in the 1–eigenspaces of s when the har-
monic curvature has non–zero component in each µi. Geometric properties of the
geometries from the Table 14 can be deduced from the previous sections depending
on the position and shape of gs−(1) inside of g−.

Table 14. More non–zero components of the harmonic curvature.

g Σ eigenvalues µ

sl(4,C) {1, 2} j1 = 4
√

1
2
, j2 = 4

√
1 (α2, α3), (α2, α1)

sl(n+ 1,C) {1, n− 1} j1 = 3
√

1, jn−1 = 3
√

1
2

(α1, α2), (αn−1, αn)

sl(n+ 1,C) {2, n− 1} j2 = 3
√

1, jn−1
3
√

1
2

(α2, α1), (αn−1, αn)

sl(4,C) {1, 2, 3} j2 = 4
√

1, j3 = j1( 4
√

1)2 (α2, α1), (α2, α3)

sl(n+ 1, {R,C}) {1, 2, n− 1, n} jn−1 = j−1
2 , jn = j1j

3
2 (α2, α1), (αn−1, αn)

5.9. Remaining parabolic geometries with µ in the 1–eigenspace of s. For
the sake of completeness, let us remark that there are triples (g, p, µ) that are not
prolongation rigid outside of the 1–eigenspace of s for any s such that µ is in the
1–eigenspace of s. These are contained in the Table 15.

Table 15. Remaining parabolic geometries with µ in the 1–
eigenspace of s.

g Σ ji1 ji2 µ

sl(n+ 1, {R,C}) {p, p+ 1}, n− 1 > p > 1 1 (αp+1, αp)
so(q, n− q), so(n,C) {2, 3} 1 (α3, α2)
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Appendix A. A construction of locally homogeneous locally
s–symmetric parabolic geometries

It is proved in [11, Section 2] how to algebraically construct and classify all
homogeneous s–symmetric parabolic geometries. Part of the classification is done
in [7, 8] using the classification of semisimple symmetric spaces. There is the result
from [9, Section 1.3] and [11, Lemma 2.2] stating that for the construction and the
classification of locally homogeneous locally s–symmetric parabolic geometries, it
is sufficient to find the following data:

• an extension (α, i) of the Klein geometry (K,H) to (G,P ) such that the
action of s preserves α(k) ⊂ g, and s acts trivially on the tensor [·, ·] −
α([α−1(·), α−1(·)]) in ∧2g/p∗ ⊗ g, and
• the subset A of P consisting of elements g ∈ P , which act as local auto-

morphisms on the parabolic geometry (K ×i P → K/H,ωα) of type (G,P )
given by the extension (α, i).

If U and V are open subsets of K/H such that there are k ∈ K, g ∈ A and a
maximal open subset W of U such that kg(W ) ⊂ V , then we can glue K×iP |U → U
with K ×i P |V → V by identifying w ∈ W ⊂ U with kg(w) ∈ V , and glue the
Cartan connection ωα|U with the pullback connection (kg)∗ωα|V = ωα|(kg)∗(V ).
Of course, we can without loss of generality assume that U , V and W are simply
connected, because we can always choose coverings of our manifolds by open sets
satisfying this condition. Therefore, we can also assume that the automorphism k
is given by the flow of a local infinitesimal automorphism of (K ×i P → K/H,ωα).
Then we obtain the following result as a consequence of the construction in [12,
Section 3] and [9, Section 1.3].

Theorem A.1. Let (G → M,ω) be a locally homogeneous locally s–symmetric
parabolic geometry, let k be the Lie algebra of the local infinitesimal automorphisms
and denote by α the inclusion of k into g given by ω(u) at some u ∈ G. Then:

(1) Ad(s)(k) ⊂ k is an automorphism of the Lie algebra k,
(2) there exist (see [12, Section 3] for the explicit construction)

• a Klein geometry (K,H) such that k is the Lie algebra of K,
• an extension (α, i) of (K,H) to (G,P ),
• an open covering Ua of M , and
• isomorphisms φa : Ui → K/H of parabolic geometries (G|Ua → Ui, ω|Ub)

and (K ×i P |φa(Ua) → φa(Ua), ωα|φa(Ua)) of type (G,P ) such that

φa ◦ φ−1
b is the restriction of the left action of some element of K

for each a, b.
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J.G. E. Čech Institute, Mathematical Institute of Charles University, Sokolovská

83, Praha 8 - Karĺın, Czech Republic; L.Z. Institute of Mathematics and Biomathemat-
ics, Faculty of Science, University of South Bohemia, Branǐsovská 31, České Budějovice
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ON SYMMETRIC CR GEOMETRIES OF HYPERSURFACE

TYPE

JAN GREGOROVIČ AND LENKA ZALABOVÁ

Abstract. We study non–degenerate CR geometries of hypersurface type
that are symmetric in the sense that, at each point, there is a CR transforma-

tion reversing the CR distribution at that point. We show that such geome-

tries are either flat or homogeneous. We show that non–flat non–degenerate
symmetric CR geometries of hypersurface type are covered by CR geometries

with a compatible pseudo–Riemannian metric preserved by all symmetries.

We construct examples of simply connected flat non–degenerate symmetric
CR geometries of hypersurface type that do not carry a pseudo–Riemannian

metric compatible with the symmetries.

1. Introduction

In [10], Kaup and Zaitsev generalized Riemannian symmetric spaces to the set-
ting of CR geometries, i.e., smooth manifolds with so–called CR distribution en-
dowed with a formally integrable complex structure. They consider Riemannian
metrics, whose restrictions to the CR distribution is Hermitian. Such manifold is
symmetric in the sense of [10] if, at each point, there is an isometric CR trans-
formation that preserves the point and which, at that point, acts as −id on the
CR distribution [10, Definition 3.5.]. They show that such isometric CR trans-
formations are uniquely determined by the tangent action on the CR distribution
[10, Theorem 3.3]. They also show that such CR geometries are homogeneous [10,
Proposition 3.6]. In fact, these CR geometries may be considered as reflexion spaces
in the sense of [12]. In [1], the authors study these CR geometries in the setting of
so–called CR algebras.

We studied in [9] filtered geometric structures that carry an automorphism at
each point that fixes the point and acts as −id on a distinguished part of the fil-
tration at the point. Let us point out that the non–degenerate CR geometries of
hypersurface type, i.e., those with CR distribution of codimension 1, are among
these geometries. We answered the question whether these filtered geometries are
homogeneous and can be considered as reflexion spaces. However, our result [9, The-
orem 5.7.] holds under weaker conditions than the result of [10] for non–degenerate
CR geometries of hypersurface type. In particular, the sufficient condition for such
non–degenerate CR geometry of hypersurface type to be homogeneous is that it is
non–flat at one point.

In this paper, we study the case of non–degenerate CR geometries of hypersurface
type in more detailed way. We consider point preserving CR transformations which,
at that point, induce −id on the CR distribution. We say that a non–degenerate CR
geometry of hypersurface type is symmetric (in our sense) if there exists a symmetry
at each point, see Definition 1. In particular, our definition does not require the
existence of a metric compatible with the CR geometry. We adapt and significantly
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improve general results of [5, 8, 9] for our particular class of CR geometries. Let
us emphasize that every non–degenerate CR geometry of hypersurface type that is
symmetric in the sense of [10] is symmetric (in our sense).

Let us say that [9, Theorem 5.7.] is formulated in the general setting of par-
abolic geometries. We provide here the particular results of this theorem for CR
geometries. We also provide new direct proofs, because we will need the presented
ideas to explain new results, see Lemmas 2, 3 and Propositions 1, 2. This allows
us to compare our results with results of [10] and [1].

We prove in Theorem 2 that non–flat non–degenerate CR geometries of hyper-
surface type that are symmetric (in our sense) are covered by symmetric non–
degenerate CR geometries of hypersurface type that carry a pseudo–Riemannian
metric compatible with the CR geometry that is preserved by all our symmetries.
In the Riemannian signature, these coverings are symmetric in the sense of [10], see
Theorem 3. Moreover, we show in Theorem 4 that it is always possible to embed
the CR geometry on these coverings into a complex manifold. In the Riemannian
signature, this embedding is provided by a different construction than the one in
[10, Proposition 7.3].

Finally, we construct examples of non–homogeneous symmetric (in our sense)
flat non–degenerate CR geometries of hypersurface type. These examples do not
admit a pseudo–Riemannian metric that would be preserved by some symmetry at
each point and in particular, they are not symmetric in the sense of [10]. We also
discuss examples of homogeneous CR geometries on orbits of real forms in complex
flag manifolds. In particular, we show that there are homogeneous CR geometries
which are locally symmetric but not globally symmetric. In fact, Proposition 8
provides complete description of all possible cases.

2. CR geometries of hypersurface type

2.1. CR geometries. Let M be a smooth manifold of dimension 2n+ 1 for n > 1
together with a distribution H ⊂ TM of dimension 2n and a complex structure J
on H, i.e., J : H → H is an endomorphism with the property that J2 = −id. The
triple (M,H, J) is called a CR geometry of hypersurface type if the i–eigenspace
H1,0 of J in the complexification of H is integrable, i.e., [H1,0,H1,0] ⊂ H1,0. A CR
geometry (M,H, J) is called non–degenerate if H is completely non–integrable.

On H there exists a symmetric bilinear form h with values in the line bundle
TM/H given by h(ξ, η) = 1

2π([ξ, Jη]) for all ξ, η ∈ Γ(M,H), where π : TM →
TM/H is a natural projection. Let us recall that h is the real part of the Levi form

h̃ of (M,H, J) whose imaginary part is the map given by 1
2π([ξ, η]). We assume

that M is orientable and denote by (p, q) the signature of the Levi form, where our
convention is p ≤ q, p+ q = n. Then the signature of h is (2p, 2q).

The homogeneous space PSU(p+1, q+1)/P is usually called the standard model
of a non–degenerate CR geometry of hypersurface type of signature (p, q), where
P in PSU(p + 1, q + 1) is the stabilizer of the complex line generated by the first
basis vector in the standard basis of Cn+2. We use the convention that elements
of PSU(p+ 1, q + 1) are represented (up to a multiple) by matrices preserving the
Hermitian form given for u, v ∈ Cn+2 by

m(u, v) = uT




0 0 1
0 I 0
1 0 0


 v,

where I is a square matrix of order n defining a Hermitian inner product of signature
(p, q). In [2], the matrix I is chosen to be diagonal with the first p entries equal to
1 and the remaining q entries equal to −1.
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The standard model PSU(p+1, q+1)/P is a smooth real hypersurface in CPn+1

that can be also viewed as the projectivization of the null cone of m in Cn+2.
In the rest of the paper, by a CR geometry we mean a non–degenerate CR

geometry of hypersurface type of signature (p, q) for p ≤ q. Such CR geometries
can be equivalently described as parabolic geometries modeled on standard models
PSU(p+ 1, q + 1)/P . This description can be found in [2, Section 4.2.4]. We only
use several consequences of this description later in the text.

2.2. Distinguished connections. There exist many admissible connections, i.e.,
connections preserving H and J , on CR geometries. In particular, there are several
distinguished classes of admissible connections given by a particular normalization
condition on the torsion of admissible connections in the class. The most commonly
used are Tanaka–Webster [2, Section 5.2.12] and Weyl [2, Sections 5.1.2 and 5.2.13]
connections. In this paper we will use the latter, since in some arguments we need
to relate CR and geodesic transformations for the so–called normal Weyl connection
[2, Section 5.1.12].

In fact, Tanaka–Webster connections and Weyl connections induce the same class
of distinguished partial connections ∇ on H. Two distinguished partial connections
∇ and ∇̂ are related by

∇̂ξ(η) = ∇ξ(η) + F (ξ)η + F (η)ξ − h(ξ, η)h−1(F ) for all ξ, η ∈ Γ(M,H),(1)

where F is a one–form on H and h is the duality map associated to the real part
of the Levi form. Note that while the duality map depends on the choice of a local
trivialization of TM/H, the composition h(ξ, η)h−1(F ) does not depend on this

choice. We will write for short “∇̂ = ∇ + F” for the partial connection described
by (1).

Each Weyl connection D is associated to the choice of decompositions TM '
H ⊕ `, T ∗M ' H∗ ⊕ `∗, for a one dimensional complementary distribution ` of H
and with H∗, `∗ being the annihilator bundles of `,H, respectively. The one-form
F in H∗ from formula (1) then describes the difference of the two decompositions

of TM (and T ∗M) associated with D and D̂. The precise formula for the change
of decompositions can be easily computed using [2, Section 5.1.5].

The explicit formula for the relation between two arbitrary Weyl connections D
and D̂ is complicated and can be computed using [2, Section 5.1.6]. This relation
is given by an action of a one–form Υ = Υ1 +Υ2 in T ∗M = H∗⊕ `∗ on the space of
Weyl connections, which we write as D̂ = D+Υ1 +Υ2, because this action is linear
in Υ. Let us point out that the decomposition Υ1 + Υ2 of Υ is the decomposition
associated with the Weyl connection D and that Υ1 coincides with F from formula
(1) for the corresponding partial connections ∇, ∇̂ determined by D, D̂.

Let us finally point out that admissible connections provide the fundamental
invariant W of CR geometries which is known as Chern–Moser or Weyl tensor
and coincides with the totally trace–free part of the curvature of arbitrary Weyl
or Tanaka–Webster connections. Vanishing of this invariant implies that a CR
geometry is flat, meaning that is locally equivalent to the standard model PSU(p+
1, q + 1)/P .

3. Symmetries of CR geometries

3.1. Definition of symmetries. A CR transformation of a CR geometry (M,H, J)
is a diffeomorphism of M whose tangent map preserves the CR distribution H and
whose restriction to H is complex linear. We study the following CR transforma-
tions.
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Definition 1. A symmetry at x ∈ M on a CR manifold (M,H, J) is a CR trans-
formation Sx of M such that:

(1) Sx(x) = x,
(2) TxSx = −id on H.

We say that a CR geometry is symmetric if there is a symmetry at each point
x ∈M . A system of symmetries on M is a choice of a symmetry Sx at each x ∈M .
We call the system smooth, if the map S : M ×M → M given by S(x, y) = Sx(y)
is smooth.

Let us show that the standard model PSU(p + 1, q + 1)/P is symmetric. The
Lie group PSU(p+ 1, q+ 1) is the group of all CR transformations of the standard
model PSU(p + 1, q + 1)/P , where we consider left action. Direct computation
shows that all symmetries of the standard model PSU(p+ 1, q+ 1)/P at the origin
eP are represented by (1, n, 1)–block matrices of the form

sZ,z =



−1 −Z iz + 1

2ZIZ
∗

0 E −IZ∗
0 0 −1


 ,(2)

where Z ∈ Cn∗, z ∈ R∗ are arbitrary and E is the identity matrix of the rank
n = p+ q.

Lemma 1. There are infinitely many symmetries at each point kP of PSU(p +
1, q+ 1)/P given by matrices of the form ksZ,zk

−1 for all Z ∈ Cn∗ and z ∈ R∗. In
particular:

(1) There are infinitely many involutive symmetries at each point characterized
by the condition z = 0. For each such symmetry, there is a different metric
preserved by this symmetry compatible with the CR geometry.

(2) There are infinitely many non–involutive symmetries at each point charac-
terized by the condition z 6= 0. They do not preserve any metric compatible
with the CR geometry.

Proof. An element sZ,z belongs to a compact subgroup of PSU(p+ 1, q+ 1) if and
only if z = 0. �

The standard model PSU(p+1, q+1)/P is endowed with a pseudo–Riemannian
metric compatible with the CR geometry given by a choice of a maximally compact
subgroup of PSU(p+1, q+1), which always acts transitively on the standard model.
Moreover, there is exactly one involutive symmetry at each point of this model that
is contained in the chosen maximal compact subgroup. These symmetries preserve
the corresponding pseudo–Riemannian metric and form a smooth system. This
means that in the Riemannian signature, the standard model PSU(1, n + 1)/P is
symmetric in the sense of [10].

On flat CR geometries, local symmetries are defined as in the standard model,
but may not extend globally. This means that on flat CR geometries, there is
always locally a pseudo–Riemannian metric compatible with some local CR sym-
metry at each point. We show in Example 1 that such pseudo–Riemannian metrics,
compatible with a system of CR symmetries, may not exist globally.

3.2. Involutive and non–involutive symmetries. Suppose that there is a sym-
metry Sx at x on a CR geometry (M,H, J). If D is a Weyl connection, then S∗xD
is a Weyl connection, too. Therefore, there is a one–form Υ1 + Υ2 ∈ H∗ ⊕ `∗ such
that

S∗xD = D + Υ1 + Υ2.(3)
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Lemma 2. Suppose Sx is a symmetry at x ∈ M . Let D be an arbitrary Weyl
connection and let Υ1 + Υ2 ∈ H∗⊕ `∗ be the one–form from formula (3). Then the
following claims are equivalent:

(1) the symmetry Sx is involutive,
(2) Υ2(x) = 0, and
(3) the diffeomorphism Sx is linear in the normal coordinates given by the nor-

mal Weyl connection D̄ at x that is uniquely determined by the property
that D̄ coincides with the Weyl connection D + 1

2Υ1 at x.

Moreover, the partial connection ∇Sx induced by the Weyl connection DSx := D+
1
2Υ1 does not depend on the choice of D at x and satisfies

• S∗x(∇Sx) = ∇Sx at x, and
• ∇SxW (x) = 0.

Proof. Iterating the formula (3) we compute

S∗xS
∗
xD = D + Υ1 + S∗x(Υ1) + Υ2 + S∗x(Υ2).

The component of the (dual) action of TxSx on T ∗xM preserving the decomposition
T ∗xM = H∗(x)⊕ `∗(x) is −id⊕ id, and the component that maps H∗(x) into `∗(x)
depends linearly on Υ1 and is antisymmetric as a map H∗(x) ⊗ H∗(x) → `∗(x).
Therefore, S∗x(Υ1)(x) = −Υ1(x) and S∗x(Υ2)(x) = Υ2(x).

If the symmetry Sx is involutive, i.e., S2
x = id, then

0 = Υ2(x) + S∗x(Υ2)(x) = 2Υ2(x)

and thus Υ2(x) = 0.
If Υ2(x) = 0, then the normal Weyl connection D̄ that coincides with the Weyl

connection D + 1
2Υ1 at x satisfies

S∗x(D +
1

2
Υ1) = D + Υ1 + S∗x(

1

2
Υ1).

At the point x, we get

Υ1(x) + S∗x(
1

2
Υ1)(x) = Υ1(x)− 1

2
Υ1(x) =

1

2
Υ1(x)

and thus S∗xD̄ = D̄ follows from the normality [2, Section 5.1.12]. Thus Sx is an
affine map, which is linear in the normal coordinates.

If the symmetry Sx at x is linear in the normal coordinates of a Weyl connection,
then its (dual) tangent action preserves the decomposition T ∗xM = H∗(x) ⊕ `∗(x)
and therefore (TxSx)2 = id. Then it follows from the linearity that Sx is involutive.

Finally, the last claim follows, because (∇SxW )(x) is a tensor of type ⊗4H∗x⊗Hx
invariant with respect to Sx. �
Lemma 3. Suppose that there is a symmetry Sx at x ∈M . Let D be an arbitrary
Weyl connection and let Υ1 + Υ2 ∈ H∗ ⊕ `∗ be the one–form from formula (3). If
W (x) 6= 0, then Υ2(x) = 0 and the symmetry Sx is involutive.

Proof. Consider the covariant derivative of W with respect to D + 1
2Υ1 in the

direction ` and compute S∗x(D + 1
2Υ1)rW (x) for r ∈ `(x). We know that W (x) is

Sx–invariant and thus

S∗x(D +
1

2
Υ1)rW (x) = (D +

1

2
Υ1)S∗x(r)W (x) = (D +

1

2
Υ1)rW (x).

On the other hand, it generally holds that S∗x(D + 1
2Υ1) = D + 1

2Υ1 + Υ2 and
Υ2(x) = aθ(x) for a covector θ ∈ `∗(x) such that θ(r) = 1. Then

S∗x(D +
1

2
Υ1)rW (x) = (D +

1

2
Υ1)rW (x) + 2aW (x)

and thus a = 0 which implies Υ2(x) = 0. �
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3.3. Smooth systems of involutive symmetries. Let us show that the assump-
tion that W does not vanish at any point not only implies that all symmetries are
involutive, but also that at each point of M there is exactly one symmetry Sx and
the Sx’s make a smooth system on M :

Proposition 1. Suppose that (M,H, J) is a symmetric CR geometry and that
W (x) 6= 0 for all x ∈M . Then

(1) there is a unique symmetry Sx at each x ∈M ,
(2) the map S : x 7→ Sx is smooth, and
(3) Sx ◦ Sy ◦ Sx = SSx(y) holds for all x, y ∈M .

In particular, (M,S) is a reflexion space, i.e., S : M ×M →M is a smooth map
that for all x, y, z ∈M satisfies that

• S(x, x) = x,
• S(x, S(x, y)) = y, and
• S(x, S(y, z)) = S(S(x, y), S(x, z)).

Proof. We show that if there are two different symmetries at x on a CR geometry
(M,H, J), then W vanishes at x. Consider two different symmetries Sx and S′x
at x (both must be involutive). We know from Lemma 2 that ∇SxW (x) = 0 and

∇S′xW (x) = 0 hold for partial connections ∇Sx ,∇S′x . These partial connections are

different (at x) due to the claim (3) of Lemma 2, i.e., ∇S′x = ∇Sx+F holds according
to the formula (1) for F (x) 6= 0. This means that the linear map Hx → Hx given
by

η 7→ (F (ξ)η + F (η)ξ − h̃(ξ, η)h̃−1(F ))(x)(4)

defines a non–zero element ξ(F )(x) of a Lie algebra csu(p, q) for each ξ ∈ Hx, where
we identify csu(p, q) with

{X ∈ gl(Hx) : [X, Jx] = 0, hx(X(ξ), ν) + hx(ξ,X(ν)) = a · hx(ξ, ν), a ∈ R}.
Moreover, the element ξ(F )(x) of csu(p, q) has to act trivially on W (x) for all
vectors ξ. Let us denote by ann(Wx) the set of all A ∈ csu(p, q) such that A acts
trivially on W (x). Then we get

F (x) ∈ ann(Wx)(1) := {F : ξ(F )(x) ∈ ann(Wx) for all ξ ∈ Hx}.
The result of [11] states that if W (x) is non–trivial, then ann(Wx)(1) = 0, and thus
ξ(F )(x) = 0 for all ξ ∈ Hx. Since ξ(−)(x) : H∗x → csu(p, q) is a linear map at each
x ∈M , this implies F (x) = 0, which is a contradiction. This proves the uniqueness
of symmetries at x in the case W (x) 6= 0.

Since Sx ◦ Sy ◦ Sx is a symmetry at Sx(y), the condition Sx ◦ Sy ◦ Sx = SSx(y)

trivially follows from the uniqueness of symmetries. Thus it remains to prove the
smoothness of S.

Let us fix a partial Weyl connection ∇. For each y ∈M , there is F (y) such that
(∇Sy−∇)(y) = F (y) by the formula (1), which is well–defined due to the uniqueness
of ∇Sy at y. Thus ∇W (y) is given by the algebraic action (4) of ξ(F (y)) on W (y)
for each ξ ∈ Hy. Since ∇W (y) is smooth, the image of ξ(F (y)) in csu(p, q) depends
smoothly on y for each ξ ∈ Hy. Since the kernel of the action coincides with

ann(Wy)(1), we conclude that F (y) depends smoothly on y.
Let D be an arbitrary Weyl connection inducing the partial Weyl connection

∇. Then Sy is linear in the normal coordinates of the normal Weyl connection D̄
constructed for D + 1

2F (y) due to the claim (3) of Lemma 2. Since D̄ depends
smoothly on y, we get that S is smooth.

It clearly holds that Sx(x) = x and S2
x = id for all x ∈M . We have proved that

S is smooth and satisfies Sx ◦ Sy = SSx(y) ◦ S−1
x = SSx(y) ◦ Sx for all x, y ∈ M .

Thus it follows that (M,S) satisfies the conditions of the reflexion space. �
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Proposition 1 has the following consequence.

Proposition 2. Suppose that (M,H, J) is a symmetric CR geometry. Then either

(1) W = 0 and the CR geometry is locally equivalent to the standard model, or
(2) W 6= 0 and the CR symmetries generate a transitive Lie group of CR

transformations of M . In particular, the CR manifold (M,H, J) and the
reflection space (M,S) from Proposition 1 are homogeneous.

Proof. Suppose that U ⊂ M consists of all points with non–trivial W . It suffices
to prove that the group generated by symmetries at points in U acts transitively
on U to obtain the claim of the Theorem, because then W is constant on U due to
the homogeneity. The fact that the group generated by symmetries on a reflexion
space is a Lie group can be found in [12].

Let c(t) be a curve in U such that c(0) = x and d
dt |t=0c(t) = X ∈ Hx. Then

d
dt |t=0Sc(t)(x) is tangent to the orbit of the action of the group generated by sym-
metries at points in U . Differentiation of the equality c(t) = Sc(t)c(t) gives

X =
d

dt
|t=0Sc(t)(c(t)) =

d

dt
|t=0Sc(t)(x) + TxSx.X,

and we get
d

dt
|t=0Sc(t)(x) = X − TxSx.X = 2X.

Thus at all x ∈ U , the CR distribution H is tangent to the orbit of the group gen-
erated by symmetries at points in U . Therefore the group generated by symmetries
at points in U acts transitively on U . �

Flat symmetric CR geometries do not have to be homogeneous. We construct
an explicit example in Section 6.

4. Non–flat symmetric CR geometries

4.1. Homogeneous CR geometries and their symmetries. There are sev-
eral possible ways of describing a homogeneous CR geometry. We will use the
description from [2, Section 1.5.15] that is closely related to the setting of Cartan
geometries, but as we show in this section, it can be treated independently of the
general theory. We need only to recall that the Lie algebra su(p + 1, q + 1) of
PSU(p+ 1, q + 1) consists of the (1, n, 1)–block matrices



a Z iz
X A −IZ∗
ix −X∗I −ā


 ,

where csu(p, q) = {(a,A) : a ∈ C, A ∈ u(p, q), a + tr(A) − ā = 0}, X ∈ Cn,
Z ∈ Cn∗, x ∈ R and z ∈ R∗. This means that we have the following decomposition

su(p+ 1, q + 1) = R⊕ Cn ⊕ csu(p, q)⊕ Cn∗ ⊕ R∗.
The Lie algebra p of P corresponds to (1, n, 1)–block upper triangular part and
decomposes as p = csu(p, q) ⊕ Cn∗ ⊕ R∗. In fact, P ∼= CSU(p, q) exp(Cn∗ ⊕ R∗),
where CSU(p, q) consists of all elements of P whose adjoint action preserves the
above decomposition.

Lemma 4. Let K be an arbitrary transitive Lie group of CR transformations of
a homogeneous CR geometry (M,H, J) and let L ⊂ K be the stabilizer of a point.
Then there is a pair of maps (α, i) such that i is an injective Lie group homomor-
phism i : L → P and α is a linear map α : k → su(p + 1, q + 1) satisfying the
following conditions:

(1) α : k→ su(p+ 1, q + 1) is a linear map extending Tei : l→ p,
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(2) α induces an isomorphism α : k/l→ su(p+ 1, q + 1)/p of vector spaces,
(3) Ad(i(l)) ◦ α = α ◦Ad(l) holds for all l ∈ L,
(4) the linear map ∧2k → su(p + 1, q + 1) given on X ∧ Y by [α(X), α(Y )] −

α([X,Y ]) for all X,Y ∈ k takes values in p and defines a K–invariant
two–form κ on M with values in K ×Ad◦i p,

(5) the component of κ in K ×Ad◦i csu(p, q) is a tensor that coincides with W ,
where Ad is the induced action of P on csu(p, q) ∼= p/(Cn∗ ⊕ R∗).

Conversely, suppose that (α, i) is such pair of maps from (K,L) to (PSU(p +
1, q + 1), P ). Then there is a K–homogeneous CR geometry (K/L,H, J) satisfying
HeL = α−1(Cn ⊕ p)/l and JeL = α∗(J), where J is the complex structure on Cn.

A pair (α, i) satisfying conditions (1)–(3) of Lemma 4 is usually called an ex-
tension of (K,L) to (PSU(p + 1, q + 1), P ). The two–form κ from condition (4)
is the curvature of the Cartan connection given by the extension (α, i). Finally,
the normalization condition (5) on the curvature κ can also be expressed by the
vanishing (∂∗κ = 0) of Kostant’s codifferential [2, Section 3.1.11].

Proof. It is shown in [2, Section 1.5.15] that each homogeneous Cartan (and thus
parabolic) geometry can be described by a particular extension and that each exten-
sion determines a homogeneous Cartan geometry. The formula for κ in condition
(4) is obtained from [2, Section 1.5.16]. Therefore, it follows from the description
of CR geometries in [2, Section 4.2.4] that conditions (4) and (5) on the curvature
κ have to be satisfied. �
Definition 2. The pair (α, i) from Lemma 4 is called a normal extension of (K,L)
to (PSU(p+ 1, q + 1), P ) describing the homogeneous CR geometry (M,H, J).

Examples of normal extensions describing homogeneous CR geometries and the
explicit formula from condition (5) of Lemma 4 can be found in [4].

It is clear from the second part of Lemma 4 that the maps i and α are sufficient
to determine a CR geometry. This means that there are many normal extensions
(α, i) of (K,L) to (PSU(p + 1, q + 1), P ) describing the same CR geometry. The
other parts of α are completely determined by condition (5) from Lemma 4 and
carry the information about Weyl connections. The remaining freedom (for fixed
i) is in the choice of a complex basis of α−1(Cn). In general, if h ∈ P , then the pair
(Ad(h)◦α, conj(h)◦ i) is also a normal extension of (K,L) to (PSU(p+1, q+1), P )
describing the same CR geometry.

Let us summarize the results characterizing symmetric non–flat homogeneous
CR geometries following from [7, 8].

Proposition 3. Let K be the Lie group of all CR transformations of a non–flat
homogeneous CR geometry (M,H, J). Then the following is equivalent:

(1) There is a (unique) symmetry at each point.
(2) There is s ∈ L such that the triple (K,L, s) is a (non–prime) homogeneous

reflexion space, i.e.,
• s commutes with all elements of L,
• s2 = e, where e is the identity element of L, and
• all symmetries are of the form SkL = ksk−1 for k ∈ K.

(3) There is a normal extension (α, i) of (K,L) to (PSU(p + 1, q + 1), P ) de-
scribing (M,H, J) such that i(L) ⊂ CSU(p, q) and s0,0 ∈ i(L) (see the
formula (2)).

(4) For each normal extension (α, i) of (K,L) to (PSU(p + 1, q + 1), P ) de-
scribing (M,H, J), there is a (unique) Z ∈ Cn∗ such that Ad(exp(Z))α(k)
is preserved by Ad(s0,0), and the Lie algebra automorphism of k given by
Ad(s0,0) defines an automorphism of the Lie group K.
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The condition (3) of Proposition 3 immediately implies that there areK–invariant
Weyl connections on a symmetric non–flat CR geometry (M,H, J). According to
[2, Proposition 1.4.8], a K–invariant connection on T (K/L) can be described by a
map γ : k→ gl(k/l) such that

• γ|l = ad, and
• γ(Ad(h)(X)) = Ad(h) ◦ γ(X) ◦Ad(h)−1

hold for all X ∈ k and h ∈ L, where Ad : L → Gl(k/l) is induced by the adjoint
representation.

Proposition 4. Let K be the Lie group of all CR transformations of a non–flat
symmetric CR geometry (M,H, J). Let (α, i) be a normal extension of (K,L)
to (PSU(p + 1, q + 1), P ) describing (M,H, J) such that i(L) ⊂ CSU(p, q) and
s0,0 ∈ i(L). Then γ := α∗(ad◦ r0) describes a K–invariant Weyl connection, where
r0 : su(p+ 1, q + 1)→ csu(p, q) is the projection along R⊕ Cn ⊕ Cn∗ ⊕ R∗.

In particular, there is a bijection between the set of K–invariant Weyl connec-
tions on M and the set of z ∈ R∗ such that conj(exp(z)) ◦ i(L) ⊂ CSU(p, q) holds
for the extension (α, i).

Proof. We proved the existence of K–invariant Weyl connections on non–flat sym-
metric CR geometries in [8]. Therefore it is enough to check that they can be
described by the functions γ. Since i(L) ⊂ CSU(p, q), the projection r0 is i(L)–
equivariant and γ|l = ad holds. Therefore each γ describes a K–invariant connec-
tion. The fact that this is a Weyl connection follows directly from condition (5) in
Lemma 4.

It is clear that the one–form Υ1 +Υ2 measuring the “difference” between two K–
invariant Weyl connections is given by an i(L)–invariant element of Cn∗⊕R∗. Since
s0,0 ∈ i(L), it has to be an element of R∗. It is clear that z ∈ R∗ is i(L)–invariant
element if and only if conj(exp(z)) ◦ i(L) ⊂ CSU(p, q) holds. �
4.2. Groups generated by symmetries. The following Theorem significantly
improves the characterization of non–flat symmetric homogeneous CR geometries
given by Propositions 2 and 3.

Theorem 1. Let K be the Lie group generated by all symmetries of a non–flat
symmetric CR geometry (M,H, J). Let (α, i) be a normal extension of (K,L) to
(PSU(p + 1, q + 1), P ) describing the CR geometry that satisfies i(s) = s0,0 and
i(L) ⊂ CSU(p, q). Denote by h the 1–eigenspace of s in k and by m the −1–
eigenspace of s in k. Then:

(1) The following conditions hold
• α(l) ⊂ u(p, q),
• α(m) ⊂ Cn ⊕ Cn∗, and
• α(h) ⊂ R⊕ csu(p, q)⊕ R∗ is a Lie subalgebra.

(2) There is a basis of h/l⊕m such that for a vector in h/l⊕m with coordinates
(x,X) holds

α((x,X) + l) = Ad(exp(z)) ◦



aix P1(X) P2(x)i
X Ax −IP1(X)∗

xi −X∗I aix


+ α(l),

where z ∈ R∗, P1 : Cn → Cn∗, P2 : R→ R∗ and (a,A) ∈ u(p, q) normalizes
α(l).

(3) The maps P1,P2 and the matrix (a,A) are completely determined by con-
dition (5) from Lemma 4.

Proof. We know from Proposition 3 that there exists a normal extension (α, i) of
(K,L) to (PSU(p+ 1, q + 1), P ) satisfying our assumptions.
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Consider the canonical decomposition k = h⊕m, where h is 1–eigenspace of s and
m is −1–eigenspace of s. Then α(m) ⊂ Cn⊕Cn∗ and α(h) ⊂ R⊕csu(p, q)⊕R∗ follow
from the assumption i(s) = s0,0 and α(h) is a Lie subalgebra, because dim(h/l) = 1.
We can identify m with Cn via α, because the restriction of α to the map m→ Cn
is injective. Indeed, if the restriction is not injective, then the elements in its kernel
would be another symmetries at eL, but we know that there is only one symmetry.
This identification uniquely determines the map i : L→ CSU(p, q).

Further, [m,m] ⊂ h holds and we have the corresponding symmetric space K/H0,
where H0 is the connected component of identity of the fixed point set of the
conjugation by s. Therefore exp([X,Y ]) ∈ H0 for each X,Y ∈ m. The map
Ad : H0 → GL(m) can be restricted to the connected component of identity L0 of
L and the restriction coincides with i. Therefore, it suffices to show that the element
ad([X,Y ]) ∈ gl(m) belongs to sl(m) for all X,Y ∈ m. But we have ad([X,Y ]) =
ad(X) ◦ ad(Y )− ad(Y ) ◦ ad(X) and the trace equals to

tr(ad([X,Y ])) = tr(ad(X) ◦ ad(Y )− ad(Y ) ◦ ad(X)) = B(X,Y )−B(Y,X),

where B denotes the Killing form, which is symmetric. Therefore i(L0) ⊂ U(p, q)
and Tei(l) ⊂ u(p, q). In particular, the claim (1) holds. The map α can be ex-
pressed as in the claim (2), because there is always z ∈ R∗ such that the extension
(Ad(exp(−z)) ◦ α, conj(exp(−z)) ◦ i) satisfies

Ad(exp(−z)) ◦ α((x, 0) + l) =



aix 0 P2(x)i
0 Ax 0
xi 0 aix


+ Ad(exp(−z)) ◦ α(l).

Since the CR geometry (M,H, J) does not depend on parts P1,P2 and (a,A) of α,
these parts are completely determined by condition (5) from Lemma 4. �

Let us remark that although the Lie algebra homomorphism i is uniquely deter-
mined by the isomorphism m ∼= Cn given by α, the converse is not true. See [4] for
examples of non–equivalent CR geometries described by extensions with the same
Lie group homomorphism i.

Let us further remark that we are not aware of any example of an extension (α, i)
of (K,L) to (PSU(p+ 1, q + 1), P ) where z ∈ R∗ from the claim (2) of Theorem 1
does not correspond to an invariant Weyl connection. The main reason for this is
the following result.

Proposition 5. Suppose that Ad(L0)|h/l = Ad(L)|h/l. Then i(L) ⊂ U(p, q) and
there is a bijection between R∗ and the set of K–invariant Weyl connections. In
particular, there is a unique K–invariant Weyl connection corresponding to the
normal extension (α, i) satisfying i(L) ⊂ U(p, q), i(s) = s0,0 and

α((x,X) + l) =



aix P1(X) P2(x)i
X Ax −IP1(X)∗

xi −X∗I aix


+ α(l).(5)

This particularly holds when the transitive group K is semisimple.

Proof. If Ad(L0)|h/l = Ad(L)|h/l, then i(L) ⊂ U(p, q) holds and the claim follows.
It follows from the classification of semisimple symmetric spaces that H is reductive
and there is a complement to l in the center of h. Consequently Ad(L0)|h/l =
Ad(L)|h/l. �

4.3. Relations to CR algebras. We explain here relations between our concept
and the concept of CR algebras introduced in [1]. We denote here by nC the
complexification of a Lie algebra n.
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Let (α, i) be an extension of (K,L) to (PSU(p + 1, q + 1), P ). We complexify
the linear map α to obtain a map

αC : kC → sl(n+ 2,C).

The Lie algebra sl(n+ 2,C) decomposes as

sl(n+ 2,C) = C⊕ (Cn ⊕ Cn∗)⊕ (gl(n,C)⊕ C)⊕ (Cn∗ ⊕ Cn)⊕ C,
where pC = (gl(n,C)⊕C)⊕ (Cn∗⊕Cn)⊕C. The subspace Cn∗⊕ pC is a parabolic
subalgebra of sl(n+ 2,C) that satisfies

H0,1
eL = α−1

C (Cn∗ ⊕ pC)/lC.

Therefore, the preimage q of H0,1
eL in kC is a Lie subalgebra of the form

q = α−1
C (Cn∗ ⊕ pC).

The pair (k, q) satisfies conditions of a CR algebra from [1, Section 1.2.]. It is
proved in [1] that this is the minimal set of data describing a CR geometry on the
homogeneous space K/L. However, CR algebras do not provide as much informa-
tion as the extension (α, i). In particular, we cannot obtain directly the curvature
κ of the corresponding Cartan connection from the CR algebra. Therefore, it is not
easy to distinguish whether two CR algebras correspond to equivalent CR geome-
tries.

There are conditions in [1, Section 1.4] that characterize CR algebras of CR
geometries that are symmetric in the sense of [10]. One of these conditions en-
sures that there is a Riemannian metric compatible with a CR geometry. Other
conditions are analogous to condition (4) of Proposition 3 which says that the Lie
algebra automorphism of k given by Ad(s0,0) defines an automorphism of the Lie
group K.

There is the following method to check whether CR geometries corresponding
to CR algebras (k, q) are symmetric (in our sense) and to construct the normal
extensions (α, i) that describe them.

(1) We consider l = k ∩ q ∩ q̄ and HeL = (k/l) ∩ ((q + q̄)/(q ∩ q̄)), where q̄ is the
subalgebra conjugated to q in kC.

(2) We choose a complex basis of HeL. This choice defines a Lie algebra homomor-
phism l→ csu(p, q) and the following facts hold:
(2a) If this homomorphism is not injective, then the CR geometry is flat (we will
discuss this situation later).
(2b) If this homomorphism is injective and the CR geometry is symmetric, then it
coincides with the restriction of α to l for some normal extension (α, i) describing
the CR geometry.
(2c) If this homomorphism is injective and the CR geometry is not symmetric, then
the homomorphism corresponds only to associated graded map corresponding to
the restriction of α to l for some normal extension (α, i) describing the CR geome-
try.

(3) Each choice of representatives (in k) of the complex basis of HeL from (2) to-
gether with a choice of an element of k complementary to HeL allows us to define
(3a) a linear map α of the form (5) from Proposition 5 for (at this point) unknown
linear maps a,A,P1,P2,
(3b) a linear map τ : ∧2k→ su(p+ 1, q + 1) given for all X,Y ∈ k by the formula

τ(X,Y ) := [α(X), α(Y )]− α([X,Y ]),

(3c) a linear map ν : k→ k such that ν equals to

• −id on the representatives (in k) of complex basis of HeL, and
• id on the element of k complementary to HeL and on l.
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Moreover, we consider only the choices that satisfy the equivalent conditions of the
following statement.

Proposition 6. The map ν is a Lie algebra automorphism of k if and only if the
components

(R⊕ α(l))⊗ Cn → R⊕ csu(p, q)⊕ R∗, Cn ⊗ Cn → Cn ⊕ Cn∗

of τ vanish for all linear maps a,A,P1,P2.

Proof. A consequence of the formula for τ is that ν is a Lie algebra automorphism
of k if and only if

Ad(s0,0)τ(ν(X), ν(Y )) = τ(X,Y ), Ad(s0,0)[α(ν(X)), α(ν(X))] = [α(X), α(Y )]

hold for all X,Y ∈ k. If α is of the form (5), then

Ad(s0,0)[α(ν(X)), α(ν(X))] = [α(X), α(Y )]

holds for all X,Y ∈ k and all linear maps a,A,P1,P2, and

Ad(s0,0)τ(ν(X), ν(Y )) = τ(X,Y )

holds for all X,Y ∈ k if and only if the claimed components vanish. �

(4) There are the following possibilities for the choice in the step (3).
(4a) If there is no choice such that ν is a Lie algebra automorphism of k, then the
CR geometry corresponding to the CR algebra (k, q) is not symmetric.
(4b) If there is a choice such that ν is a Lie algebra automorphism of k, then the
CR geometry corresponding to the CR algebra (k, q) is symmetric if and only if ν
induces a Lie group automorphism of K and L is contained in fixed point set of ν.

(5) We require from now that the CR geometry corresponding to the CR algebra
(k, q) is symmetric. The remaining step is to determine the choice of an element
of k complementary to HeL and i : L → P such that (α, i) is a normal extension
describing the CR geometry. We know that there is a choice such that (Ad(exp(z))◦
α, i′) is an extension for some z ∈ R∗, where the Lie group homomorphisms i′ :
L → P is induced by (adjoint) action of L on HeL and α(l). Thus it suffices to
check the vanishing of components

α(l)⊗ R→ su(p+ 1, q + 1), Cn ⊗ Cn → R

of τ for all linear maps a,A,P1,P2. The condition (5) of Lemma 4 provides lin-
ear equations that determine uniquely the linear maps a,A,P1,P2 for which the
extension (α, i) is normal.

4.4. Example of non–flat symmetric CR geometries. Consider the Lie group
E(2) = R2 oSO(2) of isometries of Euclidean plane. There is the following normal
extension (α, i) of (E(2), {id}) to (PSU(1, 2), P ) of the form

α




0 0 0
x
2 0 −X1

X2 X1 0


 =




ix
16 − 5

16X1 − 3i
16X2 − 15ix

256
X1 + iX2 − ix8 5

16X1 − 3i
16X2

ix −X1 + iX2
ix
16


 ,(6)

where the choice of the basis of the Lie algebra of R2 ⊕ so(2) = 〈x,X2〉 ⊕ 〈X1〉
reflects the convention from Section 4.2, i.e., (x, (X1, X2)) are the distinguished
coordinates from Theorem 1. Indeed, since i is trivial and

τ ((x, (X1, X2)), (y, (Y1, Y2))) =



0 3i
32yX1 − 3

32yX2 − 3i
32xY1 + 3

32xY2 0
0 0 3i

32yX1 + 3
32yX2 − 3i

32xY1 − 3
32xY2

0 0 0



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holds for the linear map τ determining the curvature κ, it follows that (α, i) is a
normal extension describing a non–flat symmetric CR geometry.

In fact, any invertible linear map B : R2 ⊕ so(2)→ R⊕ C defines a CR algebra
(k, q) for

q = B−1
C (C∗ ⊕ pC)

and we ask the following question: Which maps B correspond to non–equivalent
non–degenerate symmetric CR geometries of hypersurface type on the Lie group
E(2) of isometries of Euclidean plane?

We give the answer to this question (using the algorithm from previous section
and [4, Lemma 3.5]) in the following statement.

Proposition 7. The normal extension (α, i) of the form (6) describes the unique
(up to equivalence) non–degenerate symmetric CR geometry of hypersurface type
on the Lie group E(2).

Proof. Consider an invertible linear map B : R2⊕so(2)→ R⊗C2. The construction
of the objects from the algorithm is clear in this case. We need to find for which
maps B the components

R⊗ C→ R⊕ csu(1)⊕ R∗, C⊗ C→ C⊕ C∗, C⊗ C→ R
of τ vanish for all linear maps a,A,P1,P2. In fact, this provides three equations on
the entries of the matrix B that can be solved explicitly. In the standard basis of
R2⊕ so(2) and R⊗C, the inverses of matrices B that satisfy these equations define
the following subvariety:



p1p2−p3p4

2 p5
p5p3−2p6

2
p6 p4 p2

0 p1 p3


 .(7)

Thus it remains to check the action of morphisms from [4, Lemma 3.5] that de-
termine which extensions define equivalent CR geometries. In particular, there
are

• four–dimensional Lie group of derivations of R2 ⊕ so(2) that in addition
contains the homothethies, and
• two–dimensional Lie subgroup that forms center of CSU(p, q).

We compute that the induced action of these morphisms on the six–dimensional
variety (7) is transitive and the matrix




1
2 0 0
0 0 1
0 1 0




corresponds to the extension (6). �

5. Metrizability and CR embeddings

In this section, we always consider the K–invariant Weyl connection D cor-
responding to a normal extension (α, i) describing a homogeneous CR geometry
(M,H, J) that satisfies i(L) ⊂ U(p, q), i(s) = s0,0 and

α((x,X) + l) =



aix P1(X) P2(x)
X Ax −IP1(X)∗

x −X∗I aix


+ α(l).

Moreover, we always assume Ad(L0)|h/l = Ad(L)|h/l, where L0 is the identity
component of L. This gives almost no restriction, because this condition is always
satisfied on the symmetric CR geometry on the covering K0/L0 → K/L, where K0

is the identity component of K.
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5.1. Distinguished metrics compatible with the CR geometry. The sym-
metric bilinear form h generally does not define a pseudo–Riemannian metric on H,
because there is no natural way, how to measure the length of elements of TM/H.
The situation is different, if there is a Weyl connection preserving not only the
decomposition H⊕ `, but also a non–zero vector field r in `. Such Weyl connection
is called exact and the vector field r is called the Reed field. Equivalently, each
exact Weyl connection corresponds to the contact form θ that annihilates H and
satisfies θ(r) = 1 for the Reeb field r. If there is an exact Weyl connection, then
θ ◦ h is a pseudo–Riemannian metric on H. This metric is compatible with the
CR–structure, because the form h satisfies h(Jξ, Jν) = h(ξ, ν) for all sections ξ, ν
of H. The exact Weyl connection preserves this metric and the Reeb field can be
used to construct a pseudo–Riemannian metric on TM , for which the connection
is a metric connection. This metric is usually called a Webster metric. However,
the Webster metric neither has to exist nor has to be compatible with the sym-
metries. Therefore, if we want to find a metric compatible with the CR geometry
that is preserved by all symmetries, we need to show that the distinguished Weyl
connection D is exact.

Theorem 2. Let K be the Lie group generated by all symmetries of a non–flat
symmetric CR geometry (M,H, J). Suppose that Ad(L0)|h/l = Ad(L)|h/l. The
distinguished Weyl connection D is exact and furthermore, there exists

• a K–invariant contact form θ,
• a K–invariant pseudo–Riemannian metric ḡ := θ ◦ h on H, and
• a K–invariant Webster metric g := θ ◦ h+ θ ⊗ θ on TM

such that

(1) Dḡ = 0, Dg = 0,
(2) g|H = ḡ and the Reeb field of D is orthogonal to H and has length 1,
(3) choosing the Reeb field of D as a trivialization of (TM/H)⊗C, the pseudo–

Riemannian metric ḡ on H coincides with the real part of the Levi form up
to a constant multiple,

(4) the symmetry at x is linear in geodesic coordinates of D at x, reverses the
directions of Hx and preserves the direction of the Reeb field of D at x.

Proof. The image of α is contained in R⊕Cn⊕u(p, q)⊕Cn∗⊕R∗ and thus γ describ-
ing the corresponding K–invariant Weyl connection has values in ad(u(p, q)). Fur-
thermore, the assumption Ad(L0)|h/l = Ad(L)|h/l implies that i(L) ⊂ U(p, q) and

therefore the maps ad−1 ◦ γ and i satisfy all conditions of [2, Theorem 1.4.5]. This
means that the Weyl connection D is an associated connection to a K–invariant
principal connection on the bundle K ×i(L) U(p, q) → K/L. Therefore it is an ex-
act Weyl connection, because its holonomy is contained in U(p, q). The remaining
claims then follow from general theory. �

In the Riemannian signature, Theorem 2 particularly allows to compare symmet-
ric CR geometries (in our sense) with the symmetric CR geometries in the sense
of [10], because we have found a metric compatible with the CR geometry that is
preserved by all symmetries.

Theorem 3. Suppose that p = 0. Then each non–flat symmetric CR geometry is
covered by a symmetric CR geometry in the sense of [10], where the covering is a
CR map that intertwines the symmetries.

5.2. CR embeddings. Consider the fiber bundle K×iCSU(p, q)/U(p, q)→ K/L.
If Ad(L0)|h/l = Ad(L)|h/l holds, then this bundle is trivial, i.e.,

K ×i CSU(p, q)/U(p, q) = K/L× R.



ON SYMMETRIC CR GEOMETRIES OF HYPERSURFACE TYPE 15

Let us prove the following statement:

Theorem 4. Let K be the Lie group generated by all symmetries of a non–flat
symmetric CR geometry (M,H, J). Suppose that Ad(L0)|h/l = Ad(L)|h/l. Then:

(1) the manifold K/L× R is a complex manifold, and
(2) the inclusion K/L→ K/L×R given as a zero section is a CR embedding.

Proof. We need some more details from the theory of Cartan geometries from [2,
Sections 1.5.13 and 3.1.2] to proceed with the proof. First, there is a natural
complement of u(p, q) in csu(p, q) given by so–called grading element, which is the
unique element Z ∈ csu(p, q) acting by −2 on R, −1 on Cn, 0 on csu(p, q), 1
on Cn∗ and 2 on R∗. Furthermore, there is a Cartan connection on K/L × R
induced by the CR geometry, where we identify R (via exp) with the multiples
of the grading element Z. Then the Weyl connection D provides a reduction of
this Cartan connection to U(p, q), which allows us to identify the tangent space of
K/L×R with the fiber bundle (K×R)×i(R⊕Cn⊕csu(p, q)/u(p, q)). We can extend
the complex structure on Cn to R⊕Cn ⊕ csu(p, q)/u(p, q) by declaring R to be the
imaginary part of C and the multiples of the grading element in csu(p, q)/u(p, q)
to form the real part of C. This definition is clearly U(p, q)–invariant (and thus
K–invariant) and defines an almost complex structure J on K×iCSU(p, q)/U(p, q).

Let us compute the Nijenhuis tensor [ξ, η] − [Jξ, Jη] + J([Jξ, η] + [ξ, Jη]) of J

for ξ, η ∈ T (K/L × R). For each x ∈ K/L × R, there are vector fields ξ̃, η̃ such

that ξ̃(x) = ξ(x), η̃(x) = η(x) and that the element [ξ̃, η̃](x) is identified with the
element

[X,Y ]− [α(X + h), α(Y + h)] + α([X + h, Y + h]) mod u(p, q)⊕ Cn∗ ⊕ R∗,

where ξ(x), η(x) are identified with X,Y ∈ R⊕ Cn ⊕ csu(p, q)/u(p, q). This identi-
fication can be obtained using the technique analogous to [2, Proposition 3.1.8] for
T (K/L×R) instead of T (K/L). Indeed, the Cartan connection in the background
remains the same and we only need to restrict ourselves to normal Weyl connections
that coincide with D at x and project the results given by the Cartan connection
to T (K/L× R) instead of T (K/L). However,

[X,Y ]− [α(X + h), α(Y + h)] +α([X + h, Y + h]) = [X,Y ] mod u(p, q)⊕Cn∗⊕R∗

due to condition (5) from Lemma 4. Therefore we have

([ξ, η]−[Jξ, Jη]+J([Jξ, η]+[ξ, Jη]))(x) = [X,Y ]−[JX, JY ]+J([JX, Y ]+[X, JY ]).

Let us now discuss possible values of this expression for all possible incomes:

• For X,Y ∈ Cn we have [X,Y ]− [JX, JY ] + J([JX, Y ] + [X,JY ]) = 0.
• For X ∈ Cn and Y = JZ ∈ R we have [X,Y ] − [JX, JY ] + J([JX, Y ] +

[X, JY ]) = [JX,Z]− J([X,Z]) = 0.
• For X ∈ Cn and Y = Z we have [X,Y ]−[JX, JY ]+J([JX, Y ]+[X, JY ]) =

[X,Z] + J([JX,Z]) = 0.
• For X = JZ ∈ R and Y = Z we have [X,Y ] − [JX, JY ] + J([JX, Y ] +

[X, JY ]) = [JZ,Z] + [Z, JZ] = 0.

The remaining possibilities vanish trivially. Thus the complex structure is inte-
grable. Then the zero section is a CR embedding, because it is a closed orbit. �

In holomorphic coordinates on U ⊂ K/L×R, the hypersurface K/L∩U ⊂ Cn+1

may be described as a zero set of a function F : U → R. Theorem 4 and Lemma
2 provide distinguished holomorphic coordinates in which the function F has a
specific form.
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Corollary 1. Let K be the Lie group generated by all symmetries of a non–flat
symmetric CR geometry (M,H, J). Suppose that Ad(L0)|h/l = Ad(L)|h/l. Then
for every point x ∈M , there is a holomorphic coordinate system on U ⊂ K/L×R
centred at x such that the function F (z, w) defining M satisfies F (z, w) = F (−z, w).

6. Locally flat CR symmetric spaces

Locally flat CR geometries are always locally symmetric (in our sense). There-
fore, the following question appears: Which local symmetries are globally defined?
The answer depends on the topology of the manifold. We show on series of exam-
ples that various situations are possible. There are two sources of examples that we
study here that are related to flag manifolds. The first series of examples follows
the construction from [15, 6] that we apply to CR geometries. The second series of
examples involves CR geometries on orbits of real forms in flag manifolds from [1].

In the case p, q > 1, it is convenient for the presentation of examples to consider
the Hermitian form m given for u, v ∈ Cn+2 by

m(u, v) = uT




0 0 0 0 1
0 0 0 1 0
0 0 I ′ 0 0
0 1 0 0 0
1 0 0 0 0



v,

where the matrix I ′ is a diagonal square matrix of order n− 2 with the first p− 1
entries equal to 1 and the remaining q − 1 entries equal to −1.

6.1. Non–homogeneous symmetric CR geometries. Let us apply the con-
struction from [15, 6] to CR geometries. We start with the standard model PSU(p+
1, q + 1)/P . Consider the CR manifold M := PSU(p + 1, q + 1)/P − {〈u〉, 〈v〉},
where u, v ∈ Cn+2 are arbitrary non–zero null vectors of m. The group K(u, v)
of CR transformations of the flat CR geometry on M has two connected compo-
nents. The identity component of K(u, v) is the intersection of stabilizers of 〈u〉
and 〈v〉. Let us remark that if m(u, v) 6= 0, then the identity component of K(u, v)
is isomorphic to the group CSU(p, q). If m(u, v) = 0, then p, q > 1 and there is
g ∈ PSU(p+ 1, q+ 1) such that gu and gv are the first two basis elements of Cn+2

and thus elements of Lie algebra of K(u, v) are g–conjugated to



a1 0 Z zn iz
0 a2 B ib −zn
0 0 A −I ′B∗ −I ′Z∗
0 0 0 −a2 0
0 0 0 0 −a1




for some a1, a2, zn ∈ C, b, z ∈ R∗, B,Z ∈ Cp+q−2∗ and A ∈ u(p − 1, q − 1). The
other connected component of K(u, v) contains the elements that swap 〈u〉 and 〈v〉.

We check whether there is a symmetry at each K(u, v)–orbit on M . Let us
emphasize that if all symmetries at one point of a K(u, v)–orbit preserve or swap
the points 〈u〉 and 〈v〉, then all symmetries at all points of the whole orbit have the
same property. The orbits of the action of K(u, v) on M are characterized by the
fact that the action preserves

• the subspace 〈u, v〉, and
• the (non)–isotropy with respect to the Hermitian form m.

Moreover, the action of K(u, v) on 〈u, v〉 depends on whether 〈u, v〉 is isotropic
subspace or not.
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Example 1. Assume that p, q > 1, i.e., not the Riemannian signature. Consider
the CR manifold M = PSU(p + 1, q + 1)/P − {〈u〉, 〈v〉} for arbitrary non–zero
null vectors u, v ∈ Cn+2 isotropic with respect to m, i.e., m(u, v) = 0. Then
〈u, v〉 − {〈u〉, 〈v〉} consists of a single orbit of K(u, v). Furthermore, K(u, v)–orbits
of points 〈x〉 such that x /∈ 〈u, v〉 − {〈u〉, 〈v〉} depend only on the (non)–isotropy of
x with respect to u, v.

We show that there exist symmetries at all points of each orbit of K(u, v).
Instead of fixing 〈u〉, 〈v〉 and discussing symmetries at various points 〈x〉, we fix
the point 〈x〉 as the point 〈e0〉 given by the first vector of the standard basis
e0, . . . , en+1 of Cn+2 and we choose admissible 〈u〉 and 〈v〉 such that 〈e0〉 lies in the
correct orbit. Then we find all symmetries at 〈e0〉. Let us recall that all symmetries
of the standard model at the origin 〈e0〉 are of the form

sZ,z =



−1 −Z iz + 1

2ZIZ
∗

0 E −IZ∗
0 0 −1


 ,

where I =
(

0 0 1
0 I′ 0
1 0 0

)
and Z = (z1, . . . , zn) ∈ Cn∗ and z ∈ R∗ are arbitrary. Involutive

symmetries are those satisfying z = 0.

(1) Let us start with the orbit corresponding to the case m(e0, u) 6= 0 and m(e0, v) 6=
0. We choose u = ie0 +e1 +en− ien+1 and v = ie0−e1 +en+ ien+1. Direct compu-
tation gives that there is exactly one symmetry sZ,z, where Z = (−2i, 0, . . . , 0) and
z = 0. This symmetry is involutive and swaps 〈u〉 and 〈v〉. There is no symmetry
preserving them.

(2) Let us now consider the orbit for the case m(e0, u) = 0 and m(e0, v) 6= 0 (which
is the same orbit as the orbit for the case m(e0, u) 6= 0 and m(e0, v) = 0). We

choose u =
√

2e1 and v = ien+1. Direct computation gives that there is exactly
one symmetry sZ,z, where Z = (0, . . . , 0) and z = 0. This symmetry is involutive
and preserves 〈u〉 and 〈v〉. There is no symmetry swapping them.

(3) The next possibility is the orbit for the case m(e0, u) = m(e0, v) = 0 and

e0 ∈ 〈u, v〉. We choose u =
√

2e1 and v = e0 +
√

2e1. Computation gives that there
are (many) symmetries sZ,z, where Z = (z1, . . . , zn) with components zk = ak+ ibk
for k = 1, . . . , n satisfies

√
2a1 + 1 = 0 and b1 = 0, and ak, bk for k = 2, . . . , n − 1

and z are arbitrary. All these symmetries swap 〈u〉 and 〈v〉, and there are no sym-
metries preserving them. In particular, there are also non–involutive symmetries
for z 6= 0.

In fact, this covers all possible orbits for the case p = 1 or q = 1, i.e., the Lorentzian
signature. In the other cases, there is one more orbit.

(4) Consider the orbit for the case m(u, e0) = m(v, e0) = 0 and e0 /∈ 〈u, v〉. We

choose u =
√

2e1 and v = e2 + en−1. Computation gives that there are (many)
symmetries sZ,z, where Z = (z1, . . . , zn) satisfies a1 = 0, b1 = 0, a2 + an−1 = 0
and b2 + bn−1 = 0 and ak, bk for k = 3, . . . , n − 2 and z are arbitrary. All these
symmetries preserve 〈u〉 and 〈v〉 and there are no symmetries swapping them. In
particular, there are also non–involutive symmetries for z 6= 0.

Altogether, symmetries at different orbits behave differently. Therefore, there is no
smooth system of symmetries. In particular, there is no pseudo–Riemannian metric
compatible with the CR geometry that would be preserved by some symmetry at
every point. ♦

Let us show that this principle does not work if we remove two points corre-
sponding to non–isotropic vectors.
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Example 2. Consider the manifold M = PSU(p + 1, q + 1)/P − {〈u〉, 〈v〉} for
arbitrary non–zero null vectors u, v ∈ Cn+2 that are non–isotropic for m, i.e.
m(u, v) 6= 0. We choose u = en+1 and v = e0 + (2 + i)e1 − ien. Computation
gives that there is no symmetry at 〈e0〉 preserving or swapping 〈u〉 and 〈v〉. Let us
remark that the identity component of K(u, v) is isomorphic to the group CSU(p, q)
and K(u, v) does not act transitively on 〈u, v〉 − {〈u〉, 〈v〉}. ♦

6.2. Flat homogeneous symmetric CR geometries and orbits of real forms
in complex flag manifolds. It follows from Lemma 4 that an extension (α, i) of
(K,L) to (PSU(p+ 1, q+ 1), P ) corresponds to a flat CR geometry if and only if α
is a Lie algebra homomorphisms. Therefore, we can present examples of extensions
describing flat homogeneous symmetric CR geometries just by specifying the Lie
subalgebra of su(p + 1, q + 1) that coincides with the image of α. In general, the
group K does not have to contain symmetries. Moreover, symmetries do not have
to preserve α(k). This is satisfied if K is the group generated by symmetries or the
full group of CR automorphisms.

Example 3. Consider the orbits of PSp(1, 1) on CP 4 given by inclusion PSp(1, 1) ⊂
PSp(4,C) ⊂ PGl(4,C). Due to the isomorphisms PSp(1, 1) ∼= PO(1, 4), these
orbits can also be interpreted as orbits in the flag manifold of 2–planes in quadric in
CP 5. There is a normal extension given by identifying the following Lie subalgebra
of su(2, 2) with the image of α(sp(1, 1)) :




l1 + il2 −X1 + iX2 −X3 + l4 + iX4 + il5 i (l3 + x)
X1 + iX2 l1 − il2 −i(x+ l3) X3 − l4 + iX4 + il5
X3 + iX4 −ix −l1 − il2 X1 + iX2

ix −X3 + iX4 −X1 + iX2 −l1 + il2


 ,

where li–entries generate the Lie algebra of the stabilizer L = CSO(2)oS2R2 of a
point in the minimal orbit. Precisely, 〈l1, l2〉 = cso(2) and 〈l3, l4, l5〉 = S2R2.

Example 4. Consider the orbits of PSp(4,R) on CP 4 given by inclusion PSp(4,R) ⊂
PSp(4,C) ⊂ PGl(4,C). Due to the isomorphisms PSp(4,R) ∼= PO(2, 3), these or-
bits can again be interpreted as orbits in the flag manifold of 2–planes in quadric in
CP 5. There is a normal extension given by identifying the following Lie subalgebra
of su(2, 2) with the image of α(sp(n+ 2,R)) :




l1 + il2 X1 − iX2 X3 + l4 − iX4 + il5 i (l3 + x)
X1 + iX2 l1 − il2 i (l3 + x) −X3 − l4 − iX4 + il5
X3 + iX4 ix −l1 − il2 −X1 − iX2

ix −X3 + iX4 −X1 + iX2 −l1 + il2


 ,

where li–entries generate the Lie algebra of the stabilizer L = CSO(2) o S2R2 of
a point in 5–dimensional orbit (which is not minimal). Precisely, 〈l1, l2〉 = cso(2)
and 〈l3, l4, l5〉 = S2R2.

In both examples, k is simple and q is a parabolic subgalgebra of kC. In [1], the
authors discuss which CR algebras (k, q) for simple Lie algebras k and parabolic
subalgebras q of the complexification of k are symmetric. In fact, they correspond
to orbits of real forms in complex flag varieties. Therefore, symmetric CR algebras
of these types generalize bounded symmetric domains.

We show that if a CR algebra (k, q) for a simple Lie algebra k and a parabolic
subalgebra q of the complexification kC of k corresponds to a non–degenerate sym-
metric CR geometry of hypersurface type, then the geometry is necessarily flat.
Therefore, we can use the results of [13] to classify all possible cases.
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Proposition 8. Let (k, q) be a CR algebra such that k is simple and q is a para-
bolic subalgebra of kC and the corresponding CR geometry is non–degenerate and of
hypersurface type. Then the following statements hold:

(1) If the CR geometry is symmetric, then the CR geometry is flat.
(2) If the CR geometry is flat, then it corresponds to one of the following pos-

sibilities:
(a) k = su(p+ 1, q + 1) and l = p,
(b) k = sp(p+1

2 , q+1
2 ) and l = co(2)⊕ sp(p−1

2 , q−1
2 )⊕ (R2⊗Rn−2∗)⊕S2R2,

(c) k = sp(n+2,R) and l = co(2)⊕sp(n−2,R)⊕(R2⊗Rn−2∗)⊕S2R2, where
(R2 ⊗ Rn−2∗) ⊕ S2R2 is the positive part of the parabolic subalgebra
corresponding to the stabilizer of a Lagrangian 2–plane in Rn+2.

(3) If the CR geometry is flat and kC = sp(n + 2,C) is the full Lie algebra
of complete infinitesimal automorphism and n > 2, then the corresponding
CR geometry is not symmetric.

(4) If the CR geometry is flat and corresponds to a (2n+1)–dimensional orbit of
the real form of sp(n+2,C) in CPn+2, then the corresponding CR geometry
is symmetric if and only if n = 2 or the orbit is minimal, i.e., if k 6=
sp(n+ 2,R).

Proof. If such symmetric CR geometry is non–flat, then K has to be generated by
symmetries and it follows from [4, Theorem 3.1] that the complexification of l does
not contain a Cartan subalgebra of kC. On the other hand, if k is simple and q is a
parabolic subalgebra of kC, then q ∩ q̄ contains a Cartan subalgebra of kC. This is
a contradiction and therefore, the claim (1) holds.

If such symmetric CR geometry is flat, then kC is isomorphic to a Lie subalgebra
of sl(n+ 2,C), q = kC ∩ (C∗⊕ pC) is a parabolic subalgebra of kC and kC/q = sl(n+
2,C)/(C∗ ⊕ pC). All such cases are classified in [13] and it follows that kC = sl(n+
2,C) or kC = sp(2n+ 2,C). The first case corresponds to the standard model. The
remaining cases correspond to the symmetric pair (sl(n+2,C), sp(2n+2,C)). Real
forms of this symmetric pair are well–known and correspond to suitable inclusions
sp(p+1

2 , q+1
2 ) ⊂ su(p+ 1, q + 1) or sp(n+ 2,R) ⊂ su(n+ 1, n+ 1). If such inclusion

provides an extension, then it is unique (up to equivalence). Therefore, it suffices to
show that the cases in the claim (2) correspond to non–degenerate CR geometries
of hypersurface type. This follows from the fact that co(2) ∼= C defines a complex
structure on the whole k/l with the exception of the trace part of (S2R2)∗.

If kC = sp(n + 2,C) is the full Lie algebra of complete infinitesimal automor-
phism and the corresponding CR geometry is symmetric, then Ad(s0,0) induces an
involution of sp(n+2,R). It follows from the description of l that the stabilizer has
to have the form gl(2,C) ⊕ sp(n − 2,C). Therefore the claim (3) follows from the
fact that this stabilizer does not appear in the classification of simple symmetric
spaces if n > 2.

Since sp(n+ 2,C) is maximal subalgebra of sl(n+ 2,C), the only possibility for
the orbit to be symmetric is to be equivalent to standard model which is compact.
Since the orbit is compact if only if the orbit is minimal, the claim (4) follows. It
follows from [1] that the orbit is minimal if and only if k 6= sp(n+ 2,R). �
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SUBMAXIMALLY SYMMETRIC
ALMOST QUATERNIONIC STRUCTURES

BORIS KRUGLIKOV, HENRIK WINTHER AND LENKA ZALABOVÁ

Abstract. The symmetry dimension of a geometric structure is the dimension
of its symmetry algebra. We investigate symmetries of almost quaternionic
structures of quaternionic dimension n. The maximal possible symmetry is
realized by the quaternionic projective space HP n, which is flat and has the
symmetry algebra sl(n + 1,H) of dimension 4n2 + 8n + 3. For non-flat almost
quaternionic manifolds we compute the next biggest (submaximal) symmetry
dimension. We show that it is equal to 4n2−4n+9 for n > 1 (it is equal to 8 for
n = 1). This is realized both by a quaternionic structure (torsion–free) and by
an almost quaternionic structure with vanishing quaternionic Weyl curvature.

1. Introduction

An almost quaternionic structure on a manifold M is a rank three subbundle Q ⊂
End(TM) such that locally (in a neighbourhood of each point) we can find a basis
I, J,K of Q with I2 = J2 = K2 = −1 and IJ = K. A manifold M with a fixed
almost quaternionic structureQ is called an almost quaternionic manifold. A (local)
automorphism of (M,Q) is a (local) diffeomorphism of M that preserves Q. There
exists a class of the so–called Oproiu connections [∇Op] on (M,Q) that preserve Q
and share the same minimal torsion T∇, which equals to the structure torsion of Q
[1]. If ∇Op is torsion–free, then (M,Q) is a quaternionic manifold.

An almost quaternionic manifold (M,Q) can be equivalently described as a normal
parabolic geometry (G →M,ω) of type PGL(n+1,H)/P , where P is the stabilizer
of a quaternionic line in Hn+1 [4]. The fundamental invariant of each parabolic
geometry is its harmonic curvature κH , which has two components in the almost
quaternionic case: the torsion κ1 of homogeneity 1 and the quaternionic Weyl
curvature κ2 of homogeneity 2. In particular, κ1 coincides with the torsion T∇ of
arbitrary ∇Op and vanishes for quaternionic geometries.

The quaternionic projective space HPn is the set of quaternionic lines in Hn+1,
and the group PGL(n + 1,H) acts transitively on HPn as automorphisms of the
natural quaternionic structure. The subgroup P consists of transformations pre-
serving the first basis line in Hn+1. Then, HPn = PGL(n + 1,H)/P is the flat
model of (almost) quaternionic geometry. The flat model has vanishing harmonic
curvature and conversely, each almost quaternionic geometry such that κH ≡ 0 is
locally equivalent to the flat model. In particular, every local automorphism of
HPn uniquely extends to a global one, and it is exactly the left multiplication by
an element of PGL(n+ 1,H). The space HPn has maximal possible dimension of
the symmetry algebra among all (almost) quaternionic manifolds with fixed quater-
nionic dimension n, that is dim sl(n+ 1,H) = 4(n+ 1)2− 1 for dimM = 4n.

For curved almost quaternionic structures, local automorphisms generally do not
extend to global ones. We consider infinitesimal symmetries, which correspond to
local automorphisms. We focus on the problem of establishing the submaximal sym-
metry dimension, i.e. the maximal dimension of the symmetry algebra of an almost

1
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quaternionic structure with κH 6≡ 0 and fixed quaternionic dimension. Specifically,
we answer the following question:

When an almost quaternionic manifold (M4n, Q) is not everywhere flat, what
is the maximal dimension S of its Lie algebra of infinitesimal symmetries?

Remark 1. The submaximal dimension of the automorphism groups (without the
requirement κH 6≡ 0) is dimP = 4n2 +4n+3. This is achieved on the flat manifold
M = HPn \ {p} for some p ∈ HPn. However the symmetry algebra of this (M,Q)
is of maximal dimension 4n2 + 8n+ 3.

From the point of view of parabolic geometry, a model with the symmetry alge-
bra of submaximal dimension typically has exactly one non-zero component of its
harmonic curvature [12]. Sometimes, the same submaximal bound is achieved for
different non-zero components of κH . We will show that this is the case with almost
quaternionic structures. Our main result is the following.

Theorem 1. The maximal dimension of the symmetry algebra of almost quater-
nionic structures (M,Q) with dimM = 4n > 4 and κH = (κ1, κ2) 6≡ 0 is

S = 4n2 − 4n+ 9.
This is realized in both cases, when κ1 ≡ 0 and when κ2 ≡ 0.

We exclude the case n = 1 due to the exceptional isomorphism sl(2,H) ' so(1, 5).
In this case the geometry PGL(2,H)/P can be interpreted as a four-dimensional
Riemannian conformal geometry and κH has two components of homogeneity 2,
which are the self–dual and anti–self–dual parts of the Weyl curvature. The sub-
maximal symmetry dimension is 8 and is achieved by M = CP 2 [7, 12].

Thus for n > 1 there is a gap 6(2n − 1) = dim sl(n + 1,H) − S in the set of all
possible symmetry dimensions. If κ1 6= 0 and κ2 6= 0, the symmetry dimension is
strictly smaller than S, so the submaximal symmetry dimension is achieved only
when κ1 ⊗ κ2 ≡ 0. This is explained in the beginning of Section 5.

Acknowledgements: The authors thank Jan Gregorovič for suggesting that the
submaximal symmetry dimensions for n = 2 should be 17. Lenka Zalabová thanks
Norway Grants NF-CZ07-INP-4-2382015 and NF-CZ07-INP-5-4362015 for financial
support and the University of Tromsø for hospitality.

2. Background on almost quaternionic and related geometries

Almost quaternionic geometries are closely related to projective and c–projective ge-
ometries, so we recall basic concepts common to these. Two (real) affine connections
on a manifoldM of dimension n are projectively equivalent if their unparameterized
geodesics, i.e. curves satisfying ∇γ̇ γ̇ ∈ 〈γ̇〉, coincide. Here 〈−〉 denotes the linear
span over C∞(M). Projectively equivalent connections do not necessarily have the
same torsion, but any connection ∇ is projectively equivalent to a torsion–free con-
nection ∇− 1

2T∇. Two connections ∇ and ∇̂ with the same torsion are projectively
equivalent if and only if there is a one-form Υ ∈ Ω1(M) such that

∇− ∇̂ = 1⊗ (Υ ◦ 1) + (Υ ◦ 1)⊗ 1.
A fixed class of torsion–free projectively equivalent connections [∇] on a manifoldM
is a projective structure on M . It is proven in [6] that the submaximal symmetry
dimension in the class of projective structures of dimension n > 2 is equal to
(n− 1)2 + 4 (for n = 2 it is 3), see also [12].
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A generalization of this concept to almost complex manifolds leads to almost c–
projective structures. A connection ∇ on M of dimension 2n > 2 with almost
complex structure J is called complex if ∇J = 0. Each almost complex manifold
(M,J) admits complex connections, because for arbitrary ∇ the connection 1

2 (∇−
J∇J) is complex. A complex connection ∇ can be chosen minimal meaning T∇ =
1
4NJ , where

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]

is the Nijenhuis tensor.

A curve γ on M is J-planar if ∇γ̇ γ̇ ∈ 〈γ̇, Jγ̇〉 for a complex connection ∇. Two
complex connections on (M,J) are c–projectively equivalent if they share the same
J–planar curves. Two complex connections ∇ and ∇̂ with the same torsion are c–
projectively equivalent if and only if there is a one-form Υ ∈ Ω1(M) such that

∇− ∇̂ =
∑

A∈{1,J}
A2(A⊗ (Υ ◦A) + (Υ ◦A)⊗A

)
.

An almost c–projective structure on (M,J) is a class of c–projectively equivalent
complex connections [∇] sharing the same fixed torsion. It is proven in [11] that the
submaximal dimension in the class of almost c–projective structures of (complex)
dimension n is equal to 2n2 − 2n+ 4 for n 6= 3 and 18 for n = 3.

Let us return to almost quaternionic structures. Consider an almost quaternionic
manifold (M,Q) of dimension 4n. Analogously to the almost complex case, this
admits a quaternionic connection. Indeed, for any local basis b = (I, J,K) of Q
and a linear connection ∇, the connection ∇b := 1

4 (∇ − I∇I − J∇J − K∇K) is
quaternionic. Any other choice b̂ = (Î , Ĵ , K̂) is related to b via a transformation
from SO(Q), so ∇b̂ = 1

4 (∇ − Î∇Î − Ĵ∇Ĵ − K̂∇K̂) coincides with ∇b. Denote
B := 1

6 (NI +NJ +NK). The canonical structure tensor of Q is given by

TQ := B + δ(τI ⊗ I) + δ(τJ ⊗ J) + δ(τK ⊗K),

where τA(X) = 1
4n−2Tr(AB(X)) for A = I, J,K and δ : T ∗M ⊗ T ∗M ⊗ TM →

∧2T ∗M ⊗ TM denotes the Spencer operator of alternation [1]. A quaternionic
connection can be chosen minimal meaning its torsion coincides with TQ. An almost
quaternionic structure Q is a quaternionic structure if TQ vanishes.

A curve γ is called Q–planar if ∇γ̇ γ̇ ∈ 〈γ̇, Iγ̇, Jγ̇,Kγ̇〉 for a quaternionic connection
∇. Two quaternionic connections ∇ and ∇̂ on (M,Q) with the same torsion share
the same Q–planar curves if and only if there is a one-form Υ ∈ Ω1(M) such
that

∇− ∇̂ =
∑

A∈{1,I,J,K}
A2
(
A⊗ (Υ ◦A) + (Υ ◦A)⊗A

)
.

Analogously to the c–projective case, we fix the class of connections [∇] sharing the
same Q–planar curves and with the minimal torsion T∇ = TQ. These are called
Oproiu connections. The Q–planar curves are the (unparameterized) geodesics of
all Oproiu connections [8]. Given an arbitrary quaternionic connection, one can
construct an Oproiu connection by an explicit formula [1, §3.11].

An almost quaternionic structure is quaternionic if and only if some (and thus any)
Oproiu connection ∇ is torsion–free. In that case, the curvature R∇ of an Oproiu
connection ∇ decomposes as R∇ = W∇ + P∇, where the totally trace-free part
W∇ is the (quaternionic) Weyl tensor of R∇ and P∇ is the Ricci part of R∇[1].
Let us remark that almost quaternionic structures can be viewed as first–order
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G0 = Sp(1)GL(n,H)–structures. Then the above decomposition of R∇ is just the
decomposition with respect to the action of this structure group.

It turns out that the Weyl part W∇ of R∇ does not depend on the choice of
Oproiu connection and is a complete obstruction to the flatness of a quaternionic
structure.

Remark 2. The equivalence class of Oproiu connections is already determined by
the quaternionic structure on the quaternionic manifold. But the complex structure
alone does not determine a c–projective structure. The choice of the class of c–
projectively equivalent connections on a complex manifold is an additional choice.

Remark 3. All three geometries discussed in this section can be described as para-
bolic geometries of type PGL(n+1,K)/P , where K = R,C,H and P is the stabilizer
of a K-line in Kn+1 [4]. This explains many similarities between them.

3. Parabolic geometry setup and the gap problem

In this section, we summarize basic facts about almost quaternionic structures
from the parabolic viewpoint. We will need the notations describing parabolic
subalgebras p of a real semi-simple Lie algebra g = Lie(G). The conjugacy classes
of such are in bijection with some subsets of the Satake diagram corresponding
to a fixed choice of (maximally non-compact) Cartan subalgebra. These will be
denoted by crossing out certain white nodes on the Satake diagram, cf. [4]. Let Σ
be the set of crossed out nodes. We denote by pΣ the standard parabolic subalgebra
corresponding to Σ. The semi-simple Levi factor pssΣ is given by the Satake diagram
with Σ removed. A Lie subgroup PΣ ⊂ G is parabolic if its Lie algebra pΣ is such.
We will use the standard Bourbaki enumeration of the nodes of the Dynkin diagram,
and encode parabolic subgroups PΣ respectively.

Consider the Lie algebra g = sl(n+ 1,H), which is a real form of A2n+1 = sl(2n+
2,C). The parabolic subalgebra p = Lie(P ), for P = P2, corresponding to a
|1|-grading g = g−1 ⊕ g0 ⊕ g1, p = g0 ⊕ g1, is encoded by the following Satake
diagram:

• × • ◦ • · · · ◦ •
This grading can be viewed via the matrix (1, n)-block decomposition which is given
by the standard representation of g on Hn+1 = H×Hn. Thus g has the matrix form(
a p
v A

)
, where g−1 = {v ∈ Hn}, g1 = {p ∈ H∗n} and g0 = {(a,A) ∈ H⊕gl(n,H) :

Re(a) + Re(trA) = 0}. In particular, the real part of a ∈ H is determined by
trA and the imaginary part belongs to sp(1). Thus the reductive Lie algebra g0
can be equivalently viewed as sp(1) + gl(n,H), and this further decomposes as
g0 = sp(1) + RZ + sl(n,H), where the semisimple part is gss0 = sp(1) + sl(n,H)
and the grading element Z = diag

(
n
n+1 ,

−1
n+1 , . . . ,

−1
n+1

)
generates the center z(g0).

The Lie algebra gss0 is encoded by the Satake diagram produced by removing the
crossed node and adjacent edges:

• • ◦ • · · · ◦ •

A fundamental invariant of a regular normal parabolic geometry is the harmonic
curvature κH , taking values in the G0–module H2(g−, g) (that is the Lie algebra
cohomology of g− with values in g; in the quaternionic case the regularity require-
ment is vacuous, i.e.H2 = H2

+ has positive homogeneity because the geometry is |1|-
graded). This is a completely reducible module, and its two irreducible components
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H2
1 and H2

2 (the subscript denotes homogeneity of the cohomology with respect to
Z) yield the corresponding decomposition of κH into two summands:

• the torsion κ1 of homogeneity 1 valued in H2
1 (g−1, g), and

• the quaternionic Weyl curvature κ2 of homogeneity 2 valued in H2
2 (g−1, g).

The harmonic curvature κ1 coincides with the torsion T∇ = TQ of an arbitrary
Oproiu connection, and if the torsion vanishes, then the harmonic curvature κ2
coincides with Weyl tensor W∇ of an arbitrary Oproiu connection. For an almost
quaternionic structure that is not quaternionic κH = κ1 +κ2 and both components
are non-vanishing in general.

To compute the structure of these modules, where κ1 and κ2 have their values,
we invoke the complexification: the corresponding parabolic subalgebra pC ⊂ gC

induces a |1|-grading of gC and H2(g−, g) ⊗ C ' H2(gC−, gC). Explicit algorithmic
description of the GC

0 –module structure of the latter follows from Kostant’s version
of the Bott-Borel-Weil theorem [4]. The real curvature module is then a real com-
pletely reducible p-submodule of its complexification, which is a pC-module.

In the case of almost quaternionic structures, the submodules corresponding to the
quaternionic torsion κ1 and curvature κ2 are encoded by minus lowest weights of
the complexified modules (adapting the convention of [2]) as follows, where the
number over the i’th node is the coefficient of the fundamental weight ωi:

κ1 : 3 −3 0 1 0 1
• × • ◦ · · · ◦ • κ2 : 0 −4 3 0 0 1

• × • ◦ · · · ◦ •

Remark 4. Let us point out that H2
+(g−, g) is a real g0–module that we identify

with a real g0–submodule of H2
+(g−, g)⊗C. Note also that minus the lowest weight

is equal to the highest weight of the dual module.

Let us recall how to get a universal upper bound U on the submaximal symmetry
dimension S (the gap problem), and explain the role of the G0-module H2(g−, g).
Each element ξ of the infinitesimal symmetry algebra inf has to preserve (both com-
ponents of) κH , and thus the isotropy subalgebra of inf embeds into the annihilator
of κH in p. Moreover, for arbitrary fixed u ∈ G there is the inclusion inf ↪→ g of
filtered vector spaces, given by ξ 7→ ω(ξ(u)). Its image f ' inf is a filtered Lie
algebra with the bracket obtained by a deformation of the Lie bracket [·, ·] of g.
The associated graded algebra s = gr(f) is a graded subalgebra of g [3, 12]. The
grading s = ⊕isi satisfies

s0 ⊂ a0 = {φ ∈ g0 : φ · κH = 0}.
Furthermore it is proven in [12] that S ≤ U for

U = max{dim(aψ) : 0 6= ψ ∈ H2
+(g−, g)},

where the graded subalgebra aψ ⊂ g is the Tanaka prolongation of the pair (g−, aψ0 ),
and aψ0 is the annihilator of ψ in g0. Moreover, S ≤ U ≤ UC, where UC is the univer-
sal upper bound for the complexified geometry, and the universal upper bound is re-
alized by the stabilizer of minus the lowest weight vector in the complex case.

By [12, Corollary 3.4.8] the parabolic structures of type A2n+1/P2 are prolongation–
rigid, i.e. the Tanaka prolongation aψ+ = 0 for any ψ 6= 0. This implies the cor-
responding statement for real geometries [10, Proposition 3]. Thus almost quater-
nionic structures are prolongation–rigid aψ1 = 0, and so aψ = g−1 ⊕ aψ0 for each
non-zero element ψ ∈ H2

+(g−1, g).
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Let Si be the maximal symmetry dimension of the almost quaternionic geometry of
dimH = n in the case κi 6≡ 0. We are going to bound this Si ≤ Ui = max{dim(aψ) :
0 6= ψ ∈ H2

i (g−1, g)} and prove that the submaximal symmetry dimension is
U1 = S1 = S = S2 = U2.

We, however, cannot directly apply the methods from complex parabolic geometry.
It turns out that the corresponding upper bounds are strictly less than the upper
bounds for the complexification: Ui < UC

i and thus U < UC.

A similar phenomenon was noticed for Lorentzian conformal geometries in [5], where
the submaximal symmetry dimension was computed by listing all subalgebras of
high dimensions that stabilize a non-zero element in the harmonic curvature module.
In this paper, we choose a different approach by identifying a real analogue to the
lowest weight vector in the real harmonic curvature module.

4. Minimal orbits

Recall that in the case of complex parabolic geometries, obtaining the upper sym-
metry bound is based on the Borel fixed point theorem, which states that there
is a unique closed orbit, which is of minimal dimension, in the projectivization
of H2(g−, g). Then the upper bound is given by dimension of the stabilizer of a
weight vector corresponding to minus the lowest weight (generating the minimal
orbit). The Borel theorem cannot be applied in the case of almost quaternionic
structures, but we still consider the g0–orbits in the projectivization of H2(g−1, g)
to find one of the minimal dimension. The following statement is immediate.

Lemma 2. The annihilator of 0 6= κi ∈ H2
i (i = 1, 2) is of maximal dimension in g0

if and only if the G0–orbit through κi has minimal dimension in the projectivization
of H2(g−1, g).

We will need the following result on existence of closed orbits. Here we denote by
[v] the projection of a non-zero vector v ∈ V to the projective space PV.

Lemma 3. Let V be a real, finite-dimensional, irreducible L–module for a real
connected Lie group L, such that the center of L acts by real scalars. Then there
exists 0 6= v ∈ V such that for [v] ∈ PV the orbit L · [v] ⊂ PV is closed and of
minimal dimension. In fact, any orbit in PV of minimal dimension is closed.

Proof. We may quotient the group by the kernel of the representation, to obtain
a faithful representation, and this will not affect the (projective) orbits. Therefore
we assume without loss of generality that the representation is faithful.

Because the representation is irreducible, l = Lie(L) is the direct sum of a semi-
simple ideal and a central subalgebra [9, Chapter 3]. Our assumption on the center
action means that the module V is a tensor product of an irreducible module V0
over the semi-simple ideal, and a one-dimensional module R over the center.

Let L · [v] be an orbit of minimal dimension d = dimL · [v]. We want to prove it is
closed. Consider the complexification of the group, the action and the representa-
tion. The element v ∈ V + 0 · i ⊂ VC determines the complex orbit LC · [v] ⊂ PVC

of the same complex dimension d (because the annihilator of v in lC intersects l by
the annihilator of v in l). If the closure of the orbit L · [v] contains another orbit
L · [v′] (necessarily of the same dimension d), then the closure of the complex orbit
LC · [v] contains the complex orbit LC · [v′] (again of the same complex dimension
d). To exclude the latter note that the action of LC on PVC is algebraic, because
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both the semi-simple action on VC
0 and the central action on C are algebraic [13,

Chapter 3]. But then the boundary of any orbit can only contain orbits of strictly
smaller dimensions, which are less than d, cf. proof of Corollary in [13, III;§1.5].
Since such are non-existent in the real case, this proves the claim. �

Let’s consider the minimal orbits in the projectivizations PH2
1 and PH2

2 of both
irreducible components of H2(g−1, g).

Conjugacy classes of parabolic subalgebras are in bijection with conjugacy classes
of Z-gradings of semi-simple Lie algebras g = g−k ⊕ . . . ⊕ gk. If g has a proper
non-trivial parabolic subalgebra p, then there exists an element Z ∈ g which acts
diagonalizably on g, with an eigenspace decomposition of the form adZ |gn = n Idgn ,
such that the direct sum of the non-negative eigenspaces equals the parabolic sub-
algebra p = g≥0. This Z is called a grading element for p. Changing the grading
element Z to Adp(Z) for any p in P ⊂ G we get another grading element and
another grading of g. Moreover, given a grading of g, the subalgebra p = g≥0 of
non-negative gradation is parabolic (all parabolics arise in this way [4]).

Recall that in the quaternionic case g0 = sp(1) + RZ + sl(n,H). Let V be a g0-
module which is irreducible under the restricted representation of sl(n,H). The
group G̃0 = PGL(n,H) acts effectively on PV, and the Lie algebra g̃0 = sl(n,H)
is simple. Consider the following parabolic subgroups of G̃0: H = P̃2 in the case
n = 2, and H = P̃2,2n−2 in the case n > 2 (tilde in P indicates that numeration of
the parabolics is with respect to G̃0, the indices indicating the crossed nodes on the
Satake diagram of g̃0). This parabolic determines the grading on g̃0 with respect to
which the parabolic (g̃0)≥0 is equal to h = h0 ⊕ h+ as a vector space, where

h0 = sp(1)⊕ gl(n− 2,H)⊕ sp(1)⊕ RZ ′,
h+ = h1 ⊕ h2 = heis(8n− 12,H).

Here heis(8n − 12,H) is the quaternionification of the real (nilpotent) Heisenberg
algebra heis(2n−3), and Z ′ is a grading element in g̃0. The action of heis(8n−12,H)
on Hn is given by n × n quaternionic matrices with zeroes everywhere except for
the first row and the last column, and with zeroes on the diagonal.

To distinguish the summand sp(1) in g0 from those in h0 we will use the notations
sp(1)left and sp(1)right for the latter (marking them in the appearing order).

The grading element Z ′ ∈ g̃0 acts on V, and V decomposes as V = ⊕iVθi with
respect to the action of Z ′, where Z ′|Vθi = θiIdVθi , and θi is real for all i. Indeed, the
weights λ of the representation V are rational linear combinations of the roots of g0,
hence the eigenvalues λ(Z ′) of Z ′ on V can be rationally expressed via eigenvalues
of Z ′ on g0, which are integers. Therefore, exp(tZ ′) = ⊕ietθiIdVθi . For p ∈ h1, we
have [Z ′, p] = p = Z ′p− pZ ′. This implies that for all v ∈ Vθi we have

Z ′ · (p · v) = (p+ pZ ′) · v = (1 + θi)(p · v),
which implies p · v ∈ Vθi+1.

Lemma 4. Let V be an irreducible g̃0-module and 0 6= v ∈ V. Suppose that
the orbit G̃0 · [v] ⊂ PV is closed. Then there exists 0 6= w ∈ Vθmax = ker h+,
θmax = maxi{θi}, such that [w] ∈ G̃0 · [v].

Proof. Decompose v =
∑
θi
vθi into Z ′-eigenvectors as above. Let vθj be the non-

zero component of the greatest index. If θj < θmax then, due to irreducibility,
there exists p ∈ h1 such that p · vθj 6= 0 (in the opposite case v generates a proper
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submodule). Then w0 = exp(τp)v for small τ > 0 has a non-zero component in
Vθj+1. Repeat this procedure for w0, w1, . . . , wk−1 until wk has non-zero component
in Vθmax (if θj = θmax then wk = v). This takes a finite number of operations,
because θmax is finite, and the index θi ∈ [−θmax, θmax] is incremented by a fixed
amount on each iteration. Since the greatest eigenvalue dominates and the orbit of
v is closed, the limit 〈w〉 = lim

t→+∞
etZ

′〈wk〉 ∈ PVθmax exists. Here 〈wk〉 = R · wk.
Moreover, there exists an element w in Vθmax which is projected to the limit 〈w〉. �

Note that the proof of Lemma 4 would work if we switched out h for any parabolic
subalgebra in g̃0, but the particular choice h will turn out to be well adapted to
describing the minimal orbits in those modules we are interested in.

4.1. Minimal orbits in the curvature module. The irreducible G0-submodule
H2

2 ⊂ H2(g−, g) will be denoted in this subsection by VII to indicate its homogeneity
2. Since the grading element Z acts on it by multiplication by 2, it cannot be in the
annihilator of κ2. It follows from the description of the (complexified) curvature
module in the previous section that the action of sp(1) preserves κ2 and is always
contained in the annihilator. Therefore we can restrict our attention to the action
of g̃0 = sl(n,H). With respect to it the curvature module has the highest weight
ω1 + 3ω2n−1 (we flip the Satake diagram), and hence can be identified with an
irreducible real G̃0–module

VII = S3
CH∗n �Hn.

Here � denotes the Cartan product (kernel of the tensor contractions), and we use
the complex notations (the complex tensor products are taken with respect to an
arbitrary invariant complex structure, say I ∈ ImH ⊂ End(Hn), whose choice is
inessential). For real description we refer to [4, Proposition 4.1.8], see also Remark
5, but we use the complex notations (even in describing the real objects).

We would like to find a G̃0-orbit of minimal dimension (closed by Lemma 3) in
PVII. Due to Lemma 4 we can assume it is represented by a non-zero element
w ∈ VII

θmax
= ker h+. The element w has pure grading with respect to Z ′ and hence

its annihilator in g̃0 is also graded: ann(w) =
2
⊕

s=−2
ann(w)s

(
=

1
⊕

s=−1
ann(w)s for

n = 2
)
. We already know that ann(w)+ = h+.

Lemma 5. We have: ann(w) ∩ (g̃0)− = 0, i.e. ann(w)− = 0.

Proof. Let us consider the case n > 2 (The case n = 2 is a simple adaptation).
The h0 module (g̃0)−1 is reducible – it is the sum of two irreps: (g̃0)′−1 ≡ (the
first column in the matrix from sl(n,H) with the first and last entries zero) and
(g̃0)′′−1 ≡ (the last row in the matrix from sl(n,H) with the first and last entries
zero). This is also true when we restrict to sl(n− 2,H) ⊂ h0.

Let q = q′+q′′ ∈ ann(w)−1 be non-zero. Due to the highest weight of the curvature
module, sl(n−2,H) ⊂ ann(w), and both (g̃0)′−1 and (g̃0)′′−1 are sl(n−2,H)-modules,
so we conclude that at least one of (g̃0)′−1 and (g̃0)′′−1 is entirely in the annihilator.
But then, since h1 ⊂ ann(w) (and computing the brackets), we conclude that at
least one of sp(1)left and sp(1)right is entirely in ann(w), which is impossible.

Thus ann(w)−1 = 0. If there is 0 6= q ∈ ann(w)−2, then taking brackets with
h1 ⊂ ann(w) we get a non-zero element in ann(w)−1, which is impossible by the
above. This contradiction proves the claim. �
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As already noted in the above proof, due to the highest weight, sl(n − 2,H) acts
trivially on VII, and so from hss0 only sp(1)2 = sp(1)left⊕sp(1)right acts non-trivially.
With respect to this algebra the module VII

θmax
has highest weight ω1 + 3ω2, and

as an irreducible real module it has real dimension 8. We want to maximize the
annihilator of an element w.

Lemma 6. Dimension of the sp(1)2-orbit through a non-zero element w ∈ VII
θmax

is either 5 or 6. Thus nontrivial annihilator can be only so(2) ⊂ sp(1)2 of dim = 1.

Proof. The complex sp(1)2-module VII
θmax

⊗ C of the highest weight ω1 + 3ω2 is
the outer product of the irreducible sp(1)–modules C2 and S3

CC2. The algebra
sp(1)2 is a compact real form of the rank 2 algebra sl(2,C) ⊕ sl(2,C), therefore
the subalgebra of dimension 2 is a Cartan subalgebra t2, which is unique up to
conjugation. Any subalgebra of dimension > 2 contains a Cartan subalgebra, but
t2 does not annihilate any vector in the module. Therefore the maximal possible
annihilator dimension is 1, and any subalgebra of dimension 1 is isomorphic to
so(2). This is realized by annihilator of the highest weight vector, and its real part
has the same annihilator. This annihilator is generated by 3eleft−eright, where eleft
and eright are generators of Cartan subalgebras in the two ideals of sp(1)2. �

Corollary 7. The largest annihilator of a non-zero w ∈ VII
θmax

with respect to the
action of g0 is sp(1)⊕

(
so(2)⊕ R⊕ gl(n− 2,H)

)
n h+, where R is generated by a

suitable linear combination of the grading elements Z and Z ′ of g and g̃0.

We realize this annihilator in complex notations as follows. Let Hn = H1⊕ . . .⊕Hn
and vm be the standard basis of Hm (v = 1, i, j, k), v∗m be the real dual basis,
m = 1, . . . , n. Denote by qr,s ∈ sl(n,H) the matrix that contains q on the r-th
row and s-th column, and that contains zeros elsewhere. The action on Hn is
qr,s · vt = (qv)r δs,t and the action on H∗n is minus the transpose.

Let w = 1∗3n ⊗ 11 ∈ VII (this element is contained in the Cartan product because
〈1∗n, 11〉 = 0, so the tensor contractions yield zero). Then ann(w) in g̃0 is generated
by qr,s for 1 ≤ r < n, 1 < s ≤ n (q = 1, i, j, k), where if r = s and q real we have to
compensate by 1n,n + 3 · 11,1, and the element in,n + 3 · i1,1. To get the annihilator
in g0 we add sp(1) and the element Z + 11,1 − 1n,n.

Remark 5. The element w = 1∗3n ⊗ 11 ∈ VII is actually written in complex tensor
notation. To get it as a real tensor, one should project the corresponding real tensor
product to its complex linear submodule, and then take another projection to a self-
conjugate submodule with respect to an invariant complex conjugation. We note
that the first projection depends on the choice of invariant complex structure. We
choose i ∈ Im(H). Then

proji(1∗3n ⊗ 11) = 1
8 (1∗3n ⊗ 11 + 3 · 1∗2n i∗n ⊗ i1 − 3 · 1∗ni∗2n ⊗ 11 − i∗3n ⊗ i1).

A complex conjugation can be chosen as (right) multiplication by j of all tensor
factors of a monomial, extended by linearity. A stable element is then given by the
projector projsc to the self-conjugate submodule.
projsc(proji(1∗3n ⊗ 11)) = 1

16 (1∗3n ⊗ 11 + 3 · 1∗2n i∗n ⊗ i1 − 3 · 1∗ni∗2n ⊗ 11 − i∗3n ⊗ i1+
+j∗3n ⊗ j1 + 3 · j∗2n k∗n ⊗ k1 − 3 · j∗nk∗2n ⊗ j1 − k∗3n ⊗ k1).

Note that the symmetric tensor products come with factors of 1
3 , which will cancel

out the factors of 3 in our formula, so that e.g. the coefficient of 1∗n⊗1∗n⊗i∗n⊗i1 is 1
16 .
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The tensor projsc(proji(1∗3n ⊗ 11)) has the required annihilator, index symmetries,
vanishing contraction, and so can serve as a generator of the real curvature module
under the action of sl(n,H).

Taking the semi-direct product of the annihilator in g0 and the Abelian algebra Hn,
we get the graded algebra aψII of maximal dimension provided 0 6= ψII ∈ VII:

aψII =
(
sp(1)⊕

(
so(2)⊕ R⊕ gl(n− 2,H)

)
n heis(8n− 12,H)

)
nHn.

This will be shown to be associated to the filtration on the symmetry algebra s of
a geometry with κ2 6= 0 in the next section.

4.2. Minimal orbits in the torsion module. The irreducible G0-submodule
H2

1 ⊂ H2(g−, g) will be denoted in this subsection by VI to indicate its homogeneity
1. It is a quaternionic module. From the weighted Dynkin diagram (our Satake
diagram in Section 3 with all nodes white) we see that the the complexification VI⊗
C is an outer product of the sp(1)-module S3

CH and the sl(n,H)-module Λ2
CH∗n�Hn

(this Cartan product is the kernel of the contraction Λ2
CH∗n ⊗C Hn → H∗n). We

refer to [4, Proposition 4.1.8] for the description of VI as the real module.

One could expect that a generator of a minimal orbit can be realized as the tensor
product of such generators in each factor, and this is indeed the case. A minimal
non-zero sp(1)-orbit in S3

CH can have dimension no less than 2, because the maximal
proper subalgebra of sp(1) is of dimension 1. This means that any element of the
torsion module which achieves maximal stabilizer in sl(n,H) and a stabilizer of
dimension 1 in sp(1) generates a minimal orbit.

Thus, we analyze the torsion module under the action of g̃0 = sl(n,H) alone, which
yields

VI = C4 ⊗C Λ2
CH∗n �Hn,

where the first factor C4 is a trivial module. This decomposes as a direct sum of
modules isomorphic to Λ2

CH∗n�Hn. One can always find a minimal orbit in a com-
pletely reducible module which is contained in an irreducible summand. Moreover
this orbit is closed by Lemma 3 and we again utilize Lemma 4 to ensure that the
minimal orbit has an element in ker h+. Using the grading element Z ′ of g̃0 we
identify VI

θmax
= ker h+.

Since the module Λ2
CH∗n �Hn has highest weight ω1 + ω2n−2 and is quaternionic,

so dimR VI
θmax

= 4. Taking 0 6= w ∈ VI
θmax

(of pure grade), its annihilator is a
graded algebra (containing h+).

Lemma 8. We have: ann(w) ∩ (g̃0)− = 0, i.e. ann(w)− = 0.

Proof. Let us consider the case n > 2 (The case n = 2 is a simple adaptation).
First, we show that the evaluation map (g̃0)−1 ⊗ VI

θmax
→ VI is injective. Take

any element q = q′ + q′′ ∈ (g̃0)−1 = (g̃0)′−1 ⊕ (g̃0)′′−1, where the latter splitting
into irreps is the same as in the proof of Lemma 5. Using the same argument as
in this proof, given a non-zero annihilator element in one of these submodules, we
conclude (because sl(n − 2,H) is in the annihilator) that the whole submodule is
in the annihilator. So it is enough to check injectivity of the action on the two
elements only, which are q′s,1 and q′′n,s for 1 < s < n.

Notice that VI
θmax

= {1∗n ∧ j∗n ⊗ v1 : v ∈ H}. If q = q′s,1, then the action is
q · (1∗n ∧ j∗n ⊗ v1) = 1∗n ∧ j∗n ⊗ (qv)s 6= 0, and if q = q′′n,s, then the action is
q · (1∗n ∧ j∗n ⊗ v1) = −(q′′∗s ∧ j∗n + 1∗n ∧ (q′′j)∗s)⊗ v1 6= 0. Thus ann(w) ∩ (g̃0)−1 = 0.
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The rest mimics the proof of Lemma 5: if a non-zero annihilator element exists in
(g̃0)−2, then bracketing with h1 we obtain a non-zero annihilator element in (g̃0)−1,
which is a contradiction. �

Thus it remains to consider the action of h0 on VI
θmax

. Since in the semi-simple part
hss0 = sp(1)left⊕sl(n−2,H)⊕sp(1)right the last two summands are in the annihilator
(because of the weight of the representation), this reduces to considering VI

θmax
as

sp(1) = sp(1)left-module (of the highest weight ω1). This is the standard left action
of sp(1) on H, any element of sp(1) acts as a complex structure, and so this part
gives no contribution to the annihilator of any 0 6= w ∈ VI

θmax
. Also, similar to the

curvature module, a combination of the grading elements acts trivially.

Corollary 9. The largest annihilator of a non-zero w ∈ VI
θmax

with respect to the
action of g0 is so(2)⊕

(
R⊕ gl(n− 2,H)⊕ sp(1)right

)
n h+, where R is generated by

a suitable linear combination of the grading elements Z and Z ′ of g and g̃0.

Let us give the generators of this annihilator in the complex tensor notations.
Fixing w = 1∗n ∧ j∗n⊗ 11 (again this element is contained in the Cartan product) we
conclude that ann(w) in g̃0 is generated by the elements vn,n (v = i, j, k) and the
elements qr,s for 1 ≤ r < n, 1 < s ≤ n (q = 1, i, j, k); if r = s and q is real, then
qr,s is compensated by 1n,n + 2 · 11,1 to belong to g̃0. To get the annihilator in g0
we add one element from sp(1) and the element Z + 11,1 − 1n,n.

Taking the semi-direct product of this annihilator and the Abelian algebra Hn, we
get the graded algebra aψI of maximal dimension provided 0 6= ψI ∈ VI:

aψI =
(
so(2)⊕

(
R⊕ gl(n− 2,H)⊕ sp(1)right

)
n heis(8n− 12,H)

)
nHn.

This will be shown to be associated to the filtration on the symmetry algebra s of
a geometry with κ1 6= 0 in the next section.

Remark 6. The annihilator algebras from Corollaries 7 and 9 are very similar but
not isomorphic. The following is an explanation of this phenomenon. We reduce
the curvature- and torsion-modules via the parabolic subalgebra p2,2n−2 (or p2 for
n = 2) of sl(n,H). This yields the diagrams

3 −3 0 1 0 0 0 0 0 1
• × • × • ◦ · · · ◦ • × •
0 −4 3 0 0 0 0 0 0 1
• × • × • ◦ · · · ◦ • × •

We note that the numbers above connected pieces correspond to the action of a
semi-simple subalgebra, and the numbers above crosses only affects the scaling
factors of the center of g0. One can express this by the diagram with crosses
removed

0 1 3 0 0 0 0
• • • • ◦ · · · ◦ •

that is the same for the two modules, after a permutation. Hence the contribution
from gss0 to the annihilator must be abstractly isomorphic in the two cases. The
difference then comes from the action of gss0 on h+.

5. Realizations of sub-maximal models

In the previous section we found the annihilator algebras aψI and aψII of maximal
dimension that is U = 4n2 − 4n + 9 in both cases. To prove this is realizable, we
follow the idea of [12, §4.2] and deform the graded bracket structure on a to obtain
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a new filtered Lie algebra f. We use the real highest weight vector in our modules
(that correspond to the minus lowest weight vectors of the duals - note that we
used flip of the Satake diagram in our construction).

This is expected to correspond to the symmetry algebra of a submaximally sym-
metric model, which is (non-flat) homogeneous with the isotropy being f≥0 = a0
(because of the prolongation-rigidity), and we show it is the case.

To do this we follow the approach in [12, §4.1] that allows to establish an abstract
model, basing on the extension functor construction. However we also provide
explicit matrix models of the corresponding almost quaternionic manifolds (M,Q),
for which the direct computation confirms the amount of symmetry is submaximal
S = U. We consider the curvature and torsion cases separatetly. The corresponding
theorems imply the main result of this paper.

We consider the cases when non-zero κ = (κ1, κ2) is either (ψI, 0) or (0, ψII). One
could also question if the submaximal symmetry dimension can be achieved when
both torsion and curvature are non-zero, but even though abstractly the maximal
annihilator algebras aψI ' aψII the discussion in Remark 6 shows that the answer
to the above question is negative.

5.1. Realization of the curvature model. Consider the case of non-vanishing
curvature and vanishing torsion first. In order to realize the symmetry algebra,
the minimal orbit in the abstract curvature module VII needs to be reinterpreted
as a deformation of the graded algebra aψII . This can be done by finding a G0-
equivariant map

b : VII = S3
CH∗n �Hn → B = Λ2H∗n ⊗ g0,

and using the Lie bracket deformation given by the image b(v) of a generator
0 6= v ∈ VII of the minimal orbit G0 · [v].

Lemma 10. The equivariant map b exists and is unique up to scale.

Proof. The real module B is completely reducible, and we compute its decomposi-
tion into irreducible submodules by finding an sl(n,H)-invariant real subspace in the
complexification after applying standard methods from the complex representation
theory of A2n−1 = sl(n,H)⊗ C. We have (in complexification Hn = C2n):

(Λ2
RH∗n)C = Λ2

C(2 ·H∗n) = 3 · Λ2
CH∗n ⊕ S2

CH∗n.

Here 2 ·H∗n means the direct sum of 2 copies of H∗n, and similarly for 3 · Λ2
CH∗n.

The Cartan product S2
CH∗n � adC

sl(n,H) has the same highest weight as VII, and so
is isomorphic to it as a complex A2n−1-module, with the isomorphism mapping the
sl(n,H)-invariant real submodules into each other. This is the unique submodule
in B of the required isomorphism type, so the map b is defined and is unique up to
scalar multiplication (since Endg0(VII) = R, this scalar is a real number). �

We construct b in the complex tensor notations as in the previous section.

Proposition 11. The bracket deformation on an extremal generator w ∈ VII
θmax

,
corresponding to a minimal orbit G0 · [w] in PVII, is given by the formula:

b(w) =(i∗n ∧ j∗n − 1∗n ∧ k∗n)⊗ (i∗n ⊗ 11 − 1∗n ⊗ j1 + j∗n ⊗ k1 − k∗n ⊗ j1)
−(1∗n ∧ j∗n + i∗n ∧ k∗n)⊗ (1∗n ⊗ 11 + i∗n ⊗ i1 + j∗n ⊗ j1 + k∗n ⊗ k1).



SUBMAX. SYMMETRIC ALMOST QUATERNIONIC STRUCTURES 13

Define the deformed Lie bracket on the space of aψII via b(w):

[ , ]fII = [ , ]aψII + b(w)( , ).

Similarly to [12, Lemma 4.1.1] one can check that this is a Lie bracket (the Jacobi
identity holds), and the space aψII equipped with it is a new (now filtered) Lie
algebra fII.

This deformation changes the Lie brackets of the previously Abelian subalgebra Hn,
and this subspace Hn ⊂ Hn becomes non-Abelian. The new bracket component
takes values in the center of the subalgebra heis(8n− 12,H):

[Hn,Hn]fII ⊂ z(heis(8n− 12,H)).

Notice that the semi-simple Levi factor of the symmetry algebra is unchanged by
this deformation: fssII = (aψII)ss = sp(1)⊕ sl(n− 2,H). Due to the presence of the
subalgebra sl(n − 2,H) n Hn−2 in fII, a sub-maximal model can be realized as a
direct product (although this notion is coordinate dependent) of the flat structure
Hn−2 and a sub-maximal structure of dimension 2.

Although the symmetry algebra is not solvable, its solvable radical acts locally
transitively, which allows us to integrate the algebra and produce a coordinate
description of the model. For n = 2 the operator I on H2 = R8(h1, . . . , h8) is given
by the matrix

I =
(
AI CI
0 BI

)
, AI =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0




BI = 1
α2




0 2h2
2 − α2 −2h2 h4 2h2 h3

α2 − 2h2
2 0 2h2 h3 2h2 h4

2h2 h4 −2h2 h3 0 2h2
2 − α2

−2h2 h3 −2h2 h4 α2 − 2h2
2 0




CtI = 1
2α2




0 h2(2α2 − 3h2
2) h3(α2 − 3h2

2) h4(α2 − 3h2
2)

h2(4α2 − 3h2
2) 0 −h4(h2

2 + α2) h3(h2
2 + α2)

h4(3h2
2 − α2) h3(3h2

2 + α2) h2(3h2
3 + h2

4) 2h2h3h4
h3(α2 − 3h2

2) h4(3h2
2 + α2) 2h2h3h4 h2(h2

3 + 3h2
4)




+ 1
α2




h2h5 + h3h7 + h4h8 −h2h6 − h3h8 + h4h7 0 0
h2h6 − h3h8 + h4h7 h2h5 − h3h7 − h4h8 0 0
h2h7 − h3h5 − h4h6 −h2h8 + h3h6 − h4h5 0 0
h2h8 + h3h6 − h4h5 h2h7 + h3h5 + h4h6 0 0




(note the transpose). Here α2 = h2
2 + h2

3 + h2
4. The operator J is given by

J =
(
AJ CJ
0 BJ

)
, AJ =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




BJ = 1
α2




0 −2h2h3 2h3h4 α2 − 2h2
3

2h2h3 0 α2 − 2h2
3 −2h3h4

−2h3h4 2h2
3 − α2 0 −2h2h3

2h2
3 − α2 2h3h4 2h2h3 0



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CtJ = 1
4α2




3h4α
2 h3(6h2

2 − α2) h2(6h2
3 − α2) 6h2h3h4

h3(6h2
2 − 5α2) −3h4α

2 2h2h3h4 h2(3α2 − 2h2
3)

−6h2h3h4 3h2(α2 − 2h2
3) h3(β2 − 4h2

3) h4(3α2 − 4h2
3)

h2(6h2
3 − α2) −6h2h3h4 −h4(3α2 + 4h2

3) h3(β2 − 4h2
4)




+ 1
α2




h2h7 − h3h5 + h4h6 0 h2h6 + h3h8 − h4h7 0
−h2h8 − h3h6 − h4h5 0 −h2h5 + h3h7 + h4h8 0
−h2h5 − h3h7 + h4h8 0 h2h8 − h3h6 + h4h5 0
h2h6 − h3h8 − h4h7 0 −h2h7 − h3h5 − h4h6 0




(note the transpose). Here β2 = h2
2 − h2

3 − h2
4. Then we let K = IJ .

To get the quaternionic structure for general quaternionic dimension n, re-denote
the above operators for n = 2 by I(2) and J(2). Now let I be given as the block
matrix with I(2) in the top 8×8 block, AI on the following diagonal 4×4 blocks and
zeroes elsewhere. Similarly let J be given as the block matrix with J(2) in the top
8× 8 block, AJ on the following diagonal 4× 4 blocks and zeroes elsewhere. Define
K = IJ . Denote the obtained quaternionic structure (I, J,K) by QII.

Theorem 12. The quaternionic structure (M,QII) has symmetry algebra sII of
submaximal dimension S2 = 4n2 − 4n+ 9.

Proof. The proof of [12, Lemma 4.1.4] gives the abstract parabolic model via the
extension functor construction. The symmetry algebra s of this model contains (by
construction) the deformed algebra fII constructed above. Thus we already have at
least S2 symmetries. Since this coincides with the universal upper bound U2 = U,
there can be no more symmetries: sII = fII. �

Remark 7. There is a reductive decomposition s = h + m, where m = g−1 = Hn.
Moreover, we have [m,m] ⊂ h. Thus (h,m) is a symmetric pair. This reflects the fact
that the submaximally symmetric quaternionic geometry is a locally affine symmet-
ric space in the sense of [14]. Direct computations (in Maple’s DifferentialGeometry
package, for n = 2) gives locally a unique quaternionic invariant connection and
this connection has vanishing torsion and parallel curvature. Thus the connection
corresponds to the canonical connection on the symmetric space for the pair (h,m).
This local connection is hypercomplex for the above I, J,K, and it is the unique
Obata connection [1]. Because the structure is torsion–free, the connection is also
one of the Oproiu connections and determines the class of Oproiu connections on
the submaximal model. Moreover, the connection is Ricci–flat and its curvature
coincides with the quaternionic Weyl curvature (and in particular it is harmonic).
However, Oproiu connections in the class are not Ricci-flat in general. Finally, di-
rect computation shows that there is no invariant metric (of any signature) on the
submaximal model.

5.2. Realization of the torsion model. The case of non-vanishing torsion and
vanishing curvature can be treated similarly. In this case, we immediately interpret
the element

w = 1∗n ∧ j∗n ⊗ 11

as a deformation to the graded algebra aψI , so the deformed Lie bracket on the
space of aψI is

[ , ]fI = [ , ]aψI + w( , ).
As in the curvature case, the previously Abelian subalgebra Hn will become non-
Abelian, but in this case we have

[H1,H1]fI ⊂ Hn ⊂ Hn,
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which means that Hn remains a subalgebra. It is a nilpotent ideal of the algebra
fI acting locally transitively on the corresponding (local) homogeneous model F/K
(cf. [12, Lemma 4.1.4]). Therefore, the minimal model is locally equivalent to a left
invariant structure on the nilpotent Lie group corresponding to (Hn, [ , ]fI).

As in the curvature case, the semi-simple Levi factor of the symmetry algebra is
unchanged by the deformation, and due to the presence of sl(n−2,H) the model can
once again be realized as a direct product of a submaximal structure in quaternionic
dimension 2 and a flat structure in quaternionic dimension n− 2.

The matrices for n = 2 in the torsion case turn out to be considerably simpler than
in the curvature case. Namely, the operators I and J on H2 = R8(h1, . . . , h8) are
given by the following matrices and IJ = K.

I =




0 −1 0 0 0 h7 0 0
1 0 0 0 h7 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0




J =




0 0 1 0 0 0 −h7 0
0 0 0 1 0 0 0 0
−1 0 0 0 −h7 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0




To get the quaternionic structure for general quaternionic dimension n, we again
extend the above I by the 4× 4 block-matrices that form the block-diagonal of the
8× 8 matrix, and do similarly for J ; then we define K = IJ . Denote the obtained
quaternionic structure (I, J,K) by QI.

Theorem 13. The quaternionic structure (M,QI) has symmetry algebra sI of sub-
maximal dimension S1 = 4n2 − 4n+ 9.

Proof. The proof mimics that of Theorem 12, and we conclude S1 = U1 = U, and
therefore sI = fI. �

Remark 8. The submaximally symmetric almost quaternionic geometry of torsion
type is locally representable as a group. Such structures always have at least a one-
parameter family of invariant connections [14]. Direct computations (in Maple’s
DifferentialGeometry package) shows that (for n = 2) there is a six-parameter
family of invariant connections, each with vanishing curvature and parallel torsion.
However, only a two-parametric sub-family is quaternionic, and all the invariant
quaternionic connections are hypercomplex. Among all these connections, we can
find exactly one connection such that its torsion coincides with the structure torsion
of the hypercomplex structure, and this is the Obata connection of the hypercom-
plex structure [1]. However, the structure torsion of the hypercomplex structure
differs from that of the almost quaternionic structure, because the submaximal
model has non-vanishing (harmonic) torsion. There is no invariant quaternionic
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connection such that its torsion coincides with the structure torsion of the almost
quaternionic structure. Thus, no Oproiu connection is invariant. Clearly, the class
of Oproiu connections is invariant, but unlike the quaternionic submaximal model
(torsion–free with curvature), there is no fixed point in the class.

Remark 9. Suppose the almost quaternionic structure Q is induced by an almost
hypercomplex structure I, J,K. Then the hypercomplex symmetry algebra consists
of the quaternionic symmetries that preserve each of I, J,K by itself. In particular,
the almost hypercomplex structure inducing the sub-maximal quaternionic struc-
ture QII has hypercomplex symmetry algebras of dimension 4n2 − 4n + 6, while
that for the almost quaternionic structure QI has that dimension 4n2 − 4n+ 8.
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LOCAL GEOMETRIC CONTROL OF A CERTAIN MECHANISM

WITH THE GROWTH VECTOR (4, 7)

JAROSLAV HRDINA AND LENKA ZALABOVÁ

Abstract. We study local control of the mechanism with the growth vector

(4, 7). We study controllability and extremal trajectories on the nilpotent
approximation as an example of the control theory on Lie group. We give

solutions of the system an show examples of local extremal trajectories.

1. Introduction

Originally, the general trident snake robot has been introduced in [11]. Let us
recall that the trident robot is a mechanism composed of three snake–legs, each
connected to an equilateral triangle root block in its vertices [10, 11, 12, 21] for
further details. Generally, the branches can be multi–link, assumed that each link
has its own passive wheel, which provides footing for the robot. Active elements,
which affect controllability, are placed on branches. Its simplest non–trivial version,
corresponding to one–links, has been mainly discussed, see e.g. [12, 10, 21]. In this
case, the control distribution is that of the growth vector (3, 6) [20].

We are interested in the modification corresponding to one or more prismatic
joints such that the control distribution will be a that of the growth vector (4, 7).
Local controllability of such robot is given by the appropriate Pfaff system of ODEs.
The solution space gives a control system q̇ =

∑
uiXi where the vector fields

X1, X2, X3, X4 describe the horizontal distribution and u : R→ R4 is the control of
the system. Consequently, the system is controllable by Chow–Rashevsky theorem
[1, 14, 5], see Section 2.

We construct a nilpotent approximation to get nilpotent Lie algebra and cor-
responding Lie group to study the controllability of approximated left invariant
control system, see Section 3. We study geometric properties and symmetries of
the nilpotent approximation in Section 4. We use the theory of Hamiltonians and
Pontryagin’s maximum principle to study local control and extremal trajectories,
see Section 5. In particular, we provide analysis of the system and present explicit
solutions.

2. Analysis of the mechanisms

In this Section we describe a mechanism that is a modification of the trident
snake robot (for more details see [10, 11, 12, 21]). We present our mechanisms
as a new example of non-holonomic systems with multi–generators and discuss
local controllability of our mechanism based on the principles of non-holonomic
mechanics.

2.1. Description of the mechanism and its movement. In the sequel, we
study a generalized trident mechanism which consists of a root block in the shape
of an equilateral triangle with three 1–link branches with variable length. Each of

2010 Mathematics Subject Classification. 53C17, 93C15, 34H05.
Key words and phrases. local control, sub–Riemannian geometry, Pontryagin’s maximum prin-

ciple, nilpotent Lie group.
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Figure 1. Description of the mechanism

the branch is connected to one vertex of the root block and they form prismatic
joints. Second leg is in addition connected to the root block via the revolute joint,
connection of the two remaining is fixed. Each link has a passive wheel on its
branches, which is assumed neither to slip, nor slide sideways.

The configuration space of the planar mechanism in question corresponds to a
manifold that locally coincides with R7 (but not globally). Since we study local
problems, we can consider the configuration space to be R7 with the coordinates
(x, y, θ, ϕ, `1, `2, `3). With respect to a fixed coordinate system, the first three
coordinates describe completely the global position of the mechanism in the plane.
The coordinates x and y give the position of the centre of mass of the root block
in R2 and θ gives the amount of the counter-clockwise rotation. Remaining four
coordinates represent the input for the mechanism’s active elements. Thus as active
elements we consider the revolute joint of the branch `2 with the root block, namely
ϕ, and prismatic joints, which can change absolute lengths of branches `1, `2 and
`3, see Figure 1.

To provide the description of the robot’s movement, we shall only point out that
we do not get any singularities as long as the robot’s configuration satisfies that
0 < `i and ϕ is not too far from 0.

Using the method of moving frame, the kinematic model is the set of equations
for i–th wheel position in the form

xi = x+ cos(θ + αi) + `i cos(θ + αi),

yi = y + sin(θ + αi) + `i sin(θ + αi),
(1)

for i = 1, 3, where α1 = − 2
3π, α3 = 2

3π, and

x2 = x+ cos(θ) + `2 cos(θ + ϕ),

y2 = y + sin(θ) + `2 sin(θ + ϕ).
(2)

Consequently, we differentiate the position equations (1) and (2) with respect to
time t and obtain the velocity equations as follows

ẋi = ẋ− sin(θ + αi)θ̇ − `i sin(θ + αi)θ̇ + cos(θ + αi) ˙̀
i,

ẏi = ẏ + cos(θ + αi)θ̇ + `i cos(θ + αi)θ̇ + sin(θ + αi) ˙̀
i,
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for i = 1, 3, where α1 = − 2
3π, α3 = 2

3π, and

ẋ2 = ẋ− sin(θ)θ̇ − `2 sin(θ + ϕ)(θ̇ + ϕ̇) + cos(θ + ϕ) ˙̀
2,

ẏ2 = ẏ + cos(θ)θ̇ + `2 cos(θ + ϕ)(θ̇ + ϕ̇) + sin(θ + ϕ) ˙̀
2.

The conditions preventing slipping lead to the non-holonomic constraints of the
form

0 = (− sin(θ + αi), cos(θ + αi)) · (ẋi, ẏi),
0 = (− sin(θ + ϕ), cos(θ + ϕ)) · (ẋ2, ẏ2),

where i = 1, 3, α1 = − 2
3π, α3 = 2

3π and · is the Riemannian scalar product on the

Euclidean space R2. We obtain the following differential kinematic equations, so
the movement of the mechanism is described by the Pfaff system of three nonlinear
homogeneous equations

0 = − sin(θ − 2π

3
)dx + cos(θ − 2π

3
)dy + (1 + `1)dθ,

0 = − sin(θ + ϕ)dx + cos(θ + ϕ)dy + (− cos(ϕ) + `2)dθ − `2dϕ,

0 = − sin(θ +
2π

3
)dx + cos(θ +

2π

3
)dy + (1 + `3)dθ.

(3)

2.2. Local controllability of the system. The space of solutions to the system
(3) forms four dimensional distribution on the configuration space, so–called hori-
zontal distribution. It follows from (3) that the solution space always contains the
vector fields X2 := ∂`1 , X3 := ∂`2 and X4 := ∂`3 as generators. In the case `2 6= 0
the last generating vector field X1 is a combination of ∂x, ∂y, ∂θ and ∂ϕ which is
generically complicated and we do not need to write it here in the biggest generality
while X1 = ∂ϕ in the case `2 = 0. In fact, from the mechanical point of view, zero
length of each leg makes no sense, so we suppose in the following that `i > 0.

We can equivalently rewrite the solution space of the Pfaff system (3) in the
following form

q̇ = u1X1(q) + u2X2(q) + u3X3(q) + u4X4(q),(4)

where q = (x, y, θ, ϕ, `1, `2, `3). This is a 4–input symmetric affine control system.
In general, controllability of symmetric affine systems is completely characterized by
the controllability Lie algebra by Chow–Rashevsky’s theorem [14, 23, 19]. Control
system (4) satisfies the Chow’s condition at the point q if Lie(X1, X2, X3, X4)(q) =
TqR7, where the controllability Lie algebra Lie(X1, X2, X3, X4) is the Lie algebra
generated by X1, X2, X3, X4. In this case point q is regular and can be connected
with any point in a suitable neighbourhood of q by a horizontal trajectory. If the
Chow’s condition is satisfied at all points (of a connected space) then any two points
can be joined by a horizontal trajectory and the system is locally controllable.

In our case, mechanical description leads to an observation that local con-
trollability depends on the shape of the mechanism only, not on its configura-
tion in the plane. In other words, regular points have to be invariant with re-
spect to the rigid body (Euclidean) transformations of the plane. So we choose
x = y = 0 and θ = π

2 without loss of generality. In particular, for points of the
form q0 = (0, 0, π2 , ϕ, `1, `2, `3) the vector fields

X1 = ∂x +
(`1 − `3)

√
3

3L
∂y −

1

L
∂θ +

sin(ϕ)
√

3(`1 − `3) + 3 cos(ϕ)(L+ 1) + 3`2
3`2L

∂ϕ

X2 = ∂`1 , X3 = ∂`2 , X4 = ∂`3 ,
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generate the solution space of our Pfaff system, where we denote L = `1 + `3 +
2. Moreover, at q0, the controllability Lie algebra is obtained by the Lie bracket
operation as

X12 := [X1, X2] =
−2(`3 + 1)√

3L2
∂y −

1

L2
∂θ +

−2 sin(ϕ)(`3 + 1) +
√

3 cos(ϕ) +
√

3`2√
3`2L2

∂ϕ,

X13 := [X1, X3] =
sin(ϕ)(`1 − `3) +

√
3 cos(ϕ)(L+ 1)√

3`22L
∂ϕ,

X14 := [X1, X4] =
2`1 + 2√

3L2
∂y −

1

L2
∂θ +

2 sin(ϕ)(`1 + 1) +
√

3 cos(ϕ) +
√

3`2√
3`2L2

∂ϕ,

and remaining brackets are trivial. Then the matrix Ḡ consisting of coordinates
of vector fields X1, X2, X3, X4, X12, X13, X14 spans full tangent space R7 as long
as det(Ḡ(q0)) 6= 0 and the system is locally controllable at q0. Thus our system
is locally controllable at q0 (and without loss of generality everywhere because of
mechanical meaning) because `2 6= 0 and L 6= 0.

We consider the filtration ∆1 = 〈X1, . . . , X4〉 ⊂ ∆2 = 〈X1, . . . , X4, X12, X13, X14〉.
We have dim ∆1(q) = 4 and dim ∆2(q) = 7 at all points and we have filtration with
the growth vector (4, 7).

2.3. Remark on corresponding dynamical systems. If we restrict our consid-
erations only to nontrivial movements of the root block, i.e. movements in the X1

direction or in the direction of iterated bracket of X1 and Xi for i = 2, 3, 4, we can
use methods of dynamic pairs.

In general, each control affine system

ẋ = X(x) +
m∑

j=1

ujYj(x)

on a manifold M , where X,Y1, . . . , Ym are smooth vector fields on M and u =
(u1, . . . , um)T are controls, defines a dynamic pair (X,V ), where V is a distribution
spanned by Y1, ..., Ym. Then there is a sequence of distributions defined inductively,
using Lie bracket, by V 0 := V, V i+1 := V i+[X,V i] and one imposes the regularity
conditions [13, 8]:

rk V i = (i+ 1)m, for i = 0, . . . , k,

V k ⊕ 〈X〉 = TM.

Then our control system (4) can be adapted to this situation as X := f(q)X1,
where f is an arbitrary non–zero function and Y1 := X2, Y2 := X3, Y3 := X4, and
the regularity conditions are satisfied. Indeed,

V 0 = 〈Y1, Y2, Y3〉,
V 1 = 〈Y1, Y2, Y3, [X,Y1], [X,Y2], [X,Y3]〉,

such that rk V 0 = 3 = m, rk V 1 = 6 = 2m and V 1⊕ 〈X〉 = TM . In fact, each f(q)
defines a dynamical system with specific drift and all of them are regular.

2.4. Remark on dual curvature. Following [18, 7], curvature of a distribution
H on a manifold Q is a linear bundle map F : ∧2H → TQ/H defined by F (X,Y ) =
−[X,Y ] mod H. Denote by H⊥ the bundle of covectors that annihilate H. Since
the curvature F is a linear bundle map, the dual of curvature is a linear map
F ∗ : H⊥ → ∧2H∗, called the dual curvature. Because our distribution is equipped
with the growth vector (4, 7), the space Im(F ∗) is three–dimensional subspace of
∧2H∗. We can define the Pfaffian H⊥ → ∧4H∗ as µ 7→ F ∗(µ) ∧ F ∗(µ). One can
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see that ∧4H∗q , q ∈ Q, is one–dimensional vector space and the Pfaffian may be

understood as a real valued quadratic form on H⊥ by choosing a volume form.
Then possible signatures for the Pfaffian are (3, 0), (2, 1), (2, 0), (1, 1), (1, 0), (0, 0).
Note that the signatures (p, r) and (r, p) must be considered as identical because
∧4H∗q is not oriented.

From parabolic geometry point of view, the generic distribution with growth
vector (4, 7) corresponds to quaternionic contact structures and split quaternionic
contact structures for signature (3, 0) and (2, 1), respectively. The distribution
corresponding to our mechanism has signature (0, 0) and we will see that it is a
parabolic geometry called generalized path geometry [6]. Let us point out that
there exist different modifications of trident snake robot that lead to the growth
vector (4, 7). However, it turned out that all of them have non-regular signature.
We have not found a mechanism with signature (3, 0) or (2, 1), yet.

3. Nilpotent approximation

We recall a constructive method to approximate vector fields of a nonlinear
control system by a similar system on the same configuration space. The method
leads to an approximate distribution which has a nilpotent basis. The techniques
of nilpotent approximation have been developed by various researchers, see e.g.
[2, 9]. We recall the following concept of orders of functions or vector fields and
distribution weights. Let Xi, i = 1, . . . ,m denote a family of smooth vector fields
on a manifold M and C∞(p) the set of germs of smooth functions at p ∈ M .
For f ∈ C∞(p) we say that Lie derivatives Xif,XiXjf, . . . are non–holonomic
derivatives of f of order 1, 2, . . . . The non–holonomic derivative of order 0 of f at
p is f(p). Then the non–holonomic order ordp(f) of f at p is the biggest integer k
such that all non–holonomic derivatives of f of order smaller than k vanish at p,
i.e.

ordp(f) = min

{
s ∈ N : ∃i1 . . . is ∈ {1, . . . ,m} s.t.(Xi1 · · ·Xisf)(p) 6= 0

}
.

Denote by V F (p) the set of germs of smooth vector fields at p ∈ M . Then the
notion of non–holonomic order extends to vector fields as follows: For X ∈ V F (p)
the non–holonomic order ordp(X) of X at p is a real number defined by

ordp(X) = sup

{
σ ∈ R : ordp(Xf) ≥ σ + ordp(f),∀f ∈ C∞(p)

}
.

Note that ordp(X) ∈ Z. Moreover, the zero vector field X ≡ 0 has infinite order,
i.e. ordp(0) = ∞. Furthermore, X1, . . . , Xm are of order ≥ −1, [Xi, Xj ] of order
≥ −2, etc.

3.1. Construction. We construct a nilpotent approximation of the distribution
with respect to the given filtration at point q0 = (0, 0, π2 , 0, 1, 1, 1). We use Belläıche
algorithm, which may be found in [4]. Let us point out that all constructions are
local in the neighbourhood of q0. In our case, as the first step of Belläıche algorithm,
the adapted frame

X1, X2, X3, X4, X12, X13, X14(5)

was chosen. Then we use four local coordinates (x, `1, `2, `3) as first four adapted
coordinates. The others can be obtained from the original coordinate system by an
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affine change in the form

y1 = −2x− 2
√

3y − 8θ,

y2 =
4

5
ϕ− 4

5
x+

8

5
θ,

y3 = −2x+ 2
√

3y − 8θ,

(6)

where we use the following conditions:

∂x|q0 = X1(q0), ∂`1 |q0 = X2(q0), ∂`2 |q0 = X3(q0), ∂`3 |q0 = X4(q0),

∂y1 |q0 = X12(q0), ∂y2 |q0 = X13(q0), ∂y3 |q0 = X23(q0).

Finally, note that the adapted coordinates (x, `1, `2, `3, y1, y2, y3) are privileged co-
ordinates in the case of adapted frame with growth vector (4, 7) [14].

Following [14], we group together the monomial vector fields in Taylor expansions
of the same weighted degree and thus we express Xi as a series

Xi = X
(−1)
i +X

(0)
i +X

(1)
i + · · · ,

for i = 1, 2, 3, 4, where X
(s)
i is a homogeneous vector field of order s. By [14,

Proposition 2.3.] we set Ni := X
(−1)
i for i = 1, 2, 3, 4. The family of vector

fields (N1, N2, N3, N4) forms called first order approximation of (X1, X2, X3, X4)
at q0 and generates a nilpotent Lie algebra of step r = 2, i.e. all brackets of
length greater than 2 are zero. The family (N1, N2, N3, N4) is called the (homo-
geneous) nilpotent approximation of (X1, X2, X3, X4) at q0 associated with coordi-
nates (x, `1, `2, `3, y1, y2, y3).

In the sequel, by the above algorithm, we obtain the following vector fields:

N1 = ∂x −
(
−
√

3

2
x+ `1 − 1

)
∂y1 − (`2 − 1)∂y2 −

(√
3

2
x+ `3 − 1

)
∂y3 ,

N2 = ∂`1 , N3 = ∂`2 , N4 = ∂`3 .

In particular, the family of vector fields (N1, N2, N3, N4) is the nilpotent approx-
imation of vector fields (X1, X2, X3, X4) at (0, 0, π2 , 0, 1, 1, 1) in the coordinates

(x, y, θ, ϕ, `1, `2, `3), while it is the point (0, 1, 1, 1,−4π, 4
5π,−4π) in the coordinates

(x, `1, `2, `3, y1, y2, y3).
The remaining three vector fields N12, N13, N14 are generated by Lie brackets of

(N1, N2, N3, N4) as

N12 = [N1, N2] = ∂y1 , N13 = [N1, N3] = ∂y2 , N14 = [N1, N4] = ∂y3 .

Note that due to the linearity of coefficients of (N1, N2, N3, N4), the coefficients of
(N12, N13, N14) must be constant.

To show how the nilpotent approximation affects integral curves of the distribu-
tion and the resulting control, we compute the Lie brackets of relevant vector fields.
In Fig. 2, there is a comparison of the Lie bracket motions in the original distribu-
tion (red line) and in the nilpotent approximation (blue line). The following figures
show the trajectories of the root centre point, vertices and wheels when a particular
Lie bracket motion is realized. To simulate the bracket motion of the nilpotent ap-
proximation, we choose the initial state q0 and apply the periodic input on couples
(N1, N2), (N1, N3) and (N1, N4) to receive the displacement approximately parallel
to [N1, N2], [N1, N3] and [N1, N4] respectively [19]. More precisely, for one cycle
we apply

u1(t) = −Aω sin(ωt), ui(t) = Aω cos(ωt), uj(t) = 0, uk(t) = 0



LOCAL CONTROL OF A MECHANISM WITH THE GROWTH VECTOR (4, 7) 7

Figure 2. Motions of the mechanism in directions: A) N12, X12,
B) N13, X13, C) N14, X14, D) N1, X1,

for i ∈ {2, 3, 4} and j, k ∈ {2, 3, 4}−{i}, respectively, all with respect to the control
system (10), amplitude A = 0.4 and angular speed ω = 2π

50 . Then we apply the
same process to original vector fields X1, X2, X3 and X4.

3.2. Control theory on nilpotent Lie groups. The above construction led to
vector fields N1, N2, N3, N4, N12, N13, N14 which determine a 7–dimensional nilpo-
tent Lie algebra n. The computation gives that

[N1, N2] = N12, [N1, N3] = N13, [N1, N4] = N14

and the remaining brackets are trivial. The corresponding connected simply con-
nected nilpotent Lie group N ' R7 with the nilpotent Lie algebra n is then endowed,
in new coordinates (x, `1, `2, `3, y1, y2, y3), with the following group structure




x
`1
`2
`3
y1

y2

y3




×




x̄
¯̀
1

¯̀
2

¯̀
3

ȳ1

ȳ2

ȳ3




=




x+ x̄
`1 + ¯̀

1

`2 + ¯̀
2

`3 + ¯̀
3

y1 + ȳ1 +
√

3
2 xx̄− `1x̄

y2 + ȳ2 − `2x̄
y3 + ȳ3 −

√
3

2 xx̄− `3x̄




(7)

and the vector fields N1, N2, N3, N4, N12, N13, N14 are left–invariant with respect
to the left action given by the group structure. In particular, the vector fields Ni for
i = 1, 2, 3, 4 determine a left–invariant distribution D on N , which has the growth
vector (4, 7) everywhere.

Altogether, D ⊂ TN defines an invariant 4–input symmetric affine control system

q̇ = u1N1 + u2N2 + u3N3 + u4N4,(8)

with q = (x, `1, `2, `3, y1, y2, y3), that approximates the original control system. It
clearly satisfies the Chow’s condition and is controllable.

4. Infinitesimal symmetries

We focus on basic geometric properties and infinitesimal symmetries of the nilpo-
tent approximation. By infinitesimal symmetries we mean vector fields such that
their flows preserve the geometric structure at any time [22]. In our case, infinites-
imal symmetries preserve the distribution and also the metric.



8 JAROSLAV HRDINA AND LENKA ZALABOVÁ

4.1. Generalized path geometries and their symmetries. Let us discuss the
geometric structure that occurs behind the control problem (8). In the previous
section, we constructed a nilpotent Lie group N with a filtered nilpotent Lie algebra
n with the growth vector (4, 7), where the 4–dimensional distribution D is generated
by the left–invariant fields N1, N2, N3 and N4. Consider subbundles E = 〈N1〉,
V = 〈N2, N3, N4〉 in TN . One can see from the structure of Lie brackets that the
following holds:

(1) E ∩ V = 0,
(2) Lie bracket of two sections of V is a section of E ⊕ V , and
(3) for sections ξ ∈ Γ(E) and ν ∈ Γ(V ) and a point q ∈ N , the equation

[ξ, ν](q) ∈ Eq ⊕ Vq implies that ξ(q) = 0 or ν(q) = 0.

Such geometric structures are usually called (generalized) path geometries (in di-
mension 7) [6, Section 4.4.3].

General theory [6] says that generalized path geometries have finite–dimensional
Lie algebras of symmetries and in the case of 7–dimensional manifolds, the maximal
possible dimension is 24. This is the case of generalized path geometries that are lo-
cally equivalent to a generalized flag manifold PSL(5,R)/P1,2, where by PSL(5,R)
we denote the projectivised special linear group with Lie algebra sl(5,R), and by
P1,2 the stabiliser of the flag of a line in a plane for the projectivised standard ac-
tion of PSL(5,R). In particular, the Lie algebra of symmetries for such generalized
path geometry is exactly the simple Lie algebra sl(5,R) and the symmetries with
a fixed point form its 17–dimensional parabolic subalgebra.

There is a general method to find all infinitesimal symmetries of a nilpotent
filtered structure [22]. One can apply this method to our structure (N,E⊕V ⊂ TN)
and it turns out that the symmetry algebra is of dimension 24 and is exactly sl(5,R).
In other words, symmetries of (N,E⊕V ∈ TN) are left multiplications by elements
of a Lie group with the Lie algebra sl(5,R) and the structure is left–invariant with
respect to this action. From this point of view, N ' PSL(P,R)/P1,2. Altogether,
nilpotent approximation forms a flat generalized path geometry.

Remark 1. The concept of Cartan geometries [24] generalizes the concept of Klein
geometries [15, 16] and generalized flag manifolds are special cases of Klein geome-
tries for the case of parabolic subgroups in semisimple groups. The Cartan’s gen-
eralization then leads to a wide theory of parabolic geometries [6], that are curved
versions of flag manifolds. Generalized path geometries are examples of such para-
bolic geometries [6, Definition 4.4.3.].

4.2. Sub–Riemannian structure and its symmetries. To study extremal tra-
jectories in the next section, we need the sub–Riemannian structure on the nilpotent
approximation. We consider a control metric g in D = 〈N1, N2, N3, N4〉 such that
the fields Ni for i = 1, 2, 3, 4 are orthogonal and have the length one with respect to
g. This clearly determines a left–invariant sub–Riemannian structure g of D (with
respect to the action given by group structure (7) on N).

Let us now focus on the symmetries of the nilpotent control problem (M,D =
E + V, g). Thus we are interested in symmetries that preserve not only the flat
generalized path geometry, but also the control metric. The symmetry algebra k of
(M,E+V, g) clearly is a subalgebra of sl(5,R). In fact, both k and sl(5,R) contain
the same nilpotent subalgebra that reflects the nilpotent group structure and that
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acts effectively and transitively on N . It is generated by vector fields

w1 := −∂x −
√

3

2
∂`1 +

√
3

2
x∂y3 ,

w2 := ∂`1 − x∂y1 ,
w3 := ∂`2 − x∂y2 ,
w4 := ∂`3 − x∂y3 ,
w12 := ∂y1 ,

w13 := ∂y2 ,

w14 := ∂y3 .

In general, k also contains symmetries preserving arbitrary fixed point. Since all
points are equivalent, we can fix the origin o = (0, 0, 0, 0, 0, 0, 0). If we study sym-
metries preserving the origin, intuition suggests that the sub–Riemannian metric g
shall be preserved by an orthogonal algebra so(4). However, each such symmetry
shall also preserve the control distribution D and its decomposition into E and V .
Thus it acts trivially on the 1–dimensional subspace Eo and restricts to the action
of so(3) on the 3–dimensional subspace Vo. Direct computation gives that there
really is the symmetry algebra so(3) ⊂ k preserving the origin generated by fields

v1 := −`3∂`2 + `2∂`3 − (

√
3x2

4
− x+ y3)∂y2 − (x− y2)∂y3 ,

v2 := `3∂`1 − `1∂`3 + (

√
3x2

4
− x+ y3)∂y1 + (

√
3x2

4
+ x− y1)∂y3 ,

v3 := −`2∂`1 + `1∂`2 + (x− y2)∂y1 − (

√
3x2

4
+ x− y1)∂y2 .

(9)

We can write it also in a ‘vector–matrix–like’ notation as

v1

v2

v3


 =




0 −`3 `2
`3 0 −`1
−`2 `1 0





∂`1
∂`2
∂`3




+




0 −(
√

3x2

4 − x+ y3) −(x− y2)√
3x2

4 − x+ y3 0
√

3x2

4 + x− y1

x− y2 −(
√

3x2

4 + x− y1) 0






∂y1
∂y2
∂y3


 .

One can verify directly that LviV ⊂ V and LviN1 = 0 and Lvig = 0 for i = 1, 2, 3,
where L denotes the Lie derivative, and that [v1, v2] = −v3, [v1, v3] = v2 and
[v2, v3] = −v1.

4.3. Properties of the so(3)–action. The action of so(3) is clear if the action of
the generators v1, v2, v3 is explained: the action decomposes into two independent
actions first of which is on R3 given by ∂`1 , ∂`2 and ∂`3 and the second one on
R4 given by ∂x, ∂y1 , ∂y2 and ∂y3 . Moreover, the algebra so(3) acts trivially on
∂x, which then defines a one–dimensional invariant subspace. The action of the
algebra so(3) on (∂`1 , ∂`2 , ∂`3) ∈ R3 corresponds to the rotations around all axes
passing through (0, 0, 0) and this does not depend on the remaining variables x, y1,
y2 and y3. In particular, vi for i = 1, 2, 3 corresponds to the rotation around the
axis generated by ∂`i . Analogously, for arbitrary fixed x, the algebra so(3) acts on

(∂y1 , ∂y2 , ∂y3) via rotations around axes going through (x +
√

3x2

4 , x, x −
√

3x2

4 ). In
particular, vi for i = 1, 2, 3 corresponds to the rotation around the axis generated
by ∂yi .

One can also see from the shape of the generators that the rotation around ∂`i
is tied to the rotation around ∂yi for i = 1, 2, 3. Thus the action on (∂`1 , ∂`2 , ∂`3)
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determines the action on (∂y1 , ∂y2 , ∂y3) and vice versa. In fact, x parametrizes (in

the coordinates (x, `1, `2, `3, y1, y2, y3)) the curve (x, 0, 0, 0, x+
√

3x2

4 , x, x−
√

3x2

4 ) ⊂
N which can be viewed as a curve of centres of the above ‘double–rotations’.

In particular, the nilpotent sub–Riemannian structure (N,D = V + E, g) is
invariant with respect to the action, and we can study its action on curves passing
through the origin. Assume that c(t) is a (parametrized) curve such that c(0) = o.
Consider the flow Fltv of the infinitesimal symmetry v := a1v1 +a2v2 +a3v3 ∈ so(3)
for some a1, a2, a3. It clearly preserves the origin o. Assume that the point c(t0) 6= o
for some t0 6= 0 is preserved by the action of Fltv. Then either the curve c(t) is
preserved by this action on [0, t0], or the action determines a family of curves of the
same length from o to c(t0) on [0, t0]. In particular, if such a curve c(t) that is not
invariant with respect to the action of Flsv is an extremal curve for the invariant
control system, then it is no more minimiser after it reaches the point. Moreover,
if one finds one such point then its orbit with respect to the action of so(3) consists
of such points. Indeed, a family of curves from o to c(t0) is mapped to the family of
curves of the same length from o to ĉ(t0), where ĉ(t0) is image of c(t) with respect
to the action of so(3).

We can describe explicitly the set of such points that are fixed for the action
of (the flow of) some infinitesimal symmetry a1v1 + a2v2 + a3v3. First, one can

check that each point of the curve (x, 0, 0, 0, x+
√

3x2

4 , x, x−
√

3x2

4 ) is preserved by
each such symmetry. Then the fixed points of any symmetry are given by axes of
the corresponding ‘double–rotations’. Explicitly, the fixed points of the symmetry
a1v1 + a2v2 + a3v3 form the set

{
(x, ka1, ka2, ka3, x+

√
3x2

4
+ ka1, x+ ka2, x−

√
3x2

4
+ ka3) : k ∈ R

}
.

Let us finally say that for each ki, i = 2, 3, 4 it holds that [N1, k2N2 + k3N3 +
k4N4] = k2N12 + k3N13 + k4N14. So the triple (N1, k2N2 + k3N3 + k4N4, k2N12 +
k3N13 + k4N14) determines a subalgebra which has the structure of the Heisenberg
algebra. One can see from the above mentioned that the action of the symmetry
algebra so(3) simply maps each such Heisenberg subalgebra to another Heisenberg
subalgebra.

5. Pontryagin’s maximum principle

We study local control of particular mechanisms. We use Hamiltonian formalism
and Pontryagin’s maximum principle to find local length minimisers. We study the
corresponding Hamiltonian system of ODEs in detail. Finally, we model several
explicit movements of the mechanism.

5.1. Formulation of the problem. Consider two configurations q1, q2 in the
nilpotent approximation N . Among all admissible curves c(t), i.e. locally Lips-
chitz curves such that c(0) = q1 and c(T ) = q2 that are tangent to D for almost all
t ∈ [0, T ], we would like to find length minimisers with respect to g.

We would like to minimize the length l among all the horizontal curves c, where

the length is given by l(c) =
∫ T

0

√
g(ċ, ċ)dt for the control metric g. Let us recall

that the distance between two points q1, q2 ∈ N is defined as d : M ×M → [0,∞],
d(q1, q2) = inf{c∈Sq1,q2

} l(c), where Sq1,q2 = {c : c(0) = q1, c(T ) = q2, c admissible}
[1, 5, 14]. However, since minimizing of the energy of a curve implies minimizing
of its length, we will rather minimize energy of curves.

We know from Chow–Rashevsky theorem that the control system of the nilpotent
approximation is controllable, see Section 2.2. In particular, any two points can be
joined by a horizontal curve and the distance of arbitrary two points is finite [1].
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We study the following nilpotent control problem

d

dt
q = u1




1
0
0
0√

3
2 x− `1 + 1
−`2 + 1

−
√

3
2 x− `3 + 1




+ u2




0
1
0
0
0
0
0




+ u3




0
0
1
0
0
0
0




+ u4




0
0
0
1
0
0
0




(10)

for q ∈ N and the control u = (u1, u2, u3, u4) ∈ R4 with the boundary condi-
tion q(0) = (x0, `10, `20, `30, y10, y20, y30) and q(T ) = (x1, `11, `21, `31, y11, y21, y31)
arbitrary but fixed, and we minimize

1

2

∫ T

0

(u2
1 + u2

2 + u2
3 + u2

4) dt.(11)

Without loss of generality, we choose the origin o = (0, 0, 0, 0, 0, 0, 0) as the initial
point q(0) = q1. Since we solve nilpotent control problem, we get curves starting
at different points using the left action coming from the multiplication in N , see
Section 3.2.

5.2. Hamiltonian formalism. Let us consider a cotangent bundle T ∗N → N
and the coordinate functions hi = 〈λ,Ni〉, where λ ∈ T ∗N . Then we consider the
Hamiltonian of the maximum principle

H(λ, ν) = u1h1 + u2h2 + u3h3 + u4h4 +
ν

2
(u2

1 + u2
2 + u2

3 + u2
4),

which is a family of smooth functions affine on fibres that is parametrized by controls
(u1, u2, u3, u4) ∈ R4 and a real number ν ≤ 0. The Pontryagin’s maximum principle
can be formulated as follows [1]: Assume (ū(t), c(t)) to be a pair such that c(t) is
a length minimizer for (10), (11) with control function u = ū(t). Then there exist
a Lipschitz curve λ(t) ∈ T ∗c(t)M and a number ν ≤ 0 such that

(λ(t), ν) 6= 0, λ̇(t) = ~Hū(t)(λ(t))

for Hamiltonian vector field ~H corresponding to H and Hū(t) = max H(λ(t), ν).
If λ(t) satisfies the principle for ν = 0, then it is called abnormal and it is

called normal otherwise. The abnormal minimiser is strictly abnormal, if it is not
normal. It follows from the Goh condition [17, 1] that there are no strictly abnormal
minimisers in the case of 2–step distributions. Thus we will focus on the case ν < 0
and we can normalize it in such a way that ν = −1.

The extreme is achieved when ∂Hu

∂ui
= hi−ui = 0 for i = 1, 2, 3, 4 and this implies

for the controls that ui = hi for i = 1, 2, 3, 4. In this case, the Hamiltonian of the
maximum principle is of the form

H =
1

2
(h2

1 + h2
2 + h2

3 + h2
4).

Then the corresponding Hamiltonian system associated with H is the following

q̇ = h1N1(q) + h2N2(q) + h3N3(q) + h4N4(q),(12)

ḣi = {H,hi},(13)

where Ni are the generators of the sub–Riemannian structure, q ∈ N and { , } is
the usual Lie–Poisson bracket [1]. Using the fact that {hi, hj} = 〈λ, [Ni, Nj ]〉 we
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conclude that the fibre system (13) is of the form

d

dt
h1(t) = −h5(t)h2(t)− h6(t)h3(t)− h7(t)h4(t)

d

dt
h2(t) = h5(t)h1(t)

d

dt
h3(t) = h6(t)h1(t)

d

dt
h4(t) = h7(t)h1(t)

d

dt
h5(t) =

d

dt
h6(t) =

d

dt
h7(t) = 0.

(14)

The equations are clearly independent of the horizontal coordinates q. The base
system has the form

d

dt
x(t) = h1(t)

d

dt
`1(t) = h2(t)

d

dt
`2(t) = h3(t)

d

dt
`3(t) = h4(t)

d

dt
y1(t) =

(
1 +

√
3

2
x(t)− `1(t)

)
h1(t)

d

dt
y2(t) = (1− `2(t))h1(t)

d

dt
y3(t) =

(
1−
√

3

2
x(t)− `3(t)

)
h1(t).

(15)

5.3. Analysis of the fibre system. Let us first discuss the fibre system (14).
Obviously, functions h5, h6 and h7 are constant. If they are all zero, then the
functions h1, h2, h3 and h4 are constant, too.

Let us denote the solution constants corresponding to h5, h6 and h7 by C5, C6

and C7, respectively, and assume that at least one of them is non–zero. Define
K ≡

√
C2

5 + C2
6 + C2

7 . Then we get

(16) ḧ1 = −C5ḣ2 − C6ḣ3 − C7ḣ4 = −(C2
5 + C2

6 + C2
7 )h1 = −K2h1.

Since K2 > 0, the solution of (16) is

(17) h1 = C11 cos(Kt) + C12 sin(Kt),

for some constants C11 and C12. Now, if C5 6= 0, we have

ḣ2 = C5h1 = C5(C11 cos(Kt) + C12 sin(Kt))

and hence

(18) h2 =
C5

K
(C11 sin(Kt)− C12(cos(Kt)) + C13.

This analogously holds for h6 and h7 if C6 6= 0 and C7 6= 0, respectively. In the
same way we get h3 and h4. Indeed, only the equation for function h1 merges
everything together.

We know from the above mentioned, that the functions hi for i = 1, 2, 3, 4 equal
to the controls ui of the system. Thus we control each vector field Ni with a
function ui which is either a constant or which oscillates. In fact, Ni, i = 2, 3, 4
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corresponds to ∂`j , j = 1, 2, 3 and reflects the movement of legs which is natural
from the mechanical point of view. The field N1 is the crucial field for the movement
and if it is controlled by a constant, then the remaining fields Ni are controlled by
constant, too.

Let us point out that the choice of h5, h6 and h7 to be zero or non–zero, in fact,
corresponds to the choice of constants in the solution. Since that corresponds to the
choice of initial conditions, we can interpret the choice of zero or non–zero solution
h5, h6 and h7 as the choice of initial conditions, equivalently. Moreover, we are
interested in the solution of the whole system (14, 15) and we are basically interested
in the curves, that are images in N with respect to the canonical projection T ∗N →
N . There can be curves of that type in N that differ only by the parametrization.
It is reasonable to consider the curves parametrized by the arc–length, only. These
are exactly the images of restrictions of the canonical projection to the solutions of
(14, 15) with initial conditions satisfying h2

1 + h2
2 + h2

3 + h2
4 = 1 at the initial point

(and thus everywhere).
Finally, let us remark that the choice h6 = h7 = 0 implies that h3, h4 are

constants and the remaining equations result in the system ḣ1 = −h5h2, ḣ2 =
h5h1, ḣ5 = 0, which is the fibre system of the control problem on the Heisenberg
group.

5.4. Analysis of the base system. Let us first say that it is enough to study
solutions with the initial condition q(0) = o. Then one can use the action given by
the multiplication on N to get a solution starting at an arbitrary point in N .

The first four equations of the system depend on hi, i = 1, 2, 3, 4 only and can
be computed by direct integration. Thus the equation ẋ = h1 gives that either
x = C1t for some constant C1 in the case that h1 is constant, or

x =
C11

K
sin(Kt)− C12

K
cos(Kt) +

C12

K

in the case that h1 is of the form (17), where K,C11, C12 are from the previous
section. Then we compute directly from (18) that

`1 =
C5

K2
(C11 − C11 cos(Kt)− C12 sin(Kt)) + C13t.

Analogous observation can be made for `2 and `3.
From mechanical point of view, this simply means that each branch can either

prolong or shorten or does not change its length in the first case, or oscillates in
the second case. In particular, the choice h6 = h7 = 0 reflects the situation when
lengths `2 and `3 of the second and third branch are constant and the robot uses
only the first branch of the length `1. The same principles work for the remaining
two branches and the corresponding choices of hi.

The equations for yi depend on x and `i for i = 1, 2, 3, only. So we can find yi
by considering closed subsystems for x, `i, yi for i = 1, 2, 3. Let us remark that yi,
i = 1, 2, 3 have no evident mechanical meaning. One should use the transformation
between these coordinates and the original ones to get some information about the
behaviour of y, φ, θ. We do not mention all the solutions explicitly. We rather
provide several examples to demonstrate the explicit paths and movements of the
mechanism in the following section.

Let us finally remark that in the case that h5 = h6 = h7 = 0, we can find for
each solution an infinitesimal symmetry such that the solution is contained in the
fixed points set of the symmetry. The situation is more complicated in the case
when some of h5, h6, h7 is non–zero.
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5.5. Examples of solutions. Let us present several particular solutions (satis-
fying all initial conditions of the system and also constraints coming from the
mechanical setting). To get an information about the movement of our mecha-
nism, we transform the solutions into the original coordinates which express the
kinematics of the mechanism. So we use the transformation between coordinates
(x, `1, `2, `3, y1, y2, y3) and (x, y, θ, ϕ, `1, `2, `3) in the form

ϕ =
5

4
y2 +

3

2
x+

1

8
y1 +

1

8
y3,

θ = − 1

16
y1 −

1

16
y3 −

1

4
x,

y = − 1

12

√
3(y1 − y3),

which is the inverse transformation to the transformations (6). We also add illus-
trative graphs of behaviour of the control parameters which are prismatic joints `i
and the revolute joint ϕ.

Example 1. In the case that h5 = h6 = h7 = 0, we can choose h1 = 7
10 , h2 = h3 =

1
2 , h4 = 1

10 and, with suitable choice of constants, we get the solution in the form

x =
7t

10
, y = (

7
√

3

600
− 49

800
)t2, θ =

21t2

1600
− 21t

80
,

ϕ = −49t2

200
+

21t

10
, `1 = `2 =

t

2
, `3 =

t

10
.

Figure 3. The graphs of control parameters: Example 1

Example 2. In the case that h5 6= 0 and h6 = h7 = 0, let us choose the constants
in such a way that h5 = 1 and h1 = − 1

2 sin(t) + 1
2 cos(t), h2 = 1

2 sin(t) + 1
2 cos(t)

and h3 = h4 = 1
2 . Then we get the solution in the form

x(t) =
1

2
sin(t) +

1

2
cos(t)− 1

2
,

y(t) = −
√

3

48

(√
3(sin(t)− 1)(cos(t)− 1) + cos(t)2 + t cos(t) + (t− 2) sin(t) + t− 1

)
,

θ(t) = − 1

64
cos(t)2 +

t− 10

64
cos(t) +

t− 12

64
sin(t)− t

64
+

11

64
,

ϕ(t) =
1

32
cos(t)2 +

36− 11t

32
cos(t) +

58− 11t

32
sin(t) +

t

32
− 37

32
.

`1(t) =
1

2
sin(t)− 1

2
cos(t) +

1

2
, `2 = `3 =

t

2
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Figure 4. The graphs of control parameters: Example 2

Example 3. Let us finally discuss the case that all h5, h6, h8 are non–zero. Let us

choose the constants in such a way that h1 = −
√

10
4 cos(t), h2 = −

√
30

12 sin(t) + 1
2 ,

h3 = h4 =
√

30
12 sin(t) + 1

4 , h5 =
√

3
3 , h6 = h7 = −

√
3

3 . We get the solution in the
form

x = −
√

10

4
sin(t)

y =

√
30

192
(1− t sin(t)− cos(t)) +

5

64
cos(t)2 − 5

96
sin(t) cos(t)− 5t

96
+

5

48
sin(t)− 5

64

θ = −3
√

10

256
((t− 8) sin(t) + cos(t)− 1)

ϕ =
13
√

3

384
(((t− 96

13
) sin(t) + cos(t)− 1)

√
10
√

3 + (
100

13
− 50

13
cos(t)) sin(t)− 50

13
t)

`1 =

√
30

12
(cos(t)− 1) +

t

2
`2 = `3 =

√
30

12
(1− cos(t)) +

t

4

Figure 5. The graphs of control parameters: Example 3
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